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Abstract

Neuromorphic computing would benefit from the utilization of improved customized hardware.

However, the translation of neuromorphic algorithms to hardware is not easily accomplished. In

particular, building superconducting neuromorphic systems requires expertise in both supercon-

ducting physics and theoretical neuroscience, which makes such design particularly challenging. In

this work, we aim to bridge this gap by presenting a tool and methodology to translate algorith-

mic parameters into circuit specifications. We first show the correspondence between theoretical

neuroscience models and the dynamics of our circuit topologies. We then apply this tool to solve

a linear system and implement Boolean logic gates by creating spiking neural networks with our

superconducting nanowire-based hardware.

I. INTRODUCTION

Neuromorphic computing attempts to mimic the behavior of biological neurons and synapses

in the human brain. Recently, increased understanding of the physics of devices for neuro-

morphic computing [1, 2], and the theory of algorithms for neuromorphic computing [3] has

led to the development of CMOS-based neuromorphic architectures [4] that are three orders

of magnitude more efficient in terms of their energy-delay product when compared to tra-

ditional multiply-and-accumulate operations [5]. However, these systems are also nowhere

near the power figure of merit (energy per operation) required to create a massive scale

neuromorphic computer, such as the human brain.

For these reasons, efforts to mimic neurons and synapses may need to move towards

systems that have an intrinsic spiking ability and extremely low energy consumption. This

is the case in superconducting electronics where the constituent elements exhibit nonlinear

characteristics and have very low or no power dissipation. Superconducting circuits offer

drastically lower power consumption even when cryogenic cooling energy costs is taken into

account [6, 7]. Previous developments of neuromorphic architectures using superconducting

electronics have used Josephson junctions [8–11], quantum-phase slip junctions [12–14], mag-

netic tunnel junctions [15], systems with Josephson junctions and superconducting nanowire

single photon detectors [16, 17], and nanowires as relaxation oscillators [7] to construct cir-

cuits that emulate biological neurons and synapses. Superconducting nanowires offer ease

of fabrication and are most easily integrated with classical circuit elements. In addition, the
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ability of superconducting circuits to operate with near-lossless interconnects makes them

an attractive choice for implementing a low-power neuromorphic architecture.

Simultaneously, the success of Artificial Neural Networks (ANNs) [18] in computing ap-

plications such as pattern recognition and natural language processing coupled with the

widespread adoption of machine learning methods in many areas of science and engineering

is an indication that abstracting a computing problem and eliminating hardware dependen-

cies is a promising approach for going beyond Moore’s law. Among these networks, Spiking

Neural Networks (SNNs) closely simulate the dynamics of biological neurons and synapses

in the brain. Approaches to spiking neural networks that possess brain-like properties have

gained increased attention due to their widespread use in applications spanning decision

making [19], image recognition [20] and optimization problems [21].

The direct translation of superconducting neuromorphic architectures into algorithmic

formulations of a problem has been little explored, and a complete description of an algo-

rithmic implementation in neuromorphic hardware remains to be seen. It is very difficult

for hardware designers to condense an abstract algorithmic problem into a specific hardware

platform without increasing the complexity of circuits or compromising energy efficiency.

This gap in the field stems from the difficulty in reconciling the algorithmic and hard-

ware oriented approaches. At this point in time, this issue is often a question of expertise:

hardware designers do not have ready knowledge of algorithmic subtleties, while algorithm

developers do not have access to the hardware. Thus, there is a need for a tool to allow

computer scientists to test algorithms on neuronal circuits. We devise and present such a

tool here.

In this work, we address the issue of translation from theoretical algorithms to a specific

implementation by using the example of solving linear systems with a superconducting

neuromorphic network. We show the direct relation between a basic compositional model as

well as a leaky integrate-and-fire model and the proposed superconducting nanowire-based

neuromorphic hardware. We compile this correspondence into a tool to translate between

hardware and algorithmic descriptions of the neuromorphic architecture. We conclude with

a discussion on the outlook of the scaling of superconducting nanowire-based circuits in the

context of neural networks.
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II. METHODS

The building blocks of the hardware architecture are superconducting nanowires [22] and

hTrons [23]. In a superconducting nanowire biased with a current, superconductivity breaks

down when the current when the current exceeds the critical current Ic. As a consequence,

the nanowire develops a resistance Rhs and a voltage v = inwRhs. Superconductivity is

restored in the nanowire when its current is reduced below the retrapping current Ir. When

a superconducting nanowire is placed in parallel with a resistor, the relaxation from the

normal to the superconducting state of the nanowire can couple with the resistor. When

biased by a current above Ic, the nanowire switches and electrothermal feedback produces

continuous voltage spikes across the nanowire. This is termed a relaxation oscillator [24].

The hTron is a circuit element that acts as a thermally activated switch. It consists of

a superconducting nanowire (the channel), placed in close proximity to a resistive element

(the gate) [23]. When the channel is biased by a current below its threshold Ic,h, heat dissi-

pated by the gate can increase the temperature of the channel and break superconductivity.

Superconductivity is restored in the channel when it has cooled and its current is reduced

below a threshold Ir,h. This threshold is dependent on the temperature of the channel and

decreases for increasing temperature [23].

The simulations used in this work are based on models for superconducting nanowires

[22] and for hTrons [23] implemented in LTSPICE [25].

A. Hardware Design

In previous work [7], the application of two superconducting nanowires whose intrinsic non-

linear inductance Lnw was used to generate spiking behaviour is presented. We summarize

the description here.

As illustrated in Figure 1, the nanowire neuron consists of a main and control relaxation

oscillator in a loop. A source Ibias biases both oscillators below their critical currents but

in opposite directions. An input current pulse at Iin applied to the loop then results in the

current in the main oscillator to exceed Ic, causing it to switch. Then, current is diverted

counterclockwise in the loop which causes the control oscillator to switch while the main

oscillator relaxes. The switching of the control oscillator diverts current clockwise and causes
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Figure 1. Circuit topology for a circuit consisting of an input neuron (left) upstream, a synapse

(centre), and a target neuron (right) downstream. The neuron has a control (pink) and main (blue)

relaxation oscillator each with a nanowire nw1; nw2. Voltage spikes at node Vout,1 generate heat

(orange arrows) in close proximity of the hTron in the synapse which will be transferred to the

target neuron via Rout.

the main oscillator to switch again. Each time main oscillator switches, a voltage spike will

be seen at node Vout. The main and control oscillator act analogously to the Na+ and K+

ion channels in the Hodgkin-Huxley neuron model [26].

The synapse consists of an hTron and an integration loop formed by Lsyn, Rsyn,1, and

Rsyn,2. When a voltage spike appears at Vout, heat is dissipated across R2 (orange arrows).

R2 acts as the gate of the hTron, and the heat from it lowers the critical current of the hTron

channel, causing the hTron to switch. In the switched (normal, non-superconducting) state,

the resistance of the channel is typically on the order of 102 Ω for NbN films. The typical

resistance for Rsyn,1 and Rsyn,2 is on the order of 10 Ω. Thus, when the hTron channel

switches, the majority of the current Ibias,h is diverted into the integration loop. A portion

of the current through Lsyn is then transmitted to the target neuron via Rout. This process

is analogous to the integration behaviour of the Hodgkin-Huxley model [26].

The simulated operation of a simple neuron-synapse-neuron connection demonstrating
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Figure 2. Simulation results of excitatory and inhibitory connections between neurons. (a) Circuit

schematic for a neuron-synapse-neuron network (b) Waveforms showing the spikes V1 of neuron 1,

the current in the synapses Isyn, and the spikes V2 and V3 of neurons 2 and 3. In this simulation,

Iin,1 = 22 µA, Iin,2 = 19 µA and Iin,3 = 22 µA.

excitatory and inhibitory behavior is shown in figure 2. The network illustrated consists of

an input neuron (1) connected to two target neurons (2,3). The spike output from neuron

1 is connected thermally to the synapses via the hTron and the synapses are connected

electrically to neuron (2,3). When Iin,1 makes neuron 1 fire, the spikes are integrated in

the synapse as shown by Isyn in figure 2b. This synaptic current leads to the excitation of

neuron 2 for a brief period of time. Similarly, the same current Isyn but in the opposite

direction leads to inhibition of the firing of neuron 3 for a brief period of time.

In spiking neural networks, information must be encoded in the timing of the spikes in the

network. In figure 3, we demonstrate the time-domain response of the neuron circuit with

respect to its current biasing conditions. We define the spike period as the time between
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Figure 3. Simulation results of the frequency tunability of the nanowire neuron. (a) Plot of spike

waveforms at neuron output with varying Iin. Note that the waveforms are offset vertically for

clarity. Spiking frequency increases with increased input current to the neuron. (b) Colour map

of the firing rate (inverse of the spike period) of nanowire neurons as a function of Iin and Ibias.

These tuning currents determine the firing potential of the neuron.

the voltage spikes in a neuron. Figure 3a demonstrates a decrease in the spike period of

the nanowire neuron as a function of increasing input current. This same behaviour is seen

in overbiased relaxation oscillators, where biasing a nanowire above its critical current also

results in frequency-tunable oscillations [27]. We map the effect of this current-controlled

frequency-tunability in figure 3b. From the color map a firing threshold for the nanowire

neuron can be identified from the summation of the input and bias currents. Once this

threshold is reached, either an increase in the bias current or an increase in the input

current result in an increase in the firing rate. This behavior can be explained from the

critical current dynamics of the nanowires in the neuron circuit.

Similarly, the synapse circuit presented in figure 1 also demonstrates tunable character-

istics. The integration loop of the synapse acts as a leaky integrator circuit. The time-

domain response of this circuit can be set during its design, by choosing the ratio between

the Lsyn/Rsyn time constant and the Lnw/R2 time constant, where Lnw is the inductance

of nw2. The leakiness of the synapse is illustrated in figure 4a where the current in the

synaptic inductor is plotted for different values of synaptic inductance. In addition, Ibias,h

controls the amount of current injected into the integration loop, modifying the output of
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Figure 4. Simulation results of the design space of the hTron synapse and the current-controlled

tunability of the hTron synapse. (a) The time-domain response of the synaptic current plotted for

various values of Lsyn (b) The tunability of the synapse strength for various values of Ibias,h for

Lsyn = 1 µH. This plot is inverted for negative Ibias,h.

the synapse. Therefore, the strength of the synaptic connection can be updated externally

by tuning Ibias,h. Figure 4b shows the output current of the synapse for different values of

Ibias,h.

III. RESULTS

To connect our hardware with the computational picture of a neural network, we developed

two mappings from hardware to mathematical models. First is a mapping between the

physical system described in the previous section and the well-known leaky integrate-and-

fire neuronal model [28], second is the mapping to a recently developed compositional model

for spiking neural networks [3].
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A. Correspondence

1. Correspondence to Leaky Integrate-and-fire Model

The Leaky integrate-and-fire neural network is one of the most commonly studied network-

level models in neuroscience. In a network of n neurons, each is associated with a time-

varying potential value. In this model, a neuron’s potential is governed by the following

equation:
dui(t)

dt
= −λ (ui(t)− u0,i)−

∑
j

αCijsj(t) + Ii(t) (1)

where ui(t) represents the potential of the ith neuron at time t; u0,i is the initial potential

with no input; and Ii(t) is the external input to the neuron. The leaky integration dynamic is

encapsulated in the leakiness parameter λ of the neuron, that is the rate at which the neuron

potential decreases. The synaptic strength from a neuron i to a neuron j is represented by

matrix coefficient Cij and a transfer parameter α. The spiking events of neuron i occur

according to the following spike rule s(t):

s(t) = 1, ui(t) > η

s(t) = 0, otherwise
(2)

where η is the threshold potential. We relate the parameters of this model to our supercon-

ducting hardware as described below.

In our hardware, the current in the nanowire inw(t) of the neuron’s main oscillator cor-

responds to the potential ui(t) in the leaky integrate-and-fire model. In the nanowire-based

implementation, the spike rule corresponds to the voltage in the nanowire, the spiking events

of the nanowire neuron are described by the following spike rule:

vnw(t) = inwRhs, inw(t) > Ic

vnw(t) = 0, otherwise.
(3)

This relatively natural correspondence is what makes the superconducting system par-

ticularly elegant for the implementation of spiking neural networks.

Similarly, the initial potential u0 directly corresponds to the initial value of inw. For

instance, when the inductance and resistance values between the two branches of the neurons

are the same, the bias current in the nanowire of the main oscillator will be Ibias/2.
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Moreover, the integration behaviour of the model corresponds to the ability of the hTron

synapses to integrate the voltage spikes generated by the upstream neurons. The switching

of the hTron channel and its subsequent diversion of current into the integration loop of the

synapse, can be approximated by a leaky integration circuit with dynamics described by:

diint
dt

=
1

τ
(vin − iint) . (4)

Continuing with the analogy, the leakiness parameter λ corresponds to the ratio of the

time constant of the relaxation of the nanowire in the neuron to the time constant of the

integration loop in the synapse τnw/τsyn = (Lnw/R2) / (Lsyn/Rsyn1). τsyn can be set such

that it is larger than τnw to allow the synapse to retain the spike information from the

neurons.

The transfer parameter α in the model corresponds to the ratio between Ibias,h and the

current entering the nanowire of the main oscillator. The value of α is dependent on the

number of synapses connected to a neuron, the synaptic inductance, and the inductances

L1 and L2 of the nanowire neuron. For a neuron with a large number of synapses connected

to its input terminal, less current from each synapse enters the neuron.

The matrix coefficients Cij correspond to Ibias,h between the ith and j th neurons as

it represents the strength of the connection between two neurons via a synapse. In the

hardware, Cij can be externally tuned as discussed in the previous section and illustrated

in figure 4. Coupled together, Cij can be mapped to the current added to the nanowire of

the main oscillator.

The Ii(t) terms in the model correspond to the external input current source Iin to the

ith neuron as shown in figure 1.

2. Correspondence to a Basic Compositional Model

An algorithmic model for spiking neural networks has been recently introduced.[3] The model

lays out a schema to track a set of neurons (nodes) V with a set of synapses (edges) E, in

a graph by recording a potential for each neuron, at some discrete time.

• In the model, a neuron can be in one of two states: firing and not firing. For a neuron

at node u we have Ct(u) = 1 when the neuron is firing and Ct(u) = 0 when not firing.

We call this function the configuration of a neuron.
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• The connection between a neuron u and neuron v via a synapse is encapsulated in a

function w(u, v).

• At discrete time t, every neuron u has a potential pott(u) = [
∑

(v,u)∈E Ct(v)w(v, u)]−

b(u).

• The firing rule for the neuron is probabilistic and is described by pt(u) =
1

1+e
−pott(u)

λ

.

Here λ is distinct from the leakiness parameter of the leaky integrate-and-fire model

and is instead an arbitrary real temperature parameter.

The neuron biasing condition b(u) is akin to the currents Iin and Ibias into a neuron as in

figure 1. We associate the neuron biasing condition to be the location (Iin, Ibias) as in figure

3b.

The configuration of a neuron Ci(u) corresponds to the state of the nanowire of the main

oscillator of the neuron. When the nanowire switches, the neuron is firing. Conversely, when

the nanowire is in the superconducting state the neuron is not firing.

The weight of a synapse between two neurons w(u, v) is mapped to Ibias,h of the synapse

between them. As in the leaky integrate-and-fire model, this weight can be externally tuned

as demonstrated in figure 4.

The potential of the neuron pott(u) can be associated with the current in the nanowire

of the main oscillator inw(t). As shown in figure 1, this current dependent on the on Ibias

and Iin and is affected by the current coming from the connections of other synapses.

The firing rule pt(u) can be associated with the switching of the nanowire in the main

oscillators. While it is true that the nanowire switches whenever inw(t) > Ic, this is proba-

bilistic in a physical implementation and is dependent on Iin and Ibias. The firing probability

as a function of Iin and Ibias was explored in experiments with nanowire neurons here [29].

We summarize the correspondence between the two models presented and the physical

parameters in the table I and II.

B. Model and Translational Tool

From the above descriptions of the leaky-integrate-and-fire model and the basic composi-

tional model for spiking neural networks, we built a tool to directly relate the parameters of

the models to the physical implementation of the nanowire neuron and synapse. This tool
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Leaky integrate-and-fire model Physical Model

Initial potential of a neuron u0,i Initial current in the nanowire, inw(0)

Spike function s(t) Voltage spikes at Vout

Connection between neurons, αCij Bias current in the synapse Ibias,h

Potential of a neuron, ui(t) Current in the nanowire of the main oscillator inw(t)

Spike rule ui(t) > η Nanowire switches when inw(t) > Ic with noise

Leakiness parameter, λ Time constants of the neuron and synapse τnw/τsyn

Table I. Correspondence between the leaky integrate-and-fire model and the hardware description.

Compositional Model Physical Model

Bias conditions of a neuron, b(u) Iin and Ibias in figure 3

Configuration of a neuron, Ct(u) Voltage spikes at Vout

Weight of a synapse, w(u, v) Bias current in the synapse, Ibias,h

Potential of a neuron pott(u) Current in the nanowire of the main oscillator inw(t)

Firing probability, pt(u) Nanowire switches when inw(t) > Ic with noise

Table II. Correspondence between the compositional model and the hardware description.

can help bridge the expertise gap between computer scientists and hardware engineers in

designing neuronal circuits as it provides a platform for a common description of a problem.

1. Implementation of the Translational Tool

In the tool, the network consisting of the neurons and synapses is described as a graph.

A vector V describing the bias conditions to the neurons (the vertices) and a matrix E

describing the strength of the synapses between them (the edges) is specified. Then, the

algorithmic description from the leaky integrate-and-fire model, or the compositional model

is chosen. Depending on the choice of model, V is treated as Ii(t) or b(u) and E is treated as

Cij or w(u, v). Correspondingly, the parameters of the algorithmic model are tuned either

at each individual node or across the whole graph. The tool translates the parameters of

each algorithmic model to the low-level hardware description based on the correspondence

between the parameters described in each the previous section.
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The tool uses SciPy’s numerical solver IVP [30] to simulate the underlying system based

on a state variable description of the nanowire neuron circuit, as follows:

di1
dt

= (i2R1 − i1Rhsn1) /Lnw (i1)

di2
dt

= − 1

L1 + L2

(
L1

diin
dt

+ i2R1 − i4R2

)
− di1

dt

di3
dt

= (i4R2 − i3Rhsn2) /Lnw (i3)

di4
dt

=
1

L1 + L2

(
L1

diin
dt

+ i3R1 − i4R2

)
− di3

dt

(5)

in this case, Lnw(i) is a nonlinear function accounting for the kinetic inductance of the

nanowire following the expression from [22]. We define the current iin as Iin +
∑

k isyn,k

where isyn,k is the current flowing through Rout from each synapse to the neuron and Iin is

as in figure 1. The remaining current variables are further defined in the appendix.

Note that here we make a simplifying assumption about the dynamics of a supercon-

ducting nanowire. We specify a state variable ni for each nanowire to capture whether the

nanowire is in the superconducting (ni = 0) or the normal (ni = 1) state. The transition

from the superconducting to the normal state is brought about when inw(t) > Ic. The

transition form the normal state back to the superconducting state occurs when inw(t) < Ir.

Similarly, a state-variable description for the synapse is as follows:

di1
dt

= (i2Rsyn,1 − i1Rhsh) /Lnw,h (i1)

di2
dt

= −di1
dt

− di3
dt

di3
dt

= (i2Rsyn,1 − i4Rsyn,2) /Lsyn

di4
dt

=
di3
dt

− di5
dt

di5
dt

= (i4Rsyn,2 − i5Rout) /L2.

(6)

We use the same simplifying assumption about the dynamics of the channel of the hTron as

we use for the nanowires in the neuron. Transitions to the normal state in the channel of the

hTron are brought about after its current surpasses Ic,h and its return to the superconducting

state occurs when its current is below Ir,h. To couple neuron and the synapse, we force the

hTron channel to switch everytime the neuron fires, that is we set h = 1 whenever n2 = 1.

In an effort to facilitate broad use of this model, we reference the code implementing it here
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[31].

As an example, using the tool to relate a leaky integrate-and-fire model to the hardware,

the following steps are taken to translate the algorithmic description to the hardware:

1. The neurons and the synapses between them are configured as specified by the user in

their graph description

2. By default, the internal parameters of a neuron (Lnw, L1, L2, R1, R2) are set to typical

values (10nH, 20nH, 20nH, 5Ω, 5Ω) as are the parameters of a synapse

(Lnw,h, Rsyn,1, Rsyn,2, Rout) are set to (100nH, 10Ω, 10Ω, 5Ω).

3. u0 and η are respectively mapped directly to Ibias in the neuron and Ic of the nanowires.

4. Lsyn is set such that the leakiness parameter λ = (Lnw/R2) / (Lsyn/Rsyn).

5. For each synapse, Ibias,h is set such that the current in nw2 increases by a factor of Cij.

This ratio is maintained across all synapses. Correspondingly, Ic,h is set to be higher

than Ibias,h.

6. External inputs to the neurons Ii(t) are proportionally mapped to the input currents

Ii of each neuron.

7. The network is simulated by solving the IVP’s of underlying circuits.

In the following section apply the correspondence of our hardware to two algorith-

mic examples. We simulate Boolean gates and solve special linear systems with our

superconducting-nanowire-based neuromorphic architecture. These choices stem from the

ubiquitous nature of Boolean gates and algorithms to solve linear systems in classical

computing.

C. Solving Linear Systems

In a recent paper by Chou et al. [32], non-leaky integrate-and-fire neural networks were

shown to efficiently solve linear systems. Here, we demonstrate the computational power

of SNNs in simulation by implementing their theoretical models using our superconducting
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nanowire-based architecture. As a proof of concept, we start with solving a simple two-

dimensional linear system. Then, we scale up the problem to a five-dimensional linear

system with Laplacian structure.

The motivation for Laplacian linear systems is two-fold: (1) many practical applications

and engineering problems rely on solving large Laplacian linear systems such as diffusion

models, graph models and random walks; (2) some Laplacian linear systems have infinitely

many solutions. Chou et al. [32] predicted that a SNN will converge to the solution with the

least vector magnitude. We use the approach taken by Chou et al. [32] to solve Laplacian

linear systems, namely a 2×2 and a 5×5 system.

To translate a linear system of the form Ax = b to a SNN, we map Cij to be the elements

of the matrix ATA and I(t) to be the vector AT b to ensure that the matrix C is positive

semidefinite (PSD). The number of neurons in the SNN corresponds to the dimension of A.

For the first example, we attempt to solve the following Ax = b linear system which is

already PSD:

 1 −0.5

−0.5 1

 x =

 0.5

3.5

 (7)

We illustrate the network for solving this system and use the tool to handle parameter

mapping as in figure 5. The connectivity matrix Cij from the leaky integrate-and-fire model

corresponds to the matrix (−1)×A in the problem. We can then map the elements of matrix

A from the problem to the weights of the synapses as shown in figure 5a. Similarly, the row

elements of vector b are mapped to the ramp rates of currents at Iin for each of the neurons

relative to the timescale T of the neuron. To apply the leaky integrate-and-fire model, we

set the timescale of integration λ = 0.02 to ensure that the current in the synapse decays

much slower relative to the decay of current after a neuron spike. Using the tool, we chose

α = 0.67 and u0 = 0.95η.

The evolution of the system is illustrated in figure 5c. Initially, neither neuron is firing.

As time progresses, the input current to each neuron increases at different rates. Since the

external bias for neuron 2 is greater, its potential will increase faster and it will fire earlier.

When neuron 2 fires, both of its outgoing synapses are activated. Neuron 2 excites neuron 1

but also inhibits itself. After some time, neuron 1 will fire as a result of the excitation from

neuron 2. When neuron 1 fires, it will excite neuron 2 but inhibit itself. As can be seen
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0.5 μA/T

N1

0.5 μA

0.5 μA

-1 μA

3.5 μA/T

N2 -1 μA

(a) (b)

(c)

Figure 5. Implementation of an SNN to solve a linear system using simulated superconducting

hardware. (a) Graph representation of a network with two neurons (N1, N2) with synapses. The

weight of each synapse is inscribed in the synapse itself (b) Plot of the calculated firing rate of each

neuron as the system evolves. (c) Voltage spike waveforms for each neuron at its output voltage

node. For this simulation the timescale T of a neuron spike is approximately 37ns. Note that orange

arrows represent connections via the thermal domain and grey arrows represent connections via

the electrical domain

in figure 5b, two distinct firing rates emerge from the system. Specifically, we reference the

approach of Chou et al. [32] to define a firing rate as:

N(t)/t (8)

where N(t) is the cumulative number of spikes at time t. As can be seen in figure 5b, we

find that the firing rate of each neuron converges to the rows of the solution vector of the

linear system x = [3 5]T .

To illustrate the generality of the method, we extend the approach to solving a more
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0.5 μA

0.5 μA

Figure 6. Implementation of an SNN to solve a cycle graph using simulated superconducting

hardware. (a) Graph representation of a network with two neurons (N1-N5) with synapses. The

weight of each synapse is inscribed in the synapse itself (b) Plot of the firing rate of each neuron

as the system simulation evolves. (c) Calculated least square error of the solution as the system

evolves. For this simulation, the timescale of a neuron spike is approximately 31ns. Note that

orange arrows represent connections via the thermal domain and grey arrows represent connections

via the electrical domain

complex linear system. We apply the same approach to solving a cycle graph represented

by the following Ax = b linear system which is again already PSD:

1 −0.5 0 0 −0.5

−0.5 1 −0.5 0 0

0 −0.5 1 −0.5 0

0 0 −0.5 1 −0.5

−0.5 0 0 −0.5 1


x =



−2.5

0

0

0

−2.5


(9)

We can map again the elements of matrix A to the connectivity matrix Cij and the
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elements of vector b to the input currents of the neurons. We use the tool described in the

previous section to simulate the system and illustrate the results in figure 6.

These results can be understood from an energy minimization perspective. When neuron

5 fires, it will excite neuron 4 after a long period of time. When neuron 4 begins firing

continuously, neuron 3 will be excited. This same effect will propagate to neuron 2 after a

period of time. Neuron 1 will not fire due to the fact that the input current to the neuron is

negative. This is illustrated in figure 6b where the firing rates of the different neurons have

different activation times. It must then be noted that this linear system Ax = b defined

by the cycle graph has multiple solutions and the firing rate of our SNN approaches the

solution with the least L1 norm as predicted in [32]: x = [0 1 2 3 4]T

To assess the evolution of the network and determine error in the firing rate, we defined

the least square error as follows:

err = ∥Ax− b∥/∥b∥ (10)

Where the notation ||b|| signifies the magnitude of the vector. We take x to be the

instantaneous firing rate vector. We plot the evolution of the least square error in figure 6c.

D. Boolean Gates

We also implement several Boolean gate network examples found in Lynch and Musco’s

paper [3]. The networks were created using their algorithmic model and then translated

into our neuromorphic hardware. Boolean gates are relevant algorithmic examples to convert

into neuromorphic computing hardware given their high importance in classical computing

and their use in neural networks. Thus, neuromorphic versions of a universal set of Boolean

gates could enable computation with both classical and neuromorphic paradigms.

We demonstrate a 3-input AND gate network in figure 7. In the following paragraph, we

describe the operation of this network using the compositional framework from Lynch and

Musco’s paper [3]. We understand the operation of the network using the compositional

model. The weight of the synapses are taken to be L. When all three of the input neurons

fire, the potential of the neuron is −b + 3L and the probability of the output neuron firing

is (1 + exp(b − 3L))−1. When only two input neurons fire, the probability of the output

neuron firing is (1+exp(b−2L))−1. If we take L = 2 ln(1−δ
δ
) and b = 5

2
L we can see that the
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27 μAN158 μA

27 μAN258 μA

27 μAN358 μA

54.6 μA

N4

Figure 7. 3-input AND gate. The synapse bias current for each connection is 27µA, the input

neuron bias current is 58µA, and the corresponding bias for the output neuron is 54.6µA for 3

inputs. The critical current for nanowires in the neurons is Ic = 30µA. The current from an input

neuron must be greater than 3.72µA for it to fire. As more inputs are added the output neuron

bias would have to be lowered accordingly.

probability of output neuron firing when all three input neurons fire is 1 − δ for δ being an

arbitrary small parameter. In practice, the synapse and neuron biasing conditions determine

δ, allowing δ to be set arbitrarily close to 0. In a physical implementation of the network,

the probability of the output neuron firing can be attributed to current noise which causes

fluctuations in the current of the nanowires. If a nanowire is biased very closely to Ic then

there is a probability it may switch.

In addition, we demonstrate a 3-input OR gate in figure 8. The input currents and the

synapse bias currents are similar to the AND gate. Through an analogous formulation as in

the AND gate, we can set the biases in the network such that the output neuron fires with

probability 1 − δ when one of the input neurons fires, it fires with probability δ if none of

the input neurons fire. Again, δ can be made arbitrarily close to 0 in this model. We can

understand this as a threshold problem allowing for the robust implementation of Boolean

gates.

IV. DISCUSSION

Solving a physical system by using another physical system with similar dynamics as its

model is a promising approach to computing. Here we discuss the advantages and failings

19



27 μAN158 μA

27 μAN20 μA

27 μAN30 μA

57 μA

N4

Figure 8. 3-input OR gate. The synapse bias current for each connection is 27µA, the input neuron

bias current is 58µA, and the corresponding bias for the output neuron is 57µA for 3 inputs. The

critical current for nanowires in the neurons is Ic = 30µA. This output bias would not have to be

lowered upon adding inputs because it only needs to fire if it receives enough input current from

any one of the synapse connections.

of the approach and provide insight on how such a system could be realized.

A. Solving Linear Systems with Nanowire Neurons

The approach by Chou et al. for solving linear systems implemented in this paper is numer-

ically robust. The solution of the Ax = b system is not physically tied to an experimental

observable, such as voltage or current. As in [32], the numerical accuracy is a function of the

total evolution time of the system. Accuracy can thus be optimized by increasing the time

as well as by decreasing the time scale of the components of the circuits. Superconducting

nanowires offer rise times on the order of a few ps and relaxation times as short as 2-5 ns

from previous measurements [27]. Thus, least-square errors below 10−3 might be achieved

within tens of microseconds for large networks. The values of the resistors and inductors

chosen to set the L/R time constants with the tool do not constraint the time scale of the

SNN . Therefore, the solution can be obtained independently of the timing parameters set in

the system. The implementation of this approach with superconducting hardware remains

to be demonstrated experimentally. In neurons with high fan-in, that is with many incoming

connections from synapses, the resistive network connecting a set of synapses to the input

terminal of the neuron can result in significant power consumption. Higher current and
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resistances are needed to account for leakage current in such a network. Some previous ap-

proaches [25, 33] have suggested the use of fan-in trees to mitigate this problem which could

be beneficial in our architecture. However, using either resistive networks or tree structure

would still pose problems with either power or area scaling. An improved architecture for

fan-in is needed to break this scaling concern.

The advantage of our architecture is the decoupling of the neuron output to the synapse

input via the hTron. Since no electrical connection is needed between the output node of

a neuron to a synapse, there is no need for impedance matching. Hence, large fan-out can

be achieved by patterning R2 to allow for heat dissipation at multiple locations where the

hTron channels of multiple synapses could be located. However, this of course comes at a

cost of higher power needed. An estimation of the power consumption of an implementation

of the nanowire neuron can be found in previous work [7].

Due to non-idealities in the fabrication process for superconducting electronics, there can

be difficulty in achieving small variance in the resistances, inductances, and critical currents

of circuit components. This can lead to a spread in the distribution of the spike rise and

relaxation times. However, variance across neurons is masked by the definition of the firing

rate. After the network evolves for an appreciable time, the time between the spikes need not

matter more than the total number of spikes. The firing rate is thus a robust quantity. Even

with non-idealities in the fabrication process, the architecture proposed in this work would

not be significantly different from biological neurons and synapses, which intrinsically have

variability. Here, we make the assumption that the design of the hTron can be optimized

such that the synapses are still activated despite variations in the strength of the voltage

spike at the neuron.

While some simple checks are implemented to check parameter ranges that are practically

realizable by fabrication, additional experimental verification may still be needed. For in-

stance, the range of synaptic weights in the synapses that can be designed via the inductance

of Lsyn is limited by the kinetic inductance of the material used. We have chosen NbN with

kinetic inductance 33 pH/sq for our tool owing to previous reports of implementations and

measurements of nanowire neurons and synapses [7, 25]. To alleviate this problem, higher-

kinetic-inductance materials such as WSi with kinetic inductance of 260 pH/sq [34] can

be chosen instead. Achieving lower resistances is limited by the presence contact resistance

and the inherent variability in fabrication processes. Similarly, the range of synaptic weights
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is also limited by the design of the hTron. The upper bound for the value of Ibias,h stems

from Ic,h. Superconducting nanowires can be designed to have critical currents above 1 mA.

However, challenges could arise with the size of components on chip. Larger critical currents

typically are obtained from an increase in cross-sectional area of the superconducting trace.

As a result, there is a large area cost for synaptic inductors with large kinetic inductances

and high critical currents. This constraint may limit the values of Cij that could be realized.

Another consideration in the design of the circuit network is the readout of the firing

rate. For a fully integrated system as in [4], we envision a multi-layered system with readout

and control circuitry connected by vias. For the firing rate readout circuit, superconduct-

ing counter circuits could be implemented based on nTron devices [35]. Similarly, a hybrid

superconductor-transistor approach could allow for readout via classical digital logic [36]. In

cases where the spike strength or the weights of the synapses are not known, the linearity

of an Ax = b system could be exploited. Instead of using the individual firing rates of the

neurons as the components of the solution vector x, the ratio of the firing rates of the neu-

rons could be used instead. Superconducting single flux quantum (SFQ) logic architectures

would then be available to realize more complex readout circuits [37] while still offering the

advantages of superconducting electronics.

B. Modelling

We have taken a simpler approach to modelling superconducting elements to accommodate

the possibility of increased scaling. The tool ignores the microscopic electrodynamics of the

system and the rigorous electrothermal physics that describes device operation. Instead,

the state-variable description of the switching of the nanowires in the neuron and the hTron

channel in the synapses is a simplification of the phenomenological models of [22, 25] which

is convenient for algorithm designers and avoids non-linearities in the model [23]. For larger

nanowires, there may be non-trivial dynamics that would deviate from the lumped element

model and discrepancies that could arise from the temperature dependence of the physical

parameters.

In the first example presented in the previous section, the tool enabled the translation of

algorithmic parameters from the leaky integrate-and-fire model (λ, α, Cij, Ii) into specifica-

tions for the hardware (R1,2, L1,2, Rsyn,1,2, Lsyn, Rout, etc. ) with ease. While the approach
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presented in the previous section of choosing the parameters is not necessarily unique, it is

possible for experts outside of superconducting electronics to understand and apply. Hence,

there is no expertise in superconducting electronics required to explore further applica-

tions. Our superconducting hardware and its associated tool is versatile because it can be

associated with many computational models—two are shown in this paper. Superconduct-

ing nanowires have also been applied in image recognition, Winner-Takes-All algorithms,

stochastic behaviour [29]; and more conventional electronics [38]. By the same token, the

tool is not dependent on circuit modelling software such as LTSPICE and uses the more

common language of python rather than a higher-level professional language like Verilog A.

As a result, the functionality of the tool presented in this work can be similarly extended

to other superconducting systems based on Josephson junctions [8, 11, 17], and quantum

phase-slip junctions [13, 14] albeit with increased complexity for the component models.

Optimizing circuit layouts for power or area given a set of algorithmic constraints would

also be an area of extension for the tool. These ideas constitute a useful continuation of this

work.

V. CONCLUSION

We presented the fundamental components for the hardware implementation of a neural

network based on superconducting nanowires. We translated the hardware architecture to

its algorithmic description enabling a straightforward understanding of the algorithmic cor-

respondence of physical parameters. This understanding elucidates how more complicated

networks of arbitrary scale can be built based on robust theoretical models. In addition, the

work incites the future implementation of new models for biological neurons and synapses to

replicate more complex bio-realistic behaviour. The description of a leaky integrate-and-fire

model in terms of physical parameters enables the exploration of the design and fabrication

of circuit layouts corresponding to linear system solvers.

Most importantly, the encapsulation of this work in a python-based tool is key in filling

the gap between algorithmic designers and hardware designers. It is a point of commonality

for the expertise within both of these fields. It can thus enable, in the future, concrete and

fast approaches to solving neuromorphic problems using a superconducting nanowire-based

neuromorphic architecture. The direct translation of superconducting neuromorphic archi-
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tectures into algorithmic formulations of a problem is facilitated with this tool. As a result,

it is now easier for hardware designers to condense an abstract algorithmic problem into a

specific hardware platform without increasing the complexity of circuits or compromising

energy efficiency as is typical of CMOS circuits. Thus, the issue is no longer a question of

expertise.

ACKNOWLEDGMENTS

We wish to acknowledge the support of and thoughtful discussions with collaborators.

VI. DATA

VII. REFERENCES
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Appendix A: Circuit Model

(a) (b) (c)

Figure 9. SEM images of fabricated relaxation oscillators (a), nanowire neurons (b), and synaptic

integration loop in the synapse (c). Obtained from [25]

The nanowire neuron is made from two relaxation oscillators. We define the currents i1

through i6 for the nanowire neuron as the currents in each branch of the three loops as in

figure 10. Applying Kirchhoff’s voltage law for the three loops yields the following equations:

Lnw (i1)
di1
dt

+ i1Rhsn1 = i2R1 (A1)

Lnw (i3)
di3
dt

+ i3Rhsn2 = i4R2 (A2)

L1
di5
dt

+ i2R1 = L2
di6
dt

+ i3R2 (A3)

The hTron synapse is similarly described by the equations from Kirchhoff’s voltage law:
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R1

R2
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i3
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(a) (b)

Figure 10. Circuit schematic for the nanowire neuron (a) and the hTron synapse (b) with definitions

of currents for a state-description of the circuit in the superconducting state.

Lnw,h (i1)
di1
dt

+ i1Rhsh = i2Rsyn,1 (A4)

i2Rsyn,1 = Lsyn
di3
dt

+ i4Rsyn,2 (A5)

i4Rsyn,2 = i5Rout + Lout
di5
dt

(A6)

Here Lout is taken as L2. We use state variables n1, n2 to capture the state of the nanowires

in the neuron and h for the channel of the hTron. We modulate the critical current of the

hTron according to the following rule:

if n2 = 1, then Ic,h
′ = βIbias ,h

Where we define β to be a factor such that 0 < β < 1. This ensures that the hTron channel

switches when the nanowire in the main oscillator switches.
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