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Abstract. In dryland systems, the flood pulse is the driving force in system dynamics but is
highly variable in flow volume and landscape inundation features. Remote sensing can provide
critical information fundamental to evaluating and forecasting flow behavior and population
vulnerability; however, training and classifying an extensive time series of images is labor inten-
sive, limiting the usefulness of these approaches in evaluating flood pulse dynamics and land-
scape interactions. Here, we provide an alternative approach that relies on only one set of
“pooled” training samples for time series image classification and analysis. We test this approach
by mapping the flood pulse in a time series of moderate resolution imaging spectroradiometer
(MODIS) images from the Chobe River Basin of Botswana for the years 2014 to 2016. MODIS
MODO09AT1 images collected during the flooding season (February to July) were converted to
Kauth—-Thomas components, then sampled to form a training pool. Images were then classified
using these pooled training samples. Results indicated that classification accuracies obtained
using pooled training were statistically indistinguishable from classifications obtained from con-
ventional training. Application of the method to another year’s data (2013) also yielded com-
parably accurate results, suggesting that the training pool method remains robust when applied to
image data other than that used to create the training pool. © 2018 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12.026033]
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1 Introduction

With the advent of numerical techniques for classifying digital remote sensing imagery, a wide
variety of methodologies and approaches have been used to convert these images into usable
spatial information.'™ These methods can be divided into two fundamental types; supervised and
unsupervised classification. With supervised classification, labeled data are used to “train” an
algorithm, which then assigns the remaining instances into its most probable category using
features extracted from the data. With unsupervised classification, instances are assigned to unla-
beled but similar clusters, which are then labeled as a class via posthoc assignment by a human
analyst.” Throughout most classifications, the spatial units of classification have been pixels,
however more recently, other spatial units, such as objects, have been used as the classifiable
unit.*” The features used for classification have also varied widely. Reflectance in discrete spec-
tral bands distributed throughout the visible\near infrared (VNIR) and short-wave infrared
(SWIR) regions of the spectrum are the most common inputs to classification algorithms;
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however, image texture, object spatial properties, derived spectral indices, and even temporal
indices have all been used to form classification feature space.®!! Finally, hybrid techniques,
which feature a combination of various approaches (e.g., supervised and unsupervised methods)
have also been widely used for remote sensing classification.®” In general, these approaches have
been successful in allowing remote sensing scientists to make accurate and reliable thematic
maps and information layers for the Earth’s surface. Although research into improving classi-
fication methods is on-going, the methods used are fundamentally effective.

Regardless of the methods used, one characteristic of image classification is that it is both
time-consuming and labor intensive. If the supervised approach is used, considerable time and
effort must be expended to adequately train the algorithm. For unsupervised methods, the time
bottleneck tends to be in the labeling step, where an expert analyst manually assigns clusters to
classes. If only a single image, or a small number of images are being classified, the time spent on
training may not be a serious constraint, but what about circumstances in which a large num-ber
of images need to be classified to a similar or identical set of land user or cover classes? Under
such circumstances, the time needed to train and classify each image individually could become
burdensome. Increasingly, investigations into ecosystem dynamics require that land-scape
change data should be retrieved at relatively small time steps (e.g., monthly, weekly, or even
daily) over considerable lengths of time, resulting in tens or even hundreds of images to classify.
In these instances, current methodological approaches (supervised or unsupervised
classification) limit the capacity for remote imagery to contribute to these investigations.

There are several potential solutions to the problem outlined above. For example, Li and
Sheng'® developed a self-adaptive unsupervised approach to mapping open water, which has
been successfully used to monitor lake inundation dynamics in various regions.''™'® This
approach is highly adaptable, seasonally robust, and computationally efficient but only appli-
cable in situations where a binary classification such as water versus nonwater is needed.
Another approach, applicable when more classes are desired, is to classify based on spectral
reflectance patterns (i.e., signatures) drawn from a pre-existing library. This approach is espe-
cially common in geological remote sensing, where spectral reflectance from rocks or minerals is
algorithmically compared with known spectra (measured in situ or in the lab) and identified by
matching the unknown spectral reflectance to the closest match in a library of potential
identities.'® This approach can be considered a type of supervised classification, but one in
which the training data already exist, in the form of the spectral library. The advantage with the
spectral library approach lies in the fact that a new training set does not have to be collected for
every image to be classified, a clear savings of time and effort. The potential pitfalls of this
method are also clear; however, whereas geological materials are relatively invariant in their
spectral response, other Earth surface covers, such as vegetation and water are much more var-
iable in both time and space, and thus harder to summarize by a single spectral library entry. For
materials or surfaces that change over time, however, entities in the spectral library would need to
encompass a wider range of potential spectral response. For these types of surface, a variation on
the spectral library approach might be used, in which spectral library entries are replaced with
groups of training samples, similar to a sample from a specific image but collected from multiple
images across time. As this approach is similar to the idea of “pooling” data for analysis, these
training samples might be termed pooled samples.

Use of preselected “pools” of training samples might substantially reduce the amount of time
needed to classify many images, where the land cover to be classified has reflectance properties
that stay relatively consistent across space and\or time. Flooding may be an example of this type of
situation. Floods are often seasonal, widely distributed, and persistent over long-time periods,
meaning that multiple images may be needed to fully characterize both its extent and duration.
Floods are also notable for their impacts on human health, welfare, and safety, and there is a
pressing need to be able to dynamically characterize these hydrological phenomena. This is
especially true in dryland flood pulse dominated systems, where, the flood pulse is the driving
force in system dynamics but is highly variable in flow volume and landscape inundation fea-
tures, influenced by the character of the flood event and the geomorphological characteristics of
the system.'”

In Northern Botswana, the Chobe River is the only surface water in this dryland region. Flood
pulse dynamics in this river system have important influences on both water quality and diarrheal
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disease in children under five.'®!” Regional scale remote sensing offers the only practical means
for tracking and mapping flood dynamics in this system, but as in other systems, its use has been
challenging, especially when the flooding creates temporary wetlands with emergent vegetation.
Detecting the presence of standing water beneath flooded vegetation canopies using VNIR sen-
sors has proven to be especially challenging.”*** Both thermal®* and microwave [e.g., synthetic
aperture radar (SAR)] images”>~* have been used with success to attempt to overcome this limi-
tation. As the flooding season in the Chobe River Basin (CRB) can be quite long (typically
extending from February to July) and the inundated areas can change significantly over this
time, it is also useful to be able to assess the temporal dynamics of flood coverage at frequent
intervals during the flood season. High temporal-resolution optical images, such as acquired by
the moderate resolution imaging spectroradiometer (MODIS) aboard the Terra and Aqua sat-
ellites, have been used to effectively capture inundation dynamics at 10 day or finer frequencies
across cloud-prone regions.'** All-weather conditions were further enabled by SAR imagery
(e.g., ENVISAT, RADARSAT, ERS, ALOS PALSR, but their extraction of water extent can be
compounded by surface roughening from wind and turbulence, which lead to an increase in the
radar backscatter to the sensor.>*=? Moreover, all remote-sensing data sources (optical, thermal,
and microwave) experience the same fundamental challenge when used to map flooding over
time, in which they require repetitive analysis of a number of images to extract similar land
surface information from each of them. Addressing this need leads us to confront the problem
discussed in Sec. 1, how to classify a series of images in a timely and efficient manner? In this
paper, we evaluate the use of pooled classification methods as a method for more rapid mapping of
floods and flood-inundated wetland using remote imagery of the CRB. Our goal here is not to
provide maps of specific flood pulse events, but rather to test whether the pooled classification
method is sufficiently accurate to warrant its further use for mapping dynamic pulse flooding
events through time.

2 Study Area and Background

2.1 Chobe River Basin

The CRB is a seasonal marshland located on the border between Namibia and Botswana (Fig. 1).
The CRB is a subbasin of the larger Upper Zambezi Basin with an area of roughly 4000 km?2 and
generally flat terrain with relief varying between 830 and 1050 m above the mean sea level.”* The
CRB is predominately a dryland system, with the Chobe River providing the only permanent
surface water. River flow in the CRB is driven by the regional and local precipitation. Along with
the Okavango Delta, the Chobe River is at the center of the Kavango—Zambezi Transfrontier
conservation area (KAZA), the largest conservation area in the world, encompassing more
than 170; 000 km?2 and contains the world’s largest elephant population.”* The KAZA provides a
wildlife corridor, which contains water sources for agriculture and grazing.

Vegetation in the CRB is a heterogeneous mixed woody-herbaceous savanna ecosystem, with
scrub woodlands in higher elevation zones, and bushland, shrub, and thicket mosaics in lower
elevations.* Soils in the region are characterized as thin alluvial and volcanic in origin.>* The
CRB is situated in three ecoregions; the Zambezian-flooded grasslands, Zambezian and Mopane
woodlands, and the Zambezian Balikiaca woodlands. The Zambezian-flooded grasslands ecor-
egion covers a large part of the CRB, especially the Zambezi River, and is a flooded grasslands
and Savanna biome.

The hydrology of the CRB is characterized by flood pulses from the Zambezi and the
Linyanti rivers.*> A flood pulse occurs when there is a substantial amount of water going into
a river system, water rises above the banks, and vegetation is inundated for periods of times
ranging from a few weeks to months.>® Flood pulses deliver valuable nutrients and water that
are vital to plant development and are a principal driving force for the productivity and types of
biota in the river-floodplain region.>” These pulse floods happen during the rainy season, which
occurs between November and April. The floods consistently start at the end of February when
the Zambezi flood pulse enters the Zambezi wetlands.** Burke et al.** also found that the best
predictor of flooding extent in the CRB is the discharge of the Zambezi River 64

Journal of Applied Remote Sensing 026033-3 Apr—Jun 2018 - Vol. 12(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 19 Jul 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Braget et al.: Flooded area classification using pooled training samples

22°00°E 23°00°E 24°00°E 25°00°E 26"00°E
1 1 1 1 L

<
Zambezi River Headwaters

16°00°S ] % - 16°00°S
=

17°00°S - 17°00'S

Zambezi River

ZAMBIA b b

Natond Fark Livingstone
A

18°00°S NAMIBY L 18°00's

'™ Linyanti River Kezuma Pan Hwange

&
Mimis o 6 tions
ool O Pk Matetsi

Okavango Delta

19°00°S - 19°0'0"S

%
: 2,
nERN ) N
0 1530 60 Kilometers y jL
L 1 | /
Neal Pan
T T T T T
22°00°€ 23°00°E 24°00°E 25°00°E 26°00°E

Fig. 1 Image map of the Chobe River region in central Africa. The study area is within the cyan
rectangle.

days prior to flooding. Thus, the peak of these floods occur at the end of the rainy season and
beginning of the dry season (April) when the peak discharge of the Zambezi River reaches the
CRB. The CRB can experience a second flood pulse in the months of June and July when
the Kwando River on the western side of the CRB has its peak discharge, which is outside of the
traditional rainy season. If the flood pulse is high enough, water can move from the Kwando
River, through the Linyanti channel, then through Lake Liambezi, and into the CRB.*®
However, this is not a frequent event, and Lake Liambezi often remains dry.

3 Classification Method: Pooled Training Approach

For this classification, we propose to use a form of supervised classification method in which a
pooled training sample, analogous to the spectral library discussed earlier, provides the classi-
fication feature space and decision criteria for all images in a particular time series. The clas-
sification method is applied to a series of coarse resolution multispectral imagery.

3.1 Data

MODIS MOD09A1 imagery for the study area was acquired from the LP DAAC website® and
has previously been used to map flood regions.**™* It has the advantage of providing temporal
and spatial resolution (500 m) that is superior to other available thermal or microwave data. The
MODO09A1 product consists of seven reflectance bands, including coverage in the visible\near-
infrared (VNIR) and SWIR. Each composite consists of compiled daily images over eight days,
where pixels are selected based on quality, cloud, and viewing geometry, until the highest quality
single value per pixel remains to be used in the composite. Imagery was collected from early
February to early July for the years 2014, 2015, and 2016 with a total of 49 usable composites
collected during the analysis time period. Ten images were excluded from the classification due to
excessive cloudy conditions, with four in 2016, three in 2015, and three in 2014. These dates
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Table 1 Acquisition dates for images used in this analysis. Time windows are defined and dis-
cussed in Sec. 3.4.

Time window 2014 2015 2016

1 14 March 14 March 10 February
2 17 May 25 May 24 May

3 18 June 26 June 25 June

were chosen to bound the yearly peak flood and extents. Each band in the MODIS dataset con-
sists of 16-bit signed integer reflectance values that range from -100 to 16,000 with bands in
each composite multiplied by 0.0001 to rescale to true reflectance. Each of the seven bands for a
given date were stacked into one image. The study area was subset to the CRB based on previous
studies of flood dynamics in this system.*

Although classifying all images within the flooding season from each of the years was the
ultimate goal of our research, we did not use the entire data series to develop our methodological
approach. Rather than evaluating the entire 15 image sequence for each of the 3 years, we
selected images from three dates, spaced at the beginning, end, and middle of each flooding
season, a total of nine images. Test images were selected at roughly the same time in each win-
dow (Table 1). The criteria for dividing the season into three time periods are explained in Sec. 4.
These images were then classified using two variations of the pooled training method. In addi-
tion, one set of images was classified using conventional supervised classification to serve as a
standard of comparison for the pooled methods.

3.2 Data Preparation

Following preprocessing, each image was converted into the Kauth—-Thomas tasseled cap trans-
formation using coefficients derived for the MODIS instrument (see Table 2).** The Kauth—
Thomas (K-T) transformation is derived using the Gram—Schmidt orthogonalization method to
“rotate” the features of a multivariable dataset into a new basis, whose components are linearly
independent.* It is primarily used to enhance biophysical properties in the imagery by creating
synthetic components corresponding to the brightness, greenness, and wetness properties of the
data.** The K-T transform converts raw reflectance values into a few, more easily interpretable
components, which can be used as input into classification algorithms. In our application, the
K-T transformation was used to reduce the number of classification features from six (the full
number of MODIS bands in the MOD09A1 data product) to three. It was also used because the
criteria for defining the classes in our classification scheme was based largely biophysical sur-
face properties, such as greenness and wetness, which can readily be extracted using features
derived from the Kauth—-Thomas transformation.

3.3 Land Cover Classes

Three cover classes were used for this classification; open water, emergent vegetation, and non-
flooded areas. Direct observations in the study area were used to define the characteristics of the

Table 2 Coefficients for calculating the brightness, greenness, and wetness K-T components,
derived for MODIS data.

Red (B1) NIR1 (B2) Blue (B3) Green (B4) NIR2 (B5) SWIRL (B6) SWIR2 (B7)

Brightness 0.4395 0.5945 0.246 0.3918 0.3506 0.2136 0.2678
Greenness -0.4064 0.5129 -0.2744 -0.2893 0.4882 -0.0036 -0.4169
Wetness 0.1147 0.2489 0.2408 0.3132 -0.3122 -0.6416 -0.5087
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three land cover categories and to identify areas representative of each type categorized as
flooded and nonflooded. Flooded areas were of two types, visible surface water with little to
no vegetation coverage (open water) and emergent vegetation defined as a mixture of water
with aquatic vegetation protruding above the surface (emergent vegetation). Areas outside of these
two types were categorized as nonflooded land cover. Open water and emergent veg-etation land
covers were kept separate because the emergent vegetation class contains a mixture of both open
water and vegetation overlying water or saturated soil. In effect, it resembles marsh-land. Open
water and emergent vegetation also exhibit different tasseled cap component values in imagery,
which, if combined, could result in misclassification.

3.4 Training and Classification Method

The most obvious challenge to implementing this methodology for rapid classification of a series
of images is development of the pooled training dataset. This was done in two steps. First, it was
necessary to determine if the spectral response of the surface remains roughly invariant through
time, in which case only a single training pool is necessary, or if it varies enough to warrant
splitting the training into two or more pools.

To assess this invariance, we plotted trajectories of the mean values and variance for each of
the three KT components (brightness, greenness, and wetness) across the entire flooding season
(February to December) for the years 2014 to 2016. Mean values for each cover type and year
(Fig. 2) show some variation across the flooding season, as well as from year to year. This sug-
gests that one single set of pooled training samples may not adequately be used to classify all
images over an entire flooding season. Based on the shapes of the trajectories, we subjectively
split the flooding season into three subperiods, indicated by the vertical lines in Fig. 2. In each of
these time windows, the temporal pattern of variation in the three K-T components shows
roughly coherent behavior. From day of year (DOY) 33 to approximately DOY 91, the land
covers of emergent vegetation and nonwater exhibit decreasing values, whereas open water val-
ues remain consistent. Starting at DOY 91 to DOY 155, all three land covers exhibit relatively
constant values or show very slight changes in values from composite to composite. After DOY
155, both emergent vegetation and the nonflooded class show increasing values of brightness
and decreasing wetness, whereas open water values remain consistent. These subperiods are
indicated by vertical lines in Fig. 2.

Once the number of time windows was established, the second step in the classification was
to select training samples from within the time windows. Locations for extracting training sam-
ples were selected using a combination of field assessment and ancillary imagery. Obviously,
field survey can only be used for imagery whose acquisition date overlaps the active period of the
study. That is, field survey cannot be done retroactively. However, ancillary data sources are
often available retroactively and can be used as a source of training data provided they can
be correctly interpreted. In our study, field surveys conducted during the 2016 flood season
were compared with visual interpretation of Landsat 8 OLI data from the same time frame.
Using this approach, we were able to develop skill in visual identification of our three cover
types from moderate resolution imagery. We then used other retrospective Landsat data,
whose acquisition time corresponded to the MODIS composite data, to select training sites
from the MODIS data by visual interpretation, and also to learn to recognize our three
cover types on MODIS data. Once we were confident that we could visually recognize our
three classes on the MODIS data, we selected further training sites by visualize inspection.
Note that while training sites were selected using the procedure described above, the actual train-
ing data were from K-T transformed images.

Using the 3 years of data, each divided into three time windows, we tested two variations of
the pooling classification technique, which are referred to as method I and method II, respec-
tively. In method I, separate training pools were created for each of the three time windows.
Training samples from all 3 years were then taken from several images within each time window, to
ensure that the samples were as representative as possible for all years and dates within the
window. Note that training samples consisted only of representative pixels from a single image. In
other words, we did not select a training site, then use all pixels associated with that site across the
entire time series. Instead, we used pixels only from the specific image from which that site
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ness, and wetness component, respectively, of the land cover values.

was selected. To reduce temporal bias of the training data, training samples were selected from
images at the beginning, middle, and end of each time window. Approximately 25 to 30 training
samples per class were selected from each individual image, yielding about 80 training samples
per class. Method II was similar to method I, but only the second (middle) time window was used to
collect samples for the training pool (see Fig. 2 for the time windows). We used the middle time
window on the assumption that it would be most representative of the entire flooding sea-son.
Collection of samples for the training pool for method II was also similar to method I; two-to-four
samples were collected for each cover type, from images throughout the time series. The
effectiveness of these two classification approaches was evaluated in two ways. First, we quan-
titatively compared classification results for selected dates from the three image years against the
results from conventional training and classification (that is, use of training samples from each of
the 3 years). Second, as a further evaluation for each method, we tested them by classifying a
fourth year from the MODIS image archives, using the training sample pool developed for the 3
years from 2014 to 2016.

All classifications were done using classification trees. Classification trees are a nonparamet-
ric method for recursively partitioning a categorical dataset into successively more homogeneous
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nodes using some splitting criteria, until an optimum classification is achieved. For this appli-
cation of decision tree, we used a splitting criteria based on the Gini coefficient, which favors
larger partitions in the data and was therefore preferable for a classification scheme with only a
small number of classes.*® To avoid overfitting, the decision tree was pruned using cross-val-
idation error.*® For this application, we chose the classification tree, because it has been shown to
be effective for classification problems in remote sensing, and because it is less sensitive to the
distributional structure of the input data.*’ The latter was of particular significance since the
distributional characteristics of pooled, transformed image data may not conform to the assump-
tions of normality required for parametric classifiers. All calculations and classifications were
done using the Rpart package within the R statistical programming languages.*®

Classification accuracy was quantified by constructing a confusion matrix for each classi-
fication, from which categorical and overall accuracy (OA), along with the Kappa statistic and its
variance were calculated. Each of these assessments was based on an independent sample drawn
from the various classified images.*” OA was used to assess the success of each method for
placing pixels into their appropriate categories. The Kappa statistic (and its variance) were
used to assess how well a classification performed relative to random chance. To test the relative
merits of each method, it was also necessary to quantitatively compare classification accuracies of
the various methods, to determine which was the most effect. This was done by pairwise z-tests,
as suggested by Foody.>® For these tests, the z-statistic is calculated as

(1)

where x; and x; are the numbers of correctly classified samples for two classifications | and j, n;
and n; are numbers of samples in each classification, and

p Y c’Sxi b X, I:>/6ni b n, b: (2)

4 Results

4.1 Method |

In method I, each of the three time windows defined based on the seasonal trajectory of the K-T
components were evaluated separately for each of the three years of record (2014 to 2016).
Comparison of the nine error matrices resulting from this classification shows some trends in
the performance of the classifier relative to the three land classes in the classification scheme. In
general, open water was the most accurately mapped class, based on the relatively small
occurrence of confusion between it and the other two classes (Table 3). For many of the clas-
sifications, there was no confusion between classified and observed pixels from the validation
sample, either as errors of omission (shown column-wise in the matrices) or commission (row-
wise, on the matrices). Perhaps not surprisingly, the greatest confusion occurred between the
open water class and the emergent class. In time window 2 of the 2014 classification, 10 pixels
classified as open water were, in fact, members of the emergent class, the most confused instance
among these classes for the method I classification. It should be noted that this highest level of
interclass confusion still only represents a 17% commission error.

The emergent and nonflooded classes were the most confused classes using method I, a result
that is consistent with other applications where flooding was mapped optically.’' The largest
amounts of confusion (and thus the highest errors) tended to occur in the first time window
defined for the calculation. This was particularly true for the 2016 classification, 14 pixels
from the emergent category were misclassified as land, a user error of 35% (where user
error is determined by subtracting user accuracy from 1.0). Interestingly, pixels that were
observed to be emergent vegetation in the validation sample were rarely confused with open
water, as indicated by the higher producer accuracy (PA) values in the matrices.
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Table 3 Error matrices for pooled classification Method | for all 3 years of analysis. Abbreviations
are NF, not flooded; EV, emergent vegetation; OW, open water; UA, user accuracy; and PA, pro-
ducer accuracy.

2014 2015 2016

Observed

NF EV OW Total UA- NF EV OW Total UA NF EV OW Total UA

Time NF 40 1 0 41 0.98 60 1 0 61 0.98 57 0 0 57 1.00
window 1
EV 11 29 0 40 073 9 28 0 37 076 14 28 1 43 0.65

ow 2 12 35 49 071 2 3 45 50 090 1 3 36 40 0.90

Total 53 42 35 130 71 32 45 148 72 31 37 140
PA 0.75 0.69 1.00 0.85 0.88 1.00 0.79 0.90 0.97
Time NF 36 O 0 36 33 0 0O 33 100 36 O 0 36 1.00
window 2
EV 3 45 2 50 9 36 0 45 080 4 38 1 43 0.88
Predicted OW 0 10 50 60 3 5 36 44 082 O 8 42 50 0.84
Total 39 55 52 146 45 41 36 122 40 46 43 129
PA 0.92 0.82 0.96 0.73 0.88 1.00 0.98 0.82 0.98
Time NF 48 3 0 50 45 0 0 45 1.00 37 0 0 37 1.00
window 3
EV 5 38 0 43 4 37 1 42 088 4 44 1 49 0.90
oW o0 7 42 49 2 0 41 43 09 1 6 47 54 0.87
Total 53 47 42 142 51 37 42 130 42 50 48 140
PA 0.91 0.81 1.00 0.87 1.00 0.98 0.88 0.88 0.89

OA varies somewhat between the various time windows and years, from a high of 95% in the
third window of 2015 to a low of 80% in the first time window of 2014 (see Table 4).

In general, classification accuracy was highest in 2015, which, based on visual inspection of
the data, is most likely due to the presence of cloud cover in the three images selected for detailed
analysis from the other 2 years (but we note that the selected images were chosen in part for their
lack of clouds, hence results from other dates would have been similar, or perhaps even lower
accuracy). The Kappa values and their variances show that all classifications performed signifi-
cantly better than what would be expected from chance agreement. Based on the similarity of OA
and Kappa values across all nine of the classifications, it is difficult to conclude that there is any
systematic pattern in accuracy over the 3 years of the analysis. That is, none of the time windows
appear to be significantly more or less accurate than any of the others, although this was not

Table 4 OA and Kappa values for classification method | for each of the 3 years analyzed. Exact
image dates for the time windows in each of the 3 years are given in Table 1.

2014 2015 2016
Time window OA Kappa (Var) OA Kappa (Var) OA Kappa (Var)
1 0.80 0.70 (0.0027) 0.90 0.84 (0.0010) 0.86 0.81 (0.0017)
2 0.89 0.84 (0.0014) 0.86 0.79 (0.0022) 0.90 0.87 (0.0012)
3 0.90 0.84 (0.0015) 0.95 0.92 (0.0010) 0.91 0.87 (0.0013)
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formally tested. However, it is noteworthy that in two of the three years, time window 1 was the
least accurate of the three (only 2015 is an exception). This could possibly be explained by the
fact that this time window shows the most variability in K-T component values (see Fig. 2), and is,
therefore, most susceptible to unrepresentative training values.

4.2 Method I

Classification method II tested the efficacy of using training samples from only one time period to
classify all of the images from a given flooding season. In order for this method to be effective, K-T
component values must remain roughly similar for each cover type over the entire year, and be
similar to those of the second time window, from which the training samples were collected. If
these circumstances hold, the classification rules derived from one time period would be effec-
tive in either of the other two. We evaluated method II on only one of the three classification
years, 2015, because it generally had less cloud contamination than did the other 2 years. For this
classification, the pool of training samples was drawn only from the second time window,
because this window generally had the most stable values, with least variance in the sample set
(Fig. 2). Because the training samples came only from the second time window, they were
not tested for that time window—this test would essentially be identical to the results from
method 1.

In general, the classification results using method II showed more interclass confusion
(Table 5) and numerical accuracy metrics were lower than those from method I, although not
drastically so (Table 6). As with method I, each of the classifications was significantly better than
random, based on Kappa values. Method II had the lowest performance for the first time
window, with an OA over 10% points less than method I. A visual comparison between the two
regions on Fig. 2 indicates that time window 1 is the most variable of the three windows, and is

Table 5 Error matrices from the method Il classifications. Abbreviations are NF, not flooded; EV,
emergent vegetation; OW, open water; UA, user accuracy; and PA, producer accuracy.

Observed
NF EV ow Total UA
Time window 1 NF 60 2 0 62 0.97
EV 17 40 2 59 0.68
ow 0 20 55 75 0.73
Total 77 62 57 196
PA 0.78 0.65 0.96
Predicted
Time window 3 NF 60 6 0 66 0.91
EV 11 54 4 69 0.78
ow 2 11 57 70 0.81
Total 73 71 61 205
PA 0.82 0.76 0.93

Table 6 OA and Kappa values for 2015 classifications using method II.

Time window OA Kappa (Var)
1 0.79 0.687 (0.0434)
3 0.83 0.751 (0.0309)
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therefore the most susceptible to a less representative training sample. As with method I, the
majority of the interclass confusion was between the open water and emergent vegetation
classes, which in light of the error patterns in method I, is not surprising.

4.3 Comparison of Methods | and Il with Conventional Supervised
Classification

To evaluate whether use of pooled training samples yields accuracy comparable with conven-
tional training, the three images from the 2015 dataset were also subjected to supervised clas-
sification using training samples collected only from those images. Visual comparison of the two
methods shows similar results, which also correspond well to a visual interpretation of the
imagery (Fig. 3). Quantitative comparison, however, shows that method I produces significantly
more accurate classifications.

Somewhat surprisingly, the classification accuracy of the 2015 images obtained using con-
ventional training was not as accurate as either of the pooled training methods. Comparing the

Fig. 3 Classification results for March 2015 for visual comparison. The original image (not con-
verted to K—T components) is at top. The center classification was made using method |, the bot-
tom classification is from method Il. The nonwater class is shown in red, emergent vegetation is
green, and open water is blue.
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Table 7 Classification error matrices for conventional supervised classification, 2015 data set.
Abbreviations are NF, not flooded; EV, emergent vegetation; OW, open water; UA, user accuracy;
and PA, producer accuracy.

Observed
NF EV ow Total UA
NF 66 0 0 66 1.00
EV 14 43 2 59 0.73
Time window 1 ow 4 6 65 75 0.87
Total 84 49 67 200
PA 0.79 0.88 0.97
Time window 2 NF 56 0 0 56 1.00
EV 24 26 0 50 0.52
Predicted ow 3 26 55 74 0.74
Total 83 42 55 180
PA 0.67 0.62 1.00
Time window 3 NF 64 2 0 66 0.97
EV 10 49 1 60 0.82
ow 3 5 52 60 0.87
Total 77 56 53 186
PA 0.8 0.88 0.98

2015 OA and Kappa results for conventional classification (Tables 7 and 8) with both method I
(see the 2015 column in Table 4) and method II (Table 6) shows that in some cases, the conven-
tional classification method yielded notably lower values than did the pooled methods. Although
not necessarily anticipated at the start of this analysis, this result is consistent with previous work
where spectral signatures were generalized for supervised classification.*” This result might arise
from the fact that the number of training samples from the pooled samples (B100 per class, per
image, or about 300 for each pool) is larger than the @100 samples per class collected from each of
the images classified using the conventional training methods. Generally, a larger number of
training samples will provide a more reliable set of decision rules, especially when using a deci-
sion tree classification approach.’® This result also reinforces the earlier point that the classifi-
cation feature values (i.e., the K-T components) stayed roughly uniform across time, which
further supports the use of pooled training samples when this condition holds.

Quantitative comparison of the classifications used the methods outlined in Sec. 3.4 further
indicates that use of pooled training provided equal or better results to the conventional methods. A
comparison of the pooled method I with method II (Table 9) shows that method I was

Table 8 OA and Kappa values for 2015 classifications using conventional
supervised classification.

Time window OA Kappa (Var)
1 0.87 0.751 (0.039)
2 0.76 0.641 (0.048)
3 0.89 0.830 (0.035)
Journal of Applied Remote Sensing 026033-12 Apr—Jun 2018 - Vol. 12(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 19 Jul 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Braget et al.: Flooded area classification using pooled training samples

Table 9 Pairwise comparison analysis for method | (pooled training with three time windows)
versus method Il (pooled training with one time window) for 2015 analysis. Number correctand
n are derived from the error matrix for each classification (tables K and M) and are the source of the
X and N terms in Eq. (1).

Method | Method Il
Time
window  Number correct (X) N OA Number correct (X) N OA z P
1 133 148 0.899 155 196 0.798 2.53 0.0014°
3 123 130 0.946 171 205 0.834 2.88 0.0039°

2Significant at a % 0.05.
bSignificant at a % 0.01.

Table 10 Pairwise comparison analysis for method | (pooled training with three time windows)
versus conventional supervised for 2015 analysis. Number correct and n are derived from the error
matrix for each classification (tables K and L) and are the source of the X and N terms in Eq. (1).
None of the comparisons reach statistical significance at a % 0.05.

Method | Conventional
Time
window  Number correct (X) N OA Number correct (X) N OA z P
1 133 148  0.898 174 200 0.870 0.65 0.516
2 105 122 0.861 137 180 0.761 1.98 0.048
3 123 130 0.946 165 186 0.887 1.62  0.050

significantly better than method II for the third time window (i.e., significant at a % 0.01) and
marginally significant (at a % 0.05) for the first time window. Comparison of method I with
conventional classification (Table 10) showed no significant difference between the two, despite
the higher OA values from method I.

4.4 Application of Pooled Training to 2013 Imagery

As a final evaluation of the effectiveness of the pooled training samples, we classified image data
from a year (2013) that was not included in the original analysis, using the method I approach.
These images were classified using the pooled training data collected from the 2014 to 2016
image series; no additional training samples were collected. Accuracy results for this classifi-
cation were similar to the ones for the 2014 to 2016 data (see Tables 11 and 12). As with the
previous classification, the best results, in terms of OA, were obtained from the second time
window, and the lowest accuracy was associated with the first window. For each classification,
the Kappa values and variances show that the accuracy achieved was significantly better than
random assignment.

5 Discussion and Conclusions

In this study, pooled training methods were effective for classifying open water, water with emer-
gent vegetation, and nonflooded land cover in the CRB study area from selected MODIS images
drawn from each of three years from 2014 to 2016. The pooled training method was also suc-
cessful for classifying images from 2013, a year from which images were not used to develop the
training data pools. Results from the application of the training pool method to images collected
during another flood year (2013) are encouraging as they suggest that it may be feasible to
classify individual flooding images over the course of a season using only pooled samples
from other years, without the need for additional training.
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Table 11 Error matrices for classification of 2013 images, done using pooled training samples
collected from the 2014-2016 imagery. Abbreviations are NF, not flooded; EV, emergent vegeta-
tion; OW, open water; UA, user accuracy; and PA, producer accuracy.

Observed
NF EV ow Total UA
Time window 1 NF 30 0 0 30 1.00
EV 4 51 6 61 0.84
ow 0 17 61 78 0.78
Total 34 68 67 169
PA 0.88 0.75 0.91
Time window 2 NF 30 1 0 31 0.97
EV 3 61 2 66 0.92
Predicted ow 0 5 52 57 0.91
Total 33 67 54 154
PA 0.91 0.91 0.97
Time window 3 NF 52 8 0 60 0.87
EV 2 28 0 30 0.93
ow 1 6 53 60 0.88
Total 55 42 53 150
PA 0.95 0.67 1.00

Table 12 OA and Kappa values for 2015 classifications using conventional
supervised classification.

Time window OA Kappa (Var)
1 0.84 0.75 (0.044)
2 0.93 0.89 (0.032)
3 0.89 0.83 (0.040)

Although both methods were effective, they were not equally so. Method I, in which separate
pools of training samples from each of three time windows were used to classify images from
within that time window, was the best performer of the two pooled training methods we tested.
Classification accuracies from method I were statistically superior to those of method II, and
were statistically not distinguishable from results obtained using the traditional supervised clas-
sification approach of collecting training samples from each image to be classified. Based on
this, if the pooled training approach is to be used for classifying a series of images, we recom-
mend dividing the pools into regions, in which the training features to be used are more uniform
through time.

Although the pooled classification approach was effective in this instance, it is appropriate to
consider a few caveats related to its application. The classifications considered here are notable
for the spectral contrast between classes, the relative temporal homogeneity of those classes, and
the fact that only a relatively small number of classes were used. The latter condition makes the
probability of placing a pixel in the correct class inherently higher regardless of the method used
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as the number of ways an error can be made is smaller with fewer classes. Addressing this con-
cern is one of the reasons that the Kappa coefficient was calculated for each classification. Kappa
provides a way to quantify accuracy that takes into account the number of classes and hence the
“degree of difficulty” of a particular classification. Each of our classifications yielded Kappa
values indicating that the results were significantly higher than expectation based on random
chance.

The first two conditions above (spectral contrast and temporal homogeneity) are significantly
more limiting potential constraints on the use of training pools. Clearly, for training pools to be
effective, the training signatures in the pool must be applicable across a wide range of images.
For images drawn from a time series, this means that the reflectance patterns that characterize
one type of surface must either remain similar over time, or be divisible into a relatively small
number of subsets that remain similar across time. For surfaces dominated either by nonliving
materials (e.g., inorganic materials, soils, water, etc.), or by vegetated surfaces of low temporal
variation (such as nondeciduous forest, although this could be questioned), this situation may
hold. However, even with the relatively time-invariant cover classes we used (water, water with
emergent vegetation), there was enough temporal variability to warrant the use of more than one
training pool per year. For vegetated surfaces that undergo distinct seasonal\phenological varia-
tion, development of a meaningful training pool might require a larger number of time windows
and larger number of classes, which could potentially negate the time savings that are a prime
benefit of the pooled classification method.

Following from the need to define time windows to develop adequate training pools is the
problem of how to define these time windows. The underlying purpose of the time windows is to
divide the image series into roughly homogeneous regions based on trajectories of classification
features. In our analysis, this was done somewhat subjectively, based on “by eye” comparisons.
Results from the classifications consistently showed that the first time window was the least
accurately classified, and the trajectories of its classification features (Fig. 2) clearly show the
most change and the most variability through time. The other two time windows show much
more uniform behavior suggesting that a different division scheme might have been used, or
that combining these two windows may have been appropriate. Alternatively, a more
systematic method might have been used to divide the trajectories of classification features into
time windows.

Despite the potential limitations in applying the pooled classification method with multiple
time windows, it is clearly an effective alternative for classification tasks in which a large number
of potentially similar images are to be classified. Recall from Sec. 2 that the purpose of our
analysis was to produce maps of flooded areas to assess their vulnerability to water-borne dis-
eases. Typically, flooding in the CRB is persistent over several months, so even if composited
data are used to map it, it is still likely that about 15 images per year would require classification.
For the 3-year duration of our study, this would mean classifying @45 images. Ultimately, this
analysis may be extended to encompass the entire duration of the MODIS mission, meaning that
several hundred images would need to be classified. Clearly, training a classifier for each of
several hundred images separately would require significant amounts of time and effort.
Although we have applied our method only to flood mapping in one location, it is likely usable for
other applications, as well. The method could be used to map transient events such as floods in
other areas, provided a time series of images with sufficient temporal resolution to capture the
event were available. It is also worth mentioning that, although our method was demonstrated
using MODIS imagery, the conceptual framework of pooled training and classification may
apply to other multispectral imageries and potentially SAR images with multiple radar frequen-
cies and polarizations. Using the training pool method, the effort needed to accomplish this
classification task would be reduced, making such analyses much more tractable.
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