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A gapped ground state of a quantum spin system has a natural length scale set by the gap. This length
scale governs the decay of correlations. A common intuition is that this length scale also controls the spatial
relaxation towards the ground state away from impurities or boundaries. The aim of this article is to take a
step towards a proof of this intuition. We assume that the ground state is frustration-free and invertible, i.e.
it has no long-range entanglement. Moreover, we assume the property that we are aiming to prove for one
specific kind of boundary condition; namely open boundary conditions. This assumption is also known as
the ”local topological quantum order” (LTQO) condition. With these assumptions we can prove stretched
exponential decay away from boundaries or impurities, for any of the ground states of the perturbed system.
In contrast to most earlier results, we do not assume that the perturbations at the boundary or the impurity
are small. In particular, the perturbed system itself can have long-range entanglement.

1 Informal statement of the result

Since a full ab initio statement of our assumptions and theorem requires quite some setup and definitions,
we first state some simplified assumptions and the result, freely using terminology that is probably known
to most of our readers. We consider a spin system on a finite discrete set �, say, a subset of Zd. We
define a Hamiltonian H + J where both terms H and J are local Hamiltonians, i.e. sums of local terms
H =

q
Xµ� hX , J =

q
Xµ� jX with ||hX ||, ||jX || decaying rapidly in diam(X). We assume moreover the

following properties:

1. The spatial support of J is confined to a region �j with arbitrary size. Crucially, we do not assume
that the terms jX are small.

2. The Hamiltonian H has a ground state � that is invertible. This means there is an auxiliary state �Õ

such that �¢�Õ is connected to a product state by a locally generated unitary, i.e. it is automorphically
equivalent to a product state.

3. H is frustration-free, i.e. the local terms hX are all minimized by the state �.

4. The open boundary restrictions (OBC) HZ =
q

XµZ
hZ for balls Z with radius r have a spectral gap

“(r) above the ground state sector, that decays no faster than an inverse polynomial in r, as r æ Œ.

5. The ground states of the open boundary restrictions HZ for balls Z satisfy the so-called ‘local topologi-
cal quantum order’ (LTQO) condition: Their local restrictions to a set X approach the local restriction
of the state �, quasi-exponentially fast, as dist(X, Zc) æ Œ.

The result is that local restrictions of any ground state of H + J approach the local restriction of � fast,
as a function of the distance to the impurity or boundary region �j , see also Figure 1.

Informal claim on local stability: There is a stretching exponent — > 0 and finite constant C such that,
for any ground state � of H + J , and for any local observable OX supported in X µ � with diam(X) Æ

dist(X, �j)—,

|È�, OX�Í ≠ È�, OX�Í| Æ C||OX ||e≠(dist(X,�j))—
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Figure 1: The informal claim on local stability concerns ground state expectation values of observables supported in the region X,

far away from �j , the support of J .

As far as we can see, there is no natural sense in which � resembles �, other than what is expressed in
this claim. In particular, � is not necessarily the unique ground state, it has in general no gap1, no short
range entanglement properties and it is not frustration-free. To illustrate this, in particular the possibility
of long-range entanglement, we consider � = {1, 2, . . . , L} and we imagine that at each site there is a qubit,
i.e. a two-dimensional Hilbert space, with base states |¿Í , |øÍ. The Hamiltonian is H =

q
iœ� ‡z

i
where ‡z

i

acts at site i, as ‡z

i
|øÍ

i
= |øÍ

i
and ‡z

i
|¿Í

i
= ≠ |¿Í

i
. This Hamiltonian has a unique ground state that is

a product, namely ¢i |¿Í
i
. The perturbation J is chosen as J = ≠‡z

1 ≠ ‡z

L
+ e≠cLj1,L with some c > 0

and j1,L a two-qubit operator acting on sites 1 and L. Because of the very small prefactor e≠cL, this
perturbation J satisfies any reasonable locality requirement. By taking j1,L = 0, the perturbed system
H +J has 4-fold ground state degenerary. By taking j1,L to be minus the rank-1 projector on the entangled
Bell state 1

Ô
2 (|øÍ1 ¢ |øÍ

L
+ |¿Í1 ¢ |¿Í

L
), the perturbed system H + J has a unique ground state that has

maximal entanglement between qubits 1 and L.

1.1 Discussion

1.1.1 Spectral stability of the ground state sector
The above result should be contrasted with recent work on the stability of the spectral gap against locally
small perturbations. That recent work can be split in two classes. The first class concerns systems where
the unperturbed ground state is a product, see [1, 2, 3, 4, 5, 6, 7]. The second class is based on the
so-called Bravyi-Hastings-Michalakis (BHM) argument which applies to frustration-free ground states, see
[8, 9, 10, 11]. Both classes are eventually based on some form of spectral perturbation theory applied to the
ground state sector. In all of the above cases, one also obtains some form of locality for the action of small
perturbations, captured by the slogan ‘local perturbations perturb locally’, see also [12, 13].

Our result is di↵erent in spirit, as our perturbations are not assumed to be small, but we obtain only
information about the perturbed ground states in regions far away from the region �j where the perturbation
acts. On the other hand, and in contrast to the quoted works, our result relies crucially on the variational
principle and so it holds only for ground states (or ceiling states). One should realize that it is not only the
proof of the results in [8, 9, 10] that does not apply in our case, but also the results should not be expected,
as already stressed above through an example.

1.1.2 Role of the invertibility assumption
If one drops the invertibility assumption, then the claim on local stability in Section 1 can no longer hold.
To see this, one can consider the two-dimensional toric code model [14, 15] on a large square �. This model
is frustration-free and with appropriate boundary conditions, there is a unique groundstate �. The OBC
restrictions always have a spectral gap that is bounded below by a positive constant, and the topological
order condition holds. However, the state � is not invertible, regardless of boundary conditions. The lack
of invertibility is associated with anyonic excitations that are created in pairs. By choosing a boundary
condition that fixes a single anyon excitation at the boundary of a region �, one forces a partner anyon to
be present somewhere in the interior of �, see Figure 2. In this case, there will be multiple ground states,
labelled by the position x of the partner anyon. Since x can be arbitrarily far from the boundary, the claim
on local stability does not hold. Of course, the large degeneracy of ground states is not a robust feature

1Actually, our assumptions do not explicitly require a global gap for H either, but such a gap is there in spirit because of the invertibility
assumption, and we have left it in the abstract to fix thoughts.
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Figure 2: Left: a pair of anyons at sites x, xÕ
connected by a (locally non-observable) string. This is an excited state of the toric

code Hamiltonian. Right: one of the anyons is fixed at the boundary by the boundary condition. This constrains the partner anyon

to be present in the ground state, at some arbitrary site x.

of the model. Indeed, if one adds a small global perturbation to the model, which will in general give the
hitherto static anyons some mobility (see e.g. [16]), then the degeneracy will be lifted and the unique ground
state will correspond to a delocalized anyon. In this case, the claim on local stability is still violated because
the ground state now di↵ers locally from � by an amount that is an inverse polynomial in the volume |�|.

1.1.3 Remaining assumptions, extensions, and related results

As argued above, the invertibility assumption can not be dropped. We can also not drop the LTQO
condition. Consider for example H = H0 + B acting on the chain of qubits (as the example immediately

below the informal claim). We take H0 the classical Ising Hamiltonian H0 = ≠
q

L≠1
i=1 ‡z

i
‡z

i+1 such that its
ground states exhibits spontaneous symmetry breaking, with ground states ¢i |¿Í

i
and ¢i |øÍ

i
. The term

B = ‡z
1 breaks the symmetry at the boundary, so that H has a unique ground state � = ¢i |¿Í

i
. In that

case our result does not hold, as we see by taking J = ≠B. The LTQO assumption fails to hold since in
the interior of �, the symmetry remains unbroken and the OBC restrictions in the interior also have ¢i |øÍ

i

as ground states. Of course, one could imagine replacing the LTQO condition by some form of translation
invariance of the Hamiltonian H, ruling out the above example.

Apart from this, we do not see that the other assumptions are fundamentally necessary, though they
are necessary for our proof. However, a mild extension of our result seems within reach: we hope that
techniques introduced within the BHM argument, see Section 1.1.1, could allow to generalize our result
in the following way: If we were to tighten our assumptions so that the local gap “(r) Ø “ > 0, i.e. the
local gap is uniformly bounded from below, then the result should also hold for Hamiltonians of the type
H Õ = H + ‘K where H and its ground state satisfy the tightened assumptions, K is a Hamiltonian with the
same locality restrictions as H and J , and ‘ π 1 is a small parameter.

Results similar to ours have recently been obtained independently in [17], as a corollary to [4]. The
result of [17, 4] yields full exponential decay and requires no explicit frustration freeness, but it is restricted
to weakly interacting spins, i.e. perturbations of products. Instead, our result relies on the automorphic
equivalence of the unperturbed ground state to a product state, possibly upon adjoining an auxiliary state.
Both results need hence an underlying product structure. Another line of research that is loosely connected
to ours, concerns stability at nonzero temperature in spatial dimension 1, see [18, 19].
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2 Setup

2.1 Preliminaries

2.1.1 Spatial structure
We consider a finite graph �, equipped with the graph distance dist(·, ·). Let Br(x) = {y : dist(x, y) Æ r}

be the ball of radius r centered at x œ �. The graph is assumed to have a finite dimension d < Œ, i.e. there
is a C� < Œ such that

sup
xœ�

|Br(x)| Æ 1 + C�rd.

For reasons of recognizability, we refer to vertices as ‘sites’. To every site x is associated a finite-dimensional
Hilbert space Hx and we define the total Hilbert space H = H� = ¢xœ�Hx and the algebra A = A� = B(H)
of bounded operators on H. For any X µ �, we have the Hilbert space HX = ¢xœXHx and the algebra
AX = B(HX). We use the usual embedding AX æ A given by OX æ OX ¢ 1Xc . As is customary, we will
identify OX ¢ 1Xc with OX and say that OX is supported in X.

2.1.2 Locality
We write N+ for the strictly positive naturals and we let M be a class of functions m : N+

æ R+ of
quasi-exponential decay. The class M is defined by the following two conditions.

1. m is non-increasing.

2. For every 0 < – < 1, there exists C–, c– > 0 such that m(r) Æ C–e≠c–r
–

.

Note that the same class of functions is obtained by setting c– = 1, which is used often in the proofs. To
express the locality properties of Hamiltonians, we consider collections q of local terms (qX)Xµ�, qX œ AX ,
sometimes called ’interactions’, and we endow them with a family of norms, parametrized by m œ M:

||q||m := sup
xœ�

ÿ

X–x

||qX ||

m(1 + diam(X))

The locality property is then expressed by the finiteness of ||q||m for some m œ M.

2.1.3 Trace norms
We denote by tr(X) the trace on the Hilbert space HX , and we abbreviate tr = tr(�), i.e. the trace on the
global Hilbert space H. We recall the trace norm || · ||1,X on AX = B(HX), defined by

||O||1,X = tr(X) Ô

OOú, O œ AX

We then denote by trX the partial trace trX : A ‘æ AXc
, satisfying tr(X) trXc O = tr O for any O œ A.

Since we will often use trace norms of operators resulting from the partial trace we introduce a short-hand
notation:

|O|X := || trXc O||1,X .

Nonnegative operators fl on H that have unit trace tr fl = 1, are called density matrices and we write
ÈOÍfl = tr(flO) for O œ A. For � œ H, we write fl� for the pure density matrix equal to the orthogonal
projector on C�.

2.2 Spaces and Hamiltonian

The Hamiltonian H and the perturbation J are written as

H =
ÿ

Xµ�
hX , J =

ÿ

Xµ�
jX hX = hú

X
œ AX , jX = jú

X
œ AX (1)

The perturbation J is spatially restricted to a region �j µ � in a mild sense

jX = 0 unless X fl �j ”= ÿ

Then, we assume, for the collections h, j,

||h||mh
, ||j||mj

< Œ

for some mh, mj œ M.
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2.3 Assumptions

Our first assumption states that the Hamiltonian H has a frustration free ground state �, i.e. � is an
eigenvector of H with eigenvalue equal to min(spec(H)) (spec(·) is the spectrum). Our conventions are such
that this eigenvalue is 0.

Assumption 1 (Frustration-free ground state). All the terms hX are nonnegative: hX Ø 0. There is a
� œ H, ||�|| = 1 such that � œ Ker(hX) for any X. We denote by µ = fl� the corresponding density matrix.

We note that the frustration free property depends on the way the Hamiltonian is written as a sum of
local terms, i.e. on the interaction. Next, we introduce ‘open boundary condition’ (OBC) restrictions of H,

HZ =
ÿ

XµZ

hX .

Just as the frustration free property, the notion of OBC restriction depends on the interaction. We let PZ

be the orthogonal projector on Ker(HZ). Since hX Ø 0, it holds that

Ker(HZ) = fl
XµZ

Ker(hX)

and hence also
PZPZÕ = PZÕ , Z µ Z Õ.

The following assumption has come to be known as ‘Local Topological Quantum Order’ (LTQO) but, in
our case, it is better described as the property that the density matrix of any ground state of the OBC
Hamiltonian HZ looks similar to the global ground state µ in the deep interior of Z. Recall that Br(x) µ �
is the ball or radius r centered at x.

Assumption 2 (OBC-regularity). There is mO œ M and dO < Œ such that, for any x œ � and � œ

Ker(HBr(x)),
|fl� ≠ µ|Br≠k(x) Æ rdO mO(k), k < r

Let us briefly comment on the precise form of the above bound. We have in mind, roughly, that any
� œ Ker(HBr(x)) di↵ers from � only through the presence of boundary modes. One realization of this would
be that any such � is of the form eiF � with F a sum of terms supported near the boundary of Br(x). This
would indeed lead to the bound above with dO chosen such that |ˆBr(x)| Æ CrdO .

The next assumption concerns the local gap of OBC Hamiltonians. Let

“(Z) = min(spec(HZ) \ {0})

be the spectral gap of HZ .

Assumption 3 (Local Gap). There are C“ , d“ < Œ such that, for any x œ �

1
“(Br(x)) Æ C“rd“ .

This assumption 3 might be misleading. In most examples of models with gapped frustration-free ground
states, that we are aware of, OBC restrictions HZ =

q
XµZ

hZ have a gap that is actually bounded below
in Z, and the physical edge modes are found as ground states of HZ , i.e. the eigenvalue at 0 will typically
be degenerate. In that case, the genuine restriction is not so much assumption 3 but rather assumption 2
which describes the kernel Ker(HBr(x)).

2.3.1 Invertibility
Let H

Õ be H
Õ = H

Õ

� = ¢xœ�H
Õ

x
with H

Õ

x
finite-dimensional Hilbert spaces. We will now consider the tensor

product H ¢ H
Õ which we denote by

ÂH = H ¢
aux

H
Õ.

The superscript ¢
aux reminds us of the fact that this is not a tensor product between disjoint spatial regions,

but between the ‘original’ Hilbert space and an ‘auxiliary’ Hilbert space. This is helpful because we also
view ÂH again as a tensor product over sites

ÂH = ¢xœ� ÂHx, ÂHx = Hx ¢
aux

H
Õ

x
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Figure 3: The invertibility assumption uses an auxiliary Hilbert space H
Õ

that has the same spatial structure as the original space

H, i.e. �Õ
is a copy of �.

The local structure of the space ÂH is analogous to the one of H, except that now the dimension of the
on-site spaces is larger, see Figure 3. We consistently put a prime on algebras derived from H

Õ, A
Õ = B(HÕ)

and we put a tilde on algebras derived from ÂH, i.e. ÂA = B( ÂH) and A
Õ

X
µ A

Õ, ÂAX µ ÂA are subalgebras of
operators supported in X. We also copy the definition of collections q of local operators (qX)X and their
norms ||·||m, simply replacing AX by ÂAX . The next assumption expresses that the state � has no long-range
entanglement. Loosely speaking, one could describe this assumption as ‘upon adjoining an auxiliary state
�Õ, � ¢ �Õ is automorphically equivalent to a product state’ [12, 20].

Assumption 4 (Invertibility). There are collections q(s) of local operators (qX(s))Xµ�, indexed by s œ

[0, 1], such that
1. qX(s) = qú

X
(s) œ ÂAX and s ‘æ qX(s) is measurable, for any X.

2. supsœ[0,1] ||q(s)||mI
Æ CI < Œ for some mI œ M.

3. There is a product state � = ¢xœ��x œ ÂH and a state �Õ
œ H

Õ such that

� ¢
aux �Õ = U(1)�, U(s) = 1+ i

⁄
s

0
du Hq(u)U(u)

where Hq(s) =
q

Xµ� qX(s).
We say that �Õ is an ‘inverse’ to �.

The ‘invertibility’ assumption roughly corresponds to states that do not have anyonic excitations. Exam-
ples of invertible states are: symmetry protected topological states (SPT’s) [21, 22, 23], states characterized
by an integer quantum Hall e↵ect [24], etc.. We refer to the extensive literature for a more thorough dis-
cussion. The motivation for considering the type of spatial decay expressed by the class M is because this
corresponds to the decay one can prove for the spectral flow connecting ground states of a uniformly gapped
Hamiltonian, by the technique of (quasi-)adiabatic continuation, see [20, 12].

2.4 Result

We say that a unit vector � œ H� is a ground state of the perturbed Hamiltonian H +J if � is an eigenvector
of H + J with eigenvalue equal to min spec(H + J). Recall that µ is the density matrix associated to �, the
distinghuished ground state of the unperturbed Hamiltonian H, and fl� is the density matrix associated to
�. By a ‘constant’, we mean a quantity that can depend only on mh, mj , mI œ M, the numbers C“ , C�
and d, dO, d“ . In particular, constants can not depend on the sizes |�| and |�j |.

Theorem 1. For any w > 0, there is a constant C(w) such that, for any ground state � of H + J , and any
x œ �, with R := dist(x, �j),

|fl� ≠ µ|B(Rp/2)(x) Æ C(w)e≠R
p≠w

, p = 1
d + d“ + 2

To connect this theorem to the informal claim on stability in Section 1, note that the left hand side is
equal to supOœAX ,||O||=1 |È�, O�Í ≠ È�, O�Í| with X = B(Rp/2)(x).
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3 Proof of Theorem 1

We define some additional notation to be used in this section. For regions Z µ �, we define the r fattening

(Z)r := {x œ �, dist(x, Z) Æ r}

(we will simply write (Z)r = Zr when no confusion is possible) and the boundary

ˆZ = (Z)1 fl (Zc)1

We use constants C, c as introduced just before Theorem 1, i.e. depending on a number of fixed parameters.
Sometimes we write C(a) to indicate that C can additionally depend on a parameter a. We also use the
generic notation m for a function in M that depends possibly on those same fixed parameters. Just as the
constants C, c, the precise function m can change from line to line. In the same vein, we also use p to denote
a polynomial that depends only on the fixed parameters.

3.1 Stitching maps

Recall that µ is the global ground state density matrix of the unperturbed Hamiltonian H. We say that a
family of maps �Z , indexed by Z µ �, are stitching maps if the they satisfy the following properties.

Definition 1. Stitching maps �Z with Z µ � are trace-preserving completely positive maps A æ A i�.
there is an m œ M such that, for any Z, X µ � and any density matrices fl, Ê on H,

1. |�Z(fl) ≠ trZc µ ¢ trZ fl|X Æ |X|m(dist(ˆZ, X))
2. |�Z(fl) ≠ �Z(Ê)|X Æ |fl ≠ Ê|(X)r

+ |X|m(r)
3. �Z(µ) = µ

To state this in a rough way, stitching maps are such that �Z(µ) = µ and further

�Z(fl) =
I

µ deep inside Z

fl far outside Z

The stitching maps will be used for regions Z that are far away from the perturbation region �j .
The purpose of the invertibility assumption 4 is precisely to ensure the existence of stitching maps, as

we show now. Recall that ÂH is the enlarged Hilbert space.

Proposition 1. For any region Z µ �, there are unitaries V = VZ acting on ÂH such that the following
family of CP maps � = �Z are stitching maps in the sense of definition 1:

�(fl) = trHÕ [V ú (trZc(V µ ¢
aux µÕV ú) ¢ trZ(V fl ¢

aux µÕV ú)) V ] (2)

where µ = fl� and µÕ = fl�Õ are density matrices on A and A
Õ and �Õ

œ H
Õ is an ‘inverse state’ to �, see

assumption 4.
We first construct the appropriate unitaries V featuring in Proposition 1. To that end, we introduce the

truncated interactions q̂(s) by

q̂X(s) =
I

qX(s) X µ Z or X µ Zc

0 otherwise

with q(s) as given in assumption 4. We let Û(s) be the unitary defined analogously to U(s) in the invertibility
assumption 4, but with Hq(s) replaced by Hq̂(s) =

q
X

q̂X(s). We then set

V (s) = Û(s)Uú(s), V = V (1)

and we observe that
V � ¢

aux �Õ = �Z ¢ �Zc (3)

for some �Z œ ÂHZ , �Zc œ ÂHZc . This shows that �Z satisfies property 3) of definition 1. The full proof of
Proposition 1, i.e. the verifications of properties 1) and 2) of definition 1, uses some standard terminology and
locality estimates that are not needed in the rest of our proof, hence we postpone them to the appendices,
but we do state the relevant locality property of the unitary operators V . To that end, let us introduce the
conditional expectation, for any Z µ �,

EZc : ÂA ‘æ ÂAZ : O ‘æ
1
N

trZc(O), N = dim( ÂHZc).
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Lemma 1. For any regions X, Z and O œ ÂAX , with V = VZ as defined above,

||V úOV ≠ E(Xr)c(V úOV )|| Æ ||O|||X|m(r) (4)

and
||V úOV ≠ O|| Æ ||O|||X|m(dist(X, ˆZ)) (5)

The same estimates hold• as well if we exchange V and V ú.

The proof of Lemma 1 follows from well-known considerations based on Lieb-Robinson bounds, and it is
sketched in Appendix B. Finally, the proof of properties 1) and 2) of definition 1 is an intuitive consequence
of Lemma 1. This proof is given in Appendix A.

3.1.1 Action of a stitching map �Z at the stitch ˆZ

We will now establish a property of stitching maps, which we will henceforth denote by �Z , that relies
crucially on the OBC-regularity assumption 2. It makes explicit that stitching maps are ‘seamless’, i.e. they
do not introduce errors at the cut ˆZ. Recall that PX is the ground state projector corresponding to the
OBC restriction HX and let P̄X = 1≠ PX .

Proposition 2. Let ‡ = fl� be the pure density matrix associated to some � œ H. Consider a set Z and
balls Br = Br(x) for some site x. Then (recall that p(·) is a polynomial),

ÈP̄Br≠k
Í�Z (‡) Æ 3ÈP̄Br

Í‡ + p(r)m(k).

Proof. Since Z will be fixed, we drop it and write � = �Z . Let us denote ‘ := ÈP̄Br
Í‡ and remark that

||PBr
� ≠ �|| Æ

Ô
‘. If ‘ = 1, then the required bound is trivial, hence we assume ‘ < 1. We split

‡ =
4ÿ

i=1
’i = PBr

‡PBr
+ PBr

‡P̄Br
+ P̄Br

‡PBr
+ P̄Br

‡P̄Br
.

We will treat these terms separately, i,e. find bounds on

tr P̄Br≠k
�(’i), i = 1, 2, 3, 4.

The term ’1 = PBr
‡PBr

Since ‘ < 1, tr ’1 > 0 and we can define the pure density matrix ’ = ’1/ tr ’1, satisfying ÈP̄BÍ’ = 0. By the
properties of definition 1, we get the equality and first inequality in

|�(’) ≠ µ|Br≠k
= |�(’) ≠ �(µ)|Br≠k

Æ |’ ≠ µ|Br≠k/2 + p(r)m(k) Æ p(r)m(k)

whereas the last inequality follows from the OBC regularity assumption 2. By the frustration-free property,
tr P̄Br≠k

µ = 0, and thus the above inequality yields tr P̄Br≠k
�(’) Æ p(r)m(k). Since ’1 Æ ’, this implies

tr P̄Br≠k
�(’1) Æ p(r)m(k)

The term ’4 = P̄Br
‡P̄Br

Here we have tr ’4 = tr P̄Br
‡ = ‘ and since � is trace-preserving,

tr P̄Br≠k
�(’4) Æ ‘.

The term ’2 = PBr
‡P̄Br

Since ‡ is pure, we can write

’2 = PBr
‡P̄Br

= ÈP̄Br
Í
1/2
‡

|aÍÈb|, ||a|| Æ ||b|| = 1, PBr
a = a

and we note that |aÍÈa| = ’1. To estimate tr P̄Br≠k
�(|aÍÈb|), we use Lemma 2 below to get

| tr P̄Br≠k
�(’2)| Æ

Ò
ÈP̄BÍ‡

Ò
tr

!
P̄Br≠k

�(’1)
"

Æ
Ô

‘


p(r)m(k) Æ ‘ + p(r)m(k)

The second inequality follows from the bound for the term ’1 above.
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class a ÿ

Xœclass a

!
ÈhXÍ�(‡) ≠ ÈhXÍ‡

"
Æ

ÿ

XµZ\(ˆZ)r/2

ÈhXÍ�(‡)

Æ

ÿ

XµZ\(ˆZ)r/2

(ÈhXÍµ + ||hX |||X|m(dist(X, ˆZ))

Æ

ÿ

x:dist(x,ˆZ)Ør/2
m(dist(x, ˆZ)

ÿ

X–x

||hX |||X| Æ |ˆZ|m(r)

The first inequality follows from non-negativity of hX . The second from property 1) of definition 1
and the third from ÈhXÍµ = 0. Then we use supx

q
X–x

||hX |||X| Æ C and the rapid decay of m to
absorb a polynomial factor in r.

class b ÿ

Xœclass b

!
ÈhXÍ�(‡) ≠ ÈhXÍ‡

"
Æ

ÿ

XµZc\(ˆZ)r/2

||hX |||X|m(dist(X, Z))

Æ

ÿ

x:dist(x,Z)Ør/2
m(dist(x, Z))

ÿ

X–x

||hX |||X| Æ |ˆZ|m(r)

The first inequality is property 1) of definition 1, the rest is analogous to case a above.

class c ÿ

Xœclass c

!
ÈhXÍ�(‡) ≠ ÈhXÍ‡

"
Æ

ÿ

xœ(ˆZ)r/2

ÿ

X–x,diam(X)Ær/4
ÈhXÍ�(‡)

Æ

ÿ

xœ(ˆZ)r/2

ÿ

X–x,diam(X)Ær/4
||hX ||ÈP̄XÍ�(‡)

Æ

ÿ

xœ(ˆZ)r/2

CÈP̄Br/4(x)Í�(‡)

Æ

ÿ

xœ(ˆZ)r/2

CÈP̄Br/2(x)Í‡ + m(r)

Æ

ÿ

xœ(ˆZ)r/2

Crd“ ÈHBr/2(x)Í‡ + m(r)

Æ Crd+d“ ÈH(ˆZ)r
Í‡ + |(ˆZ)r/2|m(r)

Æ Crd+d“ ÈH(ˆZ)r
Í‡ + |ˆZ|m(r)

The first and second inequality is by nonnegativity of hX . The third inequality uses P̄X Æ P̄XÕ for
X µ X Õ, i.e. the frustration freeness of assumption 1, and

q
X–x

||hX || < C. The fourth inequality
uses Proposition 2. The fifth inequality is by the local gap assumption 3. The sixth inequality follows
because any X µ (ˆZ)r is included in at most a number Crd of balls with radius r/2. For the last
inequality, we use |(ˆZ)r/2| Æ p(r)|ˆZ| and we absorbed the polynomial in m.

class d ÿ

Xœclass d

!
ÈhXÍ�(‡) ≠ ÈhXÍ‡

"
Æ

ÿ

xœ(ˆZ)r/2

ÿ

X–x:diam(X)Ør/4
2||hX ||

Æ

ÿ

xœ(ˆZ)r/2

m(r) Æ |ˆZ|m(r)

The first inequality follows from ÈhXÍ�(‡), ÈhXÍ‡ Æ ||hX ||. Then we use analogous reasoning as for
class a.

class e ÿ

Xœclass e

!
ÈhXÍ�(‡) ≠ ÈhXÍ‡

"
Æ

ÿ

x:dist(x,ˆZ)Ør/2

ÿ

X–x:diam(X)Ødist(x,ˆZ)
2||hX || Æ |ˆZ|m(r)

The reasoning is analogous to that for class d and class a.
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Figure 5: The classes of sets X in the proof of Lemma 4. We only need to consider X such that X fl �j ”= ÿ, by the definition of j.

The previous Lemma 3 was only concerned with the unperturbed Hamiltonian H. We now state an
analogous estimate for the Hamiltonian J .

Lemma 4. Let ‡ be a density matrix and let Z be a set such that dist(Z, �j) Ø r. Then

|ÈJÍ�Z (‡) ≠ ÈJÍ‡| Æ m(r)|ˆZ| (7)

Proof. We estimate
|ÈJÍ�Z (‡) ≠ ÈJÍ‡| Æ

ÿ

X

|ÈjXÍ�Z (‡) ≠ ÈjXÍ‡|

. We split the sets X into two disjoint classes:
a) dist(X, Z) Ø r/2
b) dist(X, Z) < r/2

We estimate the contribution of each class and we get in each case the desired bound.

class a ÿ

Xœclass a
|ÈjXÍ�Z (‡) ≠ ÈjXÍ‡| Æ

ÿ

x:dist(x,Z)>r/2
m(dist(x, Z))

ÿ

X–x

||jX ||

Æ C
ÿ

x:dist(x,Z)>r/2
m(dist(x, Z)) Æ m(r)|ˆZ|

We use property 1 of definition 1 to get the first inequality. The last inequality follows by the rapid
decay of m and the fact that � has finite dimension d.

class b ÿ

Xœclass b
|ÈjXÍ�Z (‡) ≠ ÈjXÍ‡| Æ

ÿ

kØr/2

ÿ

x:dist(x,�j)=k

ÿ

X–x:diam(X)Øk

2||jX ||

Æ

ÿ

kØr/2

ÿ

x:dist(x,�j)=k

m(k) Æ

ÿ

kØr/2
Ckd

|ˆZ|m(k) Æ m(r)|ˆZ|

The first inequality follows because jX = 0 unless X fl�j ”= ÿ. In the last inequality, we again absorbed
a polynomial factor in m.
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3.3 Isoperimetry

From now on, we assume that ‡ = fl� with � a ground state of H + J . In particular, this means that the
following inequality holds:

ÈH + JÍ�Z (‡) ≠ ÈH + JÍ‡ Ø 0. (8)

We will use Lemma’s 3 and 4 to relate the energy in a region Z to the energy around ˆZ, which explains
the title of this subsection. We again choose the region Z to be far away from �j : dist(Z, �j) Ø r with
r ∫ 1. By Lemma 4, we can discard J in the above inequality at small cost, and we obtain

ÈHÍ�Z (‡) ≠ ÈHÍ‡ + m(r)|ˆZ| Ø 0 (9)

We split this inequality as

ÈHZ\(ˆZ)r
Í�Z (‡) ≠ ÈHZ\(ˆZ)r

Í‡ +
ÿ

X ”µZ\(ˆZ)r

!
ÈhXÍ�Z (‡) ≠ ÈhXÍ‡

"
+ m(r)|ˆZ| Ø 0 (10)

from which we get

Lemma 5.
ÈHZ\(ˆZ)r

Í‡ Æ Crd+d“ ÈH(ˆZ)r
Í‡ + m(r)|ˆZ|

Proof. We start from inequality (10). By the same easy reasoning as used in the proof of lemma 3 for class
a, we bound the term ÈHZ\(ˆZ)r

Í�(‡) by m(r)|ˆZ|. Then the upper bound of Lemma 3 gives us immediately
the desired claim.

Let us now put Lemma 5 to use. We will consider a sequence of regions Zi chosen as concentric balls
Zi = BRi+r = BRi+r(x), with x fixed and Ri to be specified. We note that

BRi
= Zi \ (ˆZi)r≠1

and we abbreviate
Ei = ÈHBRi

Í‡, ”i = ÈH(ˆBRi+r)r≠1Í‡

Then, the inequality in Lemma 5 reads

Ei Æ Crd+d“ ”i + m(r)|ˆBRi+r| (11)

Note also that Ei+1 Ø Ei + ”i provided that Ri+1 Ø Ri + 2r. Our strategy will be to establish a lower
bound on Ei, depending on E1, and then eventually use the a priori upper bound

Ei = ÈHBRi
Í‡ Æ ||HBRi

|| Æ CRd

i

to get an upper bound on E1. Proceeding in this way, we obtain

Lemma 6. Let R = dist(x, �j) with x the center of the balls above. Then, for any w > 0

ÈHBRp Í‡ Æ C(w)e≠R
p≠w

, p = 1
d + d“ + 2 .

Proof. We choose Ri = (2i ≠ 1)r for i = 1, . . . , iú with iú the largest integer that is smaller than R/(2r).
Using inequality (11) and Ei+1 Ø Ei + ”i we obtain

Ei+1 Ø aEi ≠ bi, a = (1 + cr≠d≠d“ ), bi = m(r)|ˆBRi+r| (12)

where we also updated the function m compared to (11). We will now use a Grönwall-type inequality.
Multiplying the inequality (12) by a≠i and summing over i yields

kÿ

i=1
Ei+1a≠i

Ø

kÿ

i=1
a≠i+1Ei +

kÿ

i=1
bia

≠i,

which implies

Eia
≠i+1

Ø E1 ≠

i≠1ÿ

j=1
bja≠j .
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and hence, choosing i = iú,

E1 Æ Eiúa≠iú+1 +
iú≠1ÿ

j=1
bja≠j .

To estimate the sum on the right hand side, we bound |ˆBRj+r| Æ C(3jr)d and estimate

iú≠1ÿ

j=1
bja≠j

Æ m(r)rd

Œÿ

j=1
jda≠j

Æ m(r).

Using in addition the a priori bound Eiú Æ ÈHBR
Í‡ < CRd, we get

E1 Æ CRda1≠
R

2r + m(r) Æ CRde≠cRr
≠(d+d“ +1)

+ m(r).

To optimize the inequality we let r grow with R, namely r = Rp. For m œ M and w > 0, we can find C(w)
such that m(r) Æ C(w)e≠r

1≠w/p and we get hence

E1 Æ C(w)e≠R
p≠w

.

which is the claim of the lemma, since R1 = r = Rp.

Proof of Theorem 1. We recall that ‡ = fl� with � a ground state of H + J . By the local gap assumption
3, we have

ÈP̄Br
Í‡ Æ Crd“ ÈHBr

Í‡

and by Lemma 6, we then get, for any w > 0,

ÈP̄Br
Í‡ Æ ” = C(w)rd“ e≠R

p≠w

, r = Rp (13)

From (13) we get, with P = PBr
and for R large enough, P� ”= 0, and setting � = P �

||P �||
, we get

|È�, �Í| Ø
Ô

1 ≠ ”. From this one bounds (| · |� is the global trace norm)

|fl� ≠ fl�|� Æ 2
Ô

”

Since � œ Ker(HBr
), the OBC regularity assumption 2 allows us to bound

|‡ ≠ µ|Br≠k
Æ |‡ ≠ fl�|Br≠k

+ |fl� ≠ µ|Br≠k
Æ 2

Ô

” + p(r)m(k)

with p(·) a polynomial. We choose k = r/2. Then we get, for any w > 0

|‡ ≠ µ|BRp/2 Æ C(w)e≠R
p≠w

This yields the statement of Theorem 1.

A Appendix: Locality properties of CP maps

We establish some vocabulary that is helpful for the proof of Proposition 1.

A.1 Completely positive maps

We consider completely positive (CP) maps acting from B(G) to B(GÕ), with G, G
Õ finite-dimensional Hilbert

spaces. We need identity-preserving CP maps and trace-preserving CP maps, which are dual to each other.
Let � : B(G) ‘æ B(GÕ) be an identity preserving CP map, then the adjoint trace-preserving CP map
�ú : B(GÕ) ‘æ B(G) is defined by

tr(G
Õ)(S�(O)) = tr(G)(�ú(S)O), O œ B(G), S œ B(GÕ).

From the Russo–Dye theorem, it follows that identity preserving CP maps are contracting w.r.t. operator
norm: ||�(O)|| Æ ||O|| and trace-preserving CP maps are contracting w.r.t trace norm ||�ú(S)||1 Æ ||S||1

with ||S||1 = tr
1Ô

SSú

2
, cf. the notation in Section 2.1.3.
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A.2 Conditional expectations

Let us consider a bipartite finite-dimensional Hilbert space G = Ga ¢ Gb. For any density matrix ‡b on Gb,
we can define the conditional expectation

E‡b
: B(G) ‘æ B(G) : O ‘æ trGb

((1a ¢ ‡b)O) ¢ 1b.

Note that E‡b
is an identity-preserving CP map and that its range is B(Ga)¢1b which is naturally identified

with B(Ga). Its adjoint is
Eú

‡b
: B(G) ‘æ B(G) : S ‘æ trGb

(S) ¢ ‡b. (14)

Let ÿb be the density matrix 1
dim(Gb)1b on Gb, i.e. ÿb corresponds to the tracial state on B(Gb). The case where

Gb is HZ or ÂHZ for some Z µ �, and ‡b = ÿb is of special signficance to us and we denote the corresponding
conditional expectation simply by EZ . This is consistent with the usage of the symbol EZ in Lemma 1.

A.3 Almost locality preserving CP maps

We consider identity-preserving CP maps �, acting between (subalgebras of) ÂA, i.e. there is a spatial
structure. We say that � preserves almost locality if there exists m œ M such that,

||�(O) ≠ E(Xr)c ¶ �(O)|| Æ ||O|||X|m(r), ’O œ AX , ’X µ �, (15)

where E(Xr)c is the conditional expectation using the tracial state on (Xr)c, as discussed above. A useful
property is that, if �, �Õ preserve almost locality (say, with functions m1, m2) then so does �Õ

¶ �. Indeed,
for O œ AX ,

�Õ
¶ �(O) = �Õ

1
E(Xr/2)c ¶ �(O) + E1

2
(16)

= E(Xr)c ¶ �Õ
¶ E(Xr/2)c ¶ �(O) + E2 + �Õ(E1) (17)

= E(Xr)c ¶ �Õ
¶ �(O) ≠ E(Xr)c ¶ �Õ(E1) + E2 + �Õ(E1) (18)

Using that �, �Õ are norm-contracting and almost locality preserving, and that the image of E(Xr/2)c is in
AXr/2 , the error terms E1,2 are bounded as

||E1|| Æ ||O|||X|m1(r/2)), ||E2|| Æ ||O|||Xr/2|m2(r/2)).

Since |Xr/2| Æ C|X|rd and also E(Xr)c is norm-contracting, we verify that the overall error term is of the
form ||O||m(r)|X|, and hence �Õ

¶ � indeed preserves almost locality.
If an identity-preserving CP map � preserves almost locality, then its adjoint �ú, satisfies the following

property, for any density matrix fl,

|�ú(fl) ≠ �ú
¶ Eú

(Xr)c(fl)|X Æ |X|m(r) (19)

with Eú

(Xr)c(fl) = tr(Xr)c fl ¢ ÿ(Xr)c This follows from (15) by duality, using (14).

A.4 Verification of properties 1) and 2) of definition 1

We study the the trace-preserving map � = �Z , defined in Proposition 1, via its adjoint �ú, an identity-
preserving CP map. We decompose �ú = �1 ¶ . . . ¶ �6 with �i the identity-preserving CP maps given
below.

�6: A æ ÂA : O ‘æ O ¢
aux 1AÕ

�5: ÂA æ ÂA : O ‘æ V OV ú

�4: ÂA æ ÂAZc : O ‘æ EŸ(O) with the density matrix Ÿ = trZc(V µ ¢
aux µÕV ú) on HZ .

�3: ÂAZc æ ÂA : O ‘æ 1Z ¢ O

�2: ÂA æ ÂA : O ‘æ V úOV

�1: ÂA æ A : O ‘æ EµÕ(O) with the density matrix µÕ on H
Õ.
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Each of the maps �j preserves almost locality, i.e. satisfies (15). This is immediate for �i with i = 1, 3, 4, 6,
whereas for i = 2, 5 it is a consequence of the bound (4) in Lemma 1. Hence, by duality, we obtain that the
locality property (19) is satisfied for �ú = �, the map from Proposition 1. We then write, for any density
matrices fl, Ê,

�(fl) ≠ �(Ê) =
1

�(fl) ≠ � ¶ Eú

(Xr)c(fl)
2

≠

1
�(Ê) ≠ � ¶ Eú

(Xr)c(Ê)
2

+ � ¶ Eú

(Xr)c(fl ≠ Ê) (20)

The first two terms on the right-hand side are bounded in | · |X -norm by (19) with �ú = �. The last term
is bounded as

|� ¶ Eú

(Xr)c(fl ≠ Ê)|X Æ | tr(Xr)c(fl ≠ Ê) ¢ ÿ(Xr)c |X Æ |fl ≠ Ê|Xr

where we used in particular contractivity of �. This yields property 2) of definition 1. To check property 1)
of definition 1, we compare the action of �2, �5 on AX with X far from ˆZ with the action of the identity
map. By the bound (5) in Lemma 1, we have,

||�j(O) ≠ O|| Æ ||O||m(dist(X, ˆZ))|X|, O œ AX , j = 2, 5.

The verification of property 1) now follows by similar reasoning as for property 2).

B Appendix: Locality estimates

We review the standard propagation bounds that are necessary for the proof of Lemma 1. These bounds go
back to [25] but we use the recent formulation in [26]. There are a few di↵erences in our treatment compared
to [26]. Most importantly, we have an underlying finite graph � equipped with the graph distance, and we
always assume that this graph has a finite spatial dimension d as defined in Section 2.1.1.

B.1 Norms on interactions

In the main text, we defined a family of norms || · ||m with m œ M. In [26], as in many preceding works,
another family of norms is used, which we introduce now. Namely, one defines so-called F -functions F as
functions satisfying

1. F : N æ R+ is non-increasing.

2. There is CF < Œ such that, for all x, y œ �,
ÿ

zœ�
F (dist(x, z))F (dist(z, y)) Æ CF F (dist(x, y)).

3. There is C Õ

F
such that, for each x œ �,

q
yœ� F (dist(x, y)) Æ C Õ

F
.

Strictly speaking, the latter two properties are of course empty for a finite graph �, but we have in mind
that these properties holds for constants CF , C Õ

F
that can be chosen uniform in |�|. This is consistent with

the conventions used in the main text, as explained in Section 2.4.
Then we can define a family of corresponding norms on interactions.

|||z|||F = sup
x,yœ�

ÿ

S∏{x,y}

||zS ||

F (dist(x, y))

(Note that we use the symbol ||| · |||F to distinghuish these norms from the norms || · ||m in the main text). If
we work with functions decaying faster than polynomials, one can switch back and forth between the norms
||| · |||F and || · ||m, as we state in the next lemma. In stating the comparison, we write F œ M meaning
that F

--
N+ œ M (The functions m in the main text are defined on N+ = {1, 2, . . .} whereas the functions F

are defined on N = {0, 1, 2, . . .}.)

Lemma 7. For any m œ M, there is an F -function F in M such that

|||z|||F Æ ||z||m

For any F -function F œ M, there is a m œ M such that

||z||m Æ |||z|||F
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To prove this, we need the following observation

Lemma 8. Let f : N+
æ R+ be a function such that limræŒ er

–

f(r) = 0 for any 0 < – < 1, then there is
an F -function F œ M such that f(r) Æ F (r) for any r œ N+.

Proof. We say a function f : N+
æ R+ is logarithmically superadditive if

f(r1)f(r2) Æ f(r1 + r2) r1, r2 œ N+. (21)

Following [27], we define the following transformation of functions f : N+
æ R+:

S(f)(r) = sup
¸œN+

sup
(r1,...,r¸)œ(N+)¸:

q
i

ri=r

Ÿ

i

f(ri)

This transformation has the following properties
1. S(f) is logarithmically superadditive.
2. If f1 Æ f2, then S(f1) Æ S(f2). In particular, f Æ S(f).
3. If f is logarithmically superadditive, then S(f) = f .

Let now f satisfy the assumption of the lemma and put f Õ(r) = c0(1 + rd+2)f(r) with c0 such that f Õ < 1.
Then, we put

F (r) = 1
c0(1 + rd+2)S(f Õ(r)), r œ N+,

and F (0) = F (1). Then F is an F -function (such properties are extensively discussed in [26]) and, by
property 2) above, F (r) Ø f(r). It remains to show that F has su�ciently rapid decay. Since f Õ < 1 and
f Õer

–

æ 0, we can find c– > 0 such that f Õ(r) Æ f–(r) = e≠(c–r)– . Since f–, is logarithmically superadditive,
we have

S(f Õ) Æ S(f–) = f–.

Therefore, S(f Õ) and hence F (r) have indeed su�ciently rapid decay and we conclude that F œ M.

Proof of Lemma 7. To get the first claim we observe

|||z|||F = sup
x,y

1
F (dist(x, y))

ÿ

S:S∏{x,y}

||zS || (22)

Æ sup
x,y

ÿ

S:S∏{x,y}

||zS ||

F (diam(S)) (23)

Æ sup
x

ÿ

S:S–x

||zS ||

F (diam(S)) (24)

In order to have the last expression dominated by ||z||m, we need to choose the F -function F such that
F (r) Ø m(r + 1). The possibility of doing this was argued in Lemma 8. For the second claim, we write

||z||m = sup
x

ÿ

S:S–x

1
m(diam(S) + 1) ||zS ||

= sup
x

ÿ

k=0

ÿ

S:S–x,diam(S)=k

1
m(k + 1) ||zS ||

Æ sup
x

ÿ

k=0

ÿ

y,z:dist(y,x)Æk,dist(y,z)=k

1
m(k + 1)

ÿ

S:S–{y,z}

||zS ||

Æ

ÿ

k=0

(1 + C�kd)2

m(k + 1) sup
y,z:dist(y,z)=k

ÿ

S:S–{y,z}

||zS ||

=
ÿ

k=0

1
1 + k2

1
f(k + 1) sup

y,z:dist(y,z)=k

ÿ

S:S–{y,z}

||zS ||, f(k + 1) = m(k + 1)
(1 + k2)(1 + C�kd)2

Æ C0 sup
y,z

1
f(dist(y, z) + 1)

ÿ

S:S–{y,z}

||zS ||, C0 =
ÿ

k=0

1
1 + k2
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In order to have the last expression dominated by |||z|||F , we need to choose m œ M such that, for all
r œ N+, f(r) Ø C0F (r ≠ 1), and hence,

m(r) Ø g(r) = C0(1 + (r ≠ 1)2)(1 + C�(r ≠ 1)d)2F (r ≠ 1).

The function g is not necessarily non-increasing, which is remedied by setting

m(r) = sup
rÕØr

g(rÕ).

We can now check that m œ M as it inherits the rapid decay from F .

We call BF the set of interactions with finite ||| · |||F -norm and BF (I), with I µ R a (possibly infinite)
interval, the set of time-dependent interactions I – s ‘æ z(s), with finite norm

|||z|||F = sup
sœI

|||z(s)|||F

and such that s ‘æ zS(s) is measurable for all S µ �. Pointwise addition of interactions (z1 + z2)S(s) =
(z1)S(s) + (z2)S(s) makes BF and BF (I) into Banach spaces w.r.t. the norm ||| · |||F .

B.2 Locally generated automorphisms

Let z œ BF (I) and let s, t œ I with s Æ t. We let –z(t, s)[·] be the dynamics (a family of automorphisms
A æ A or ÂA æ ÂA ) generated by the family z(·) acting from time s to time t, in the sense that

–z(t, s)[A] = A + i

⁄
t

s

du –z(u, s)([Hz(u), A]), Hz(u) =
ÿ

Sµ�
zS(u).

Since � is finite, the existence and uniqueness of this dynamics follows from elementary facts on matrix-
valued ODE’s. For s = 0, one often abbreviates

–z(t) = –z(t, 0)

as we did in the main text. We first state a version of the Lieb-Robinson bound, using the language
introduced in Section 2.1.

Theorem 2 (Lieb-Robinson bound). Let z œ BF (I), and let s, t œ I with s Æ t. Let A œ AXA
, B œ AXB

with XA fl XB = ÿ. Then

||[–z(t, s)[A], B]|| Æ
||A||||B||

CF

eCF |t≠s||||z|||F

Q

a
ÿ

xœXA,yœXB

F (dist(x, y))

R

b

This is a slightly weakened form of Theorem 3.1 in [26], except for two details. Our graph � is finite
and we allow our time-dependent interaction z to be composed of measurable functions t ‘æ zS(t) for any
S. Inspection of the proof in [26] confirms that this is all what is needed.

The Lieb-Robinson bound does not directly address the question how to write the evolved observable
–z(t, s)[A] as a sum of local terms. A natural way to do this is to use the conditional expectation EX as
defined in Section 3.1. If A œ AX , then we can write

–z(t, s)[A] =
Œÿ

k=0
�Xk

(–z(t, s)[A]) (25)

where the maps �Xk
are defined as

�Xk
=

I
EXc k = 0
E(Xk)c ≠ E(Xk≠1)c k > 0

and we recall that Xk = {dist(X, ·) Æ k}. We see that the terms corresponding to k in the sum in (25) are
supported on the fattened sets Xk. The Lieb-Robinson bound can then be used to provide bounds on the
right-hand side of (25) via the following standard lemma, whose proof we omit.

Lemma 9. For any A œ A,
||A ≠ EZc [A]|| Æ sup

OœAZc ,||O||=1
||[O, A]||.
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B.2.1 Evolution of interactions
Let g be an interaction and recall that we associate to it a Hamiltonian Hg

Hg =
ÿ

Sµ�
gS

Let now z = (z(s))sœI be as above, i.e. a time-dependent interaction, determining a family of autormor-
phisms –z(t, s). We can use these autormorphisms to obtain a new Hamiltonian by transforming Hg into
–z(t, s)[Hg]. It is very intuitive that this Hamiltonian can again be expressed as a sum of local terms with
good decay properties in the size of the support, i.e. we can express the Hamiltonian as the Hamiltonian
corresponding to an new interaction that we then view as a time-evolved interaction –z(t, s)[g]. A priori,
there are multiple ways to define –z(t, s)[g] since there are multiple ways to represent an operator as a sum
of local terms. For convenience, we follow [26] and set

(–z(t, s)[g])S =
ÿ

Xµ�,kœN:Xk=S

�Xk
(–z(t, s)[gX ]),

using the operators �Xk
introduced above. This definition has the following convenient properties

1. H–z(t,s)[g] = –z(t, s)[Hg].
2. If g is anchored in a set �g µ �, then –z(t, s)[g] is also anchored in �g.

3. If the F -functions Fg, Fz are in M, then there is an F -function F Õ
œ M depending only on Fg, Fz,

such that
|||–z(t, s)[g]|||F Õ Æ eCFz

|t≠s||||z|||Fz |||g|||Fg
. (26)

The first two properties follow immediately from the definitions. The third property is derived starting from
the Lieb-Robinsin bound. For details we refer to [26], where one can find explicit choices for F Õ.

This enables us to define many new time-dependent interactions in Lemma 10. To set the stage, we first
define the ”commutator” of two interactions z1, z2 as

(i[z1, z2])S =
ÿ

S1,S2:S1fiS2=S,S1flS2 ”=ÿ

i[zS1 , zS2 ]

We note that if either one of z1, z2 is anchored in a set �z, then the commutator is also anchored in �z.
Then we can establish

Lemma 10. Let z0, z1, z2 be time-dependent interactions in BF0,1,2(I), respectively, with F0,1,2 œ M. Then
the following interactions are in BF (I), with F œ M and F depending only on F0 (for item 1)) and on
F1, F2 (for items 2,3),

1. z̄0(s) = ≠–z0(s)[z0(s)]
2. i[z1, z2](s)

3. w(s) = z2(s) ≠ z1(s) + i(–z2(s))≠1
Ës

s

0 –z2(u)
Ó#

z2(u) ≠ z1(u), –z1(s, u)[z1(s)]
$Ô

du
È

The time-dependent interaction z̄0 in item 1) satisfies

–z̄0(t, s) = (–z0(t, s))≠1 (27)

The time-dependent interaction w in item 3) satisfies

–w(t, s) = (–z1(t, s))≠1
¶ –z2(t, s) (28)

Sketch of proof. First, one verifies that the newly defined time-dependent interactions satisfy the measur-
ability condition, using that z0,1,2 do so. Then, the bound on z̄0 follows directly from (26). The identities
(27) and (28) follow by direct computation. The bound on w follows by combining all the previous items, i.e.
the fact that commutators, time-evolution and inverse time-evolution map BF (I) into BF Õ(I) for certain
F Õ.

On our way to prove Lemma 1, we first state the following observation concerning the unitary family
VZ(s) = V (s) introduced in the proof of Proposition 1 in the main text.
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Lemma 11. There is an F -function F œ M and a time-dependent interaction l œ BF ([0, 1]) such that

V (s)OV ú(s) = –l(s)[O], O œ ÂA (29)

Moreover, l is anchored in ˆZ.

Proof. We recall the time-dependent interactions q, q̂. These were defined as having a finite || · ||m norm,
with m œ M. By Lemma 7, we find an F -function F0 such that q, q̂ have a finite ||| · |||F0-norm. From the
definition of q, q̂, we deduce that

V ú(s)OV (s) = (–q(s))≠1
¶ –q̂(s)[O]

We set

q̃(s) = q(s) ≠ q̂(s)

and we note that q̃(s) is anchored in ˆZ, for any s. Now we invoke item 3) of Lemma 10, with z1 = q, z2 = q̂,
to conclude that there is l œ B([0, 1]), given by

l(s) = ≠q̃(s) ≠ i(–q̂(s))≠1
5⁄

s

0
–q̂(u)

Ó#
q̃(u), –q(s, u)[q(s)]

$Ô
du

6
,

such that V (s)OV ú(s) = –l(s)[O]. Since commutators and time-evolution preserve the property of being
anchored in a set, we conclude that l, just as q̃, is anchored in ˆZ.

B.3 Proof of Lemma 1

For convenience we restate Lemma 1:

Lemma 12 (repetition of Lemma 1). For any regions X, Z and O œ ÂAX , with V = VZ as in Lemma 11
above,

||V úOV ≠ E(Xr)c(V úOV )|| Æ ||O|||X|m(r) (30)

and

||V úOV ≠ O|| Æ ||O|||X|m(dist(X, ˆZ)) (31)

The same estimates hold as well if we exchange V and V ú.

To get the bound (30), we invoke Lemma 11 and Lemma 9 to relate conditional expectations to com-
mutators. Then, we use the Lieb-Robinson bound (Theorem 2) for the dynamics –l:

||V úOV ≠ E(Xr)c(V úOV )|| Æ sup
Aœ ÂA(Xr)c ,||A||Æ1

||[A, –l(1)[O]||

Æ ||O||eCFl
|||zl|||Fl

Q

a
ÿ

xœX,yœ(Xr)c

Fl(dist(x, y))

R

b

The last expression between brackets is estimated as |X|m(r), since Fl œ M and the spatial dimension d is
finite.

Let us now turn to (31). By the Heisenberg equation,

V úOV ≠ O = i

⁄ 1

0
–l(u)[Hl(u), O]du.

Accepted in Quantum 2022-06-11, click title to verify. Published under CC-BY 4.0. 19



Therefore, we can bound

||V úOV ≠ O|| Æ

⁄ 1

0
du

ÿ

S

||–l(u)[lS(u), O]||

=
⁄ 1

0
du

ÿ

S

||[lS(u), O]||

Æ 2||O|| sup
uœ[0,1]

ÿ

S:SflˆZ ”=ÿ,SflX ”=ÿ

||lS(u)||

Æ 2||O|| sup
uœ[0,1]

ÿ

xœX,yœˆZ

ÿ

S:S∏{x,y}

||lS(u)||

Æ 2||O|| sup
uœ[0,1]

|||l(u)|||Fl

ÿ

xœX,yœˆZ

Fl(dist(x, y))

= 2||O|||||l|||Fl

ÿ

xœX,yœˆZ

Fl(dist(x, y))

The third line follows because O is supported in X and l is anchored in ˆZ. The expression in the last line
is dominated by ||O|||X|m(dist(X, ˆZ)) upon using that Fl œ M, that the spatial dimension d is finite, and
bounding |||l|||Fl

by a constant.
To get the bounds (30) and (31) for V OV ú instead of V úOV , we note that

V OV ú = (–l(1))≠1[O] = –
l̄
(1)[O]

with l̄ related to l as in Lemma 10. By Lemma 10, l̄ œ BF
l̄
([0, 1]) for some F -function F

l̄
œ M. We can

therefore copy the arguments given above for V úOV = –l(1)[O], replacing l by l̄.
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