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ABSTRACT

Al-based design tools are proliferating in professional software to
assist engineering and industrial designers in complex manufac-
turing and design tasks. These tools take on more agentic roles than
traditional computer-aided design tools and are often portrayed
as “co-creators.” Yet, working effectively with such systems requires
different skills than working with complex CAD tools alone. To date,
we know little about how engineering designers learn to work with
Al-based design tools. In this study, we observed trained designers
as they learned to work with two Al-based tools on a realistic design
task. We find that designers face many challenges in learning to
effectively co-create with current systems, including challenges in
understanding and adjusting Al outputs and in communicating their
design goals. Based on our findings, we highlight several design
opportunities to better support designer-Al co-creation.
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1 INTRODUCTION

Modern manufacturing processes allow designers to produce com-
plex parts optimizing strength-to-weight or leveraging new materi-
als such as shape-changing plastics, yet their creation often surpasses
the designers’ cognitive capabilities. Recently, computer-aided de-
sign (CAD) tools have begun incorporating Al-based features to gen-
erate part designs based on a designer’s myriad optimization goals
[54]. For example, Japanese electric vehicle manufacturer WHILL
used Autodesk Fusion 360 Generative Design to optimize material
economy, strength, and sustainability for an electric wheelchair
component [27]. Al tools are also helping designers generate parts
using emerging manufacturing processes such as shape-changing
smart material structures [80]. In both examples, working with AI
allows designers to create designs that would be extremely tedious
or infeasible without Al support.

These generative Al tools take more agency and autonomy in
parts of the human-AlI design process and are often referred to
as “co-creators” [18]. However, effective and practical co-creation
presents a significant learning curve for designers, as they are
required to work and think collaboratively with AI agents that
operate differently than human collaborators or complex CAD tools.

Studies have shown that effectively working with professional
feature-rich non-AI design software already requires substantial and
continual learning as such software becomes more capable [38, 49].
Consequently, instead of simplifying the software’s interfaces, an
active field within HCI studies how the learning of such complex soft-
ware systems can be better supported through interactive interfaces
[24, 44, 51]. However, working with Al "co-creators" is different from
working with conventional CAD tools. Designers do not directly
manipulate 3D geometry but rather formulate design goals for the
Al system to build from. Yet, little is known about how to support
designers in learning to work with Al tools that take on this more
active and collaborative role.

In this study, we ask how designers can be better supported in
learning to co-create with Al design tools. We guide our investiga-
tions by a recent wave of HCI literature that looks to inform the
design of human-AlI collaboration based on the mechanisms that
make human-human collaborations effective—such as grounding
in communication or shared mental models [5, 6, 10, 31, 40, 77, 85].
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Furthermore, we seek inspiration from team learning [79] which
models what actions help people learn to collaborate effectively with
each other.

To gain insights on improving human-AI design collaboration,
we study how engineering and industrial designers without prior
Al co-creation experience learn to work with AT CAD tools in the
context of advanced manufacturing design tasks. We chose this
domain because of its increasing design task complexity, for which
designers often require Al assistance. Through our studies, we aim
to generate insights to inform future support interfaces of Al design
tools. In particular, we investigate the following research questions:

RQ1a What challenges do designers face when learning to co-create
with computational Al tools?
RQ1b How do designers overcome these challenges?

To answer these questions, we conducted a series of think-aloud
studies observing how trained engineering and architectural design-
ers (tried to) learn to co-create with two different computational
Al tools on complex manufacturing design tasks (Study 1). Based
on analyses of their interactions with the systems and retrospective
interviews, we found that they generally valued the AI’s assistance
but faced challenges in learning to effectively co-create with the
tools and interpret the design outputs. Those who were able to
produce feasible and satisfying designs learned to co-create with
the tool by systematically testing the boundaries of its capabilities
early on, by self-explaining AI behaviors they observed, and by
sketching and reflecting on design issues.

After learning about these challenges, we then explored how
designers could be supported to better co-create by asking:

RQ2 What are effective strategies to support designers in learning to
co-create with computational Al tools?

To answer this question, we took inspiration from prior work
on human-human collaboration [9, 53, 68]. We conducted a human-
human collaboration study to see how human guides would assist
new users of Al tools in learning to co-create and how the new
users learned with human assistance (Study 2). The observed effec-
tive support strategies included providing step-by-step instructions,
prompting design reflection, and suggesting alternative strategies
and goals for the design task. We also observed that the human
guides relied heavily on multi-modal communication (e.g., screen
annotations and mouse gesturing) to communicate more effectively
with designers.

Lastly, to inform design opportunities for new support tools we
asked:

RQ3 What are designers’ needs and expectations for human-AlI co-
creation?

Synthesizing the results from both studies, we learned that many
participants felt unable to communicate their design goals with the
Al and wished for more conversational interactions and contextual
awareness from the tool. We discuss potential support implications
and future work from these needs and expectations.

In short, this study makes three main contributions:

(1) providing a set of observed challenges that engineering and
architectural designers face when learning to collaborate
with AI on complex co-creation tasks in the context of
advanced manufacturing design;
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(2) advancing our understanding of designers’ needs and
expectations for human-Al co-creative tools;

(3) highlighting design opportunities to better support designers
in learning to co-create.

2 RELATED WORK
2.1 Al-based design tools for manufacturing

Al-based design support tools use various computational methods
for generating 2D and 3D design options based on constraints and
objectives set by designers [1, 72]. In 3D architectural, industrial,
and mechanical design, new generative design tools have helped
designers create consumer goods [43], building layouts [60], and
lightweight automotive and airplane components [59, 61]. In the
context of emerging advanced materials, Al design tools assist
designers in creating structures out of shape-changing or elasticity-
changing materials [29, 80]. Such Al tools use multiple techniques
to generate designs from a set of goals and requirements, including
constraint-based solvers [73], style transfer [2, 28], simulation and
optimization [80], and genetic algorithms [59]. Such techniques
are becoming commercially available in 3D CAD design tools such
as Siemens NX, Solidworks, and Autodesk Fusion360 [3, 17, 69].
Many of these tools operate as black boxes where designers first
set objectives and then review generated designs. However, this
interaction can make it hard for designers to quickly develop a
mental model of how the tool works, limiting their creative use.
Recent research has developed generative design interfaces for
interactively exploring multiple design options [39, 52, 83] or more
iterative engagement between the designer and the tool through
real-time design generation and assessment [14, 19, 37]. However,
few empirical studies exist that evaluate how engineers and
designers learn to work with Al design tools on realistic tasks. Some
existing work has measured the performance impact of Al agents on
human engineering teams [84] while other work has investigated
what role professional makers expect for involving Al in digital fab-
rication workflows [81]. This study provides empirical observations
on how engineering, industrial and architectural designers learn
to work and co-create with computational Al-based design tools.

2.2 Learning complex software

Prior HCI research has looked to evaluate and improve the
learnability of complex software systems. Past studies explore how
people of different ages learn a feature-rich notetaking tool [49], how
professional engineers learn 3D design software [38], or how casual
designers learn professional motion graphics software [33]. Often,
people learn by searching web forums or asking knowledgeable
colleagues for help [38]. Research on interfaces to support people
in learning complex software has proposed dynamic feedforward
tool tips [44], guided tutorial systems [24], and widgets that support
self-directed trial and error learning [51].

While prior work has explored lenses such as self-directed
learning for working with complex software [13], it remains an
open question of how best to support self-directed learning for
co-creation with Al systems that take an active role in the design
process. For example, prior studies in Human-AlI collaboration show
that the black box nature of Al systems introduces new challenges
where users grapple with non-transparent and non-intuitive
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system behavior, hindering coordination and communication when
completing “collaborative” tasks [10]. To address these issues,
various strategies like explainable Al or intelligibility are aimed at
helping users refine their mental models of Al systems [55, 70].

However, even as Al models become more intuitive for users, we
expect that there will always remain a need for learning to work
effectively with Al systems to, for example, develop shared mental
models [35, 40]. Consequently, as we discuss in the next section, sup-
porting humans in learning to effectively co-create with Al requires
bringing in additional theoretical lenses.

2.3 Human-human collaboration
as a lens for studying co-creative systems

To design effective human-AlI collaboration, researchers have sug-
gested drawing lessons from studying what makes human-human
collaboration effective [5, 6, 10, 31, 40, 77, 78, 85]. While it remains
an open question to what extent scaffolds for human-Al collabo-
ration should mirror the designs of supports for human-human
collaboration [77, 85], human-Al interaction researchers suggest
that theories and findings from psychology, education, and the
learning sciences are currently underutilized. For instance, Koch
and Oulasvirta [40] note that group cognition—the study of how
agents relate to other agents’ decisions, abilities, beliefs, common
goals, and understandings—provides powerful concepts for work
on human-AI collaboration, yet is rarely referenced within this
literature. Group cognition comprises phenomena such as grounding
in communication [16] (creating mutual sense through verbal and
non-verbal communication) and theory of mind [22] (the ability of
agents to be aware of their own and the other’s beliefs, intentions,
knowledge, or perspectives). Similarly, Kaur et al. [35] argue that
like human-human collaboration, effective collaborations between
humans and Al may require shared mental models between people
and the Al to enable mechanisms such as adaptive coordination of
actions among team members [16, 56]. These may include shared
representations of the task to be accomplished, of each other’s
abilities and limitations, or of each other’s goals and strategies
[20, 25, 66, 74]. A line of work addressing these opportunities has
begun to explore how humans might be supported in developing and
maintaining more accurate mental models of an Al collaborator’s
capabilities and limitations [5, 6, 41]. However, compared to
concepts of human-human collaboration, honing only users’ mental
models is not sufficient enough for effective collaboration, which
requires shared mental models between the user and system [35].

To date, little work has explored how best to support humans
in learning to collaborate with Al on authentic tasks, such as design
tasks, despite growing recognition of the need for such supports
[10, 45, 50, 85]. Design tasks represent compelling challenges for
human-AT collaboration, given that design problems are often
ill-defined and require teams to navigate and negotiate both the
problem and solution space [21] through an iterative process of
generating ideas, building prototypes, and testing [32].

In this study, we investigate human-Al collaboration for
emerging manufacturing design tasks—an area where successful
task performance sometimes requires human—AlI collaboration, yet
where effective collaboration may be challenging to achieve without
strong supports [45, 85].
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2.4 Teamlearning

While phenomena such as grounding in communication, theory of
mind and shared mental models provide useful concepts to explain
which cognitive and social phenomena enable collaboration among
a group of agents [35, 40], these theories do not explain how groups
of individual agents learn to effectively collaborate. To address this
gap, team learning emerged to study what actions and conditions
contribute to how human groups learn to effectively collaborate
together [79]. For example, team learning studies suggest that the
development of effective shared mental models is supported through
an active process of negotiation between team members, involving
“constructive” forms of conflict, argumentation, and resolution
[30, 34, 74]. However, to date, team learning has been under-utilized
as a lens for studying human-AI co-creation. In this work, we
draw upon concepts from team learning, such as active processes
of communication, joint information processing, and coordination of
actions [53], to study what actions and support strategies can help
designers learn to co-create with Al-based design tools.

3 STUDY 1: THINK-ALOUD DESIGN SESSIONS

We conducted a series of think-aloud studies [75] with trained
designers new to working with Al, where they worked with an Al
design tool to complete a realistic advanced manufacturing design
challenge. Think-aloud studies have people verbalize their thoughts
while performing a task so that researchers can understand their
cognitive processes (e.g., forming mental models [15], learning
[82]). In our study, we use the think-aloud method to see how Al
novices, who encounter a real learning challenge and are less biased
than experts, learn to co-create with the Al tools. Participants first
completed a 30-minute moderated think-aloud session where a
member of the research team observed them working and listened
to what they said they were thinking and doing while working.
Half of the participants had a mechanical engineering background
and designed a light and strong mounting bracket for a ship
engine while considering the optimal manufacturing method and
material combination using Autodesk’s Fusion360 Generative
Design (based on topology optimization that generates multiple
options) [52]. The other half of the participants with a background
in architecture or industrial design designed a bike bottle holder
made with shape-changing materials—a complex design task that is
challenging to complete without computational support. Designers
working on the bottle holder task worked with SimuLearn [80], a
machine learning-based research tool built on top of Rhino3d that
helps designers create structures from shape-changing materials.

After completing the design task, participants submitted their
designs and joined a semi-structured interview to reflect on their
experience of working with the design tools. Across the study, we
collect the following data:

e Video and audio recordings and machine-generated
transcripts of the open-ended think-aloud design sessions

e Audio recordings and machine-generated transcripts of the
post-task interviews

o 3D designs created during the think-aloud sessions
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Table 1: Overview of study 1 participants. P-F11* and P-S11" are the same participant who had experience in using both Fusion360
and SimuLearn. Explanation for gaps in participant IDs: Some participants had dropped out after the first design session, or
participants were assigned to Study 2 (see Section 6).

ID Group Age Gender Domain Occupation CADExp. Indus. Exp.
Years Years Years
P-FO1  Fusion360 27 M Civil & Environ. Engin. Student / MA >5 2-5
P-F02  Fusion360 27 M Mechanical Engineering Student / PhD >5 2-5
P-FO3  Fusion360 25 M Mechanical Engineering Student / PhD >5 2-5
P-F0O4  Fusion360 26 M Mechanical Engineering Student / MA >5 1-2
P-FO5  Fusion360 19 M Architecture, Mathematics Student/BA 2-4 0
P-F11* Fusion360 64 M Mechanical Engineering Contractor >10 >30
P-F12  Fusion360 59 M Mechanical Engineering Designer >10 >30
P-S01  SimuLearn 21 F Architecture Student / BA 2-4 0
P-S03  SimuLearn 23 F Computational Design Student / MA 2-4 0
P-S04  SimuLearn 21 M Architecture Student / BA >5 1-2
P-S06  SimuLearn 23 F Architecture Student / MA >5 <1
P-S07  SimuLearn 23 M Architecture Student / MA >5 0
P-S10  SimuLearn 33 F Industrial Design Researcher >5 6-10
P-S11*  SimuLearn 64 M Mechanical Engineering Contractor >10 >30

3.1 Participants

We recruited 14 designers (4 female / 10 male, aged 19 to 64 (M = 32.5,
SD = 16.6)) with backgrounds in Architecture, Industrial Design, or
Mechanical Engineering (Table 1). Most participants were recruited
from our institution’s student body, but we also recruited three
professional designers via an online forum for designers who
work with Fusion360 [64]. Participants had a minimum of two
years of experience using CAD (Fusion360 or Rhino 3D) but no
experience working with the studied Al design tools, determined
via a screening questionnaire. Participants included mostly
undergraduate and Ph.D. students and three engineers with > 30
years of industry experience (Table 1). We recruited participants
familiar with either Fusion360 or Rhino3d so that they could focus
on learning to work with the AI co-creation features rather than
on learning the CAD tool’s user interface. Before the study, all
participants signed a consent form approved by our institution’s
IRB (STUDY2021_00000202). Participants were paid 20 USD per hour.

3.2 Study context: AI-based design tools and tasks

To gather generalizable insights into designers’ challenges, needs,
and expectations around designer-Al co-creation, we observed how
designers tried to learn to co-create with two different computational
Al tools for digital manufacturing tasks. Participants were given
a non-trivial, realistic design task to work on during the study.
We selected a mechanical engineering design task concerning
multi-dimensional optimization and an industrial design task
exploring the use case of shape-changing materials. Both tasks are
too complex to accomplish without Al and also have functional
Al tools already developed. We collaborated with engineers and
advanced manufacturing experts to identify and pilot the tasks to
ensure they were adequately complex but not overwhelming for
our target population. The tasks required participants to generate
design solutions within a few hours over multiple sessions.

3.2.1 Mechanical design support tool. Mechanical design-
ers worked with the "Generative Design" feature of Autodesk
Fusion360[3], which helps designers to create lightweight and strong
parts through topology optimization and genetic algorithms. In this
task (Figure 1A-D), the designer is asked to design a material-efficient
and structurally-sound engine mounting bracket by considering
the optimal manufacturing and material combination from a
large pool of possibilities. While designing mounting brackets is
common for mechanical engineers, optimizing designs for different
manufacturing methods and materials is difficult without simulation
and Al support. Traditionally, engineers would first build a part
and then gradually remove or add material based on structural
analysis to derive a weight-optimized part. Exploring different
manufacturing options would be necessary for every material and
manufacturing constellation—which is time-consuming and tedious.
In contrast, Generative Design can automatically generate many
different design options based on specified high-level requirements,
which the designer can explore and choose from.

Participants were provided a starter file containing the geometric
constraints and needed to specify the mechanical design criteria (e.g.,
loads, bolt connection clearance, boundary condition). Participants
then ran the solver and evaluated the Al-generated solutions to
identify three viable designs for submission (Figure 1E). If none of
the outcomes were deemed satisfactory, the user might choose to
iterate the design by adjusting the input criteria.

3.2.2 Industrial design support tool. Industrial and architec-
tural designers worked with SimuLearn [80], a research system
built on Rhino3D that uses ML-driven simulation and optimization
to enable designers to rapidly create objects out of shape-changing
materials. This manufacturing process creates 3D-printed flat grids
out of PLA plastic that can transform into a volumetric shape
when heated. The transformation and the resulting shape can be
controlled by tuning the grid geometry and the portion of the active
transformation element (i.e., actuator ratio) within the beams. This
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Figure 1: The Fusion 360 design task and workflow. The task involves (A) designing an engine bracket that connects the engine
to a damper. (B) A starter file containing connection holes and bounding dimensions is provided to the users to initiate the
design in (C) Fusions 360. The user is prompted to create (D) a viable design while minimizing weight. (E) The workflow involves
five steps, and based on the Al system’s solutions, the user may iterate the design by adjusting the design constraints and criteria
to produce new solutions. (Image A: © Rolls-Royce Solutions America Inc.)

technique is envisioned to reduce production waste and shipping
costs (e.g., flat packaging, reduced support material).

While new materials are being developed to manufacture shape-
changing structures, designing shape-changing components poses
unique challenges that designers are ill-equipped to handle. Unlike
2D and 3D design, designing with shape-changing materials involves
anon-intuitive mismatch between the final target (3D shapes) and the
design input (often 2D). Effectively designing for shape-changing ma-
terials requires an understanding of (often complex) spatiotemporal,
self-assembling material behaviors that may push against the limits
of what humans can mentally simulate. At the low level, designing
such materials requires modifying volumes voxel-by-voxel, which is
infeasible for complex structures if done manually. Al-driven tools
allow designers to create complex artifacts that would otherwise be
impossible to create by hand. SimuLearn aids the design process by
providing real-time simulation and optimization to iterate designs
toward the desired morphing behavior.

In this task (Figure 2A-E), participants design a bike bottle holder
using morphing grids. A starter file containing the bottle and bike
frame geometry was provided to contextualize the design. This
task was more open-ended than the mechanical engineering task
since each designer may assemble the morphed grids in different
ways to create the holder. To use the tool (Figure 2F), the designer
models the grid geometry and assigns bending actuator ratios.
Next, participants simulate the design, observe the predicted
transformation, and iterate the design by changing the grid model
and actuator assignment. Alternatively, participants may opt to use
functions to optimize the grids toward a targeted transformed shape.
The optimization process can be either autonomous or interactive
(i.e., the tool suggests edits for the user to choose from). To effectively

work with the tool, users need to learn to work with the different
levels of Al assistance to produce a satisfactory design iteratively.

3.3 Choosing design tools

We specifically study these systems for two reasons. First, while
both tools support advanced manufacturing tasks, they represent
computational systems with distinct purposes and interaction
paradigms. Fusion360’s Generative Design module assists engineer-
ing designers with the generally familiar task of creating light and
structural solid parts. The Al system helps designers to navigate
a large design space and explore opportunities while adhering to
specified requirements and constraints. SimuLearn, on the other
hand, supports designers in working with an emerging material and
manufacturing process unfamiliar to most designers. SimuLearn’s
Al tool provides rapid simulations of the shape-changing material
and offers different levels of design assistance—from manual, over
interactive, to autonomous optimization/iteration.

Second, each tool represents a different interaction style and syn-
chronicity. In Fusion360, users follow a structured sequence of steps
to set up the parameters and acquire solutions. It may take a few
hours to generate new solutions, and the designer may export the
generated models at any time or iterate the design by adjusting the
parameters and rerunning the solver. By contrast, SimuLearn’s solver
runs two to three magnitudes faster (5-180 seconds), and users inter-
act with the system without a predefined workflow. Participants may
also freely switch between the three levels of Al support at any point.



CHI 23, April 23-28, 2023, Hamburg, Germany

\

Gmeiner, et al.

nput Q‘O}pﬁmized
design design

Step 4A: Automated optimization

K N NS L,

Step 4B: Hybrid (interactive) optimization

([t |
Beamd [L100 ~ ‘ Beams [L100 ~
Beams M Beamd
R Beamd M Beam10
T

Beam7 [g25 ,‘ Beam11 [g25 +

Step 5: Evaluate outcomes

Step 2: Assign actuator ratio Step 4C: Rapid simulation

Iteration/backtracking

Figure 2: The SimuLearn design task. (A) The user is prompted to design a bike bottle holder using the provided (B) starter file
and (C) the SimuLearn tool to create (D) morphing grid structures. (E) The transformed grid should assemble into the holder
and fit around the bottle and bike frame. (F) The SimuLearn tool provides three types of design workflows. After initializing a
morphing grid design, the user can choose between Al-assisted optimization functions or rapid simulations to iterate the design.

4 STUDY DESIGN
4.1 Study procedure

video tutorial demonstrating the tools’ core functionalities with a
step-by-step example.

2) Intro Design Session: At the beginning of the first session, a
research team member introduced the participants to the study, de-
sign brief, task, and starter file. Sessions were conducted over video
conference (Zoom) with audio and video recording. Participants then
worked while sharing their screens and thinking aloud. Participants
were allowed to use all available support resources, such as internal
help files, external video tutorials, or user forums. The researcher qui-
etly observed the participants setting the parameters of the compu-

The study was structured into four phases (see Figure 3):

1) On-Boarding: Before the first session, participants received
instructions by email on how to access the design tools running
on a dedicated remote machine. They also watched a 25-minute

Phase 1 Phase 2 Phase 3 Phase 4 tational design system and took notes. Due to the complex and open-
Onboarding Introductory Homework Posttask ended nature of the tasks, the research team interrupted the task after
design session design session 30 minutes and asked participants to continue working on their own

as a compensated "homework assignment” without any time limit.
2 22 2 22 3) Homework Sessions: Following the initial session, partic-
ipants continued working independently for as long as needed to

Wt Think-aloud with Think-aloud alone Interview iterate and produce the final design submission. Participants used the

introduction video researcher guidance . .. . .

same remote machine and joined a personalized video conference

30 mins 30 mins 24-195 mins 50 mins meeting with automatic recording to document their work while
thinking aloud. We also deployed a simple web application to prompt

& Designer 2 Researcher & poy P PP P P

Figure 3: Overview of Study 1 think-aloud design sessions
procedure. Participants were first introduced to the design
tool and task, then worked while thinking aloud across
multiple sessions. They completed an interview after turning
in their design.

the users to verbalize their thoughts. The application analyzed
the speech input from the microphone and reminded the user to
"keep talking" after twenty seconds of silence. Once the designer
felt satisfied with the result, they submitted the 3D files to our team.

4) Post-Task Interview: Within two days of submitting their
result, participants completed a one-hour semi-structured interview
with a research team member. Participants were asked to reflect
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on their experience working with the Al tool. The interviews were
conducted remotely over video conferencing. The interviewer
took notes, and the interview audio and video were recorded. The
interview protocol contained 36 questions clustered into three
topics: collaboration with the tool, design process, and learning process
(see the Appendix for interview protocol). The topics and questions
clustered under collaboration with the tool were inspired by measures
from team learning literature on assessing collaboration quality and
effectiveness of human teams [9, 34, 53, 74]. These include perceived
team roles and coordination, communication between user and tool,
conflict resolution, timing, and (shared) mental models.

4.2 Analysis

To gain insight into research questions RQ1a What challenges do
designers face when learning to co-create with computational Al tools?
and RQ1b How do designers overcome these challenges? we (1) eval-
uated the design outcomes and analyzed more than 40 hours of
think-aloud videos and 17 hours of interview recordings using (2)
video interaction analysis of think-aloud videos, and (3) reflexive
thematic analysis of think-aloud sessions (videos, transcripts) and
interview transcripts.

4.2.1 Evaluation of design outcomes. We evaluated the
effectiveness of Designer-Al collaboration by measuring the time
required to complete the task and designer satisfaction with their
results as rated on a three-point Likert scale (satisfied, neutral,
unsatisfied) during the post-task interview. We also measured
product feasibility for the mechanical engineering task by checking
the designed engine brackets against the requirements in the design
brief. The structural soundness was validated using finite element
analysis (FEA), and the used material was checked by measuring
part volume. We also checked the models for shape requirements
(i.e., clear bolt holes, body within the bounding box). Since the bottle
holder was a more free-form and aesthetic design task, we only
checked if the user submitted their design and primarily relied on
their self-reported satisfaction with the outcome.

4.2.2 Video interaction analysis. We used video interaction
analysis [7] of the think-aloud recordings to understand partic-
ipants’ learning process while working with the Al features. To
understand how well participants learned over time to use the
Al features effectively, we tracked their interactions with the AI
features relevant to the design task and documented whether the
actions would produce satisfactory outcomes. For Fusion360, we
tracked how participants specified structural loads, mechanical
constraints, and the obstacle geometry feature to control the
bracket’s bolt clearance and overall size. For SimuLearn, we tracked
how participants used different Al-assisted features (hybrid and
automated optimization) throughout the think-aloud sessions.

4.2.3 Reflexive thematic analysis. To understand participant’s
challenges, needs, and expectations when learning to co-create with
the Al system, we performed a reflexive thematic analysis [8] of
the interview data (transcripts) and the think-aloud sessions (video,
transcripts). We followed an iterative inductive coding process and
generated themes through affinity diagramming. We used ATLAS.ti
to analyze transcripts, audio, and video.
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In the initial coding, the think-aloud and interview transcript data
were equally distributed among two researchers who generated pre-
liminary codes utilizing both a semantic (what people said) and latent
(our interpretations of the data) coding strategy. Next, the research
team collectively identified initial codes and themes. We generated
themesin abottom-up manner. However, we looked at the data with a
mindset of collaboration between the designer and the tool—inspired
by previous studies on human-human collaboration, co-creation, and
team learning [9, 53]. We also tried our best to identify and separate
usability issues from the codes and themes to avoid confoundment.

The two researchers then coded the think-aloud recordings
to document where designers specified system parameters or
evaluated design outcomes. These moments allowed us to find many
of the problems that designers faced. We also coded non-verbal
expressions like mouse gesturing or screen annotations that showed
how designers attempted to communicate.

Finally, we created summary videos highlighting specific situ-
ations related to co-creation with the tool (e.g., designers confused
by Al-generated outcomes). The video clips were annotated with
a time code, participant ID, and a contextual description of the
situation to share and discuss with the entire research team (for an
example, please see the video figure in the supplementary material).
The research team collectively analyzed the think-aloud summary
videos in a half-day session and discussed the themes. We completed
the qualitative analysis by iteratively reviewing and revising codes
and themes until we identified a stable network of coherent and rich
themes.

Table 2: Evaluation of design outcomes for the engine
bracket design task (left) and bottle holder design task
(right). The designer’s satisfaction with the outcome is
rated with green=satisfied, yellow=neutral, red=unsatisfied.
For the engine bracket task, meeting structural and shape
requirement checks are rated as X=fail, check mark=pass.

Durat. Num. Des. Struct. Shape Durat. Des.
ID Min. Iter. Satisf. Req. Regq. ID Min. Satisf.

P-FO1 61 3 ® X v P-S01 97 @
P-FO2 85 2 (@) X X P-S03 190 ®
P-FO3 54 2 @ X X P-S04 225 @
P-FO4 105 9 () X X P-S06 166 ®
P-FO5 140 6 @ v v P-S07 63 @
P-F11 122 6 ® X X P-S10 189 ®
P-F12 160 5 ® X X P-S11 151 (%)
Engine Bracket Task Bottle Holder Task

5 RESULTS

Overall, participants expressed seeing potential value in the Al sys-
tems to support their design process—especially that the tools would
enable them (at least in theory) to create and explore more complex
designs in a shorter time than without AIl. However, most faced
unresolvable challenges in learning to effectively co-create with
the tools. In the following subsections, we provide a brief overview
of participants’ performance on the design tasks and then explore
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Met all Met shape
requirements

requirement

Missed both
requirements

Figure 4: Overview of engine bracket designs created by
participants. P-FO5 met both the shape and structural
requirements. P-FO1 only met the shape requirements (the
bracket has holes for bolts with sufficient clearance and

respects the specified dimensions but is structurally too
weak). All other brackets missed both requirements and were
either too heavy, weak, larger than the specified dimensions,
or had not enough bolt clearance. For simplicity, we only
show one design option per participant. Please see the
Appendix for all submitted design options.

No design
submission

Figure 5: Overview of bottle holder designs created by
participants. Participants came up with different designs
using the shape-changing grid material in various ways.
Participant P-S01 was not able to control the shape as
intended and improvised by stacking grids together. While
some designs (P-S06, P-S07) would not be able to hold a bottle,
some designers (P-S04, P-S10) utilized the shape-changing
grid structure to create promising bottle holder designs.
Participant P-S11 stopped working on the task out of
frustration and did not submit a design.

what challenges they faced in co-creating with them (RQ1a). We
then highlight what some successful learning strategies looked like

(RQ1D).

5.1 Design Tasks Outcome Summary

In the engine bracket task, all participants were familiar with de-
signing similar mechanical components by considering forces and

Gmeiner, et al.

constraints. Generally, such a task is a standard exercise in engineer-
ing education, and our task was comparable to the example provided
by Autodesk in the introduction video that the participants watched.
Participants required between 54 and 160 minutes (M=104, SD=39.7)
to complete the task (see Table 2 left). No participant mentioned in
the post-interview that the task itself was too difficult for them. Yet,
only participant P-F05 was able to produce a self-satisfactory design
that met both shape and structural requirements (see Figure 4 and
Appendix for additional designs). P-F02 was also satisfied with their
design but opted to manually refine the generated geometry that
did not meet the requirements (i.e., using excessive materials and
blocked bolt holes). We were surprised to find that few engineering
participants produced satisfying results, even though they were fa-
miliar with the type of design task. Designers struggled to perform
this otherwise familiar design task when they attempted to do so
with Al assistance.

For our industrial or architectural designers, designing a bot-
tle holder in 3D was not perceived as difficult. However, working
with shape-changing material structures was new and everyone ex-
pressed in the post-interview that working with the shape-changing
material was "unintuitive" and "challenging. Participants worked
on the task between 63 and 255 minutes in total (M=154, SD=56.6).
All but one participant submitted a bottle holder design (Figure 5).
This participant stopped working on the project after 151 minutes
because he felt he could not control the material well, even with the
Al In the end, almost all designers were either dissatisfied with their
final design or had a neutral opinion (see Table 2).

Table 3 shows that only a few designers understood how to set rel-
evant parameters for the design task to produce satisfying results on
the first attempt in both tasks. In Fusion360, most designers learned
over time to successfully specify the structural constraints and obsta-
cle geometry for bolt clearances. However, many designers failed to
correctly specify structural loads and the boundary box. As a result,
some submitted designs were too heavy, weak, or larger than the spec-
ified dimensions. In particular, one designer (P-F02) decided to manu-
ally refine the design after the first iteration because they felt more in
control this way. For SimuLearn, all participants quickly learned how
to control the grid shape using manual adjustments and rapid sim-
ulations (Table 3 right). However, many avoided using the other two
Al-assisted features after an unsuccessful first attempt and continued
to work manually (see Section 5.2.2 for further explanation).

5.2 Challenges designers faced when learning
to co-create with AI (RQ1a)

We clustered challenges designers faced when learning to co-create
into three themes: Understanding and fixing Al outputs, working
“collaboratively” with the tools, and communicating their design goals
to the AL

5.2.1 Challengesin understanding and adjusting Al outputs.
Designers were often confused about the generated results and had
difficulty understanding the cause and remedy of “weird” outcomes.
This often occurred when generated solutions contained minor
aesthetic flaws such as surface bumps, holes, or slightly twisted
geometry. Designers wondered about the AI's underlying design
rationale and were unable to determine whether such design
features were intended or caused by algorithmic glitches.
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Table 3: Schematic overview of each participant’s learning process of design task-relevant features of the Al system. Left: Engine
Bracket Task. Right: Bottle Holder Task. Correct use of input parameters or Al tools is shown with check marks. Increasing
numbers of check marks from the first iteration to the last iteration suggest participants learning to work with the Al system.
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First Iteration Last Iteration First Feature Usage Last Feature Usage
P-Fo1 X X X v X v v P-S01 X v X 4 o °
P-F02 X &7 X ° Task completed without Al assistance P-S03 v ° ° v ° °
P-Fo3 X X o X X X X X P-S04 v v v v v v
P-Fo4 X v ° ° X v v X P-S06 X X X v v °
P-Fo5 X X X X v v 4 v P-so7 X v X v . °
P-F11 X v ° ° X v N4 ° P-S10 v X v v v v o Feature not used
X Feature incorrectly used
P-F12 X X ° ° X v ° ° P-S11 v v ° v ° °

v Feature correctly used

Engine Bracket Task

Furthermore, designers were unsure how to correct the generated
designs (e.g., identifying the parameters that led to the problem).
Some designers were hesitant to manually refine the generated
geometry because they felt uncomfortable changing the optimized
structure:

"...Ialso realized that if I was making any change in the
mesh maybe I was changing the stress that that area
will have. So I didn’t feel very comfortable changing
stuff because I knew that was optimized for my loads
and my material." P-F04

Designers were also unable to make sense of apparent structural
issues in the generated designs, like when the generated parts were
unreasonably thin or thick, provided little clearance, or produced
confusing grid transformations. As verbalized by this designer
while evaluating a generated engine bracket:

“it just doesn’t make sense that, like this region here,
which is obviously pretty thick... well I guess it’s not. I
Jjust don’t think that it can hold up the weight. It says
the factor of safety is five. That just seems ridiculous to
me.” P-F01 Think-aloud

At other moments, designers were uncertain whether the Al or the
user was responsible for fixing the problem. In some cases, designers
accepted imperfect results and attributed the flaws to the system. On
one occasion, a designer verbalized their concerns when evaluating
a generated engine bracket with insufficient bolt hole clearance:

"It’s a goofy-looking bracket. I would never design it like
that, but this thing thinks it can do it like that [... ] It
Jjust seems [that there needs] to be bolt heads and stuff,
so I just don’t see that bolt fitting in this area. But this
is what it gave me, so I don’t have a problem with that.”
P-F13 Think-aloud

Bottle Holder Task

5.2.2 Challenges in working “collaboratively”. Designers
frequently expressed challenges in sharing control with Al-based
design tools, noting that it often felt like these tools were dominating
the design process. In those situations, designers either gave up
and accepted unsatisfying results, improvised "hacky’ strategies
to work around the Al or abandoned the Al assistance altogether
and proceeded to work manually. For instance, one designer using
SimuLearn expressed frustration about having insufficient control
over the design process and decided to accept imperfect results:

"] feel like the collaborative process [...] it seemed a
little difficult to control. I felt that SimuLearn had more
control over it than I did." P-S01 Interview

Similarly, another participant pointed out the lack of participation
opportunities and conversation throughout the design process:

"I would say no, that it’s not co-creative. The whole
program creates the thing but based on my limits. [...]
Idon’t feel like I interact in that creation of the shape.
I just worked at the beginning and then I let the program
do the rest. I missed that once there is one option, I cannot
change anything, I cannot interact with the solutions
that the program is giving me." P-F04 Interview

In other cases, designers developed their own ’hacky’
workarounds to attain feasible results. In Fusion360, this happened
when designers tried to use simple boxes as obstacle geometries to
limit the material growth within the specified perimeter. However,
the algorithm often found ways to “squeeze” in additional, unwanted
material through the gaps between obstacle geometries. A Fusion360
user expressed they felt like tricking the system when they were
unsuccessful at blocking material generation:

“T think the software did kind of dominate the design
process a little bit in that I was making things to satisfy
the software instead of it kind of adapting to my needs
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[...] I think for something that’s like supposed to be so
smart and easy to use I wish it gave me more options
instead of [me] trying to find these like little tricks. So
I don’t want to use little tricks. I don’t want to use a
hidden kind of Tl trick the software into thinking that
it’s correct.”" P-F05 Interview

Finally, designers often avoided Al assistance when they could
not learn to co-create with it effectively. This issue was particularly
frequent when designers used SimuLearn, given that this tool
explicitly allows designers to switch between different levels of AT
assistance. When comparing which SimuLearn features designers
used to complete the tasks, all designers learned over time to
manually adjust, simulate, and iterate the design (see Table 3 right).
However, only two designers (S04, S10) were able to work with the
Al-assistance features (i.e., auto and hybrid optimizer) on the first try.
All others expressed that they could not make sense of the Al output,
even when they used the feature correctly. These participants
subsequently avoided using the Al features and continued to work
manually with rapid simulation.

5.2.3 Challenges in communicating design goals to the
Al Designers often had difficulty communicating design goals
to the Al system. For example, designers were unsure about the
use and implication of certain parameters. Furthermore, many
designers recognized their knowledge gaps of parameters that
defined manufacturing processes or materials. E.g., a designer was
unfamiliar with the specificity of a manufacturing method and kept
using default parameter values:

"I'll have to see if they have five-axis milling... minimum
tool diameter 10 millimeters... uh I don’t know, I'm not
really a tooling guy... tool shoulder length... [laughs]
minimum tool diameter... all right I guess I don’t know...
I just hit okay on that." P-F12 Think-aloud

Designers often relied on the Al system’s default settings or made
assumptions about their effect when they were unsure about the pa-
rameters’ meanings. Instead of seeking clarification from helpful re-
sources, they often tried to determine a parameter’s effect on the final
result independently. However, it was oftentimes hard or impossible
to notice and trace back parameter influences from the final results.

In the think-aloud sessions, we also observed several occasions
where designers had different interpretations of the parameters. For
example, in the Fusion360 task, half of the users made mistakes when
converting the loads into the correct unit expected by the system.
Similarly, when applying loads to multiple targets (i.e., bolt holes), the
system applied the same load to each of the targets instead of equally
distributing the load across the targets, which the designers had
anticipated !. This mismatch led to higher load assignments and un-
necessarily strong and bulky bracket designs. Interestingly, most de-
signers verbalized their uncertainty about the load distribution when
specifying parameters, as exemplified by this think-aloud comment:

“All the loads... I remember being a little wonky... so...
I said three... let’s see...what would be the case here?
I don’t know if all of these three forces are the same...
that’s the issue. I don’t know if this is applying to each

IThis is a known issue in Fusion360 that many users have discussed in the user forum.
See [4].
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one in particular... like if it’s 12,000 here, here, and here...
orifit’s split evenly?I hope it’s being split evenly... that’s
what I'm assuming.” P-F03 Think-aloud

Although participants were aware that the system might interpret
the load assignments differently, only a few were actually able to
figure out and correct the mistake.

5.3 Learning strategies among successful
designers (RQ1b)

Here we present findings related to how designers overcame the pre-
viously reported learning challenges (RQ1b). We observed that all
designers (after watching the introduction tutorial video) tried to
learn to work with the tools through an iterative trial-and-error
process. We also observed that participants sporadically consulted
different support resources, including software tooltips and help
files, and external resources like video tutorials, online user forums,
and in some cases asking colleagues for help. Designers sought help
from these support resources primarily after encountering interface
or usability issues, which they often resolved. However, despite the
available support resources, most designers struggled to learn to
co-create with the tools effectively. Nonetheless, some designers
employed successful strategies that helped them in learning to work
better with the Al systems:

5.3.1 Systematically exploring Al’s limitations and capabili-
ties. We observed that, early on in their interactions, two designers
(P-F11,P-S10) deliberately and systematically experimented with the
Al'tools to develop a better intuition of the AI’s behavior, capabilities,
and limitations. These designers conducted tests to understand
what effects different parameter values would have on the final
result and documented the value-result correspondence to create
amental model. For example, PS-10 realized that their initial design
sketches were not feasible with SimuLearn and the shape-changing
materials, thus decided to systematically test different extreme grid
shapes to hone their mental model of the AI’s behavior:

"Even though I tried sketching some stuff, I think it just
didn’t work. So I thought it’s better if I just go into the
tool and see if I will be able to do this. I tried stuff like
folding one corner upwards and one corner downwards
or stuff like that. I took lots of screenshots and those
really helped me to understand like ’if I do this, then it’s
gonna behave like that’ so I think initially it was a lot
of trying to form a mental model and like what’s the
capability of this tool." P-S10 Interview

5.3.2 Sketching, explaining and reflecting on design issues .
Another strategy that helped designers overcome flawed outcomes
was to actively abstract and explain the problem. In the think-aloud
sessions, we observed when facing similar fundamental challenges
like over-constraining the engine bracket (such that the loads had
no effect), some designers were able to understand and overcome
the issue by sketching out the bracket’s free-body diagram and
explaining the acting forces and constraints to themselves. We
observed similar strategies in SimuLearn, where participants under-
stood the significant influence of gravity during the transformation
process by explaining the process to themselves:
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Table 4: Overview of Study 2: Learning with a Peer Guide participants. Six additional participants (3xFusion360, 3xSimuLearn)
were paired with peer guides who had worked successfully with the AI design tools in Study 1.

ID Group ?f:rs Gender Domain Occupation CAYle)af:p ) InYd‘;i):p ) I(’;;l:td;ifpl;fl ¢
P-FO7 Fusion360 27 M Mechanical Engineering  Student / PhD >5 1-2 P-F05
P-FO8 Fusion360 27 M Mechanical Engineering  Student / PhD >5 1-2 P-F05
P-F13  Fusion360 19 M Mechanical Engineering  Student /BA 2-4 0 P-F11
P-S05 SimuLearn 26 F Architecture Student / MA >5 2-5 P-S04
P-S08 SimuLearn 20 F Architecture Student / BA 2-4 0 P-S04
P-S09 SimuLearn 23 F Architecture Student / BA 2-4 2-5 P-S04

"Whoa, I was not expecting that at all... uh... is that just
because of gravity? And there’s something crazy going
on here... there’s a lot of gravity... oh is it because I made
the thing so big? Yikes, that is not at all what I expected.”
P-S11 Think-aloud

6 STUDY 2: LEARNING WITH A PEER
GUIDE (RQ2)

To gain insights into how designers can be better supported in learn-
ing to co-create with computational Al tools (RQ2), we conducted
additional think-aloud sessions where designers were paired with ex-
perienced peers to support them during the task (i.e., guided sessions).
The guide had prior experience using the Al tools and provided sup-
port as needed to help participants to more effectively co-create
with Al-driven features. Motivated by human-human collaboration,
we aimed to derive insights into when and how to effectively sup-
port users in learning to co-create with AI by observing the support
strategies, pedagogical moves, and communication patterns of the
human guide.

6.1 Method

We recruited six additional participants (Table 4) following the
same criteria as described in Section 3.1. The guides were recruited
from the pool of participants who had completed Study 1 and
demonstrated a thorough understanding of the domain, tool, and
task (P-F05, P-F11, P-S04). We asked these guides to support the
designers in learning to co-create with the tool. No script was
provided to the guides because we intended to find possible support
strategies from their natural interactions.

All guided sessions followed the same procedure as that of the
unguided sessions, except that the homework sessions were limited
to 50 minutes and the guides were present to help the designers. The
designers and the guides communicated with each other through
audio, screen sharing, and screen annotations. A researcher quietly
observed and took notes. After the design session, we conducted
separate 15-minute semi-structured interviews with the guide and
designer. All sessions and interviews were recorded (video and
audio) and automatically transcribed.

We conducted a reflexive thematic analysis to identify situations
and themes on how peer guides supported designers to overcome
challenges in learning to work with AI tools. We specifically
focused on aspects of collaboration and knowledge transfer such
as communication, joint information processing, and coordination

of actions [53]. We coded the video, think-aloud transcripts, and
interview transcripts then generated themes with a focus on
communication and learning by analyzing the guide’s actions
and support strategies that helped designers overcome challenges
previously observed in Study 1.

6.2 Results - Guided Sessions

The guides supported the designer in using the tools, understanding
the AT’s behaviors, capabilities, and limitations, and sometimes
suggesting and discussing alternative design goals or strategies.
Guides primarily reacted to designers’ verbalization and actions
when they asked for help, expressed uncertainty, or when guides
observed common mistakes. To get an impression of conversational
dynamics, please see the video figure in the supplementary material.
We portray five of the most common peer support strategies that
helped designers to learn better to co-create with Al systems:

6.2.1 Guide providing step-by-step walk-through in-
structions. Guides often provided designers with step-by-step
instructions for setting specific parameters. Such instructions
were provided in response to designers’ actions, such as showing
confusion or struggle, but sometimes designers also specifically
requested such assistance.

6.2.2 Guide reacting to designers’ expressions of uncer-
tainty . We observed that guides were especially sensitive to
moments when designers signaled uncertainty or when designers
verbalized knowledge gaps with hedging expressions such as "I don’t
know", "maybe", or "I assume." In these situations, the guides often
intervened and offered support or suggested alternative design
strategies. Here, the guide suggested creating an obstacle geometry
in Fusion360 to prevent material build-up at the bottom of the part
in response to the designer who was wondering how to keep the

part within the specified dimensions.

DESIGNER: "...but because the bolt is not here, I don’t
know where it would be..."

GUIDE: "I mean maybe on the bottom face, right? That’s
what’s resting on the body of the ship effectively."
DESIGNER: Yeah, let’s go ahead and choose that bottom

face."
(Designer P-F13, Guide P-F11)

6.2.3 Guide prompting designer reflection on generated
designs. We often observed situations where the guides prompted
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feedback from designers each time SimuLearn’s simulation or
Fusion360’s solver had finished. In those moments, peer guides
often asked the designer “Is that what you envisioned?” or “Is that
what you wanted?” or even “Yeah, there you go!Is that how you want
it to bend?”. These prompts triggered designers to reflect on the
generated designs, which helped the guides better understand how
to provide support.

6.2.4 Guide suggesting alternative means and goals. Beyond
supporting tool operation and technical troubleshooting, the guides
frequently suggested alternative means and goals to the designer,
as in this dialogue:

DESIGNER: "It’s going for the green part, but it’s not
able to figure out like a perfect way to get there without
like touching this obstacle geometry."

GUIDE: "Right, well I mean just make your obstacle
geometry really long, say, all the way back past the
connection to the ship, and then you’re saying 'no
material is allowed to go here’ and that would make sure
that you can always get a bolt in. See what I'm saying?"
DESIGNER: "Yeah, I do"

(Designer P-F13, Guide P-F11)

Here the guide suggested an alternative way to achieve the de-
signer’s goal by enlarging the existing obstacle geometry. This strat-
egy helped designers to better communicate design goals to the Al
system and develop an intuition for harnessing the AI’s capabilities.

6.2.5 Guide and designer making use of screen annotations
and mouse gesturing to discuss design strategy. An essential
part of building understanding between the designer and the peer
guide was through nonverbal communication, such as screen
annotations, sketches, or mouse gestures. Guides frequently used
the screen annotation feature built into Zoom to highlight elements
they spoke about by circling or drawing arrows. We also observed
that all designers naturally used the mouse cursor to emphasize
design features through circling or pointing gestures when
explaining something to the guide. Both behaviors are illustrated in
this situation where the guide and the designer discussed a strategy
to achieve a specific bottle holder shape:

GUIDE: "So in this case, maybe I suggest that you move
these two points in particular more towards the center."
[Guide draws arrows from points towards the
center of the grid]

DESIGNER: "And this one seems to have dropped
downwards. Even this point here... The beam seems to
be going downward."

[Designer points with mouse at different
beams]

GUIDE: "oh this beam right here?" [Guide draws an
arrow pointing at beam]

DESIGNER: "Yeah."

(Designer: P-S08, Guide: P-S04)

Many designers and guides also annotated generated designs
and sketched to clarify or illustrate their ideas. In summary,
different forms of nonverbal communication helped designers and
peer guides develop better shared mental models of the task and
collectively overcome design issues.
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7 DESIGNERS’ NEEDS AND EXPECTATIONS
FOR CO-CREATING WITH AI-BASED DESIGN
TOOLS (RQ3)

Based on our observations and interviews from both the unguided

and guided sessions, we highlight four themes that capture the

needs and expectations that designers expressed around co-creating
with Al-based design tools (RQ3).

7.1 Designers expect the Al system to have
more contextual awareness about the design
problem at hand

In both systems, participants missed the kind of contextual
awareness that a human collaborator might have about a design
task, such as a part’s function or how the part interfaces with other
elements in the environment. Such a lack of contextual awareness
was one of the main reasons people thought working with the tool
was not collaborative. This lack of context also meant that the tool
could not support the designers more proactively like a human
partner, as described by this participant:

"Certainly it would have saved me some time if at the

beginning the software would have said "oh I see that

these are your connection points. Can you actually get a

boltin there?’[... ] Things like that would have felt really

much more collaborative and helpful.” P-F11 Interview

Others expected the tool to offer more intelligent manufacturing
and material suggestions or help them anticipate real-world design
issues, as this participant expressed:

"I would like to see a design tool that would show me
simulations of the water bottle in action, like "oh is there
enough friction’ or "will it actually stay in place while
a cyclist is on the bike’ and then provide suggestions of
how to alleviate those problems." P-S04 Interview

7.2 Designers desire a more conversational
form of interaction with the tool

Most participants complained about the lack of reciprocal interac-
tion between them and the tool. Participants compared designing
with the Al systems to "programming"” or "working with a skilled
teammate who is not listening to you." Participants wished for a more
conversational interaction with the tools, as desired by this designer:

“More like a tool that I can have a conversation with
while I'm always sure that everything that I'm making
is fulfilling the expectation of the piece and the loads
and materials and everything.” P-F04 Interview

7.3 Designers require support in thinking
through design problems

Across all guided sessions, designers appreciated that the peer guide
helped them learn to operate the tool but also to think through
design problems—a feature they would eventually also expect from
a co-creative Al tool. As summarized by this designer who reflects
on working with their peer guide:
"I think working together with the peer guide was
actually really helpful because he had a lot of insight.
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I felt like a couple of things that I didn’t really think
about just from a fundamental engineering standpoint
of how the thing can actually be made. I think that was
really beneficial" P-F13 Interview

7.4 Designers expect an Al tool to provide
project-relevant work examples

Designers frequently suggested that a co-creative tool should
suggest similar task- and project-related examples created by
other users. Such examples could help designers learn the system’s
capabilities and provide creative inspiration, as suggested by this
SimuLearn user:

"Let’s say I'm modeling some form and in real-time, the
tool is searching some sort of database to show me some
possibilities that other people have previously done, just
by the similarity of the shape, and then I'm like “yeah this
shape can go there and go there.” So that’s actually a cre-
ative input that can help—a bit more like you re designing
with someone. It doesn’t necessarily have to generate, it
can pull up from other people and tell you ’here is how
some other designers work with this.”” P-S10 Interview

8 DISCUSSION

Co-creative Al design tools have the potential to amplify the
abilities of engineering and industrial designers. However, we found
that designers face major challenges in (learning to) effectively
co-create through understanding and adjusting system outputs,
communicating design goals, and working "collaboratively" with
the AL Designers who overcame challenges did so by systematically
exploring Al’s limitations and capabilities, and by explaining and
reflecting on their design issues. The observed support strategies of
peer guides comprised step-by-step walk-through instructions, re-
acting to designers’ expressions of uncertainty, prompting designer
reflection on generated designs, suggesting alternative means and
goals, and making use of screen annotations and mouse gestures to
discuss design strategies. Overall, designers expected the Al system
to have more contextual awareness about the design problem at
hand, desired a more conversational form of interaction with the
tool, asked for more support in thinking through design problems,
and expected project-relevant work examples from the tool.

We discuss our findings in the context of prior research studying
how users learn to work with complex software tools and relate our
findings to concepts and empirical findings from research on human
collaboration. We highlight design opportunities (Table 5) to better
support designer-Al co-creation by scaffolding designers in actively
exploring the boundaries of Al capabilities and limitations, prompt-
ing designers to actively reflect on design problems and observed Al
behaviors, enhancing Al systems’ contextual awareness of designers’
tasks and objectives, and supporting more conversational forms
of multi-modal communication between designers and Al systems.

8.1 New learning challenges for
human-AI co-creation

Based on our findings, we believe that the challenges designers faced
when learning to co-create with the tools go beyond learning the
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tools’ interfaces. Firstly, all participants were experienced designers
familiar with the CAD software’s interface and had watched a step-
by-step instructional video demonstrating the operation of the AI
features. Furthermore, designers used different support resources,
including tooltips, help files, video tutorials, online user forums, and
asking colleagues for help to overcome interface issues they faced.
However, even with the help of these resources, most designers could
not produce feasible and satisfying outcomes with Al assistance.
While this result may have been due, in part, to the limitations of the
Altools themselves, it is clear that this was not the full story. Indeed, a
few of our participants were able to overcome challenges and learned
to co-create effectively with the Al features. Hence we believe that
the challenges participants faced when working with the Al systems
(such as communicating design goals or understanding Al outputs)
were partly new learning challenges due to the tool’s more active role
in the design process. These learning challenges go beyond learning
the tool’s interface. For example, a major challenge we identified
relates to how designers specify all required parameters upfront
instead of modeling and testing a part step-by-step. This workflow
requires designers to think through the design problem in advance,
which is challenging and different from the usual iterative design
process. Our findings suggest that these new learning challenges
require new support strategies for example, by prompting designers’
reflection in response to expressions of uncertainty or suggesting
alternative design goals that align with the AI’s capabilities.

8.2 Toward models of human collaboration
as lenses for studying and designing
co-creative systems

Participants had trouble learning to predict how the Al might be-
have in response to the specified parameters. They struggled to make
sense of the Al system’s reasoning and struggled to correct unwanted
design issues. Prior literature on group cognition suggests that to
achieve effective collaboration group members should be able to in-
terpret each other’s reasoning and predict roughly how their partner
might behave in response to their own actions [40]. Similarly, from a
team learning perspective, our findings suggest that designers who
systematically explored the AI’s limitations and capabilities early on
were better at predicting the tool’s actions in response to their own
and produced more satisfactory results. This resultisinline with stud-
ies on human-AI collaboration in decision-making, suggesting that
users learn to better predict the machine’s behavior through induc-
tive mechanisms (i.e., via concrete examples and hands-on testing)
than via general, declarative information about internal processes
[11]. While explainable Al research focuses primarily on directly
communicating information about the Al system to the user, recent
research has suggested that more engaging and longer forms of learn-
ing and deliberate practice might improve human-AlI collaboration
[36]. However, in addition to supporting honing the user’s mental
model of the AT’s capabilities and limitations, it is equally important
for the Al system to have an understanding of the user’s capabilities,
limitations, and task context to enable more effective human-Al
collaboration. Hence, this would require the Al system to have better
contextual awareness of the user and the current task at hand. We
further discuss the resulting design opportunities in section 8.3.3.
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Table 5: Overview of design opportunities and example applications in relation to group cognition and team learning.

Support opportunity

Example Application

Scaffolding inductive learning of AI’s capabilities and limitations

Offer guided interactive mini
experiments for exploring AI
behavior

Seen in 5.3.1 and 6.2.2

Present similar work
produced by AI design tool

Seen in 7.4

System offers designers explorative mini
experiments to develop intuition of the A's
responses to specific (extreme) parameter
constellations.

System proactively suggests task-related
project examples of designers creations with
Al system as learning resource and source of
inspiration.

Prompting designers' planning and reflection

Support designers in
thinking through design
problems

Seen in 6.2.4 and 7.3

Prompt designers’ feedback
and reflection

Seen in 5.3.2 and 6.2.3

System asks designers questions to help
reframe or further explore problem and
solution space, like “Have you considered
other alternatives?”, “Could the bottle holder
also be placed at a different location on the
bike?” System could also suggest alternative
strategies and goals to designer.

Prompting designers’ feedback when
evaluating generated designs, like “Is this
design what you envisioned?” Based on the
feedback, system could offer support guidance
on how to correct generated designs.

Relation to Models of Human-Human Collaboration

Refining mental model of AI's behavior and
capabilities through experiential, hands-on
learning; Learning to predict the tool’s actions in
response to own actions.

Refining mental model of AI's capabilities and
limitations by learning from examples; Aligning
designer’s expectations with tool’s capabilities;
Getting inspired by co-creative Al's suggestions.

Helping designers to stay cognitively engaged in
co-creative design process with AL

Helping designers to identify their own mental
state and communicate goal to Al system;
Information pooling.

Improving co-creative Al tools' contextual awareness of designers' tasks and objectives

Equip Al with increased
contextual awareness of
designer, task, and project

Seen in 7.1

Respond to designers’
uncertainties
and knowledge gaps

Seen in 6.2.2

System probes designers to share information
about their background, skills and project, like
high level design goals and manufacturing
considerations.

Enable designers to communicate
uncertainties about parameters and own
knowledge gaps to system by “flagging”
parameters. System could track
designers’ “level of certainty.”

Multi-modal interactive communication for human-AI co-creation

Allow a more interactive and
conversational interaction
between designer and Al
system

Seen in 7.2

Enable non-verbal
communication between
designer and Al system

Seen in 6.2.5

Utilizing conversational agentive interfaces
for designer-AI co-creation

Designers provide feedback to Al system
by sketching design goals or annotating
generated designs for refinement (like in a
design critique)

Fostering shared mental models of task and
objectives by asking for explicit feedback or
implicit social inference.

Foster shared mental models of each other’s
knowledge and goals. Increasing the feeling of
designers’ ownership of the mutual activity with
Al system.

Facilitating grounding in communication through
turn-taking, acknowledgments, back-channeling,
error correction; Mutual confirmation of the
reception and interpretation of objectives.

Facilitating grounding in communication by
selecting a domain and task-appropriate
communication medium.

Most designers felt the tools were uncollaborative and had more
control over the design process than they would have preferred. Asa
consequence, they accepted imperfect results, developed improvised
workarounds, or avoided Al assistance altogether. Previous studies
on group cognition and team learning suggest that group members
feel more ownership of the mutual activity when the group learns
to coordinate cognitive capabilities among participants—united by

their interpretations of each other’s mental states [57]. Groups can
reach this level of collaboration by an active process of communica-
tion, joint information processing, and coordination of actions [53].

Our findings from the guided sessions show that the guides’ active
communicative support strategies, such as reacting to designers’ un-
certainties and providing step-by-step instructions, helped designers
learn to work confidently with the AL Furthermore, when peer
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guides prompted designers’ feedback and reflection on generated
designs, the designers were required to articulate their intentions ex-
plicitly. As a result, both the guides and designers were able to discuss
and better coordinate further actions to improve the outcome.

8.3 Design Opportunities and Future Work

The following section highlights several design opportunities we
identified in our findings to support designersin learning to co-create
with computational Al tools.

8.3.1 Scaffolding inductive learning of AI’s capabilities and
limitations . As discussed, some designers learned the Al system’s
capabilities and limitations by testing and documenting the effectual
correspondence between various parameters and the generated
result (see 5.3.1). In the guided sessions, peer guides also frequently
provided step-by-step instructions for setting up parameters or
walked designers through the sequence of steps (see 6.2.2). These in-
ductive learning strategies helped designers to better predict the AT’s
behavior and understand its capabilities. Previous work on novice-Al
music co-creation has also found that users systematically tested AI
limitations to hone their mental model of the system’s behavior [48].
Going further, to better support users in this learning activity, future
co-creative systems may offer designers a set of hands-on mini-
guided ‘experiments’ to better understand the system’s responses
to specific (extreme) parameter inputs [42]. Systems may also offer
designers opportunities to view sets of examples of input-output
pairs to help designers develop useful mental models of an Al tool’s
generative capabilities and limitations (cf. [58]). A co-creative tool
may also proactively recommend similar tasks and project-related
examples created by other human-Alteams (see 7.4) to help designers
learn the system’s capabilities and provide creative inspiration.

83.2 Prompting designers’ planning and reflection
Participants who were more successful at co-creating with the Al
tools did so by abstracting and explaining their problems—either
to themselves during think-aloud sessions or to the peer guides
(see 5.3.2 and 6.2.3). Literature from the learning sciences shows
that self-explanation positively affects understanding and problem-
solving [76]. In addition, participants from the guided sessions
appreciated the guides’ prompt for reflection on Al behaviors and
their suggestions for alternative design goals or strategies (see 6.2.4
and 7.3). Such actions helped designers think through the tasks
and plan actions with Al tools. Conversely, designers who did not
reflect on the design problems were unable to learn to understand
the system’s behavior, capabilities, and limitations well enough
and failed to produce satisfactory outcomes. This observation was
more prevalent in Fusion360 than in SimuLearn since Fusion360’s
long simulation time doesn’t support the kind of rapid interactive
adjustments as SimuLearn did, thus requiring the user to strategize
their actions in advance. Hence, supporting users in thinking
through the design problem for specifying parameters ahead would
be especially beneficial for Al tools with longer processing time.
One additional explanation for why participants failed to produce
satisfactory outcomes might be that Al systems can lead designers
to over-rely on their support, creating an “illusion of success” that
reduces their effort in solving the design problem [84], something
we saw when designers accepted results even when they appeared
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unfeasible (see Section 5.2.1). To compensate for this tendency,
a co-creative system may help designers reframe the problem or
further explore the solution space by suggesting alternative goals
or asking generative design questions [23] like “What could other
alternatives look like?”. Moreover, actively reflecting on the design
process is an essential part of professional design practices [67].
Much like the guides, a co-creative system could prompt feedback
and active reflection on observed Al behaviors or generated designs
by asking deep reasoning questions about the results, such as “Ts
this generated design what you envisioned?” (cf. [12]). Based on the
feedback, the system may then offer support and help to coordinate
further actions. This strategy would be complementary to the
inductive learning support described in the previous section (8.3.1).

8.3.3 Improving co-creative Al tools’ contextual awareness
of designers’ tasks and objectives. Our results show that
designers felt a lack of the tool’s awareness about the design context
and therefore missed the kind of proactive support a human partner
might provide (see 7.1). While building contextual awareness into
Al systems has long been a tradition in HCI research, it also presents
many technical challenges. However, in the context of co-creative
design tools, promising directions are being explored. For example,
the system could derive its user model through explicit and implicit
mechanisms to develop a shared mental model of the context by
asking the user for information about the specific design task (i.e.,
parsing a written design brief for context and goals [71]) or infer
design goals from user behaviors [46].

From a group cognition and team learning perspective, con-
textual awareness also includes an understanding of the other
team member’s existing or missing knowledge about the design
task. Based on our findings (see 6.2.2), a co-creative tool might
learn about the designers’ knowledge by responding to verbalized
knowledge gaps such as “Tdon’t know” or responding to hedging
expressions such as “maybe” or ‘T assume.” This observation is in
line with research showing student learning is positively affected
by human tutors’ responses to their expressions of uncertainty [26].
Based on this phenomenon, literature has explored how intelligent
tutoring systems can detect and respond to student hedging [26, 62].
A co-creative system may also allow designers to communicate
uncertainties about parameters and their own knowledge gaps. For
example, designers may flag an “???” checkbox next to a parameter’s
input field to signal uncertainty. The Al system could then track
designers’ “level of certainty” for each parameter and provide
reactive help or re-surface those parameters later in the design
process to identify possible reasons for unexpected outcomes.

8.3.4 Multi-modal interactive communication for human-Al
co-creation. Our findings show that designers felt communicating
with the Al was like giving instructions without receiving much
feedback (see 7.2). Results from the guided sessions show that peer
guides used conversational strategies like confirming the reception
of each other’s goals or asking for clarifications when they were un-
sure about the other’s intentions. As conversation is widely seen as a
vital mode of designing [67] and empirical work suggests that much
of design work lies within conversations between collaborators and
stakeholders [47], co-creative systems should consider using more
back-and-forth conversation as an interaction interface. Further-
more, studies on team learning show that the forming of effective,



CHI 23, April 23-28, 2023, Hamburg, Germany

shared mental models is strengthened through an active process of
iterative negotiation between team members, involving “construc-
tive” forms of conflict, argumentation, and resolution [30, 34, 74].
Such a strategy may also prove useful for negotiating design goals.

Our findings from the guided sessions also suggest that non-
verbal communication may support design partners in developing
better shared mental models of design goals (see 6.2.5). Designers
and guides discussed goals and strategies by pointing at features
with the mouse cursor or sketching with the screen annotation
feature, similar to a ’spatial-action language’ described by Schon
[67] which explains gesturing and drawing along with verbal
expressions as typical forms of communication in traditional
design critique sessions. Such non-verbal interaction is still an
underutilized medium in human-AlI co-creation. Allowing designers
to use sketching, annotation, or gesturing atop generated results
may help them communicate design goals to an Al system.

8.4 Human-AlI co-creation beyond
manufacturing

Although we identify opportunities to support learning to co-create
with Al systems in the context of manufacturing, many of our find-
ings could also apply to other human-Al co-creation domains such
as image, music, or text generation. Given recent advancements
in generative image Al models (such as DALL-E [63] or Stable Dif-
fusion [65]) with fast release cycles of new tools and capabilities,
supporting creative professionals in learning to effectively co-create
with such tools might become increasingly important. Furthermore,
many prompt-based Al models like DALL-E expect users to express
their goals through text prompts, which is an unfamiliar modality
for most of today’s visual designers. Consequently, our findings
suggest that Al tool users across many domains could be supported
in learning to better co-create with Al systems by scaffolding induc-
tive learning of the Al’s capabilities, prompting users’ planning and
reflection, improving the tools’ contextual awareness of tasks and
objectives, and facilitating multi-modal interactive communication
between tool and user. Future work might further explore interfaces
for supporting learning to co-create with computational Al tools in
other domains beyond manufacturing.

8.5 Limitations of the study

We highlight three limitations of this study: first, our participants
only represent a subset of engineering, architectural, and industrial
designers. Although all participants had relevant training in their
design fields and worked with 3D CAD software, most had minimal
industry experience. We also included three professionals with
substantial industry experience to compensate for this imbalance,
however, even these participants struggled. Further, the self-selected
participants in our study were presumably interested and open
to the idea of co-creating with an Al system. Thus, some of our
findings may be reflective of this openness to co-creative work.
Second, both Al tools are still early in development, and we noticed
user experience issues that could benefit from improved Uls. To our
best extent, we isolated Ul issues from more fundamental challenges
in learning to co-create with Al systems. Although the tools are
relatively new, we believe our findings provide value in exploring
new opportunities for co-creative design systems. Finally, despite
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our effort to make sure the design tasks were realistic, designers
knew that they were in a research study and that the designs would
not be manufactured. In a professional context, participants might
have spent longer learning the tool to produce feasible designs.

9 CONCLUSION

In this paper, we presented an empirical study to understand
how engineering and architectural designers learn to work
with Al-based manufacturing design tools, documenting their
challenges in working with an AI and probing their needs and
expectations for co-creating with Al systems. We identified several
support opportunities with an eye toward learning from effective
human-human teams to improve future designer-Al co-creation.
Overall, we aim to inspire others to explore untapped support
opportunities and to work toward future co-creative tools that
combine the strength of both human and Al systems to achieve
complex designs that neither could achieve alone.
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Figure 6: Overview of all engine mounting brackets created in the Fusion360 task. Every participant submitted three design
options. Since the Al system generated the three options based on the same parameter values, each trio either met or missed

the same criteria.
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Table 6: Interview protocol with questions of the semi-structured post-task interview.

Theme Topic Question
Collaboration with General Experience Q3 Could you tell me what it was like to work with the design tool in
the tool general?
General Expectations Q4 Before starting this project, what role did you expect the design tool
to take?
And what role did it actually take during the design process? Did the
design tool match your expectations?
Roles — Coordination Q5 Do you feel that there was a collaborative interaction between you
and the design tool?
Can you give us some specific examples?
Q6 Using your own words, what metaphors or analogies would you use
to characterize the tool and the collaboration with it?
Q7 Would you say that the process of working with the design tool is co-
creative? Why?
Q8 How was the workflow with the design tool different from your
workflow of working with a human teammate?
Roles — Expectations Q9 What role do you want the Al to take during your process?
Q10 How would you describe an ideal collaborative design tool for that
task?
Q11 What would a design tool need to do so that you would perceive it
as “collaborative” and “co-creative™?
Mental Model Q12 Do you remember situations in which you found the behavior of the
design tool confusing or irritating?
Shared Mental Models Q13 Do you think the Al feature successfully understands your design
intent and design practice?
Q14 Do you think the design tool collected enough information to support
you most effectively? Why?
Shared Mental Model — Q15  Are there any aspects from your design process where you hope a
Expectations design tool like this could learn more from you to better support
you?
Communication Q16 How would you characterize the dialogue between you and the
design tool?
Q17  Can you describe situations in which the communication worked
well and not so well?
Q18 Do you find the interface helpful in guiding you through the whole
process while getting started?
Conflict Resolution Q19 Do you remember situations of conflict with the design tool? How did
you solve the conflict?
Timing / Flow Q20 How did the simulation time influence your design process?
Design Process Satisfaction with design Q21  Are you satisfied with the final design in general? How closely does
outcome it match the design brief?
Surprise Q22 Do you remember situations in which suggestions from the design
tool surprised you?
If so, could you give me an example of that? Do you find the
surprises productive or not?
Design Negotiation Q23 How did you find that the design tool changed the way you design?
Did you ever adjust your design goal/strategy according to the tool’s
capabilities?
Exploration Q24 Did you explore more design options because of the design tool?
Productivity Q25 Do you think you can achieve the same output level (quality and
quantity) without the help of an Al feature
given the time constraints? Why?
Trust / reassurance Q26 How much do you trust the results from the design tool?
Q27 Is there any other sort of analysis you were hoping the software
would do that it didn’t? Why?
Learning Process Learning Process Q28 How would you describe the learning process for using the tool and
collaborating with it?
Q29  Which situations of the design process did require the most
guidance?
Q30 How did you learn about the capabilities of the design tool?
Q31  Which aspects of the design tool were challenging to understand or
learn about?
Learning Resources Q32  Which learning resources did you find most useful? Why?
Learning Expectations Q33 How could the tool better guide an experienced designer who is
starting to use the tool?
Q34  What would the ideal collaborative learning process look like, in your
opinion?
General Q35 What would you want the design tool to do more of?
Expectations
Q36 What would you want the design tool to do differently?
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