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We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au + Au
collisions at /syy = 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity
() and transverse momentum (p;) within —0.5 <y < 0 and 0.4 < p; < 2.0 GeV/c. In the most central
0%—5% collisions, a proton cumulant ratio is measured to be C;/C, = —0.85 £ 0.09 (stat) 4 0.82 (syst),
which is 26 below the Poisson baseline with respect to both the statistical and systematic uncertainties.
The hadronic transport UrQMD model reproduces our C,/C, in the measured acceptance. Compared to
higher energy results and the transport model calculations, the suppression in C,/C, is consistent with
fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic
interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only

exist at energies higher than 3 GeV.

DOI: 10.1103/PhysRevLett.128.202303

With the discovery of the quark-gluon plasma (QGP) at
the Relativistic Heavy Ion Collider (RHIC) [1-4], physi-
cists are starting to investigate the phase structure of the
QCD matter, especially in the high baryon density region.
The stark differences between the properties of QGP and
lower energy nuclear matter draw interest to the thermo-
dynamic processes, specifically those related to the nature
of phase transitions [5]. Experimenters can access the QCD
phase diagram, expressed in temperature (7') and baryonic
chemical potential (1), and search for phase boundaries
by varying the heavy-ion collision energy. At regions of
equal baryon and antibaryon density, ug = 0, theoretical
approaches work well, with lattice QCD calculations
predicting a smooth crossover transition from hadronic
matter to a QGP [6,7]. At finite up, where the baryon
density is larger than the antibaryon density, the existence
and nature of the phase transition are not well understood.

The event-by-event fluctuations of conserved quantities
such as net charge, net-baryon number, and net strangeness
are predicted to depend on the nonequilibrium correlation
length, £, and thus serve as indicators of critical behavior
[8]. Ideally, near the singular critical point, the correlation
length could grow as large as the size of the system under
study, provided sufficient time for the development. In
heavy-ion collisions, however, effects from the finite size
and limited lifetime of the hot nuclear system will limit the
significance of signals [9]. A theoretical calculation sug-
gests that £ may rise from ~0.5 to 3 fm in heavy-ion
collisions, constrained by the size of the system [10].
Experimentally, compared to other baryons, protons and

antiprotons are measured with high efficiency [11] and
have been shown to be reliable proxies for baryons and
antibaryons [8]. Despite computational challenges at
finite up [12,13], lattice QCD calculations have predicted
a positive cumulant ratio of net-proton (proton minus
antiproton) C4/C, for the formation of QGP matter
at up <200 MeV.

Recent reports on net-proton fluctuation measurements
from RHIC’s first phase of the beam energy scan program
(BES-I) [14,15] have demonstrated the potential sensitivity
of the cumulant ratios of C3/C, and C,/C, of the net-
proton multiplicity distribution to the collision energy.
Because of baryon number conservation, calculations from
both hadron resonance gas models (HRG) of the canonical
ensemble [16—18] and the ultrarelativistic quantum molecu-
lar dynamics (UrQMD) [17,19] transport model, which
do not contain critical dynamics, produce a smooth energy
dependence. Above a center of mass energy (,/Syy)
of 27 GeV, the solenoidal tracker at RHIC (STAR)
Collaboration’s BES-I results agree well with these models
[14,15]. However, in the energy range 7.7 < /Syy <
27 GeV from the top 5% central Au+ Au collisions at
RHIC, STAR’s results show a nonmonotonic behavior
as a function of ,/syy with a significance of 3.l
[14,15]. Here, the centrality is a measure of the geometric
overlap of two colliding nuclei and is defined by a
charged particle multiplicity. At collision energies below
V/Svv = 7.7 GeV, where net baryon densities are high,
UrQMD predicts a suppression with respect to unity of
C,/C, for central events. For all energies, a gas of classical
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free particles (Poisson distribution) has a C,/C, of 1.
A remaining question is how the nonmonotonic behavior
continues in a higher baryon density region below
Sy = 7.7 GeV.

In this Letter, we report the cumulant ratios of proton
multiplicity distributions in Au 4 Au collisions at /Syy =
3.0 GeV. For the top 5% central collisions, the dependence of
cumulant ratios on the particle rapidity (y) and transverse
momentum (pr7) is presented along with comparisons to
model calculations. At this energy, the antiproton production
is negligible [p/p ~ exp(—2up/Te) < 10761 [20], therefore
only the proton multiplicity distribution is used in the
analysis.

The AGS-RHIC accelerator complex provided a gold
beam with an energy of 3.85 GeV, incident on a gold target,
corresponding to /syy = 3.0 GeV for Au+ Au fixed-
target collisions. At this energy, STAR’s fixed-target mode
(FXT) [21,22] covered the midrapidity for protons in the
center-of-mass (c.m.) frame. The proton multiplicities are
determined using the time projection chamber (TPC) and
time of flight detector (TOF) of the STAR [23]. The target
was located 200.7 cm from the center of the TPC and of
thickness 1.93 g/cm? (0.25 mm) corresponding to a 1%
interaction probability. The TPC measures both the
trajectory and the energy loss (dE/dx) of a particle.
The TPC is placed within a solenoidal magnetic field
(0.5 T) and the particle momenta are calculated from
their curvatures. For these data, RHIC was configured to
circulate twelve bunches of 7 x 10° gold ions, which
grazed the top of the gold target. To remove collisions
between the beam and the beam pipe, event vertices are
required to be less than 1.3 cm from the Au target along
the beam line and less than 1.5 cm from the target radially
from the mean collision vertex. The analysis is performed
with 1.4 x 10® events.

The collisions are characterized by their centrality,
inferred from reconstructed particle multiplicities (refer-
ence multiplicity). For this analysis, the reference multi-
plicity is the total number of tracks in the TPC uncorrected
for efficiency loss, excluding baryons via dE/dx. The TPC
covered all azimuthal angles and the pseudorapidity n of
0 <7 < 2, in which n = —In[tan(6/2)] and 6 is the angle
between the particle three-momentum and the beam axis in
the lab frame. Proton tracks are excluded from the reference
multiplicity to avoid self-correlations [14,15,24]. The
reference multiplicity distribution shown in Fig. 1 is fit
with a Monte Carlo Glauber model (GM) coupled with a
two component particle production model [25,26]. By
integrating the GM fit, events are categorized into seven
centrality classes: 0%-5%, 5%-10%, 10%-20%, ...,
50%—-60%. At reference multiplicities below 10, the exper-
imental data and the GM disagree due to inefficiency in the
experimental trigger system. At multiplicities above 80,
double collision (pileup) events dominate the multiplicity
distribution. In addition to a pileup correction discussed
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FIG. 1. Reference multiplicity distributions obtained from

V/Syy = 3.0 GeV data (black markers), GM (red histogram),
and single and pileup contributions from unfolding. Vertical
lines on markers represent statistical uncertainties. Single,
pileup, and single + pileup collisions are shown in solid blue
markers, dashed green, and dashed magenta curves, respec-
tively. Analysis is performed on 0%-5% central events,
indicated by a black arrow.

below, events above the reference multiplicity of 80 are
removed from the 0%—5% centrality class.

In the FXT collisions, due to finite target thickness, the
pileup is clearly present, see Fig. 1. The cumulants are
corrected for the effect of pileup using an unfolding method
[27,28]. As a result, the single and double collisions are
separated statistically. Figure 1 shows the input GM fit (red
curve) and the unfolded pileup distribution (green dashed
curve). The single collision distribution is extracted (blue
points) from the measured distribution (black dots) and the
unfolded pileup distribution. The event-averaged pileup
probability, or total pileup fraction, is determined to be
(0.46 £0.09)% of all events and (2.10 £0.40)% in the
0%—-5% centrality class.

Figure 2(a) shows dE/dx versus the particle rigidity for
all positively charged tracks in the STAR TPC. The pion,
kaon, proton, and deuteron bands are labeled and a theo-
retical prediction [29] for the proton energy loss is shown
in red. Below rigidities of 2.0 GeV/c, the proton dE/dx
band is well separated and the TPC provides sufficient
particle identification. To improve the particle identification
for tracks with momenta above 2.0 GeV/c¢, TPC tracks
are matched with TOF hits and a mass-squared cut of
0.6 < m* < 1.2(GeV/c?)? is placed. The TOF requirement
introduces a 60% matching efficiency. The proton purity is
required to be higher than 95% at all rapidities and momenta
for the subsequent cumulant analysis.

Figure 2(b) displays the p; —y acceptance in the c.m.
frame for protons in fixed-target collisions at /syy =
3.0 GeV. The black box in Fig. 2(b) indicates the
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FIG. 2. Left panel (a): dE/dx versus particle rigidity measured
in the TPC; pion, kaon, proton, deuteron, and triton bands are
labeled. The theory prediction for protons is plotted in red. The
electron peak is in between the pion and kaon bands. Right panel
(b): Analysis acceptance in transverse momentum versus proton
rapidity (y) in the c.m. frame of Au+ Au collisions at
\/Syy = 3.0 GeV. The black box indicates the acceptance within
—-0.5<y<0and 0.4 < pr <2.0GeV/c. The red dashed box
indicates a narrower rapidity window |y| < 0.1, the largest
possible symmetric rapidity window from this data set. In both
panels, the yellow-to-blue color scale indicates the intensity.

acceptance window (—0.5<y<0, 0.4 < p;<2.0GeV/c)
used. The red dashed box shows the maximum symmetric
rapidity window (|y| < 0.1) for the selected p; region
(0.4 < pr < 2.0 GeV/c). The target, depicted by a black
arrow, is at rapidity y = —1.05. The diagonal discontinuity
in Fig. 2(b) is caused by the mass-squared cut above total
momenta of 2.0 GeV/c in the lab frame. The vertical
line structure above 2.0 GeV/c, most prominent within
—1.0 <y < —0.2, results from the geometry of the TOF
modules.

Experimentally measured proton multiplicity distribu-
tions are described by the central moments, i.e., ((6N)?),
((6N)?) and so on. The symbol (...) indicates the average
over all the events, N is the proton multiplicity in a given
event, and SN = N — (N) is the deviation. The relations
between the cumulants C, and the central moments are
defined as

(
variance: 6> =
skewness: S = (

{

kurtosis: k = ((6N)*)/o* =3 = C,/C3. (1)

Ratios of the cumulants are often used to reduce
volume dependence: C,/C, = 6>/M, C;/C, = So, and
C4/C, =ko?. An additional advantage is that the ratios of
these cumulants can be readily compared with theoretical
calculations of susceptibility [30-36] ratios 6% /M = y, /1,
So = x3/x2> and k6® = y4/x>.

The proton cumulants and ratios are corrected for
detector inefficiency and background from pile-up colli-
sions. The potential background from spallation in the

beam pipe is reduced by the lower transverse momentum
cut (pr > 0.4 GeV/c¢). Detector efficiency corrections are
performed on a “track-by-track” basis [37,38], where the
proton reconstruction efficiency as a function of p; and
rapidity is applied as a weight to each track. The integrated
proton track efficiency for the TPC detector is 95% in the
selected kinematic windows and centrality class (0%—5%).

All cumulant ratios are compared to the Poisson baseline
for which cumulants of all orders are the same C,, = M and
the cumulant ratios are equal to one. To suppress the
spectator protons from entering the analysis, the maximum
rapidity range is restricted to —0.5 <y < 0. For the
rapidity dependence measurement (y;, <y < 0), the
minimum rapidity (y,;,) is varied from —0.5 to —0.2
within 0.4 < py < 2.0 GeV/c. For the transverse momen-
tum dependence (0.4 < py < pF™), pF* is varied from
0.8 to 2.0 GeV/c within —0.5 < y < 0. The proton cumu-
lants C; through C, are provided in the Supplemental
Material [39].

The statistical uncertainties are obtained using a boot-
strap approach [43,44]. They are smaller than the marker
size in the following figures. The systematic uncertainties
are calculated from the uncertainty associated with the
detector efficiency, the track selection criteria, and the
pileup correction. To estimate the uncertainties in the track
selection criteria, the mass-squared window, the number of
TPC space points required, and the distance of closest
approach (DCA) in three dimensions of the reconstructed
track’s trajectory to the primary vertex position was varied.
The DCA was varied from 1-3 cm. The analysis used a
DCA < 3 cm cut. The uncertainty in the pileup correction
method is estimated by varying the pileup fraction by its
statistical uncertainty. For the top 5% central collisions,
the largest contributions to the systematic uncertainty for
C,/C, are from the pileup correction (+0.24) and the DCA
variation (40.78).

In a heavy-ion collision, the presence of noncritical
fluctuations of the collision volume, [45] also known as
volume fluctuations (VF), may lead to an artificial enhance-
ment in the measured cumulants [43,46]. As mentioned
earlier, the information of collision centrality, expressed
either in the fraction of total interaction cross section or in
the averaged number of participating nucleons (Npgy), is
extracted from the measured charged particle multiplicity
distributions, see Fig. 1. To achieve results properly
weighted by the event statistics, a centrality bin width
correction (CBWC) [15] is applied to all cumulants data
discussed below. In comparison to BES-I, however, the
centrality resolution in Au+ Au collisions at /syy =
3.0 GeV is lower due to a decrease in the particle
multiplicity. Therefore, volume fluctuation corrections
(VFC) [40,45] are tested with both the hadronic transport
model UrQMD [17,19] and Glauber model [25].

Figure 3 depicts the cumulant ratios as a function of the
average number of participating nucleons (V). The data
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FIG. 3. Centrality dependence of the proton cumulant ratios

for Au + Au collisions at ,/syy = 3.0 GeV. Protons are from
—05<y<0 and 04 < py <2.0 GeV/c. Systematic uncer-
tainties are represented by gray bars. Statistical uncertainties
are smaller than marker size. CBWC is applied to all cumulant
ratios. While open squares represent the data without the VFC
correction, blue triangles and red circles are the results with VFC
using the (N,,q) distributions from the UrQMD and Glauber
models, respectively. UrQMD model results are represented as a
gold dashed line.

with VFC, using N, distributions extracted from UrQMD
and Glauber models, and without VFC are shown as
triangles, circles, and open squares, respectively. It is clear
that the volume fluctuation correction shows a strong
model dependence and affects the distribution, particularly
in peripheral collisions. The respective dynamics in the
UrQMD and Glauber model for charged hadron production
lead to two different mappings from the measured final
charged hadron multiplicity distributions to the initial
geometry. This difference is likely the dominant source
of the model dependence in the VFC. On the other hand,
one can see in the figure that the difference between results
with and without the VFC is small for higher order ratios
C3/C, and C,/C, in the most central bin. As discussed in
Refs. [47,48], the maximum number of participants, Ng}f}’t‘
(394 for Au + Au collisions), suppresses the initial volume
fluctuations. The trends in the centrality dependence of
the cumulant ratios, C,/Cy, C3/C,, and C4/C,, are well
reproduced by the hadronic transport model UrQMD
calculations, see gold dashed lines in Fig. 3.

Figure 4 depicts the cumulant ratios as a function of
rapidity y and transverse momentum pz in 0%—5% central
collisions without and with the VFC. It is expected [49-51]
that the cumulant ratios approach the Poisson baseline in
the limit of small acceptance. For C5/C,, the ratios with the
VFC (UrQMD) and without the VFC deviate from the
Poisson baseline at the narrow rapidity windows. The VFC
(Glauber) ratio approaches unity as the acceptance is
decreased. For the C,/C, ratio, the VFC has a negligible

08k 0-5% Central Au+Au Collisions
Rl P O Data ® w/VFC (Glauber) a w/VFC (UrQMD) |, , |

ymin<y<0 ¥ -05<y<0
04< p, < 2.0 (GeV/c) ¥ 0.4 < p, < p’Tnax (GeV/c)

205 -04 03 -02 10 15 20

A max
rapldltymin Py (GeV/c)
FIG. 4. Similar to Fig. 3: Rapidity and transverse momentum
dependence of the proton cumulant ratios for 0%—5% central
collisions. Black squares, red dots, and blue triangles stand for
data without and with the VFC using Glauber and UrQMD,
respectively.

effect in the most central bin. Therefore, C,/C, is reported
without VFC in the discussions below. In the central
0%-5% collisions, as shown in Fig. 4, one obtains C4/C, =
—0.85+£0.09 (stat) £0.82(syst) in the kinematic accep-
tance of —0.5<y<0 and 0.4 < pyr <2.0 GeV/c. The
UrQMD model qualitatively reproduces the acceptance
dependence of the data, see Fig. 6 in the Supplemental
Material [39].

A nonmonotonic energy dependence of the net-proton
C,/C, was reported for 0%—5% central Au + Au collisions
at /syy =7.7-200 GeV [14,15]. A similar energy
dependence of the C,/C, of protons is also evident (open
squares in Fig. 5). Though a minimum appears around
20 GeV, both the C,/C, ratio of protons and net-protons
at 7.7 GeV are close to unity, albeit the large statistical
uncertainties. Meanwhile, the C,/C, value for Au+ Au
collisions at \/syy = 3.0 GeV is around —1. The negative
value of the proton C,/C, is reasonably reproduced by the
transport model UrQMD [17,19]. The HADES result of
Au+ Auat /syy = 2.4 GeV in top 10% central collisions
[52] is shown in the figure as filled square. Overall, our
ratio of C4/C, (also C,/C; and C;5/C,) is consistent with
the HADES data within uncertainties although detailed
comparison should be done within same acceptance. It is
worthy to note that we do not observe the large variations in
the rapidity width as reported by HADES [52].

The study of cumulant ratios in heavy-ion collisions has
motivated several QCD inspired model calculations [5],
which report a similar oscillation pattern around the critical
point due to the symmetry of the medium [53-58].
However, due to the stochastic nature of heavy-ion
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FIG. 5. Collision energy dependence of the ratios of cumulants
C4/ C,, for proton (squares) and net proton (red circles) from the
top 0%—5% Au + Au collisions at RHIC [14,15]. The points for
protons are shifted horizontally for clarity. The new result for
proton from /syy = 3.0 GeV collisions is shown as a filled
square. HADES data of /syy = 2.4 GeV 0%-10% collisions
[52] is also shown. The vertical black and gray bars are the
statistical and systematic uncertainties, respectively. In addition,
results from the HRG model, based on both canonical ensemble
and grand-canonical ensemble, and transport model UrQMD are
presented.

collisions, the finite lifetime and size of the system [59],
and dynamical effects such as the critical slowing
will smear the “critical point” to a region in collision
energy [60,61].

Poisson statistics and the grand canonical ensemble
(GCE) model predict that C,/C, is 1. Because of baryon
number conservation, calculations from models without
critical dynamics such as the canonical ensemble (CE) [16]
and UrQMD [17,19] show a characteristic suppression with
respect to the Poisson baseline in the net-proton C4/C,
when the collision energy is decreased, as seen in Fig. 5.
The same experimental cuts on event centrality, rapidity,
and transverse momentum have been applied to these
calculations. It is worth noting that if the rapidity window
is extended to |y| < 0.5, the UrQMD model predicts a value
of C,/C, ~ —4 for proton in central Au + Au collisions at
V/Snvnv = 3.0 GeV. Compared to results from higher energy
collisions, the suppression of the C,/C, ratio in central
Au + Au collisions at 3.0 GeV is stronger due to baryon
stopping and conservation. Recently, a hadronic equation
of state for 3.0 GeV Au + Au collisions was shown to be
applicable, using the measurement of collective flow
parameters [62]. While the low C,/C, value observed at
the energy can be explained by fluctuations driven by
baryon number conservation in a region of high baryon
density where hadronic interactions are dominant, the
nonmonotonic variation [14,15,63] observed at higher
collision energies is not demonstrated by the dynamics

in noncritical models such as UrQMD. Precision data from
the energy window of 3 < /syy < 20 GeV are needed in
order to explore the possibility of critical phenomena.

In summary, cumulant ratios of proton multiplicity
distribution from /syy = 3.0 GeV Au + Au collisions
are reported. The new data are measured by the STAR
experiment configured in fixed-target mode. At this colli-
sion energy, large effects due to the initial volume fluc-
tuation are observed in the cumulant ratios except in the
most central 0%—5% bin. The protons are measured with
the acceptance —0.5 <y <0 and 0.4 < p; < 2.0 GeV/c.
The rapidity and transverse momentum dependencies of the
cumulant ratios C,/C,, C3/C,, and C,/C, are presented.
A suppression with respect to the Poisson baseline is observed
in proton C,/C,=-0.85+0.09 (stat) +-0.82(syst) in
the most central 0%—5% collisions at 3 GeV and the
UrQMD model reproduces the observed trend in the central-
ity dependence of the cumulant ratios including
C,/Cy,C5/C,, and C4/C,. This new result is consistent
with fluctuations driven by baryon number conservation at the
high baryon density region.
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