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A B S T R A C T 

Strong dynamical interactions among stars and compact objects are expected in a variety of astrophysical settings, such as star 

clusters and the disks of active galactic nuclei. Via a suite of three-dimensional hydrodynamics simulations using the moving- 

mesh code AREPO , we investigate the formation of transient phenomena and their properties in close encounters between an 

2 M ⊙ or 20 M ⊙ equal-mass circular binary star and single 20 M ⊙ black hole (BH). Stars can be disrupted by the BH during 

dynamical interactions, naturally producing electromagnetic transient phenomena. Encounters with impact parameters smaller 

than the semimajor axis of the initial binary frequently lead to a variety of transients whose electromagnetic signatures are 

qualitati vely dif ferent from those of ordinary disruption e vents involving just two bodies. These include the simultaneous or 

successive disruptions of both stars and one full disruption of one star accompanied by successive partial disruptions of the 

other star. On the contrary, when the impact parameter is larger than the semimajor axis of the initial binary, the binary is either 

simply tidally perturbed or dissociated into bound and unbound single stars (‘micro-Hills’ mechanism). The dissociation of 

20 M ⊙ binaries can produce a runaway star and an activ e BH mo ving a way from one another. Also, the binary dissociation 

can either produce an interacting binary with the BH, or a non-interacting, hard binary; both could be candidates of BH high- 

and low-mass X-ray binaries. Hence, our simulations especially confirm that strong encounters can lead to the formation of the 

(generally difficult to form) BH low-mass X-ray binaries. 

Key words: black hole physics – gravitation – hydrodynamics – stellar dynamics. 

1  I N T RO D U C T I O N  

Dynamical interactions between stars and compact objects in dense 

environments, such as star clusters, play a very important role in 

a variety of astrophysical settings. Many dynamical interactions 

redistribute energy between star cluster members which drives them 

towards equilibrium. Furthermore, binaries, an energy source in 

clusters, can be formed or destructed via dynamical interactions (Hut 

et al. 1992 ), which determines the cluster’s thermodynamic state. 

Occasionally, dynamical encounters between astrophysical objects 

lead them to interact at a close distance. In particular, close encounters 

involving stars and stellar-mass black holes (BHs) can often create 

transient phenomena, such as tidal disruption events (TDEs) (Hills 

1988 ; Perets et al. 2016 ; Lopez et al. 2019a ; Kremer et al. 2019 ; 

Wang, Perna & Armitage 2021 ; Kremer et al. 2021 , 2022 ). In those 

the BH can fully or partially disrupt a star when the closest point 

of approach is smaller than the so-called tidal disruption radius r t 
∼ ( M •/ M ⋆ ) 

1/3 R ⋆ . Here, M • is the BH mass, M ⋆ the stellar mass, and 

R ⋆ the stellar radius. In this process, a bright electromagnetic flare 

can be generated. In particular, encounters involving multiplets (e.g. 

⋆ E-mail: tryu@mpa-garching.mpg.de 

binary), which frequently occur near the centre of clusters, can create 

wider varieties of transients than those between two single objects 

because of the chaotic nature of interactions (Lopez et al. 2019b ; 

Ryu, Perna & Wang 2022 ). 

Another X-ray source that can form during dynamical interactions 

between stars and BHs is an X-ray binary (e.g. Kremer et al. 2018b , 

a ), which can show a transient behaviour via, e.g. a disk instability 

(e.g. King, Kolb & Burderi 1996 ). A number of BH X-ray binaries 

has been detected in our Galaxy (Corral-Santana et al. 2016 ) via radio 

(e.g. Chomiuk et al. 2013 ) or X-ray measurements (e.g. Miller-Jones 

et al. 2015 ; Shishko vsk y et al. 2018 ). Among these, the detection of 

two dozens of BH low-mass X-ray binaries (BH-LMXBs) (Casares & 

Jonker 2014 ) has been puzzling astronomers, and the formation 

channel of such systems has been debated. In the ‘standard’ scenario, 

the orbit of a binary star system shrinks via a common envelope phase 

before one star collapses to a compact object (e.g. de Kool, van den 

Heuvel & Pylyser 1987 ). Ho we ver, this scenario has been challenged 

by Podsiadlowski, Rappaport & Han ( 2003 ), who suggested that 

binaries with a very large mass ratio would eventually merge during 

the common envelope phase. Also dynamically-formed binaries via 

three-body encounters tend to have comparable-mass companions as 

a result of a member e xchange. Therefore, alternativ e scenarios have 

been examined, such as dynamical formation via a number of weak 
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encounters (Michaely & Perets 2016 ) and formation in hierarchical 

triples (Naoz et al. 2016 ). In addition to these formation channels, a 

strong three-body encounter between a star and BH can form such 

systems. The last possibility adds to the importance of investigating 

the hydrodynamics of three-body encounters between stars and BHs. 

Theoretical investigations of transient phenomena created in multi- 

body encounters are especially timely in light of the dramatically 

increase of the number of detectable transients with both ongoing 

surv e ys, such as eROSITA 
1 and the Zwicky Transient Facility 

(ZTF), 2 but especially with the upcoming Vera Rubin Observatory 

(VRO). 3 Despite the impending increase of the number of transient 

candidates, there have been only a few attempts to perform hydro- 

dynamics calculations for dynamical encounters involving binaries 

(e.g. McMillan et al. 1991 ; Goodman & Hernquist 1991 ; Lopez et al. 

2019b ). In Ryu et al. ( 2022 ) (Paper 1 hereafter), we explored the 

outcomes of close three-body encounters between a single MS star 

and a merging (i.e. with lifetime shorter than the Hubble time) binary 

BH using three-dimensional (3D) smoothed particle hydrodynamics 

simulations. In particular, we focused on quantifying the impact of 

the close encounter, frequently resulting in the disruption of the star, 

on the binary orbit and compared that with what the point-particle 

approximation predicts. We showed that a single disruption event 

can change the binary orbital parameters up to 20 per cent of their 

pre-encounter v alues, or equi v alently change the gra vitational-wa ve- 

driven merger time-scale up to order unity. This impact is often 

different from that of a pure scattering. We further showed that the 

accretion rates of both BHs that have undergone a disruption event 

are typically super-Eddington with modulations on a time-scale of 

the binary orbital period. 

We continue our investigation on three-body encounters between 

stars and stellar-mass BHs using hydrodynamics simulations. In 

particular, in this paper we focus on possible transient formation 

in close three-body encounters between a binary star and a single 

BH, using the moving-mesh hydrodynamics code AREPO (Springel 

2010 ). This type of encounters can naturally happen in dense stellar 

environments where binaries exist, such as open clusters, which have 

a binary fraction ≃ 0.2 −0.7 (Moe & Di Stefano 2017 ; Sollima et al. 

2010 ), nuclear star clusters (Fragione, Perna & Loeb 2021 ), globular 

clusters (Perets et al. 2016 ; Kremer et al. 2019 ), young star clusters 

(Kremer et al. 2021 ), the disks of Active Galactic Nuclei (Yang et al. 

2022 ). In addition to varieties of transient phenomena qualitatively 

different from ordinary TDEs, our numerical investigation shows that 

the outcome of close encounters between BHs and binary stars can 

lead to a variety of astrophysical outcomes, including the formation 

of both BH high- and low-mass X-ray binary and runaway stars with 

active single BHs, among others. 

Our paper is organized as follows: our numerical methods, based 

on the use of the moving mesh code AREPO are detailed in Section 2 . 

Our results are presented in Section 3 . In Section 4 , we discuss 

their astrophysical implications (Section 4.1 ), and estimate the rate 

(Section 4.2 ). We summarize and conclude in Section 5 . 

2  SIMULATION  DETA ILS  

In this work, we investigate the outcome properties of nearly 

parabolic encounters between a binary star and a single stellar- 

mass BH. In particular, we focus on the properties of the surviving 

1 ht tps://erosit a.mpe.mpg.de 
2 ht tps://www.zt f.calt ech.edu 
3 ht tps://www.lsst .org 

remnants and on the accretion and spin state of the BH following the 

encounter. 

2.1 Numerical methods 

To achieve our scientific goal, we perform a suite of 3D hydrody- 

namic simulations of the close encounters using the moving mesh 

code AREPO (Springel 2010 ; Pakmor et al. 2016 ; Weinberger, 

Springel & Pakmor 2020 ). AREPO is a massively parallel gravity 

and magnetohydrodynamic code, which has been used for many 

astrophysical problems (e.g. Vogelsberger et al. 2014 ). It adopts a 

second-order finite-volume scheme to discretize the hydrodynamic 

equations on a moving Voronoi mesh, and a tree-particle-mesh 

method for gravitational interactions. This approach of construct- 

ing grids represents a compromise between the two widely used 

hydrodynamics schemes, that is the Eulerian finite-volume method 

and the Lagrangian smoothed particle method. As a result, this new 

approach inherits advantages of both schemes, such as impro v ed 

shock capturing without introducing an artificial viscosity, and 

adaptive adjustment of spatial resolution. The gas self-gravity is 

computed in AREPO using a tree solver and is coupled to the 

hydrodynamics via a Leapfrog time integration scheme. 

We use the HELMHOLTZ equation of state (Timmes & Swesty 

2000 ) which includes the radiation pressure, assuming local ther- 

modynamic equilibrium. We include eight isotopes (n, p, 4 He, 12 C, 
14 N, 16 O, 20 Ne, 24 Mg) with a nuclear reaction network (Pakmor et al. 

2012 ). 

2.2 Binary stars 

The initial state of the stars was taken from some what e volved main- 

sequence (MS) stars (with the core H mass fraction of 0.5) computed 

using the stellar evolution code MESA (version r22.05.1) (Paxton 

et al. 2011 , 2013 , 2015 , 2018 , 2019 ; Jermyn et al. 2022 ). We map 

the one-dimensional MESA model into a 3D AREPO grid with N ≃ 

3 × 10 5 cells, using the profiles of density, pressure and chemical 

composition (Ohlmann et al. 2017 ). The single star is first relaxed for 

five stellar dynamical times t dyn = 
√ 

R 3 ⋆ /GM ⋆ where R ⋆ and M ⋆ are 

the radius and mass of the star, respectively. The density profiles of 

the relaxed stars considered in our simulations are depicted in Fig. 1 . 

We then relax binaries consisting of two relaxed single stars for 

0.5 P where P = 2 π
√ 

a 3 /G ( M 1 + M 2 ) is the period of the binary 

with the primary mass M 1 , secondary mass M 2 and semimajor axis a . 

We parameterize the semimajor axis a using an approximate analytic 

estimate of the Roche lobe radius (Eggleton 1983 ), 

r RL 

a 
= 

0 . 49 q 2 / 3 

0 . 6 q 2 / 3 + ln (1 + q 1 / 3 ) 
, (1) 

where r RL is the Roche lobe radius and a is the orbital orbital 

separation. For q = 1 and r RL = R ⋆ , we define a RL ≡ a ( R RL = 

R ⋆ ) as the separation at which both stars fill their Roche lobes. It 

follows that a RL ≃ 2.64 R ⋆ and P / t dyn ≃ 19( a / a RL ) 
3/2 . 

We performed this binary relaxation process for every binary 

with different orbital parameters (six different binaries in total). The 

semimajor axis and the eccentricity of the relaxed binaries differ by 

less than 1 per cent of their initial values. 

Note that we performed convergence tests with different number 

of cells ( N = 2.5 × 10 5 , 5 × 10 5 , 10 6 and 2 × 10 6 ) for a few cases 

in which we compared the outcomes and a few key quantities such 

as the semimajor axis and eccentricity of the final binary and BH 

ejection speed. We found that all the simulations showed converged 

results. 
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Figure 1. The radial density profile of the MS stars with M ⋆ = 1 M ⊙ (blue) 

and 10 M ⊙ (red) relaxed for five stellar dynamical times, as a function of 

mass. The dashed lines indicate the profiles for the MESA models, which are 

just sitting below the solid lines. 

2.3 Black holes 

We model the BH using an initially non-rotating sink particle which 

interacts via gravity with gas and grows in mass via accretion of gas. 

The gravitational softening length of the BH is set to be the same as 

the minimum softening length of the cells of the stars. At every time 

step, we assume that the accretion rate is determined by the average 

inward radial mass flux towards the BH. More precisely, accretion 

occurs in four steps: 

(i) Cell identification for mass flux calculation : the code identifies 

cells around the BH within 1.5 × 10 4 r g where r g = GM •/ c 2 is the 

gravitational radius of the BH. We choose a somewhat large search 

radius to ensure the sampling of a large enough number of cells. 

Ho we v er, as e xplained in ii), we compensate for the large search 

radius by adopting an inverse-distance weight function. 

(ii) Accretion calculation : to account for the fact that gas closer 

to the BH is expected to contribute more to the accretion rate, we 

estimate an average radial mass flux of the identified cells for given 

position and velocity of the BH as, 

F 
r = 

∑ 

i 

m i W ( r i , h i ) v 
r 
i , (2) 

where m i is the mass of the selected neighbouring cells, W ( r i , h i ) the 

(inverse-distance weighted) spline Kernel (Monaghan & Lattanzio 

1985 ) (equation 4 in Springel 2005 ), r i the distance from the BH, 

h i the softening length of the BH, v r i the velocity of the gas relative 

to the BH in the radial direction. The ef fecti ve surface area A is 

determined using the weighted average volume V of the cells with 

volume V i , V = 
∑ 

i V i W ( r i , h i )/ 
∑ 

i W ( r i , h i ), giving A = 3 2/3 (4 π ) 1/3 V 
2/3 

(assuming spherical geometry). Finally, the accretion rate is Ṁ = 

Max ( −F 
r A, 0). At every time step with step size � t where the BH’s 

position and velocity are updated, the BH grows in mass by an 

amount of �M = (1 − η) Ṁ �t where η is the radiative efficiency. 

We assume η = 0 in our simulations. 

(iii) Mass subtraction and back reaction : to conserve the mass, 

the same amount of mass is subtracted from a cell closest to the BH 

among those with a mass of at least > 5 � M and density > 10 −5 g cm 
−3 

and bound to the BH. Although the minimum mass is chosen 

mostly to ensure to a v oid a very small mass of the cell after the 

mass subtraction, this particular choice should not affect our results 

because the masses of the subtracted cells are typically much abo v e 

the minimum mass. The lower bound of the density is to ensure that 

the mass is subtracted from ‘real’ gas, not from a vacuum cell. Then, 

in order to properly take into account the back-reaction of accretion, 

we subtract the average momentum of the accreted mass, 

P = �M 

∑ 

i W ( r i , h i ) v i 
∑ 

i W ( r i , h i ) 
, (3) 

where v i is the velocity vector of the i th neighbouring cell identified 

at the step i), from the ‘mass-losing’ cell, and add the same amount 

to the BH. 

(iv) Spin evolution : accretion of gas can increase the BH spin. 

We evolve the BH spin due to mass accretion following Paper 1, 

who adopted the formalism by Fanidakis et al. ( 2011 ). The only 

significant difference is how the direction of the accreted angular 

momentum is calculated: Paper 1, which performed smoothed 

particle hydrodynamics simulations, tracked the angular momentum 

vector simply by cumulatively adding the momentum of the accreted 

particles, but in this work, we make use of the average angular 

momentum (measured in the BH frame) of the selected neighbouring 

cells. 

We should note that our simulations do not include the radiation 

feedback produced by accretion. This may contribute to create 

significant outflows and regulate the subsequent accretion, especially 

at super-Eddington accretion rates (e.g. S ֒  adowski et al. 2014 ). While 

our simulations reveal a radiation pressure gradient built up in the 

optically thick gas near the BH, which can push gas away from the 

BH, its impact is found to be small. Given the purpose of this work, 

namely, to identify all possible transient types during star-binary/BH 

three-body encounters, and properly classify the outcomes, we defer 

impro v ements of the treatment of accretion and its feedback on 

surrounding gas to future work specifically dedicated to studying 

the outcome observables. 

2.4 Initial parameters 

Throughout the paper, quantities with the subscript containing b ( ⋆ ) 

− • refer to those related to the orbit between a binary (single star) 

and the BH. We consider a parabolic encounter with eccentricity 

1 − e b − • = 10 −5 . Parabolic orbits are a reasonable assumption 

for encounters in star clusters given that the typical eccentricity of 

two-body encounters in a cluster with velocity dispersion σ is | 1 −

e | ≃ 10 −4 ( σ /15 kms −1 ) 2 ( M •/40 M ⊙) −2/3 ( M ⋆ /1 M ⊙) −1/3 ( R ⋆ /1 R ⊙) for 

M • ≫ M ⋆ . 
4 The distance between the binary’s centre of mass and 

the BH at the first closest approach r p, b- • is parameterized using 

the impact parameter β, i.e. r p , b - • = 0.5 βr t . Here, r t is defined as 

[ M •/( M 1 + M 2 )] 
1/3 a (1 + e ) where a and e are the binary semimajor 

axis and eccentricity, respectively. 

For the mass of the BH we choose 20 M ⊙ (c.f., Spera & Mapelli 

2017 ). To study the impact of binary mass on outcomes, we consider 

a low-mass case, where we choose M b = M 1 + M 2 = 2 M ⊙, ( M 1, 2 = 

1 M ⊙) and a high mass case where we chose M b = M 1 + M 2 = 

20 M ⊙, ( M 1, 2 = 10 M ⊙). We consider three semi-major axes: a / a RL = 

2, 6, and 9, and assume the orbit to be circular initially. Massive 

stars are commonly found in such close binary systems (Sana et al. 

2012 ). For lower-mass stars such tight systems are rare (Duch ̂ ene & 

4 The situation is some what dif ferent in AGN disks, where during the early 

times, when prograde orbits are in the process of being damped, there is a 

much higher likelihood of encounters being hyperbolic (Secunda et al. 2021 ). 

Ho we ver, as time goes on, gentler encounters are expected. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
9
/4

/5
7
8
7
/6

9
8
2
9
0
7
 b

y
 L

lib
re

ria
 C

a
m

p
u
s
 u

s
e
r o

n
 1

8
 J

u
ly

 2
0
2
3



5790 T. Ryu et al. 

MNRAS 519, 5787–5799 (2023) 

Figure 2. Schematic diagrams for the initial configuration of the stellar binary (blue and red solid stars) and BH (black circle) for a prograde case with the 

inclination angle i < 90 ◦ and the phase angle ν = 0 ◦, projected onto the x − y plane ( left ) and the x − z plane. The arrows indicate the instantaneous direction 

of motion. The open stars, on the same circle with the closed stars, indicate the case with ν > 0 ◦. 

Kraus 2013 ), but their longer life lifetimes and the fact that they 

are fa v oured by the initial mass function may still make possible 

encounters of these low-mass binaries with a BH relevant to explore. 

The choice of an initially circular binary orbit may be justified by 

the fact that tidal circularization time-scales are shorter for more 

compact binaries. In fact, Meibom & Mathieu ( 2005 ) found that 

binaries in open clusters are circularized out to P ≃ 8 −15 days, 

which is comparable to or longer than the binary period considered 

in this study. Nonetheless, three-body encounters involving eccentric 

binaries are also possible. Because the ef fecti ve encounter cross 

section is greater for eccentric orbits (by a factor ≃ 1 + e ), the o v erall 

encounter rate would be higher, but the impact of other parameters 

(e.g. semimajor axis, impact parameters, see Section 3.2 ) on the final 

outcome would be dominant o v er that of different initial binary 

eccentricities. 

The binary’s angular momentum axis is al w ays along the z axis 

in our simulations. This configuration defines the mutual inclination 

angle, which is illustrated in Fig. 2 showing the initial configuration 

of the stellar binary and BH. We examine the outcomes of encounters 

with v arious v alues of i and β: i = 0, 30 ◦, 60 ◦, 120 ◦, and 180 ◦, and β = 

1/4, 1/2, 1, and 2. Ho we ver, gi ven the relatively high computational 

costs, we do not simulate encounters with every combination of i 

and β. Instead, we simulate the encounters of the intermediate-size 

binaries ( a / a RL = 6) with different combinations of β = 1/4, 1/2, 

1 and 2, and i = 30 ◦, 150 ◦. For the smallest and largest binaries 

( a / a RL = 2 and 9), we only consider i = 30 ◦ and 150 ◦, whereas 

β = 1/2. In addition, we further examine the dependence of i on the 

outcome properties by considering i = 0, 60 ◦, 120 ◦ and 180 ◦ (for 

β = 1/2). Last, we also study the impact of the phase angle ν (see 

Fig. 2 ) on the encounter outcomes. We define ν as the initial angle 

between the line connecting the two stars in the binary and the x 

−axis. To simulate encounters with different phase angles ( ν = 45 ◦, 

90 ◦, and 135 ◦), we initially place the binary with a different phase 

angle while all other parameters remains fixed. 

The initial separation between the binary and BH is 5 r t . 

We summarize the initial parameters considered in our simulations 

in Table 1 . Each of the models is integrated up to > 25(130) t p for the 

encounters of the 2(20) M ⊙ binary which it takes to identify the final 

outcomes. Here, t p = 

√ 

r 3 p /G ( M • + M b ) is the dynamical time at 

r = r p . The values of t p for each model is given in Table 1 . 

3  RESULTS  

3.1 Classification of outcomes 

When the binary star and the BH encounter, one or both stars 

can be fully or partially destroyed by the BH, which produces 

electromagnetic transient (EMT) phenomena. Thus, it is important 

to define those events in a more quantitative way to classify the 

outcomes. 

We define a full disruption as the case where the star is completely 

destroyed and no self-gravitating object is left behind. On the 

contrary, we define a partial disruption as an event where the star 

loses more than 1 per cent of its mass and the remnant surviv es. F or 

other cases where the BH forms a wide and isolated binary whose 

period is much longer than the simulation duration, we determine 

the fate of the companion star based on its orbit. 5 More specifically, 

to see if the star would undergo another disruption event upon return 

to the BH, we compare the full (equation 16 in Ryu et al. 2020b ) 

and partial (equation 17 in Ryu et al. 2020b ) tidal disruption radii to 

the pericentre distance. 6 If the pericentre distance is longer than the 

5 We first compare the orbital period P b- • with the order-of-magnitude estimate 

of the 1 + 2 encounter time scale for the binary, t 1 + 2 ≃ [ n 
σ ] −1 where n = 

10 5 pc −3 , 
 is the gravitational focusing cross-section and σ = 15 km / sec is 

the velocity dispersion. If P b- • > t 1 + 2 , the star’s orbit would be perturbed 

before it returned to the BH. Although we choose the specific values of n 

and σ rele v ant for typical clusters, the particular choices do not affect the 

classification because t 1 + 2 is many orders of magnitude greater than the 

period of the largest binary in our simulations. 
6 For the calculation of the partial disruption radius, we define the size of a 

remnant as the distance from the remnant’s centre enclosing 99 per cent of 

its mass. Note that these analytic formulae for the disruption radii are scaled 

to match the results of the relativistic simulations for TDEs of realistic MS 

stars by Ryu et al. ( 2020a ), Ryu et al. ( 2020b ), Ryu et al. ( 2020c ), Ryu et al. 

( 2020d ). This means the expression for the partial disruption radius would 
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Table 1. The initial model parameters. The model name (first column) 

contains the information of key initial parameters: for the model names of 

M (1) a (2) β(3) i (4), (1) binary mass M b [ M ⊙], (2) the initial semimajor axis 

of the binary a / a RL , (3) the impact parameter β and (4) the inclination angle 

i in degrees, and for the model names of M (1) a (2) ν(3), (1) binary mass M b 

[ M ⊙], (2) a / a RL , (3) the initial phase angle ν in degrees (see Fig. 2 ). Note 

that a RL ≃ 2.64 R ⋆ . t p is the dynamical time at r = r p , in units of hours, and 

r p is the pericentre distance of the incoming orbit in hours relative to the BH 

r p = β[ M •/( M 1 + M 2 )] 
1/3 (1 + e ) a /2. 

Model name M b a / a RL i υ [ ◦] β t p 

Unit M ⊙ – ◦ ◦ – hours 

M 2 a 6 β2 i 30 2 6 30 0 2 17 

M 2 a 6 β1 i 30 2 6 30 0 1 6.1 

M 2 a 6 β1/2 i 30 2 6 30 0 1/2 2.2 

M 2 a 6 β1/4 i 30 2 6 30 0 1/4 0.76 

M 2 a 6 β2 i 150 2 6 150 0 2 17 

M 2 a 6 β1 i 150 2 6 150 0 1 6.1 

M 2 a 6 β1/2 i 150 2 6 150 0 1/2 2.2 

M 2 a 6 β1/4 i 150 2 6 150 0 1/4 0.76 

M 2 a 2 β1/2 i 30 2 2 30 0 1/2 0.42 

M 2 a 2 β1/2 i 150 2 2 150 0 1/2 0.42 

M 2 a 9 β1/2 i 30 2 9 30 0 1/2 4.0 

M 2 a 9 β1/2 i 150 2 9 150 0 1/2 4.0 

M 2 a 6 β1/2 i 0 2 6 0 0 1/2 2.2 

M 2 a 6 β1/2 i 60 2 6 60 0 1/2 2.2 

M 2 a 6 β1/2 i 120 2 6 120 0 1/2 2.2 

M 2 a 6 β1/2 i 180 2 6 180 0 1/2 2.2 

M 2 a 6 υ45 2 6 30 45 1/2 2.2 

M 2 a 6 υ90 2 6 30 90 1/2 2.2 

M 2 a 6 υ135 2 6 30 135 1/2 2.2 

M 20 a 6 β2 i 30 20 6 30 0 2 50 

M 20 a 6 β1 i 30 20 6 30 0 1 18 

M 20 a 6 β1/2 i 30 20 6 30 0 1/2 6.3 

M 20 a 6 β1/4 i 30 20 6 30 0 1/4 2.3 

M 20 a 6 β2 i 150 20 6 150 0 2 50 

M 20 a 6 β1 i 150 20 6 150 0 1 18 

M 20 a 6 β1/2 i 150 20 6 150 0 1/2 6.3 

M 20 a 6 β1/4 i 150 20 6 150 0 1/4 2.3 

M 20 a 2 β1/2 i 30 20 2 30 0 1/2 1.2 

M 20 a 2 β1/2 i 150 20 2 150 0 1/2 1.2 

M 20 a 9 β1/2 i 30 20 9 30 0 1/2 12 

M 20 a 9 β1/2 i 150 20 9 150 0 1/2 12 

M 20 a 6 β1/2 i 0 20 6 0 0 1/2 6.4 

M 20 a 6 β1/2 i 60 20 6 60 0 1/2 6.4 

M 20 a 6 β1/2 i 120 20 6 120 0 1/2 6.4 

M 20 a 6 β1/2 i 180 20 6 180 0 1/2 6.4 

partial disruption radius, the binary would remain a non-interacting 

one until encountering another intruder. If the pericentre distance 

is smaller than the partial disruption radius and larger than the full 

disruption radius, the star would undergo at least one more partial 

disruption event. Finally, if the pericentre distance is smaller than 

the full disruption radius, the star would be totally disrupted in one 

orbital period. 

give a shorter distance than the actual value considering other effects, such 

as stellar spin and hotter interior, that would make the remnants more subject 

to a partial disruption. On the contrary, because the expression for the full 

disruption radius is determined by the core density, we expect that the full 

disruption radius would be a more robust estimate than the partial disruption 

radius. 

Applying these definitions to the outcomes at the end of simula- 

tions, we can categorize our models into two classes, depending on 

whether EMT phenomena are created during interactions. 

(i) Non-disruptive encounter : This class corresponds to the case 

where none of the stars are significantly affected during interactions 

and survive. So the number of surviving stellar objects is al w ays 

two. This class happens when the binary and the BH encounter 

with a large impact parameter, resulting in a perturbation of the 

binary orbit (without being dissociated) or dissociation of the binary 

into two single stars. In the case with binary dissociation (models 

M 2 a 6 β2 i 150 and M 20 a 6 β2 i 150), the semimajor axis of the binary 

does not change much (less than 1 per cent in M 20 a 6 β2 i 150) or 

increases (by a factor of 1.5 in M 2 a 6 β2 i 150). But the binary becomes 

eccentric ( e ≃ 0.7 in both models). The orbit of the binary relative 

to the BH becomes a very eccentric ( e b- • ≃ 0.98 − 0.996) but more 

bound ( a b- • ≃ 10 −27 AU or P b- • ≃ 8 −100 yr). As a result, the impact 

parameters of the perturbed binaries’ orbits relative to the BH are 

smaller than those of the initial orbit: β ≃ 0.67 − 0.83 (using the 

same definition of r t in Section 2.4 ). 

On the contrary, the case involving binary dissociation usually 

happens when 1 ≤ β ≤ 2 and a / a RL = 6 (e.g. models M 2 a 6 β1/2 i 30 

and M 10 a 6 β1/2 i 30), with no strong dependence on stellar mass and 

inclination. In all these cases, one star is bound and the other star is 

unbound. This is ef fecti vely the Hills mechanism (Hills 1988 ) (i.e. 

the mechanism for the dissociation of a binary by a supermassive 

BH, resulting in bound and unbound stars) by a stellar-mass BH 

(or ‘micro-Hills mechanism’). The ejection velocity at infinity of the 

unbound stars is about 50 − 270 km / sec . On the contrary, the bound 

stars are on eccentric or nearly parabolic orbits ( e ⋆ − • ≃ 0.6 − 1) 

with a ⋆ − • ≃ 0.3 − 5 AU (or P ⋆ − • ≃ 11 d to 3 yr). Based on the 

comparison between the tidal radius and the pericentre distance of 

the bound stars’ orbit, there are some cases (e.g. Models M 2 a 6 β1 i 30 

and M 2 a 6 β1/4 i 150) where the bound stars would undergo at least 

one more partial disruption event upon return. 

(ii) Disruptive encounter : This denotes the case where at least 

one star is partially or fully disrupted. The most violent case in our 

simulations associated with disruptions of two stars: full destruction 

of both stars (e.g. Models M 20 a 2 β1/4 i 30 and M 20 a 2 β1/4 i 150) or a 

full disruption of one star and at least one partial disruption of the 

other star (e.g. Model M 10 a 2 β1/4 i 30). As an example, we depict in 

Fig. 3 the density distribution at four different times in two models 

where one star is partially disrupted (e.g. Model M 2 a 6 β1/2 i 30) 

and two stars are almost instantaneously disrupted (e.g. Model 

M 20 a 2 β1/2 i 150). 

This classification is also rele v ant for EMT formation in multi- 

body encounters with distinctive observational signatures (see Sec- 

tion 3.3 ). Between the two classes, EMT would definitely be 

produced in the second class disruptive encounter . Nonetheless, there 

is still the possibility of the formation of EMT in the first class non- 

disruptive encounter : the micro-Hills mechanism produces a hard 

binary (e.g. SP 
⋆ in Table 2 ). If the orbit continues to shrink via 

weak encounters with other star, the BH will generate EM flares by 

accretion of o v erflowing gas from the star (Section 4.1.2 ). 

We summarize the classification of each model and the properties 

of the outcomes in Table 2 . 

3.2 Dependence of outcomes on encounter parameters 

In this study, we examine the dependence of outcomes on a few key 

encounter parameters: M b (mass of the initial binary), a (semimajor 

axis of the initial binary), β (impact parameter), i (inclination angle), 
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Figure 3. The density distribution in the binary orbital plane in two models ( top : M 2 a 6 β1/2 i 30 and bottom : M 20 a 2 β1/2 i 150) at a few different times in units of 

t p . The colour bar shows the logarithmic density in g/cm 3 . In the top panels, a star is partially disrupted by the BH (magenta dot) at the first pericentre passage, 

whereas the other star flies away without being significantly perturbed by the BH. In the bottom panels, both stars are disrupted by the BH almost simultaneously 

at the first contact. 

and ν (phase angle by varying one parameter at a time, whereas 

the rest are held fixed. Although our models do not cover the entire 

parameter space, we can see some clear trends. Our simulations 

suggest that there are three main parameters which determine the 

location of the boundary between non-disruptive interactions and 

disruptive interactions, namely, the impact parameter β and binary 

size a / a RL and the phase angle ν. 

(i) Dependence on the impact parameter β: as one can see from 

models M (2, 20) a 6 β(1 − 1/4) i (30, 150) in Tables 2 , three-body 

encounters with β > 1 are non-disruptive interactions, whereas those 

with β ≤ 1 tend to disrupt at least one star. It is not surprising 

given that β directly determines how close the binary and the BH 

can approach one another. Ho we ver, we note that a small impact 

parameter does not al w ays result in disruption events (e.g. Model 

M 2 a 6 β1 i 150 and possibly for a very wide binary, see below). In 

other words, it is not a sufficient condition but a necessary condition 

for a disruption event, whereas a large impact parameter is a sufficient 

condition for non-disruptive encounters. 

(ii) Dependence on the semimajor axis a : the comparison between 

Models with different a / a RL (e.g. M 2 a (2 − 9) β1/2 i 30) suggests that 

encounters become more disruptive for smaller a / a RL as long as β is 

sufficiently small. It is because the interactions mo v e a way from the 

regime of two 1 + 1 encounters towards the regime of chaotic 2 + 1 

encounter. Stars in large binaries can also be disrupted by the BH 

[e.g. M (2, 20) a 9 β1/2 i (30, 150)], but such events become increasingly 

more like an ordinary TDE by single BH. Interestingly, we found a 

merger of two partially disrupted stars as an intermediate outcome 

in one of our models with the smallest a / a RL considered (i.e. Model 

M 20 a 2 β1/2 i 30), which is in line with stellar mergers during three- 

body encounters between stars found in McMillan et al. ( 1991 ). Note 

that the semimajor axis of the initial binary in McMillan et al. ( 1991 ) 

is 4 and 8 R ⋆ (cf., a = 5.3 R ⋆ for our smallest binary). 

Another consideration related to the dependence of a and β for wide 

binaries is that if the impact parameter for encounters between a wide 

binary and a BH is so small that the BH’s crossing time across the 

binary is shorter than the binary period (i.e. the binary is ‘frozen’, 

whEREAS the BH passes through) and the BH’s gravitational force 

on any of the stars is weaker than the stars’ gravitational pull to each 

other, it may be possible that the BH simply penetrates through the 

binary in the middle without interacting significantly with any of the 

stars. This consideration supports that a small impact parameter is a 

necessary condition for disruptive encounters. 

(iii) Dependence on the phase angle ν: even for a sufficiently small 

impact parameter and small a , the outcomes can vary depending 

on the phase angle, as shown in Models with different ν (Models 

M 2 a 6 β1/2 i 30 and M 2 a 6 ν(45 − 135)). Various outcomes of encoun- 

ters between a single star and a binary BH for different phase angles 

was also reported in Paper 1. The statistical likelihood of disruptions 

are mostly go v erned by β and a , but it is v ery important to consider 

the phase angle for the outcome of an individual encounter case. 

(iv) Dependence on the inclination angle i : we found no significant 

dependence on i . The weak dependence on i is at odds with the 

strong dependence for encounters between a single star and a 

binary BH found in Paper 1. The comparison is not straightforward 

gi ven dif ferent encounter parameters. Ho we ver, ho w chaotic the 

interactions are (or whether the initial binary is dissociated during 

encounters) may result in dif ferent le vels of i −dependence: in 

encounters between a single star and a BH binary considered in 

Paper 1, the binary is never dissociated by the star at the first closest 

approach and the star interacts with the binary mostly once before 

its disruption or ejection. For that case, the relative velocity between 

the star and the interacting BH at the first closest approach plays 

an important role in determining the outcome because that directly 

go v erns how long the star is tidally affected by the BH. And the 

relativ e v elocity is different depending on whether the encounter is 
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Figure 4. The accretion rate Ṁ for the two models, M 2 a 6 β1/2 i 30 (red) and 

M 20 a 2 β1/2 i 150 (blue), as a function of t / t p since the first closest approach. 

Here, t p ≃ 2.2 (1.2) h for Model M 2 a 6 β1/2 i 30 ( M 20 a 2 β1/2 i 150). 

in a prograde or retrograde direction for given parameters. On the 

CONTRARY, in the simulations of this study, the binary is al w ays 

dissociated (except for the two models with β = 2), followed by 

more chaotic interactions, which likely remo v es the memory of the 

initial approach. 

(v) (vi) Dependence on the binary mass M b : The dependence 

of M b on the types of outcomes appears to be weak. Ho we ver, it 

actually means that the mass (and thus energy) budget for radiation 

from debris is greater for the disruption of more massive stars (i.e. 

similar � M / M for larger M ⋆ ). Furthermore, the momentum kick given 

to the BH is greater for encounters with more massive binaries. In 

particular, the ejection velocity of the BH is ∼ 10 − 30 km / sec in 

encounters with the 2 M ⊙ binary, whereas it is in the range ∼ 50 −

200 km / sec in encounters with the massive stars of our simulations. 

Note that the ejection velocity of the unbound stars from the 2 M ⊙

binary tends to be greater than that for more massive unbound stars, 

but the degree is not as significant as the ejection velocity of the BH. 

3.3 Impact on the black hole properties 

The immediate impact of close encounters with binary stars on the 

BH is momentum kick, growth in mass and, therefore, spin evolution. 

The ejection velocity of the BH in most cases is a few tens of 

km/s, but there are a few cases with an ejection velocity of ∼ 100 −

200 km / sec (see Table 2 ). Those velocities are either larger than 

or comparable to the escape velocity of globular clusters (i.e. a few 

to 180 km/s; Antonini & Rasio 2016 ; Gnedin et al. 2002 ). We find 

that the only significant correlation of the ejection velocity is with the 

mass of the binary that encounters the BH, as discussed in Section 3.2 : 

encounters with a more massive binary results in higher ejection 

velocity of the BH. 

If a star is disrupted at least once during encounters, the ejected 

BH is surrounded by an accretion flow made from stellar debris, as 

shown in Fig. 3 . The gas accretes onto the BH and the BH grows 

in mass and spins up. Typically, the accretion rate remains nearly 

the same at super-Eddington Ṁ ≃ 10 −8 − 10 −6 M ⊙/ sec once an 

accretion disk forms, which is many orders of magnitude higher than 

typical Roche Lobe o v erflow rates in interacting BH binary systems 

(Sa v onije 1978 ). This trend is illustrated in Fig. 4 showing the time 

evolution of the accretion rate for two models, one single disruption 

case (Model M 2 a 6 β1/2 i 30) and one double disruption case (Model 

M 20 a 2 β1/2 i 150). Note that these are the same models shown in 

Fig. 3 . 

4  DI SCUSSI ON  

4.1 Astrophysical Implications 

4.1.1 Varieties of transient phenomena 

We have reported that dynamical interactions between binary stars 

and a single BH can produce a variety of EMT phenomena: a single 

partial disruption event, a full disruption event, multiple partial, or 

full disruption ev ents. Ev en multiple disruption events can be sub- 

divided into two classes: almost instantaneous double disruption 

events and successive partial disruption events of bound remnants. 

Furthermore, an interacting star-BH binary (see Section 4.1.2 ) 

can form, whereas the other star is fully disrupted (e.g. Model 

M 20 a 6 β1/2 i 120) or the other star is ejected via the Hills mechanism 

(Hills 1988 ) (or ‘micro-Hills’ mechanism). Dynamical interactions 

can create ‘collision’-like disruption events where disk formation 

is prompt. Such varieties constitute the most significant difference 

from the ordinary TDEs, which are disruptions of a single star by a 

single BH. In particular, double disruption events can never happen 

in ordinary TDEs. 

Such varieties of EMT phenomena and the chaotic nature of 

three-body interactions indicate that light curves of TDEs or al- 

most collision-like disruptions in three-body interactions should 

look qualitati vely dif ferent from those of ordinary TDEs. Detailed 

quantitative predictions of light curves are beyond the scope of this 

paper and reserved to future work. Nonetheless, we can still make 

qualitative predictions for the expected observational signatures of 

double disruption ev ents. F or the case of rapid double full disruption, 

almost instantaneous disk formation may result in a sudden increase 

in luminosity to super-Eddington in EUV and X-rays (luminosity 

( ∝ T 
4 )-weighted average of temperature ≃ 10 6 −10 7 K), which, if the 

luminosity ∝ Ṁ , may remain roughly constant up to a few months 

[ ≃ O(1 M ⊙) /O(10 −6 M ⊙/ sec )]. 

Furthermore, the total energy budget ( ∝ M ⋆ ) is greater than for a 

single full disruption. Ho we ver, if super-Eddington accretion causes 

significant outflows so that some fraction of gas becomes unbound, 

the total radiated energy would not be as large as expected simply 

based on the total mass of the disrupted stars, indicating the duration 

of the burst would be shortened. 

For the cases with a full disruption followed by more than one 

partial disruption event, light curves would reveal a higher peak 

followed by at least one other less intense burst. If partial disruptions 

occur successively, the less bright bursts would show a quasi-periodic 

behaviour with a modulation time-scale ≃ the orbital period of the 

remnants. In our simulations, the shortest period for multiple partial 

disruption events is ≃ days. In f act, in tw o of our models (Models 

with ⋆⋆ in Table 2 , M 20 a 6 β1/2 i 120 and M 20 a 6 β1/2 i 180), three-body 

encounters create a binary system whose eccentricity is low ( e = 0.74 

and 0.48, respectively) for ordinary disruption events where the orbit 

is typically approximated to be parabolic. We will discuss these low- e 

binary systems in Section 4.1.2 . 

4.1.2 Black hole high- and low-mass X-ray binary 

Three-body interactions may result in the exchange of a member 

of the binary with the intruder object (Valtonen & Karttunen 2006 ) 

during chaotic interactions and via the micro-Hills mechanism. The 

member exchange also occurs between the binary star and the BH 
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Figure 5. Series of snapshots, centred at the BH, for Model M 20 a 6 β1/2 i 120 showing a star-BH binary at a few different times in units of t p ≃ 2.2 hours. The 

colour bar shows the logarithmic density projected in the x − y plane in g/cm 3 . In the lower-left panel, the dotted eccentric circle approximately shows the 

orbital trajectory of the star relative to the BH. 

in our simulations, resulting in a star bound to the BH (e.g. Models 

M 2 a 6 β2 i 30 and M 2 a 6 β1/2 i 150). In some of the models the orbit is 

nearly parabolic (e.g. Models M 2 a 2 β1/2 i 30 and M 20 a 6 β1/2 i 30) so 

that the bound star would be fully disrupted upon return. This would 

look exactly like an ordinary TDE. On the contrary, we also found 

that eccentric star-BH binaries form. In the two Models (Models 

M 20 a 6 β1/2 i 120 and M 20 a 6 β1/2 i 180), we actually simulate multiple 

quasi-periodic episodes of mass transfer at pericentre in the binary 

with a � 8 M ⊙ star. In Fig. 5 , we show the density distribution, 

projected on the x − y plane, in Model a 20 a 6 β1/2 i 120 at a few 

different times until an eccentric binary forms ( a ≃ 27 R ⊙, e = 0.74, 

P ≃ 3 d). The repeated mass loss at pericent leads to quasi-periodic 

bursts in the mass accretion rate with peak Ṁ ≃ 10 −5 M ⊙/ sec on 

a timescale of the orbital period, as shown in Fig. 6 . In that panel, 

we also show the accretion rate for Model M 20 a 6 β1/2 i 180 where an 

eccentric binary with a ≃ 24 R ⊙, e ≃ 0.5 and P ≃ 2.5 days forms. 

Interestingly, this less eccentric binary does not reveal modulations 

of the accretion rate. Like the binary in the Model a 20 a 6 β1/2 i 120, 

the star is periodically disrupted. But because of not sufficiently 

large eccentricity and semimajor axis, the mass stripped from the 

star is simply added to an existing accretion flow around the BH. 

Our simulations confirm the formation of eccentric high-mass X-ray 

binaries in three-body encounters. 

As shown in Fig. 7 , the interacting binaries circularize; both the 

semimajor axis and eccentricity decrease o v er time. Ho we ver, the 

two circularizing binaries show somewhat different trends in the 

evolution of a and e . For the wider and more eccentric binary (blue), 

we see a sudden drop in both parameters (like a step function) 

whenever the binary undergoes a mass loss episode near pericentre. 

Furthermore, the absolute time deri v ati ves of a and e increase 

slightly until the end of the simulation, indicating the circularization 

accelerates. On the other hand, both parameters for the smaller and 

more circular binaries (green) decrease like a damped oscillator at 

a rate that decreases o v er time. This may indicate that the orbit 

Figure 6. The accretion rate Ṁ ( top ) for interacting binaries found in two 

Models M 20 a 6 β1/2 i 120 (red) and M 20 a 6 β1/2 i 180 (blue). The t p ≃ 6.4 hours 

is the dynamical time at the pericentre distance of the orbit of the initial binary 

relative to the BH. 

evolution of an interacting binary depends on the orbital parameters 

at the time two companions in the binary start to interact. 

We also found eccentric hard binaries consisting of a ≃ 1 M ⊙ star 

and the 20 M ⊙ BH (Models M 2 a 6 β2 i 30, M 2 a 6 β1 i 30, M 2 a 6 ν45 and 

M 2 a 6 ν135, marked with the superscript ⋆ in Table 2 ). The orbital 

period of three of the binaries are 8 - 20 days and the widest one 

has a period of ≃ 100 days. Two of those binaries have pericentre 

distances ( r p ≃ 3 − 4 R ⊙) small enough for close interactions between 

the star and the BH at pericentre (Models M 2 a 6 β1 i 30 and M 2 a 6 ν45). 

Even the two other larger binaries are found to be hard (the orbital 

velocity at apocentre � 100 km / sec , which is larger than typical 

velocity dispersion ≃ 10 − 15 km / sec of globular clusters Cohen 

1983 ), meaning that unless a strong encounter significantly disrupt 
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Figure 7. The orbital perimeters, semimajor axis ( top ), eccentricity ( middle ) 

and pericentre distance ( bottom ) for interacting binaries found in two Models 

M 20 a 6 β1/2 i 120 (red) and M 20 a 6 β1/2 i 180 (blue). t p ≃ 6.4 hours is the 

dynamical time at the pericentre distance of the orbit of the initial binary 

relative to the BH. 

the binary orbit, they may be hardened further by weak encounters 

to compact binaries where the star transfers its mass to the BH. 

The formation of hard binaries with a ≃ 1 M ⊙ star and a 20 M ⊙

BH may have interesting implications for the formation of detached 

BH-star binaries (Giesers et al. 2018 ) and BH-LMXBs (Casares & 

Jonker 2014 ). Our simulations confirm the possibility that even a 

single strong dynamical encounter between a BH and a circular 

solar-type binary star can result in the formation of a BH-star 

binary which is already compact enough for mass transfer or is 

sufficiently hard that it would potentially evolve into an X-ray binary. 

Considering that we have not explored the entire range of initial 

conditions for 3-body encounters, it will of great interest to extend 

our simulations to fully identify the parameter space where BH low- 

mass X-ray binaries can form. We reserve this exploration for future 

work. 

4.1.3 Runaway stars and isolated wandering black holes 

Runaway stars are a population of fast-moving O and B type 

stars at � 30 km / sec (Blaauw 1961 ; Stone 1979 ). Two competing 

mechanisms for their formation have been suggested: (a) ejection 

of a star from a binary system when its companion goes off as a 

superno va e xplosion (e.g. Zwick y 1957 ; Blaauw 1961 ); (b) ejection 

of a star during dynamical interactions of binaries with other stars in 

a star cluster (e.g. Po v eda, Ruiz & Allen 1967 ; Gies & Bolton 1986 ; 

Ryu, Leigh & Perna 2017 ) or resulting from the interaction between 

infalling star clusters and massive bBHs in Galactic Centres (e.g. 

Capuzzo-Dolcetta & Fragione 2015 ; Fragione, Capuzzo-Dolcetta & 

Kroupa 2017 ). 

We find that the three-body encounters involving the relatively 

tight binary tend to create a rapidly moving ejected star at v ≃ 

50 − 310 km / sec . Those velocities are large enough to escape 

globular clusters (the escape velocity of globular clusters ≃ a few to 

180 km/sec; Antonini & Rasio 2016 ; Gnedin et al. 2002 ). 

Interestingly, in the two cases with the initially 20 M ⊙ binary where 

one star is fully disrupted and the other star is ejected at a high speed 

(models M 20 a 6 β1/2 i 30 and M 20 a 6 β1/2 i 60), the single BH gains a 

large momentum, moving at a high speed ∼60 − 80 km/s. These 

velocities tend to be a factor of 2–3 smaller than the ejection velocity 

of the unbound star. We attribute this smaller BH velocity to the 

(not perfect) cancellation of the momentum kicks due to a disruption 

event and the ejection of a star via the slingshot mechanism. We 

also estimate that the angle between the unbound star and the BH is 

around 140 ◦−180 ◦. Despite the small sample number, this suggests 

that the formation of a runaway star via three-body interactions 

between O-type stars and stellar-mass BHs may be accompanied 

by the formation of an active BH moving away from the unbound 

star at a still high speed. This finding has two main implications. 

First, a detection of a runaway star and an active BH moving away 

from each other, if the potential formation site can be identified via, 

e.g. integration of the trajectories backward in time, may serve as 

strong evidence of close three-body encounters between stars and 

BHs. Second, if a rapidly moving active single BH is observed, it 

can be used as a guide to locate a runaway star. Lastly, identifying 

either transient phenomena or wandering isolated BHs created due to 

three-body encounters can be used to mutually constrain each other, 

using the rates of each outcome measured by three-body scattering 

experiments which carefully take into account hydrodynamic effects. 

4.1.4 Long-term evolution of partially disrupted stars 

Some of the runaway stars were partially disrupted before being 

ejected. Upon ejection, not long after the disruption event, the 

partially disrupted runaway stars are characterized by differential 

rotation and a hotter thermodynamic state. Ryu et al. ( 2020c ) showed 

similar features of partial disruption remnants by supermassive BHs. 

Furthermore, we find that the differential rotation and non-spherical 

distribution of chemical components during closest passage results 

in chemical mixing inside the remnants (e.g. an increase in the core 

H fraction by 23 per cent in a remnant of the initially 1 M ⊙ star that 

lost 23 per cent of its mass). 
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Figure 8. The Hertzsprung–Russell diagram for three partially disrupted 

stars (red solid lines) which lost ≃ 10 per cent ( M = 0.9 M ⊙, Model 

M 2 a 9 β1/2 i 30), ≃ 25 per cent ( M = 0.77 M ⊙, Model M 2 a 6 β1/2 i 30) and 

≃ 76 per cent ( M = 0.24 M ⊙, Model M 2 a 6 β1/2 i 0) of their mass, respectively. 

For comparison, we depict the lines for ordinary solar-metallicity stars of the 

same mass using grey dotted lines. The three markers indicate the age of the 

star: square (5 Gyr), circle (10 Gyr), and cross (13.8 Gyr). 

Although the mass loss of the ejected stars during interactions with 

the BH is not found to be significant for the encounter parameters 

considered in this study, severe partial disruptions of a star, followed 

by its ejection, are in principle possible. Hence, given the possibility 

of forming runaway stars that underwent a partial disruption, we 

examined the long-term evolution of three partially disrupted stars: 

an unbound star with mass loss of 10 per cent , and two bound stars 

with mass loss of 25 per cent and 76 per cent . As the first attempt for 

this approach, we only examine the impact of the additional chemical 

mixing on the structure of the star in this paper. We consider a non- 

rotating ordinary star with the post-encounter mass in MESA whose 

chemical composition profile is given by that of a partially disrupted 

star. We first relax the star until it reaches thermal equilibrium, and 

evolve it by solving the fully coupled structure and composition 

equations. 

Fig. 8 shows the evolutionary paths of the three partially disrupted 

stars and ordinary Solar-metallicity stars of the same mass in the 

Hertzsprung–Russell diagram. The general trend is that the partially 

disrupted stars, once settled, are hotter and brighter than ordinary 

stars of the same mass at the same age (at most by a factor of 

a few) because of a higher He fraction. We should note that we 

only take the modified chemical composition profile of the partially 

disrupted stars into account. It is important to include all other 

thermodynamics quantities properly altered by tidal interactions, 

such as density, internal energy and angular velocity. Due to the 

encounter the partially disrupted stars can be spun up beyond their 

critical rotation rates. At this point, we would then expect the partially 

disrupted stars to shed angular momentum via mass loss to bring its 

rotation rate below critical. At this time we have ignored the effect 

of rotation and rotation-induced mass loss in Fig. 8 . We will perform 

a more systematic study for this evolution with proper modelling of 

the internal structure, rotation, and mass-loss in our future work. 

4.2 Event rate 

As an order of magnitude estimate, the differential rate of a single BH 

encountering a binary star may be estimated as d R /d N • ≃ n
v rel . 

Here, n is the the binary number density in the vicinity of the 

BH, ≃ f b n s where f b is the binary fraction, ≃ 0.1 for globular 

clusters (Ji & Bregman 2013 ; Iv anov a et al. 2005 ; Dalessandro 

et al. 2011 ), and n s is the number density of single stars near the 

centre. And v rel is the relativ e v elocity between the binary and 

the BH and 
 is the encounter cross-section. In the gravitational 

focusing regime ( 
√ 

GM •/r p ≫ v rel ≃ σ where r p is closest distance 

between the binary and the BH and σ is the velocity dispersion), 


 ≃ πGM •r p /σ
2 . Moti v ated by the fact that encounters tend to 

become disruptive when r p < a (1 + e ) and a � 9 a RL ≃ 24 R ⊙ (for 

M ⋆ = 1 M ⊙), we consider 
 ≃ πGM •a(1 + e) /σ 2 . Then, we find 

that d R /d N • is expressed as 

dR 

dN •
≃ 

nπGM •a 

σ
, 

≃ 10 −10 yr −1 

(

f b 

0 . 1 

)(

n s 

10 5 pc −3 

)(

M •

40 M ⊙

)

×

(

a 

24 R ⊙

)

( σ

15 km sec 

)−1 
. (4) 

Assuming more than tens of single stellar-mass BHs existing in 

dense clusters at present day (Morscher et al. 2015 ; Askar, Arca 

Sedda & Giersz 2018 ; Kremer et al. 2020 ) 7 and ≃ 150 globular 

clusters in Milky Way (Harris 2010 ), the rate of disruptive three- 

body encounters per Milky Way-like galaxy is, 8 

R ≃ 10 −6 yr −1 
(

N •
15000 

) (

f b 
0 . 1 

)

(

n s 
10 5 pc −3 

)(

M •
40 M ⊙

)

×

(

a 
24 R ⊙

)

(

σ
15 km sec 

)−1 
. (5) 

We now compare the relative frequency of the three-body encoun- 

ters for different binary mass M b . The number of encounters of an 

equal-mass binary of mass 2 M 1 relative to that of an equal-mass 

binary of mass 2 M 2 in the lifetime of the binary t life can be expressed 

as n 1 
 1 v rel, 1 t life, 1 /[ n 2 
 2 v rel, 2 t life, 2 ]. 

To start with, let us ignore the impact of mass se gre gation 

on the number density of stars with mass. This allows us to 

assume that v rel, 1 = v rel, 2 . Adopting the Kroupa stellar mass 

function (Kroupa 2002 ) with the cut-off mass 0.5 M ⊙ yields n 1 / n 2 = 

( m 1 / m 2 ) 
−2.3 ( f b, 1 / f b, 2 ). The encounter cross-section is again 
 ∝ r p , 

giving 
 1 / 
 2 ≃ r p, 1 / r p, 2 ≃ a 1 / a 2 where a is the binary semimajor 

axis. Finally, let us assume that t life is comparable to the lifetime of 

the star ∝ m 
−3 . 

Combining all of the abo v e we obtain 

N 1 

N 2 
≃ 

n 1 
 1 v rel , 1 t life , 1 

n 2 
 2 v rel , 2 t life , 2 

≃ 

(

m 1 

m 2 

)−2 . 3 (
f 1 

f 2 

)(

a 1 

a 2 

)(

m 1 

m 2 

)−3 

≃ 

(

m 1 

m 2 

)−5 . 3 (
f 1 

f 2 

)(

a 1 

a 2 

)

. (6) 

This suggests that the encounters of a 2 M ⊙ binary (say, a = 0.05 AU 

and f 1 = 0.1) with a 20 M ⊙ BH are much more frequent than those 

of 20 M ⊙ binaries (say, a = 0.1 AU and f 2 = 1). 

7 Askar et al. ( 2018 ) finds that ≃ 10 per cent of the retained BH population 

forms a binary, which is not large enough to significantly affect our order of 

magnitude estimate for R . 
8 Note that calculating R involves an integration of the differential formation 

rate with several important factors, such star formation history. Thus for a 

more precise estimate of R , a more careful consideration of cluster evolution 

history is required. 
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If mass se gre gation is taken into account, the number density of 

more massive binaries around the BHs (which get to the centre first) 

would be larger. Ho we ver, v rel would be smaller for more massive 

stars by the inverse square-root of the mass ratio. Also, t life would 

be shortened by the formation time scale of the BH because the 

encounters considered only occur after BHs form. This means that t life 
for more massive stars would be shortened even more. For example, 

the lifetime of a ≃ 70 M ⊙ star, which would collapse to a 20 M ⊙ BH 

(fig. 2 in Spera & Mapelli 2017 ), is ≃ 3 Myr. Hence t life for a 20 M ⊙

binary is 20 - 3 = 17 Myr, whereas that for a 2 M ⊙ binary is 10 4 

− 3 ≃ 10 4 Myr. This suggests that unless the number density for 

20 M ⊙ binaries is a few orders of magnitude larger than that for 2 M ⊙

binaries, the encounters between a 2 M ⊙ binary and a 20 M ⊙ BH are 

more frequent than those between a 20 M ⊙ binary and a BH of the 

same mass. 

Ho we ver, a close encounter of a BH with more massive binaries 

(which results in at least one full disruption) is preferentially more 

likely to be detected since the event is expected be brighter. The 

timescale of the peak luminosity will also influence the observability. 

Ho we ver, if the timescale is proportional to the peak mass return time, 

then it has a weak dependence on the stellar mass; only a factor of 2 

difference between a 1 M ⊙ star and a 10 M ⊙ star. If the luminosity has 

the same dependence on the stellar mass as the mass return rate, the 

luminosity is ∝ m 
0.7 . Considering the strong dependence of N 1 / N 2 

on the binary mass, even the number of observable encounters is 

still likely to be more frequent for encounters involving low-mass 

stars. 

5  SU M M A RY  A N D  C O N C L U S I O N S  

In this work, we investigated the outcomes of three-body encounters 

between a binary star and a BH using the moving-mesh hydrodynam- 

ics code AREPO . In particular, we focused on identifying all possible 

types of transient phenomena produced in the three-body encounters, 

and studied their properties. We consider a wide range of encounter 

parameters, i.e. the binary mass, the binary size, the impact parame- 

ter, the inclination angle, and the phase angle. Ho we ver, gi ven the in- 

homogeneous parameter sampling and the limited number of simula- 

tions, our work is not suitable for statistical analysis. Nonetheless, we 

found some clear qualitative dependence of outcomes and their prop- 

erties on the system parameters. Our results can be summarized as 

follows. 

• We identified two different types of outcomes: 

(i) Non-disruptive encounters where neither star is disrupted, 

which include a weak perturbation of the binary orbit (without being 

dissociated) and a dissociation of the binary, creating one unbound 

and one bound stars. 

(ii) Disruptive encounters where at least one of the stars is fully 

or partially disrupted. Prompt electromagnetic transient phenomena 

would be produced in the second class. Although electromagnetic 

radiation is not expected during encounters of the first type, the 

formation of hard binaries in that class indicates the possibility of 

electromagnetic transient phenomena from X-ray binaries at later 

times if the binaries’ orbit continues to shrink via weak encounters. 

• The most important factors to determine the parameter space 

for transient phenomena are the impact parameter, the binary size, 

and the phase angle. Our simulations suggest that transients are more 

likely to be created in encounters of smaller binaries with smaller 

impact parameters. The dependence on the three parameters is: 

(i) Impact parameter : a large impact parameter is a necessary 

condition for non-disruptive encounters whereas a small impact 

parameter is a sufficient condition for disruptive encounters. 

(ii) Binary size : encounters involving an initially smaller binary 

more likely lead to transient phenomena than non-transient phenom- 

ena because the interactions become more chaotic. Disruption events 

can still happen for a wide binary if the impact parameter is ≃ a /2 or 

interactions become chaotic. 

(iii) Phase angle : the outcomes can vary, depending on the phase 

angle even when all other parameters are fixed. The statistical 

likelihood of transient formation would be mostly go v erned by the 

binary size and impact parameter, but the phase angle is an important 

factor to determine the outcomes of an individual encounter case. 

• The transient formation in the three-body encounters has 

important implications: 

(i) Varieties of transients : three body-encounters can produce 

transient phenomena with unique observational features. In par- 

ticular, multiple disruption events, such as instantaneous double 

disruption events or a full disruption event followed by repeated 

partial disruption events can never happen in ordinary tidal disruption 

events. Furthermore, a nearly collision-like disruption during chaotic 

interactions would have different light curves than those of ordinary 

tidal disruption events. Furthermore, the total energy budget available 

for radiation would be larger. 

(ii) BH X-ray binary : we found eccentric hard binaries with ≃ 

1 M ⊙ star form via the three-body encounters, two of which have a 

pericentre distance small enough for the star and BH to interact at 

pericentre. The formation of these particular star-BH binary systems 

may serve as evidence for the dynamical formation of BH low-mass 

X-ray binaries whose formation mechanism remains questionable. 

On the other hand, we found that a compact nearly equal-mass star- 

BH binary with mass 40 M ⊙ can form, confirming the formation 

of high-mass X-ray binaries via three-body interactions between a 

binary star and a BH. 

(iii) Runaway stars and isolated BHs : one frequent outcome in 

our simulations is the formation of single (both 1 M ⊙ and 10 M ⊙) 

stars ejected at 50 − 270 km / sec via chaotic interactions or the Hills 

mechanism (Hills 1988 ) (which we call ’micro-Hills’ mechanism). 

In particular, the velocities of the ejected stars with M ⋆ ≃ 10 M ⊙ are 

comparable to typical velocities of runaway stars ( � 30 km / sec ). 

In the two cases where one star is ejected at a high speed and the 

other star is fully disrupted, the single BH is also ejected at a velocity 

of 30 − 80 km / sec in the opposite direction to the unbound star, 

becoming active due to the accretion of the surrounding stellar debris. 

A detection of a runaway star or wandering active BH could mutually 

constrain the population of each other. 

In Paper 1, we investigated the production of transient events in 

three-body encounters between a single star and a binary BH using 

hydrodynamics simulations. We found that various types of transients 

can form in each particular type of encounter, with their own 

unique observational signatures, such as light curves with periodic 

modulations. This work further adds to the significance of three-body 

encounters as a formation channel of transient phenomena. 
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