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A B S T R A C T

The gap test is a new type of fracture test developed in 2020, in which the end supports of
a notched beam are installed with gaps that close only after the elasto-plastic pads next to
notch introduce a desired constant crack-parallel compression 𝜎𝑥𝑥 (also called the T-stress).
The test uses the size effect method to identify how such a compression alters the material
fracture energy, 𝐺𝑓 , and the characteristic size 𝑐𝑓 of the fracture process zone (FPZ). In
2020, experiments showed that a moderate 𝜎𝑥𝑥 doubled the 𝐺𝑓 of a quasibrittle material
(concrete) and a high 𝜎𝑥𝑥 reduced its 𝐺𝑓 to almost zero. A preliminary study by Nguyen
et al. (2021) showed that the gap test can be extended to plastic-hardening polycrystalline
metals. A generalized scaling law with an intermediate asymptote for large-scale yielding in
small structures was derived, and limited tests of aluminum alloy showed its applicability.
In this study, geometrically scaled gap tests of notched three-point bend fracture specimens
of aluminum are conducted at three different levels of 𝜎𝑥𝑥. An extended structural strength
scaling law that captures the transition from the micrometer-scale FPZ through millimeter-
scale yielding zone (YZ) to large-scale structures which follow linear elastic fracture mechanics
(LEFM) is derived and then applied to analyze the effect of 𝜎𝑥𝑥. Presented here are the gap
tests of aluminum alloy, in which three different levels of 𝜎𝑥𝑥 are applied to scaled notched
four-point-bend beams of depths 𝐷 = 12, 24, 48 and 96 mm. Using an extended size effect
law for plastic-hardening metals, it is found that, at crack-parallel stress 𝜎𝑥𝑥 ≈ −40% of the
yield strength, the critical J-integral value gets roughly quadrupled, not only because of the
well-known enlargement of the hardening YZ whose width is of millimeter scale, but also
because of the increase of the FPZ width of micrometer scale. These results can be reproduced
neither by line crack models, including the LEFM, cohesive crack and phase-field models, nor
by peridynamic and various nonlocal models that ignore the tensorial nature of the material
stress at the crack tip. The crack band models, being able to represent an FPZ of finite width
and a YZ whose size evolves depending on 𝜎𝑥𝑥, can capture the effect of crack-parallel stresses
provided that a realistic 3D tensorial damage constitutive model is used. Here, Bai–Wierzbicki’s
model is shown to capture the 𝜎𝑥𝑥 effect on the 𝐺𝑓 and 𝐽𝑐𝑟 qualitatively.
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1. Introduction

Fracture of polycrystalline plastic-hardening metals is an important engineering problem whose study has a long history (An-
erson, 1991; Pineau et al., 2016a,c,b). Among many advances, the HRR theory developed by Hutchinson (1968b) and Rice and
osengren (1968) became pivotal. This theory led to further important studies of the size of the hardening yielding zone (YZ,

ypically about 10 mm wide) and its relation to the material fracture energy (Betegón and Hancock, 1991; Xia et al., 1993; Gao
t al., 1996). The interaction of the YZ with the normal component, 𝜎𝑥𝑥, of crack-parallel stress in the crack direction, usually called
he 𝑇 -stress, has been heavily studied since the 1990s (Anderson, 1991; O’Dowd and Shih, 1991, 1992).

These studies showed that the magnitude of the load that drove the crack propagation, applied in the transverse 𝑦-direction,
had a close connection with the level of constraint at the crack tip, which varied for different test configurations. In a preceding
study (Nguyen et al., 2021), an energetic size effect law was derived for the scaling of strength of plastic-hardening metallic structures
with long notches or long cracks grown stably before the maximum load. This scaling law represents a generalization of the classical
energetic scaling law of Type 2, obeyed by all quasibrittle materials, such as concrete, rocks, coarse ceramics, fiber composites, rigid
foams, wood, sea ice or bone (Bažant, 1984b; Bažant et al., 1987; Bažant and Kazemi, 1991; Bažant and Planas, 1998; Dönmez,
2021a,b; Bažant et al., 2021).

The energetic size effect law, experimentally verified for concrete in 1987, Bažant et al. (1987) was first generalized to plastic-
hardening materials by size effect tests of aluminum alloy (Bažant et al., 1987), but without detection of the intermediate asymptote
and its theoretical basis. This asymptote, which bridges the micrometer scale of FPZ embedded within the YZ to the decimeter scale
larger than the YZ, was formulated in the preceding 2021 study.

It must also be emphasized that the term ‘‘size effect’’ in materials science refers to a different physical phenomenon—the Hall-
Petch law (Hall, 1951) which describes the dependence of the material yield strength on the size of polycrystalline grains in metals,
and is explained by the arrest of dislocation lines at crystal boundaries.

The preliminary results from Nguyen et al. (2021) and Bažant et al. (2022) are here extended to determine how the strength
scaling law is changed by a complex stress state at the crack tip. The gap test (Nguyen et al., 2020b,a) makes it possible to
determine unambiguously the effect of the crack-parallel compressive stress, 𝜎𝑥𝑥, on material fracture energy 𝐺𝑓 . This is best done
y determining how 𝜎𝑥𝑥 affects the size effect curve of nominal structure strength, 𝜎𝑁 . Such an effect was found to be significant,
on-monotonic and strongly dependent on the loading path. Even though the stress-parallel crack effect is tested and numerically
alidated only for 𝜎𝑥𝑥, which acts in the propagation direction, the model is sufficiently calibrated to predict the effect of the
ut-of-plane normal and shear components, 𝜎𝑧𝑧 and 𝜎𝑥𝑧. It shows that they can be equally important (see Nguyen et al. (2020a)).
ote also that the material fracture energy 𝐺𝑓 applies only to specimens sufficiently larger than the YZ, at which 𝐺𝑓 coincides with

he critical 𝐽 -integral.
In the standard fracture test specimens, the stresses 𝜎𝑥𝑥 (or 𝑇 -stress), 𝜎𝑧𝑧, 𝜎𝑥𝑧 parallel to the crack plane (𝑥, 𝑧) are zero or negligible

𝑥 is the crack propagation direction). Yet, this is not the case in most practical situations. The main reason why the effect of crack-
arallel stresses on fracture growth has been dismissed for so long is the fact that a crack is usually regarded as a plane, with a
ront of zero width, in which case 𝜎𝑥𝑥 could have no effect. In reality, the crack becomes a plane (normally rugged) only at the
nd of fracture process. But what matters is the damage zone at the fracture front during crack growth. For every crack it has a
inite width 𝑤𝑓 (Nguyen et al., 2020b,a). This is the basic feature of the 1979 blunt crack model (Bažant and Cedolin, 1979) and
he 1983 crack band model (Bažant, 1993; Bažant and Oh, 1983). Yet, experiments showed already in 1979 that, if 𝑤𝑓 is finite,
he effect of 𝜎𝑥𝑥, 𝜎𝑧𝑧, 𝜎𝑥𝑧 ought to be significant and that the damage tensor in the FPZ must play a role. This also means that the
ointwise energy dissipation at the crack tip of Griffith cracks and the scalar stress–displacement law of the (fictitious) cohesive crack
re incomplete and often insufficient characterizations of fracture. Rather, the cohesive law would have to be different for every
ossible stress state and every load path that leads to it. The role of the crack-parallel stress in concrete has long been suspected by
few investigators (Tschegg et al., 1995; Bažant and Cedolin, 1979; Bažant, 1993; Bažant and Oh, 1983), but a simple unambiguous

est was lacking until the development of the gap test in 2020 (Nguyen et al., 2020b,a).
Here we begin with a brief review of the mathematical formulation of the scaling laws presented in the preceding study (Nguyen

t al., 2021), which is needed for evaluating the gap test. This is followed by a generalization of these scaling law to capture the
ransitions between different regimes. The effect of the crack parallel stress 𝜎𝑥𝑥 on the YZ is also updated to include other crack-
arallel stress components (restricted, though, to fracture mode I). The changes in the size effect are studied experimentally on
luminum alloy over a broader range of crack-parallel compressive stress 𝜎𝑥𝑥, compared with Bažant et al. (2022). Then these
eneralized size effect formulations are used to deduce the effect of 𝜎𝑥𝑥 on the material fracture energy, 𝐽𝑐𝑟, and on the effective
adius 𝑟𝑝 of the YZ. The effect of 𝜎𝑥𝑥 on the scaling asymptotes is also clarified. It should be noted that the range of specimens sizes
onsidered here is much greater than the inhomogeneity size, which is the size of the polycrystalline grains (about 2 to 50 μm for
luminum alloy 6061 (Shankar et al., 2005; Zhang et al., 2018)). The asymptotes that are related to the sizes of YZ and FPZ can
nly be revealed by numerical modeling.

. Fracture in plastic-hardening metal

.1. Power-law stress–strain relation for plastic-hardening materials

Plastic-hardening metals can be satisfactorily described by the Ramberg and Osgood (1943) uniaxial stress–strain law (Fig. 1a,b):

𝜖 = 𝜎 + 𝛼𝑝

(

𝜎
)𝑛

(1)
2

𝜖𝑦 𝜎𝑦 𝜎𝑦
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Fig. 1. (a) Stress–strain behavior of plastic-hardening metals and response curves for different hardening exponents 𝑛; (b) Approximation with the elastic strain
neglected; (c) The release of energy density of material points in different zones (the yielding zone shape is computed for the gap test configuration).

where 𝜖𝑦 = initial yield strain, 𝜎𝑦 = initial yield stress; 𝛼𝑝 = empirical parameter (usually denoted as 𝛼, but 𝛼 is the standard notation
for the dimensionless crack length); and 𝑛 = plastic hardening exponent, typically 3 to 20 (Rice and Rosengren, 1968; Hutchinson,
1968b). The metal is considered plastically incompressible by volume, which means that it can yield only in shear. This allows us
to deal solely with deviatoric stress and strain tensors, 𝑠𝑖𝑗 and 𝑒𝑖𝑗 .

For analysis it is advantageous that the aforementioned range of exponent 𝑛 leads to such a large plastic deformation that the
elastic strain can be neglected by comparison, as assumed in the Hutchinson–Rice–Rosengren (HRR) theory (Hutchinson, 1968b;
Rice and Rosengren, 1968). One merit of the power law in Eq. (1) is that the stress–strain law becomes self-similar with respect to the
strain or stress magnitude. Together with the separated nature of the power-law singularity (demonstrated in Bažant et al. (2021) and
Nguyen et al. (2021) ), the asymptotic near-tip deformation field becomes self-similar with respect to radial affine transformations,
which makes an analytical solution feasible. The tensorial generalization of the uniaxial stress–strain law is assumed to be of von
Mises form (Anderson, 1991; Hutchinson, 1968b; Rice and Rosengren, 1968; Kanninen and Popelar, 1985):

𝜖
𝜖𝑦

= 𝛼𝑝

(

𝜎
𝜎𝑦

)𝑛
(2)

and 𝑒𝑖𝑗 =
3𝛼𝑝𝜖𝑦
2𝜎𝑦

(𝜎𝑒𝑓
𝜎𝑦

)𝑛−1
𝑠𝑖𝑗 where 𝜎𝑒𝑓 =

√

3
2 𝑠𝑘𝑙𝑠𝑘𝑙 (3)

Here the initial yield stress and strain in uniaxial tests, 𝜎𝑦 and 𝜖𝑦, must be understood as the equivalent, or effective, yield limit
parameters indicating the point where the power law for strain takes off; see Fig. 1a; 𝜎𝑒𝑓 is the scalar effective stress (possible higher-
order terms such as 𝜎(3)𝑒𝑓 ∝ 𝑠𝑘𝑚𝑠𝑚𝑛𝑠𝑛𝑘 are omitted, and the summation rule for repeated numerical cartesian subscripts (𝑚, 𝑛, 𝑘 = 1, 2, 3)

is implied). The use of the deformation theory of plasticity in HRR and in the 𝐽 -integral is a simplifying assumption, but Hutchinson
and Paris (Hutchinson and Paris, 1979) showed it to be rather accurate in this problem.

2.2. Large-scale yielding in small structures with a restricted yielding zone

Consider first the specimens so small that the YZ (Fig. 2) occupies all of the cross section and its size may get restricted by, or
interact with, the boundaries. We analyze geometrically similar specimens of different sizes 𝐷, with similar notches or cracks. It
was found in Hutchinson (1968b), Rice and Rosengren (1968) and Nguyen et al. (2021) that the near-tip fields of displacement 𝑢𝑖,
deviatoric stress 𝑠𝑖𝑗 , and deviatoric strain 𝑒𝑖𝑗 have separated forms which may be written as:

𝑢 = 𝛼 𝜖 𝑟 (𝑟∕𝑟 )𝑚𝑛+1𝐹 (𝜃) (4)
3

𝑖 𝑝 𝑦 𝑝 𝑝 𝑖
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Fig. 2. (a) Actual and equivalent YZs with the same virtual work (or volume); (b) Displacement of the equivalent YZ and FPZ as crack propagates.

𝑒𝑖𝑗 = 𝛼𝑝𝜖𝑦(𝑟∕𝑟𝑝)𝑚𝑛𝜑𝑖𝑗 (𝜃) (5)

𝑠𝑖𝑗 = 𝜎𝑦(𝑟∕𝑟𝑝)𝑚𝜓𝑖𝑗 (𝜃) (6)

where 𝜑𝑖𝑗 (𝜃) =
3
2𝜓𝑖𝑗 (𝜃)

(

3
2𝜓𝑘𝑙(𝜃)𝜓𝑘𝑙(𝜃)

)(𝑛−1)∕2
(7)

Here (𝑟, 𝜃) are the polar coordinates centered at the crack tip, with angle 𝜃 measured from the crack extension line, exponent 𝑚
is a constant and 𝑟𝑝 is the effective size (or radius) of the YZ, both to be determined later (Fig. 2a). The dimensionless angular
functions 𝐹𝑖, 𝜓𝑖𝑗 and 𝜑𝑖𝑗 represent the solutions of ordinary differential equations which can be approximately calculated by the
finite difference method (Rice, 1968b; Nikishkov, 1998) or finite element method (Levy et al., 1971), or conformal mapping (Revil-
Baudard et al., 2018; Xin et al., 2010). Note that if the elastic strains were not neglected, the above-mentioned separated fields
would still be valid but only asymptotically, close enough to the tip.

The energy flux passing through the YZ into the FPZ is given by Rice’s 𝐽 integral (Rice, 1968a):

𝐽 = ∫𝛤

(

𝑊 d𝑦 − 𝜈𝑗 𝑠𝑖𝑗𝑢𝑖,1d𝑠
)

, 𝑊 = ∫ 𝑠𝑖𝑗d𝜖𝑖𝑗 (8)

where 𝛤 is a closed contour around the crack tip, 𝑠 is the contour length coordinate, 𝜈𝑖 is the unit outward normal of the contour,
𝑦 = 𝑥2, 𝜕1 = 𝜕∕𝜕𝑥1; 𝑊 is the nonlinear strain energy density. The rate 𝐽 is meant with respect to the crack length 𝑎, not time.
The material is considered nonlinearly elastic, as if the unloading would follow the same curve as elastic loading. Therefore, the
𝐽 -integral is path-independent provided that the 𝐽 contour avoids the unloading zone in the wake of the YZ.

Conveniently we choose a circular 𝐽 -integral path, for which d𝑠 = 𝑟d𝜃 and d𝑦 = 𝑟d𝜃 cos 𝜃. From this and from Eqs. (4)–(6), we
find the radial dependence of the first term of 𝐽 -integral, ∫ 𝜋−𝜋𝑊 d𝑦 ∝ 𝑟𝑚𝑟𝑚𝑛𝑟 = 𝑟𝑚(𝑛+1)+1 (where ∝ is the proportionality sign). For
the second term of 𝐽 integral we find the same, i.e., ∫ 𝜋−𝜋 𝜈𝑗𝑠𝑖𝑗𝑢𝑖,1d𝑠 ∝ 𝑟𝑚𝑟𝑚𝑛+1𝑟−1𝑟 = 𝑟𝑚(𝑛+1)+1 (see also Appendix I of Nguyen et al.
(2021)). To satisfy the condition of path-independence of 𝐽 , the exponent of 𝑟 must vanish, i.e., 𝑚(𝑛 + 1) + 1 = 0. Hence,

𝑚 = − 1
𝑛 + 1

(9)

as shown in 1968 by Rice and Rosengren (1968) and Hutchinson (1968b). Note that, in the limit case of elastic behavior, 𝑛 = 1,
Eq. (9) would give 𝑚 = −1∕2, as it must. Also note that the requirement 𝑠𝑖𝑗𝑒𝑖𝑗 ∝ 1∕𝑟, shown in 1968 (Rice and Rosengren, 1968;
Hutchinson, 1968b), is satisfied. Eq. (9) does not apply to perfect or near perfect plasticity (𝑛→ ∞), but a separate solution for this
case was given by Hutchinson (1968a).

From Eqs. (9) and (4)–(6) for large-scale yielding in relatively small structures, one can derive the scaling laws (see Eqs. 5.3.10
in Kanninen and Popelar (1985)):

𝑢𝑖 = 𝛼𝑝𝜖𝑦𝑟𝑝(𝑟∕𝑟𝑝)
1
𝑛+1 𝐹𝑖(𝜃) (10)

𝑒𝑖𝑗 = 𝛼𝑝𝜖𝑦(𝑟∕𝑟𝑝)
− 𝑛
𝑛+1 𝜑𝑖𝑗 (𝜃) (11)

𝑠𝑖𝑗 = 𝜎𝑦(𝑟∕𝑟𝑝)
− 1
𝑛+1 𝜓𝑖𝑗 (𝜃) (12)

It became customary to characterize the structure strength in terms of the nominal structure strength, 𝜎𝑁 = 𝑃∕𝑏𝐷, which is a
load parameter with the dimension of stress; 𝑃 is the applied load, 𝑏 is the structure width (for a two-dimensional structure), and
𝐷 is the characteristic structure size, measured on geometrically similar structures at homologous locations. Evidently, for small
enough structures with large-scale yielding and a fully plasticized cross section, 𝜎𝑁 ∝ 𝑠𝑖𝑗 and 𝑟 ∝ 𝐷, and so Eq. (12) yields the
scaling law:

𝜎𝑁 ∝ 𝜎𝑦

( 𝑟𝑝
𝐷

)
1
𝑛+1

(for large-scale yielding) (13)
4
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b
l

2

𝑊

H

where the proportionality constants are omitted as irrelevant to the size effect. Note that, in the limit of 𝑛 → 1, this scaling law
ecomes 𝜎𝑁 ∝ 𝐷−1∕2, as known for LEFM. Eq. (13) is needed as an anchor for asymptotic matching of the broad-scale size effect
aw.

.3. The release of energy in different zones

Consider now a specimen large enough so that its YZ is entirely surrounded by a linearly elastic zone. The strain energy density
of the nonlinearly elastic material imagined to approximate the plastic-hardening YZ is

𝑊 = ∫ 𝑠𝑖𝑗d𝑒𝑖𝑗 (14)

The right-hand side of Eq. (12) for 𝑠𝑖𝑗 must be multiplied by a loading parameter, 𝜇. To match it, the right-hand side of Eq. (11)
must then be multiplied by 𝜇𝑛, and the expression for d𝑒𝑖𝑗 must be multiplied by 𝑛𝜇𝑛−1. Integration from 𝜇 = 0 to 𝜇 = 1 then leads
to the energy density:

𝑊 (𝑟, 𝜃) = 𝛼𝑝𝜎𝑦𝜖𝑦 𝜑𝑖𝑗 (𝜃)𝜓𝑖𝑗 (𝜃)(𝑟𝑝∕𝑟)𝑛∕(𝑛 + 1) (15)

When the crack length extends along with the advancing YZ, a part of the structure is getting unloaded. The elastic strain energy
density, 𝑊 𝑒, may be small in the YZ but significant in the elastic unloading zone. Taking into account only the deviatoric stresses
and strains, we have the elastic energy density 𝑠𝑖𝑗𝑠𝑖𝑗∕2𝐺. Substitution of 𝐺 = 𝜎𝑦∕𝜖𝑦 for the elastic shear modulus into Eq. (6) gives
the strain energy density at point (𝑟, 𝜃) of the YZ:

𝑊 𝑒(𝑟, 𝜃) =
1
2𝜎𝑦𝜖𝑦(𝑟𝑝∕𝑟)

2∕(𝑛+1)𝜓𝑖𝑗 (𝜃)𝜓𝑖𝑗 (𝜃) (16)

The irreversible part of the energy of the YZ gets dissipated by material unloading in the wake of YZ (via dislocations, stacking
faults or grain boundary microcracking). All this energy gets fully dissipated when the YZ advances by the distance 2𝑟𝑝 (Fig. 2b).
Hence, the rate of energy dissipation from the YZ is:

𝐺𝑝 =
1
2𝑟𝑝 ∫

𝜋

−𝜋 ∫

𝑟𝑝

0
[𝑊 (𝑟, 𝜃) −𝑊 𝑒(𝑟, 𝜃)]𝑟d𝜃 d𝑟 = 𝜎𝑦𝜖𝑦 𝑟𝑝𝑄𝑝 (17)

where 𝑄𝑝 =
𝑛𝛼𝑝

2(𝑛 + 1) ∫

𝜋

−𝜋
𝜑𝑖𝑗 (𝜃)𝜓𝑖𝑗 (𝜃)d𝜃 −𝑄𝑒 (18)

Similarly, all of the elastic strain energy of the YZ, which is calculated based on the elastic stiffness, gets fully released once the
YZ advances by 2𝑟𝑝 (see Fig. 1c). So the contribution of the elastic energy is:

𝐺𝑒 =
1
2𝑟𝑝 ∫

𝜋

−𝜋 ∫

𝑟𝑝

0
𝑊 𝑒(𝑟, 𝜃)𝑟d𝜃 d𝑟 = 𝑟𝑝 𝜎𝑦𝜖𝑦𝑄𝑒 (19)

where 𝑄𝑒 =
𝑛 + 1
8𝑛 ∫

𝜋

−𝜋
𝜓𝑖𝑗𝜓𝑖𝑗 d𝜃 (20)

It should be noted that 𝐽𝑐𝑟 ∝ 𝑟𝑝 and 𝑄𝑝, 𝑄𝑒 ∝ 𝜇2, 𝜇 being the loading parameter (see Appendix C).

3. Scaling of structures of hardening plastic materials — summary and updates

3.1. Size effect based on a constant yielding zone

Here, a physical analogy of quasibrittle structures may be utilized, as in Nguyen et al. (2021). The energy release rates 𝑠 and
𝑏 arise from two different zones: (1) 𝑠 is the rate (with respect to 𝑎, not time) of energy release from the unloading elastic zone
of the structure, which is approximately proportional to 𝐷 (for 𝐷 → ∞), and (2) 𝑏 is the rate of energy release in the FPZ wake of
the damage band which does not depend on 𝐷 as the band is initially under transverse tension proportional to 𝜎𝑁 .

Unlike quasibrittle materials, in which there is no plastic yielding, a plastic-hardening YZ develops between the elastic zone
and the damage zone of FPZ. In this section, we only consider the first two zones. The fully developed YZ (typically of millimeter
dimensions) plays three physical roles: (1) it conveys energy flux 𝐽 (with no energy loss, as proven by path-independence of 𝐽 -
integral) through the YZ to the crack tip; (2) it dissipates energy as the material deforms plastically; and (3) when its wake unloads,
the strain energy that was initially stored in the band of width 2𝑟𝑝 before the YZ arrived, independent of 𝐷, is released at a rate 𝑏.

ence, the balance of energy rates requires that:

𝑠 + 𝑏 = 𝐽𝑐𝑟 (21)

For 𝑏 we can use a constant characteristic length, analogous to 𝑐𝑓 , equal to the equivalent size of the yielding band, 𝑟𝑝; so
𝑏 = (𝜎2𝑁∕𝐸′) 𝑔′0𝑟𝑝. For 𝑠 we can use the same definition as for a quasibrittle material, i.e., 𝑠 = (𝜎2𝑁∕𝐸′)𝐷𝑔0. Substituting the
terms contributing to the energy release rate, we get the condition of energy conservation:

𝜎2𝑁 𝐷𝑔 +
𝜎2𝑁 𝑔′ 𝑟 =  +  (22)
5

𝐸′ 0 𝐸′ 0 𝑝 𝑠 𝑏
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Upon solving for 𝜎𝑁 , we obtain the size effect law for fracture of plastic-hardening metals:

𝜎𝑁 =
𝜎0

√

1 +𝐷∕𝐷0
(23)

This size effect law has the same form as the SEL of quasibrittle structures (Appendix A, Eq. (59)). Its coefficients, though, are
expressed differently:

𝜎20 = 𝐸′𝐽𝑐𝑟∕𝑔0𝐷0, 𝐷0 = 𝑔′0𝑟𝑝∕𝑔0 (24)

The asymptotes of this law are also the same as for the SEL:

𝜎𝑁 ⇒
𝐷 → 0

𝜎0 = constant, 𝜎𝑁 ⇒
𝐷 → ∞

𝐷−1∕2 (25)

The size effect on structure strength is the quintessential characteristic of all fracture behavior, the plastic-hardening metals
ncluded, and the size effect method is an unambiguous way to determine the fracture energy and estimate the FPZ or YZ size. For
he size effect law (23) to apply to metals, 𝑟𝑝 must, of course, remain approximately constant through various structure sizes. This
s confirmed in Fig. A.1 by finite element (FE) results for different sizes, based von Mises plasticity. The effective size 𝑟𝑝 roughly
epresents the radius of a circle having approximately the same area as the fully developed YZ, provided that the boundary is at
east at distance 1.5𝑟𝑝 from the crack tip and the structures of different sizes reach about the same value of 𝐽 -integral (this value
ay best be computed by the equivalent domain integral (Rice, 1968a; Li et al., 1985) using the finite element method (FEM)).

Calculations show that 𝑟𝑝 remains approximately constant through different structure sizes except when the size is too small.
espite the irregular shape of YZ (Fig. A.3) this distance normally suffices for the YZ not to touch the boundary. The approximate
onstancy of 𝑟𝑝 is nevertheless not universal, and the crack-parallel stress affects 𝑟𝑝.

Similar to the original quasibrittle energetic size effect law (Appendix A), Eq. (23) can be rearranged as linear regression:

𝑌 = 𝐴𝑋 + 𝐶 where 𝑋 = 𝐷, 𝑌 = 1∕𝜎2𝑁 (26)

𝐴 = 1∕𝜎20𝐷0, 𝐶 = 1∕𝜎20 (27)

itting these equations to test data, one can identify the fracture energy 𝐽𝑐𝑟, as well as the effective width 2𝑟𝑝 of the YZ. To do
o, one needs only the maximum loads for specimens of sufficiently different sizes (this allows dispensing with postpeak softening
easurements, even though they are known to greatly help accuracy in the case of concrete). After determining the value of 𝑔0

and 𝐸′), a linear regression of the measured (𝑋, 𝑌 ) values furnishes 𝐴 and 𝐶. As a result, 𝜎0 = 1∕
√

𝐶 and 𝐷0 = 𝐶∕𝐴. Finally, the
racture energy of the structure can be computed as:

𝐽𝑐𝑟 = 𝑔0∕𝐸′𝐴, 𝑟𝑝 = 𝑔0𝐶∕𝑔′0𝐴 (28)

.2. Size effect based on yielding zone restricted by the structure boundary

When the structure size is not large enough, being such that the distance from the notch to the boundary in the 𝑥-direction is
ess than the size of the fully developed YZ, we have a transition from small-scale yielding to large-scale yielding, and a restricted
Z size must be considered. Denote this size as 𝐷 = 2𝑟∕ℎ̃0 where ℎ̃0 = ℎ̃(𝛼0) and ℎ̃(𝛼) is a dimensionless function depending on the

geometry of the specimen and the hardening power, and 2𝑟 is the diameter of an equivalent annular structure. Similar to Eq. (12),
𝑠𝑖𝑗 ∝ 𝜎𝑁 and 2𝑟 is replaced by ℎ0𝐷, we can write 𝜎𝑁 = 𝜎𝑦(2𝑟𝑝∕ℎ̃0𝐷)

1
𝑛+1 , where 𝑟𝑝 is supposed to be the effective radius of the YZ if

such a zone is allowed to fully develop (as if it were not restricted by the boundary). Therefore,

2𝑟𝑝 = (𝜎𝑁∕𝜎𝑦)𝑛+1ℎ̃0𝐷 (29)

The linear elastic strain energy that was initially stored in the material and was subsequently released by the passage of the YZ
is, per unit length in the 𝑥-direction, obtained by replacing 𝐺𝑏 in Eq. (22);

𝑏 =
𝜎2𝑦
𝐸′

(

𝜎𝑁
𝜎𝑦

)𝑛+1
ℎ0𝐷 (30)

where ℎ0 is a function of ℎ̃0 and the plastic-hardening constants. Note that we use 𝜎2𝑦∕𝐸
′ instead of 𝜎2𝑁∕𝐸′ to express the

correspondence between the fully developed YZ size and its equivalent elastic energy density. Using 2𝑟 = ℎ̃0𝐷, we can also derive 𝐺𝑏
rom Eqs. (11)–(12) and 𝜎2𝑦∕𝐸′(𝜎𝑁∕𝜎𝑦)𝑛+1 can be interpreted as the energy density scaled with the real structure size 𝐷. Substituting
his equation into the energy balance Eq. (21), one gets:

𝜎2𝑦
𝐸′

(

𝜎𝑁
𝜎𝑦

)2
𝑔0𝐷 +

𝜎2𝑦
𝐸′

(

𝜎𝑁
𝜎𝑦

)𝑛+1
ℎ0𝐷 = 𝐽𝑐𝑟 (31)

Again, this equation differs only by the second term from Eq. (22). We may rewrite it as follows and then solve it numerically:

𝐴𝑋𝑛+1 + 𝐵𝑋2 = 𝐶 in which (32)
′ 2
6

𝐴 = ℎ0𝐷, 𝐵 = 𝑔0𝐷, 𝐶 = 𝐸 𝐽𝑐𝑟∕𝜎𝑦 , 𝑋 = 𝜎𝑁∕𝜎𝑦 (33)
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Alternatively, the procedure described in Nguyen et al. (2021) leads to an approximate, yet rather accurate, closed-form scaling
aw:

𝜎𝑁 = 𝜎0

[

(

𝐷∕𝑐𝐷0
)

√

2∕(𝑛+1) +
(

𝐷∕𝐷0
)

√

(𝑛+1)∕2
]−1∕

√

2(𝑛+1)
(34)

where

𝑐 = 𝑔0∕ℎ0; 𝜎0 = 𝜎𝑦, 𝐷0 = 𝐸′𝐽𝑐𝑟∕𝜎2𝑦𝑔0 (35)

s 𝑛+ 1 > 2, the power of the first term in the brackets will be smaller than that of the second term. Based on this observation, the
symptotes of this scaling law can be written:

𝜎𝑁 ⇒
𝐷 → 0

𝐷−1∕(𝑛+1), 𝜎𝑁 ⇒
𝐷 → ∞

𝐷−1∕2 (36)

he fracture energy and the effective radius of the YZ, which is what sets the length scale, can then be computed:

𝐽𝑐𝑟 = 𝜎2𝑦𝑔0𝐷0∕𝐸′, 𝑟𝑝 = 𝑔0𝐷0∕2 (37)

.3. The scaling law of the transition from micrometer to millimeter-scale structures

Polycrystalline metals have a simpler microstructure than concrete and most quasibrittle materials. However the scaling of their
trength is more complicated. While the damage zone of concrete, about 0.5 m in size, is surrounded by an elastically unloading
aterial, in metals a large hardening YZ is inserted between the damage zone and the elastic zone. Being of millimeter dimensions

when fully developed), it is three orders of magnitude larger than the width of the damage zone, which is of micrometer dimensions
nd represents the FPZ.

So far we considered the scaling law when only the YZ and the elastic unloading zone are present. In this section, we consider a
tructure of several to a hundred micrometer dimensions, in which the distance to the structure boundary is only few times larger
han the FPZ. We note that the damage in the FPZ of metals and alloys (except for special cases such as the embrittlement caused by
he hydrogen absorption along the grain boundaries) stems from the void formation due to the mismatch between polycrystal grains,
xcessive dislocation, and coalescing point defects (voids). In any case, these defects accumulate within a damage softening volume
ear the crack tip. We assume that the extent (nominal size) of this volume remains approximately constant when the structure is
eometrically scaled.

The energy release rate in Eq. (21) may be rewritten in terms of 𝑏 and ℎ, the latter of which gives the energy release rate
rom the FPZ. Due to the foregoing assumption, we use a constant characteristic length scale 𝑐𝑓 . The emergence of this term is due
o the expansion of the energy release rate of the HRR field (in which 𝑎 = 𝑎0 + 𝑐𝑓 ):

𝜎2𝑦
𝐸′ 𝐷ℎ(𝛼)

(

𝜎𝑁
𝜎𝑦

)𝑛+1
= 𝐺𝑓 ; where ℎ(𝛼) ≈ ℎ(𝛼0) + ℎ′(𝛼0)

𝑐𝑓
𝐷

(38)

⇒
𝜎2𝑦
𝐸′ ℎ0𝐷

(

𝜎𝑁
𝜎𝑦

)𝑛+1
+
𝜎2𝑦
𝐸′ ℎ

′
0𝑐𝑓

(

𝜎𝑁
𝜎𝑦

)𝑛+1
= 𝑏 + ℎ = 𝐽𝑐𝑟 (39)

fter solving for 𝜎𝑁 , a new size effect law emerges:

𝜎𝑁 = 𝜎0
(

1 +𝐷∕𝐷0
)−1∕(𝑛+1) (40)

The form of this law is similar to the SEL for quasibrittle structures (Appendix A, Eq. (59)), except for the power. Its parameters
and asymptotes are:

𝜎0 = 𝜎𝑦
(

𝐸′𝐽𝑐𝑟∕𝜎2𝑦ℎ
′
0𝑐𝑓

)1∕(𝑛+1)
, 𝐷0 = 𝑐𝑓ℎ

′
0∕ℎ0 (41)

𝜎𝑁 ⇒
𝐷 → 0

𝜎0 = constant, 𝜎𝑁 ⇒
𝐷 → ∞

𝐷−1∕(𝑛+1) (42)

The relevant fracture properties can then be computed:

𝐽𝑐𝑟 = 𝑏 + ℎ =
(

𝜎0
𝜎𝑦

)𝑛+1 𝜎2𝑦ℎ0𝐷0

𝐸′ , 𝑐𝑓 = ℎ0𝐷0∕ℎ′0 (43)

3.4. Three asymptotic scaling regimes

As a consequence of Eqs. (23), (34), (40), the combined scaling law consists of two transitions between three power-law
asymptotes appearing as straight lines in the logarithmic-scale plot of strength versus size. An intermediate asymptote (in the sense
of Barenblatt (1979)) is inserted between the horizontal small-size asymptote for damage in the FPZ and a large-size asymptote of
slope −1∕2 for linear elastic fracture mechanics (LEFM); see Fig. 3. Thus we need to consider the size effects for:
7
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Fig. 3. (a) Three-asymptotic scaling law to describe fracture of plastic-hardening polycrystalline metals and (b) its validation based on Bai–Wierzbicki’s model (Bai
nd Wierzbicki, 2010). Two length scales are separated by the ratio between the FPZ and YZ sizes, which is 𝑐 = 0.0184.

(1) the transition from the small-size asymptote to the intermediate asymptote, which applies to large-scale yielding in relatively
mall specimens in which the YZ size is restricted by the boundaries;

(2) the transition from the intermediate asymptote, which applies for small-scale yielding in relatively large specimens, to the
arge-scale asymptote for LEFM; and

(3) the direct transition from damage to LEFM, which skips the intermediate asymptote and applies only to specimens much
arger than the YZ.

The combined scaling law can be expressed by an equation formally identical to Eq. (34) except for a different meaning of 𝑐:

𝜎𝑁 = 𝜎0

[

(

1 +𝐷∕𝑐𝐷0
)

√

2∕(𝑛+1) +
(

𝐷∕𝐷0
)

√

(𝑛+1)∕2
]−1∕

√

2(𝑛+1)
(44)

The three asymptotes of this law are:

𝜎𝑁 ⇒
𝐷 → 0

𝜎0 = constant, (45)

𝜎𝑁 ⇒
𝐷 ≫ 𝑐𝐷0 and 𝐷 ≪ 𝐷0

𝐷−1∕(𝑛+1), (46)

𝜎𝑁 ⇒
𝐷 → ∞

𝐷−1∕2 (47)

Here 𝑐, in contrast to (34), represents the approximate ratio of the FPZ size to the fully developed YZ size. In quasibrittle materials,
ue to the nonexistence of the plastic-hardening YZ, the first and the third regimes dominate and the second regime disappears.
he fracture characterizing properties can then be calculated from:

𝐽𝑐𝑟 = 𝜎20𝑔0𝐷0∕𝐸′, 𝑟𝑝 = 𝑔0𝐷0∕𝑔′0, 𝑐𝑓 = 𝑐𝑟𝑝 (48)

The transition of the nominal strength between asymptotes in Eq. (44) when the structure size 𝐷 increases reflects the
haracteristics of the dominating volume at each structure size. The scaling law will reduce to the original type 2 SEL in quasibrittle
aterials if the second asymptote vanishes, which corresponds to the disappearance of the YZ that delimits the elastic zone and the

PZ.
Since experimental results of the energetic size effect of microscale metallic structures are unavailable, the data to validate the

caling law in Eq. (44) have been generated numerically using the damage constitutive law developed by Bai and Wierzbicki (2008)
nd Bai and Wierzbicki (2010).

Three-dimensional finite-strain simulations having the same geometry as in Nguyen et al. (2021) were used. The element sizes
t the crack front were chosen to be the same as the grain size of polycrystal (the rationale behind the selection is discussed later).
he same element size was used for all geometrically scaled structures, in accordance with Bažant and Oh (1983). The parameters
f the constitutive law and the fitting of the material characterization tests are presented in Appendices E and F.

Although the Bai–Wierzbicki model contains no length scale, the fracture energy value is implied by using finite elements of
size equal to the material characteristic length 𝑙0. As indicated in Bažant and Planas (1998) and Bažant and Oh (1983), 𝑙0 is

ypically equal to one to just a few grain sizes (Bažant, 1984a). Its proper value is best obtained from the transitional size in size
ffect experiments. If a larger element size has to be used, one may (with some loss of accuracy) tune the dissipated energy value so
hat the energy dissipated per element remain approximately the same. However, for this study, the same element size has always
een used in the crack-front region for specimens of different sizes 𝐷.

To generate consistent numerical results for the scaling law, the initial notch width was taken to be the same for all the different
tructure sizes. Fig. 3 demonstrates a good fit of the numerical results to Eq. (44), and thus reveals the scale separation in the
8

luminum alloy tested.
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Even though the size of the plastic-hardening YZ must be, and is, independent of the element size, the FPZ size in the crack
and model is not. In fact, the phenomena that cause softening within the FPZ, i.e., the voids nucleation and coalescence at the
rain boundaries and the excessive cumulative dislocation density, are always associated with an intrinsic length scale. For example,
he grain size in a polycrystalline solid will determine the distance between the growing voids (see the discussion of the grain in
ppendix G).

The front diameter of the notch was ≈600 μm (Fig. A.2a), which is one order magnitude greater than the finite element size.
his might be thought to be excessive, but FE studies show it is not, for the present analysis based on large crack growth in the size
ffect tests. True, the notch needs to be very sharp for observing the initial crack growth, as in R-curve testing or in fatigue growth
nitiation. But what matters here is that the notch tip is narrow compared to the YZ. After large crack growth within a large YZ, as
n postpeak response, what matters is the crack tip rather than the notch tip. The fracture energy for initial crack growth would,
f course, change with the notch width, in the same manner as it does for alumina A.2b. However, this will not alter the present
onclusions whose main focus is the effect of the externally applied crack-parallel stress on the fracture energy.

. Effect of crack-parallel stress

So far, we have only considered scaling laws based on the effective size of the YZ and the characteristic size of the FPZ, yet
heir attributes have not been discussed. Many authors (O’Dowd and Shih, 1991, 1992; Xia et al., 1993; Gao et al., 1996) showed
hat a stress (𝜎𝑥𝑥) parallel to the crack plane and proportionally increasing with the load had a significant effect on the 𝑅-curve and

on the 𝐽𝑐𝑟 of metals and alloys through its effect on the YZ. In addition, Nguyen et al. (2020b) and Nguyen et al. (2020a) showed
that a constant parallel stress of different levels would modify the size of the FPZ of quasibrittle materials non-monotonically. It is,
therefore, necessary to determine the effective size of YZ, 𝑟𝑝, and the characteristic size of the FPZ, 𝑐𝑓 , as functions of 𝜎𝑥𝑥, 𝜎𝑧𝑧, 𝜎𝑥𝑧.

4.1. Crack-parallel stress effect on the yielding zone size

Up to the second term of the LEFM near-tip asymptotic expansion (Williams, 1952), the elastic near-tip field of 𝜎𝑖𝑗 is

𝜎𝑒𝑙𝑖𝑗 = (𝐾𝐼∕
√

𝑟)𝑓𝑖𝑗 (𝜃) + 𝑇11𝛿𝑖1𝛿𝑗1 + 𝑇33𝛿𝑖3𝛿𝑗3 + 𝑇13
(

𝛿𝑖1𝛿𝑗3 + 𝛿𝑖1𝛿𝑗3
)

∕2 (49)

here 𝑇𝑖𝑗 = field of uniform normal stress parallel to the crack plane; 𝑓11(𝜃) = cos 12 𝜃(1 − sin 1
2 𝜃 sin

3
2 𝜃)∕

√

2𝜋, and 𝑓13, 𝑓23 = 0 (Bažant
and Planas, 1998, p.86); 𝐾𝐼 =

√

𝐸′𝐺𝑓 = mode I stress intensity factor; 𝐸′ = 𝐸, 𝑇33 = 0 for plane stress and 𝐸′ = 𝐸∕(1−𝜈2), 𝑇33 = 𝜈𝑇11
for plane strain (𝜈 = Poisson ratio, 𝐸 = Young’s modulus); 𝑇13 = 0 in both 2D cases. The stress field is computed using the modified
boundary layer method based on an imagined circle containing the entire plasticized volume. This formulation is appropriate for
small-scale yielding in which the 𝜎𝑒𝑙𝑖𝑗 field prevails at sufficiently large 𝑟. For small 𝑟, the near-tip singular plastic-hardening field is
given by Eq. (6) :

𝜎𝑝𝑙𝑖𝑗 = 𝜎𝑦(𝑟∕𝑟𝑝)
− 1
𝑛+1 𝜓𝑖𝑗 (𝜃) (50)

The size and shape of the YZ bordering on the outer elastic stress field is complicated, as illustrated in Fig. 2a. For a scaling
law spanning several orders of magnitude of structure size, it suffices to have a rough estimate of the effective radius 𝑟𝑝 of this
plastic-hardening YZ. Although the precise size and shape of this zone is not important for the global behavior, they need to be
considered to calculate 𝑟𝑝. As proposed by Hutchinson and Rice, one needs to determine 𝑟𝑦 as the 𝑟-value at which the equivalent
stress is equal to 𝜎𝑦 (Anderson, 1991), while the elastic stresses in the outer field and the and plastic-hardening stresses in the
inner field are in overall force equilibrium (Hutchinson, 1968b; Kanninen and Popelar, 1985). The equilibrium should properly be
considered for different angles 𝜃, each of which gives a different 𝑟𝑦, and one must either choose one characteristic angle 𝜃 (usually
𝜃 = 0) or conduct some sort of averaging over all 𝜃 to get a unique 𝑟𝑝.

Another matching method was proposed in 2021 in Nguyen et al. (2021). It uses the virtual work equivalence to identify the
optimal 𝑟𝑝 for which the inner and outer stress fields are in equilibrium. This virtual work equivalence is imposed to find a new
effective radius 𝑟′𝑝 at which equilibrium is attained. We set

𝑟′𝑝 = 𝑟𝑝𝜁 (51)

where parameter 𝜁 is identified from a virtual equilibrium equation ensuring the resultants of the elastic and plastic stresses in the
propagation direction 𝑥1 to be equal, i.e.,

∫

𝜋

−𝜋 ∫

𝑟′𝑝

0
𝜎𝑒𝑙11 𝑟d𝜃 d𝑟 = ∫

𝜋

−𝜋 ∫

𝑟′𝑝

0
𝜎𝑝𝑙11 𝑟d𝜃 d𝑟 (52)

Substituting Eqs. (49) and (50), integrating and rearranging Eq. (52), we obtain:

𝑟′𝑝 = 𝜁𝑟𝑝 =
𝜅 𝑙0

(1 − 𝜂𝑇11∕𝜎𝑦)2
where (53)

𝑙0 =
𝐸′𝐺𝑓

2
, 𝜅 =

(

𝐶𝑒
)2

, 𝜂 = 𝜋 (54)
9

𝜎𝑦 𝐶𝑛𝐶𝑝 𝐶𝑛𝐶𝑝
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𝐶𝑛 =
𝑛 + 1
2𝑛 + 1

, 𝐶𝑝 = ∫

𝜋

−𝜋
𝜓11(𝜃)d𝜃, 𝐶𝑒 =

2
3 ∫

𝜋

−𝜋
𝑓11(𝜃)d𝜃 (55)

where 𝑙0 = 𝐾2
𝐼𝑐∕𝜎

2
𝑦 = Irwin’s material characteristic length and the other constants are dimensionless.

More accurately. one could take into account all the stress components by means of a 𝐽2-equivalent stress;
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Unlike Eq. (52), the effective size 𝑟′𝑝 would then depend on 𝑇11, 𝑇33 and 𝑇13. But the estimate of 𝑟′𝑝 would not change significantly.
Note that we neglect here the effects of plate thickness, expected to be minor. One is the ‘‘wall effect’’ related to the size of the

inhomogeneities (Bažant, 1996). It could matter only if the thickness of the specimen was of a similar size range as the grains in
polycrystalline metal, which is on the order of a few micrometers. The second is the plastic ‘‘shear lip’’ (Krafft et al., 1961). The
third is the 3D singularity at the intersection of the crack front edge with the plate surface, which requires the crack front edge to
terminate at the boundary at a certain angle at which the singularity is of the (−1∕2)-power law type if the crack propagates (Bažant
and Estenssoro, 1979). However, the effect of the nonuniform stress state across the thickness must be accounted for, which leads
to a non-zero 𝜎𝑧𝑧 arising at the crack tip (as discussed in the next section). The apparent fracture energy is therefore defined by the
fracture energy measured in the thickest specimens (Anderson, 1991).

4.2. Historical distinction between intrinsic and extrinsic crack-parallel stresses

Depending on the geometry, some loads generate, according to elasticity, non-zero nonuniform crack-parallel 𝑇 -stresses. They
are nonuniform and proportional to the load 𝜇, and we call them ‘‘intrinsic’’ in this study to distinguish them from the ‘‘extrinsic’’
ones which are applied externally. Their effect, called stress triaxiality, was first studied in 1991 by O’Dowd and Shih (1991) and
O’Dowd and Shih (1992), using a modified boundary analysis. Due their spatial variation, interpretation of their effect on fracture
is ambiguous. Zhu and Leis (2006), Lu and Meshii (2014), Narasimhan and Rosakis (1990) and Zehnder and Rosakis (1990) showed
that, in general, the bending configurations suffered from the intrinsic 𝑇 -stresses less than the tensile ones. The notch-to-depth
ratio of the specimens also played a key role. For each of several structure sizes, the magnitude of intrinsic 𝑇11-stress generated
at the maximum load was compared with the extrinsic value and we concluded that the notch-to-depth ratio of 0.33 generated a
negligible intrinsic 𝑇 -stress (≈ 5% of the extrinsic 𝑇11), see Fig. 4a. This is in line with the conclusion in Lu and Meshii (2014). The
proportionality between the intrinsic 𝑇 -stresses and the nominal strength is usually called by the biaxiality ratios, i.e., 𝑇11

√

𝜋𝑎∕𝐾𝐼
and 𝑇33

√

𝜋𝑎∕𝐾𝐼 .
While the intrinsic 𝑇11-stress is negligible in the gap test configuration, the intrinsic 𝑇33-stress is not. As shown in Figs. 4b–c,

𝑇33-stress is negative and its magnitude increases with decreasing 𝑏∕𝐷. This is due to the fact that the material points closer to
the mid-plane of the specimen experience a plane-strain stress state while those closer to the free surfaces are under plane stress.
Therefore, the greater the thickness 𝑏 of the specimen, the larger the zone exhibiting higher stress triaxiality. Although the maximum
value of this stress can be as high as −200 MPa (Fig. 4b), the averaged value over the entire YZ remains small, except when 𝑏∕𝐷 < 0.2
(Fig. 4c) for which there is a significant deviation from the plane-strain condition as plane-stress develops (Larsson and Carlsson,
1973; Lv et al., 2018). This behavior leads to a deviation from the assumption of constant 𝑟𝑝 (Fig. 4d) and to a significant change
of the size and shape of the YZ. The effect of these intrinsic 𝑇 -stresses on the size of the YZ was carefully studied in Zhu and Leis
(2006), Kirk and Dodds (1992), Yeh et al. (2006), Miao et al. (2017), Sobotka and Dodds (2011), Matvienko (2014) and Matvienko
(2015). A three-dimensional scaling of the gap test as well as the three-point bend and compact tension tests, in which 𝑏∕𝐷 would
be kept constant, would alleviate the aforementioned problems.

The approximate constancy of 𝑟𝑝 in Figs. 4d and A.1 (when 𝐷 ≤ 48 mm at 𝑏 = 10 mm) is important for the validity of the scaling
laws in Eq. (23), (34), (40), (44).

Note that for quasibrittle materials, in which the YZ is absent, the effect of the intrinsic 𝑇 -stresses is negligible. This is important
ot only for the original gap tests of concrete (Nguyen et al., 2020b,a) but also for the latest gap tests of the cross-ply fiber
omposites (Brockmann and Salviato, 2022).

. Gap tests of aluminum alloy 6061-T651

The ‘‘intrinsic’’ crack-parallel stresses that arise and proportionally increase with the crack-driving load have been considered,
ut only for the specimen geometries used in standard testing. These stresses, sometimes referred to as crack-tip constraints,
ave been shown to significantly affect the material fracture energy. Yet, their effect was investigated only by numerical
imulations (Larsson and Carlsson, 1973; Miao et al., 2017; Gupta et al., 2015; Liu et al., 2019; Yuan and Brocks, 1998) or via
ndirect experiments (Hancock et al., 1993; Joyce and Link, 1995; Shen et al., 2005). In these experiments, the intrinsic stresses
ary during loading and can be altered only by changing the specimen geometry and loading configuration. Such experiments have
een difficult to interpret unambiguously.

The advantage of the gap test is that it yields easily interpreted unambiguous results and is simple to carry out. For a description
f its experimental setup and loading apparatus, see Nguyen et al. (2020b) and Nguyen et al. (2020a). Briefly, the end supports of a
tandard notched three-point bend beam are installed with suitable gaps and, next to the notch, the specimen is supported by elastic
10
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Fig. 4. (a) The dependence of intrinsic 𝜎𝑥𝑥 (or 𝑇11) on the notch-to-depth and thickness-to-depth ratios, i.e., 𝛼 = 𝑎∕𝐷 and 𝛽 = 𝑏∕𝐷. (b) The dependence of
intrinsic 𝜎𝑧𝑧 (or 𝑇33) on 𝛼 and 𝛽; the solid curves represent the stress value at mid-plane and at a radial distance of 𝑟 = 0.5 mm from the tip and the dashed
curves represent the stress value averaged over the entire YZ. (c) The averaged 𝜎𝑧𝑧 value remains small when 𝐷 < 50 mm, which results in a small variation
(< 5%) of the effective YZ size 𝑟𝑝 (d). When 𝐷 > 50 mm, the YZ size significantly deviates from the constancy assumption.

perfectly-plastic pads (Nguyen et al., 2020a, Fig. 3). Under vertical load at midspan, the pads first generate a field of crack-parallel
compressive stress 𝜎𝑥𝑥, which is almost uniform near the notch tip. When the pads begin yielding, under nearly constant load, the
end gaps close (Nguyen et al., 2020b, Figs. 1a-c) and then the end reactions begin applying a bending moment, which causes mode I
fracture growth at the crack tip. For evaluation it is advantageous that the load-support system is statically determinate, both before
and after the gaps close while the pads yield.

Another advantage is that one can apply the size effect method (Bažant and Kazemi, 1991; Nguyen et al., 2021) to determine
the fracture energy, 𝐽𝑐𝑟, and the size of the inelastic zone, either YZ or FPZ. To this end, the tests must be carried out on specimens
of distinctively different sizes, preferably, though not necessarily, geometrically scaled. The gap test has originally been applied to
concrete (Nguyen et al., 2020b,a). Soon it was extended to fiber composite (Brockmann and Salviato, 2022) (gap tests of shale and
fiber-reinforced concrete are also underway). The limited preliminary gap tests of aluminum mentioned in Bažant et al. (2022) have
now been extended and are reported here.

Polypropylene pads of the right shape and cross section were found to yield at the stress level comparable to the compressive
strength of concrete (Nguyen et al., 2020b,a). However, in the present tests of aluminum alloy 6061-T651, the supporting pads
were made of polyvinyl-chloride (PVC) and pure copper (Cu), which sufficed to achieve constant crack-parallel stresses of 14.4%
and 38.6% yield strength of the tested aluminum alloy. To characterize their basic properties, these three elasto-plastic materials
were tested according to the ASTM standards—E9-19 for Al and Cu, and D695-15 for PVC. Fig. 5a shows the stress–strain results
of the cylindrical specimens with diameter 2𝑟 = 20 mm and height 𝐻 = 60 mm for Al and Cu, and 2𝑟 = 15 mm and 𝐻 = 30 mm for
PVC. The strain rates were 0.005 mm/s for the metals, and 0.0008 mm/s for the PVC. The deformed shapes are shown in Fig. 5b.
The plastic buckling and bulging seen in the figures occurred after the peak load, which is irrelevant for the gap test.

Additional compression tests of Cu and PVC were carried out on specimens of the same shape as the pads used. The stress–strain
curves recorded are shown in Fig. 5c,d for the PVC and Cu. The plastic plateaus of the pad materials, required for the crack parallel
stress levels in the notched Al beams, were −67 MPa and −172 MPa. Since the yield strength of Cu, 355 MPa, is much higher than
172 MPa, the average stress in the pads had to be reduced. This was achieved simply by drilling holes in the Cu pad, as seen in
Fig. 5d.

The single-edge notched beam specimens of aluminum, scaled geometrically in 2D with constant aspect ratio of 1:4 and notch-to-
depth ratio of 0.33, and with the same width of 10 mm, are shown in Fig. 6a,b. Their depths are 12, 24, 48 and 96 mm. Fig. 6c,d show
the results of standard three-point bend tests (with no gaps, no pads). A specimen of one size, as deformed in postpeak softening,
11
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Fig. 5. (a) Uniaxial stress–strain curves of aluminum (Al), copper (Cu) and polyvinyl-chloride (PVC); (b) The deformed shapes of Al, Cu and PVC loading pads
after compression test; (c,d) compression tests of PVC pad and perforated Cu pad.(Note: 𝑤 and 𝑡 are the cross sectional dimensions and 𝑟 is the radius.)

Fig. 6. (a) The geometry of the Al specimens used; (b) Geometrically similar specimens of four scaled sizes; (c) The load–deflection curves of the scaled
specimens; (d) Failure and grown crack image in 8D sized specimen.

is seen in Fig. 6d. It is restrained by stiff vertical straps to prevent lateral buckling. In smaller specimens the buckling restraint was
unnecessary.

Stronger supports against lateral buckling had to be used in the specimens with pads, as seen in Figs. 7a and 8a on the left.
On the right, one can see 8 recorded load–deflection curves with Al and Cu pads, generating compressive crack-parallel stresses
−67 MPa and −172 MPa. The second rising portions of the curves represent the effect of the bending moments after the gaps at
beam ends have already closed (the initial convex curvatures are due to gradual seating of the pads or beam end supports, which
must be disregarded).
12
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Fig. 7. (a) The loading scheme of the gap tests using PVC pads and corresponding failure and cracking; (b) The load–deflection curves of the gap tests using
PVC pads generating a 67 MPa crack-parallel compression in the Al specimens.

Fig. 8. (a) The loading scheme of the gap tests using Cu pads. and the corresponding failure and cracking; (b) The load–deflection curves of the gap tests
using Cu pads that generate a 172 MPa crack-parallel compression in the Al specimens.

Ideally, a near-horizontal plateau controlled by the pads should have developed on these curves before reaching the ‘‘hill’’ with
the second rise of load. Such a plateau, unfortunately, has not been attained for all the load–displacement curves; see Figs. 7–8.
Rather, a small rise was observed in these cases, yet it was taken into account in post-processing so that the real peak loads could
be extracted (repeating these tests with bigger gaps or with pads of different types, so as to achieve a plateau, was not possible).
But note that what really matters is the stress of the pads at the peak load (hidden below the ‘‘hill’’). Though not identifiable from
these diagrams, a baseline yield behavior was extrapolated by FEM. The validity of this evaluation is supported by the systematic
trend of the results plotted in Fig. 9a,b. The post-mortem analysis showed no evidence of shear lip.

6. Results of gap tests of aluminum and their discussion

The data points in Fig. 9 show the measured peak nominal stress values 𝜎𝑁 for scaled gap tests of 4 different sizes 𝐷 =
12, 24, 48, 96 mm, and for 3 different levels of crack-parallel stress levels (𝜎𝑥𝑥 was plotted as a ratio of the yield strength 𝜎𝑦 and
the compression was shown as negative values). The 3 solid curves in Figs. 9a–b represent the optimal fits of the data points with
the scaling laws in Eqs. (23) and (34), respectively. Note the systematic trends of the data points. Also note that the structures with
𝐷 = 96 mm were omitted due to the low 𝑏∕𝐷 ratio (hence a large negative 𝜎𝑧𝑧). These structures therefore had a larger YZ (see
Fig. 4d) and their peak loads were typically higher than the fitted size effect curves (see data points marked by × in Fig. 9). For the
three stress levels, the coefficients of variation of regression errors (defined as the root-mean-square error divided by data mean)
are 9.7%, 1.5% and 6.2%, which is quite low. The fact that these trends are so systematic lends credence to our assumption that
the lack of visible plateau in Fig. 8 did not spoil the results significantly.
13
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Fig. 9. (a) The fitting of the scaling law in Eq. (23) against experimental data of aluminum with different structure sizes 𝐷 at three different crack-parallel
stress levels 𝜎𝑥𝑥∕𝜎𝑦; (b) ditto, but Eq. (34) is used instead.

Fig. 10. The variation of (a) fracture energy and (b) the effective size of YZ with crack-parallel stress 𝜎𝑥𝑥.

Further note in Figs. 9a–b that the LEFM size effect slope of −1∕2 is still far from being attained, even for the largest specimens.
This means that a much larger size would be needed for the material to follow the LEFM (i.e., to attain the small-scale yielding
range, see Appendix B). Also note that what determines the fracture energy 𝐽𝑐𝑟 is the position of the LEFM asymptote of slope −1∕2,
which is marked by a dashed line for each curve. The shift of the asymptote to the right means an increase of 𝐽𝑐𝑟. Obviously, these
asymptotes for the three levels of 𝜎𝑥𝑥 are shifted relative to each other (Fig. 9), which means that the 𝐽𝑐𝑟 values for different 𝜎𝑥𝑥
are quite different (Fig. 9). The extension of the −1∕(𝑛 + 1) asymptote to the right (due to the increase of the transition size 𝐷0)
indicated an enhancement of ductility of the aluminum alloy.

Figs. 9a and b show the same test results for two different scaling laws. The fracture energy values obtained from the fitting
of these two equations are plotted in Fig. 10 for the three levels of crack-parallel stress 𝜎𝑥𝑥 used in the tests. The closely matched
fracture energy from these fittings implied that their underlying assumptions were both valid at the chosen size range. However,
when 𝜎𝑥𝑥 increased, the YZ might grow larger than the ligament length of the specimens, leading to a deviation of the computed 𝑟𝑝
between these equations. However, in this case, 𝑟𝑝 obtained from Eq. (34) is more reliable as it does not hinge on the assumption
of small-scale yielding.

The enhancement of 𝐽𝑐𝑟 and 𝑟𝑝 with increasing crack-parallel compression 𝜎𝑥𝑥, as seen in Figs. 10a–b, is remarkably strong,
stronger than for concrete. The 𝐽𝑐𝑟 value at 𝜎𝑥𝑥 = 0 is ≈ 51 kN/m perfectly matches the one measured in Nguyen et al. (2021)
and is confirmed by 𝐽 -integral for the same material. A major part of this enhancement is due to the effect of 𝜎𝑥𝑥 (or 𝑇 -stress) on
the YZ of a millimeter-scale width, which has been well known since the 1980s (Gao et al., 1996; O’Dowd and Shih, 1991, 1992).
The question is if any portion of this enhancement may be due to the interaction of 𝜎𝑥𝑥 with the micrometer-scale FPZ, which is
embedded within the YZ. Doubtless the FPZ has a finite width of micrometer dimensions, several times larger than the crystal size
(but still 3 orders of magnitude smaller than the YZ).

A noteworthy point is that the size effect curves in Fig. 9a and b cross each other, and the effect of 𝜎𝑥𝑥 gets reversed at the
small size limit (as also marked in Fig. 11a). The reason is that the small size asymptotic limit of the size effect law is a crack filled
by a perfectly plastic material, which may be reasonably described by the Mohr or von Mises yield envelope; see Fig. 11b. On the
14
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Fig. 11. (a) Size effect curves of aluminum in logarithmic scales for 𝜎𝑥𝑥 = 0 and for large 𝜎𝑥𝑥 (= 𝑇 ); (b) Mohr and von Mises yield envelopes of metals; (c)
size effect curves of concrete, showing, for comparison, that for quasibrittle materials the curves do not cross; (d) dependence of 𝐽𝑐𝑟 on 𝜎𝑥𝑥 in concrete, and the
optimum fit by crack band model with microplane M7 constitutive law.

envelope, one can see that increasing the magnitude of compression, |𝜎1|, causes a drop in the transverse principal stress, 𝜎2 = 𝜎𝑦𝑦,
which controls the small-size asymptote. This, of course, only applies to the blunt notch case.

A comparison with concrete is instructive. Fig. 11d shows the diagram of the dependence of 𝐽𝑐𝑟 of concrete on 𝜎𝑥𝑥∕𝑓𝑐 recently
obtained experimentally (Nguyen et al., 2020b,a) (here 𝜎𝑐 = compression strength of concrete in the beam specimens). At the
compression limit, 𝜎𝑥𝑥 = 𝜎𝑐 , this diagram drops to a zero fracture energy. Could the same behavior be expected for aluminum?
Probably not. Although no tests for |𝜎𝑥𝑥| > 0.4𝜎𝑦 have been conducted for aluminum, the diagram of 𝐽𝑐𝑟 versus 𝜎𝑥𝑥 should end at
the yield limit |𝜎𝑥𝑥| = 𝜎𝑦 with a significant value of 𝐽𝑐𝑟.

Another difference is seen in the size effect curves. For concrete, these curves, shown in Fig. 11c, do not cross on approach to the
small-size limit, unlike those for aluminum. Again, the reason is that in concrete, at the uniaxial tensile strength limit, no yielding
plateau due to plastic material bridging the crack exists, regardless of the size.

7. Numerical validations and predictions of crack-parallel stress effect

Bai and Wierzbicki (2008) and Bai and Wierzbicki (2010) developed a constitutive damage law for metallic materials based
on the fracture initiation in specimens tested under biaxial and triaxial stress states (Bao and Wierzbicki, 2004). These tests were
later revisited and extended in Papasidero et al. (2015). Due to the claimed capability of capturing the fracture behavior under
various proportional and non-proportional stress states, this law has been selected to assess the effect of crack-parallel stresses on
the fracture energy of aluminum allow.

7.1. Numerical validations and the effect of 𝜎𝑥𝑥

The variation of the YZ as a consequence of various 𝜎𝑥𝑥 (and 𝜎𝑧𝑧) was numerically documented in Sobotka and Dodds (2011), Lu
and Meshii (2014) and Matvienko (2014) using high-resolution finite element simulations and the interaction integral (Nakamura
and Parks, 1992). In those simulations, refined element sizes were used at the crack front, along with the Gurson–Tvergaard
constitutive law (Gurson, 1977; Tvergaard, 1989). The present numerical simulations have been designed in a same manner as
the size effect tests in Fig. 3, except for differences in the geometry. Similar to Sobotka and Dodds (2011), Lu and Meshii (2014)
and Matvienko (2014), Fig. 12a shows an increasing trend as the compressive 𝜎𝑥𝑥-stress increases. This also agrees with the trend
observed in the experiments, yet at a lower stress, level. The enlargement of the 𝑟 of simulated YZ, due to increase of 𝜎 , was more
15
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Fig. 12. A comparison of the experimental and numerical simulations based on the constitutive law in Bai and Wierzbicki (2010) reveal a moderate enhancement
of (a) the fracture energy and (b) the effective size of YZ with extrinsic crack-parallel stress 𝜎𝑥𝑥.

Fig. 13. The dependence of (a) the fracture energy and (b) the effective size of YZ on extrinsic crack-parallel stress 𝜎𝑧𝑧 predicted by the constitutive law in Bai
and Wierzbicki (2010).

moderate (see Fig. 12b). In these simulations, the constitutive model was calibrated to match the uniaxial tension and compression
tests of cylindrical specimens and the fracture energy measured on geometrically scaled beams made of the selected aluminum alloy
at zero crack-parallel 𝜎𝑥𝑥 (i.e., at zero‘‘extrinsic’’ 𝑇 -stresses).

To clarify the change of YZ for various 𝜎𝑥𝑥∕𝜎𝑦 ratios, Fig. A.3 shows a sketch of the boundary of YZ at mid-plane of the specimen
with size 𝐷 = 24 mm for  = 𝐽𝑐𝑟, which is the boundary of the plastically deforming zone. The results show that the YZ increases
in size as the ratio 𝜎𝑥𝑥∕𝜎𝑦 becomes negative and decreases as it becomes positive. However, the reduction in size of the YZ was
less significant in magnitude than the expansion. Moreover, Fig. A.3 shows a larger change in the FPZ size measured transversely
to the crack (𝑦-direction) compared to that measured in parallel, which is expected due to slips on inclined planes caused by axial
compression. This effect is path-dependent (Benzerga et al., 2012; Nguyen et al., 2020a). It requires a more accurate numerical
model or a set of experiments with higher resolution (Kim et al., 2012).

7.2. Extrapolated predictions for the effect of transverse stress 𝜎𝑧𝑧

The same numerical model is now used to investigate the effects of 𝜎𝑧𝑧 and of the combination of both applied stresses 𝜎𝑥𝑥 and
𝜎𝑧𝑧 on the fracture energy of aluminum alloy. Figs. 13 and A.4 show a non-monotonic trend of the fracture properties. This trend is
neither confirmed nor disproved by previous studies. For example, based on Eq. (56) and a previous numerical study by Matvienko
(2014) and Matvienko (2015), the YZ size must monotonically increase as 𝜎𝑧𝑧 becomes negative. However, Lv et al. (2018) obtained
he same non-monotonic trend of fracture energy using FEM. This may be explained by the excessive growth of the YZ in the
-direction while the extent of the elastic field bordering the YZ shrinks, which restricts the validity of the small-scale yielding
ssumption, Eq. (56). As almost the entire ligament length experiences excessive plastic deformation, void nucleation intensifies
nd may trigger crack growth. However, the inconsistency of model predictions calls for experiments to clarify the effect of 𝜎𝑧𝑧 and,
t the same time, for the development of a more accurate damage constitutive relation for the FPZ.
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Fig. 14. The dependence of (a) the fracture energy and (b) the size of FPZ on extrinsic crack-parallel stress 𝜎𝑥𝑥 predicted by the constitutive law in Bai and
Wierzbicki (2010) (◊ and × represent the realistic 𝜎𝑥𝑥 the element at the tip when 𝜎𝑝𝑎𝑑 = −15.4%𝜎𝑦 and −38.1%𝜎𝑦).

.3. The effect of 𝜎𝑥𝑥 on the characteristic size 𝑐𝑓

To assess what part of the fracture energy gets dissipated within the micrometer-scale FPZ, we perform numerical simulations
f the gap test with the structure sizes ranging from 𝐷 = 0.36 → 5.76 mm. We consider the same span-to-depth and notch-to-depth
atios, the same specimen thicknesses, and require the ligament length to be ≥3-times the element size, which allows the effect on
he FPZ to get manifested. To avoid a blunt notch with its complications, a small fictitious notch of a width equal to one grain size
f the polycrystal, taken as 40 μm, needs to be used, as shown in Fig. A.2. At this scale, neither the FPZ nor the YZ will dominate
he crack front, and Eq. (40) for large-scale yielding needs to be used to extract the fracture energy from the scaling law.

The computation results shown in Figs. 14 and A.5 indicate that the fracture energy increases with increasing compression 𝜎𝑥𝑥.
his is similar to concrete and shale, but opposite to cross-ply laminate (Brockmann and Salviato, 2022).

The trend observed in Fig. A.5 is, however, opposite to that observed for the small-size specimens shown in Fig. 9. We posit that
his conflicting trend is a consequence of the sharpness of the notch. For the case of blunt notch (notch width is ≈15 times the grain
ize), the peak load is controlled mainly by the cohesive strength of the grain in front of the crack rather than the energy that flows
nto it. Therefore, a higher 𝜎𝑥𝑥 will reduce the strength in 𝑦-direction, as explained by the Mohr circle in Fig. 11. However, for the
ase of sharp crack, the increase of −𝜎𝑥𝑥∕𝜎𝑦 will increase the nominal strength of the structures of various sizes in this range.

The sharpness of the notch has another consequence for the effect of 𝜎𝑥𝑥. If the notch is blunt, the actual stress 𝜎𝑥𝑥 experienced
y the material points within the FPZ is greatly reduced. In this case 𝜎𝑥𝑥 is no longer ≈ 𝜎𝑝𝑎𝑑 (see Fig. A.2), and so its real value is
epresented by the ◊ and × points in Fig. 14. Therefore, if the effect of 𝜎𝑥𝑥 on the YZ and FPZ could be superposed, the YZ would
ontribute up to 25% of the total change of the fracture energy. In reality, though, the superposition assumption is too simplistic,
nd a revised scaling law using Eq. (44), and depending on the crack-parallel stresses, is required. But its development is beyond
he scope of this paper.

. Conclusions

1. The presence of the millimeter-scale yielding zone (YZ) bordering the micrometer-scale fracture process zone (FPZ) calls for
a generalized size effect law for plastic-hardening structures, a law that describes the transitions between each two of the
three subsequent asymptotes identified in the preceding study.

2. The slope of −1∕2 in the log–log size effect plot is an indicator of the small-scale yielding regime, in which the linear elastic
fracture mechanics is known to apply to metals. The present specimen sizes are not large enough to approach this asymptotic
slope closely. One might see it as a disadvantage but it is actually an advantage because the effective YZ radius, 𝑟𝑝, can be
identified only by testing in the transitional size range of intermediate asymptote, which dominates between the small-size
and large-size asymptotes.

3. Extension of the previous gap tests of aluminum to three different levels of the crack-parallel compressive stress 𝜎𝑥𝑥 provides
clear evidence that 𝜎𝑥𝑥 plays a significant role in the size effect.

4. Regression analysis of the gap tests of different sizes for the same 𝜎𝑥𝑥 level yields unambiguous evidence that the crack-parallel
stress, 𝜎𝑥𝑥, affects the fracture energy 𝐺𝑓 , equal to 𝐽𝑐𝑟. This is in addition to the well-known effect of 𝜎𝑥𝑥 on the effective
radius, 𝑟𝑝, of the YZ.

5. Increasing 𝜎𝑥𝑥 from 0 to 0.4𝜎𝑦 causes both 𝐽𝑐𝑟 and 𝑟𝑝 to roughly quadruple. Although no tests were made at |𝜎𝑥𝑥| > 0.4𝜎𝑦,
the extension of the curve of 𝐽𝑐𝑟 versus 𝜎𝑥𝑥 is expected not to tend to zero for 𝜎𝑥𝑥 → −𝜎𝑦 (i.e., the yield strength) because,
in contrast to concrete, aluminum under compression yielding in 𝑥-direction still has undiminished tensile yield strength in
the 𝑦-direction.
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6. Compared to quasibrittle materials, the results of the gap test of aluminum are more systematic, with a lower scatter. This
makes the evidence clearer.

7. Unlike quasibrittle materials such as concrete, the size effect curves of nominal strength of geometrically similar notched
metallic specimens under various levels of crack parallel stress cross each other. Thus they produce at the small size asymptotic
limit a reverse trend, such that the small-size asymptotic strength for high compression magnitude |𝜎𝑥𝑥| occurs at smaller 𝜎𝑁 .

8. The results show that, under the effect of compressive 𝜎𝑥𝑥, the FPZ accounts for 25% of the fracture energy enhancement
while the remaining 75% is due to the increase of the YZ.

9. To reproduce the present experiments mathematically, an FPZ of correct finite width, described by a realistic tensorial damage
constitutive model, must be used. The finite element crack band model can do that.
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Appendix A. Derivation of classical scaling law for quasibrittle structures with no plasticity

To derive the scaling law for small-to-large scale transition of structure size, the approach used for quasibrittle materials needs
to be reinterpreted and generalized (Bažant, 1984b; Bažant et al., 1987; Bažant and Kazemi, 1991; Bažant and Chen, 1997; Bažant
and Planas, 1998; Bažant, 2005). We review it briefly here. The energy release rate of linear elastic fracture mechanics (LEFM) may
be expressed as  = (𝜎2𝑁∕𝐸′)𝐷𝑔(𝛼) where 𝛼 = 𝑎∕𝐷, 𝐷 = characteristic structure size, 𝑎 = crack or notch length, and 𝑔(𝛼) = 𝐾2

𝐼 ∕(𝐷𝜎
2
𝑁 )

dimensionless energy release rate function of LEFM reflecting the structure shape (𝐾𝐼 = mode I stress intensity factor, 𝐸′ = 𝐸 for
lane stress or 𝐸∕(1 − 𝜈2) for plane strain, 𝐸 = Young’s modulus, 𝜈 = Poisson ratio). Replacing the crack length 𝑎 with the effective
rack length 𝑎 = 𝑎0 + 𝑐𝑓 where 𝑐𝑓 is a material constant characterizing the effective FPZ length, one gets  = (𝜎2𝑁∕𝐸′)𝐷𝑔(𝛼0 + 𝑐𝑓∕𝐷)
here 𝛼0 = 𝑎0∕𝐷 and 𝑎0 = length of notch or open stress-free crack. Writing the first two terms of the Taylor series expansion, and

etting 𝑔0 = 𝑔(𝛼0) and 𝑔′0 = d𝑔(𝛼0)∕d𝛼, one has  = (𝜎2𝑁∕𝐸′)𝐷(𝑔0 + 𝑔′0(𝑐𝑓∕𝐷)), which gives

 = 𝑠 + 𝑏 (57)
where 𝑠 = (𝜎2𝑁∕𝐸′)𝐷𝑔0, 𝑏 = (𝜎2𝑁∕𝐸′)𝑐𝑓 𝑔′0 (58)

ere 𝑔0 = 𝑔(𝛼0), 𝑔′0 = [d𝑔(𝛼)∕d𝛼]𝛼0 . Noting that  = 𝐺𝑓 = material fracture energy, we may solve for 𝜎𝑁 and, after rearrangements,
btain the Type 2 classical size effect law (Bažant, 1984b; Bažant et al., 1987; Bažant and Kazemi, 1991) for quasibrittle structures
f geometrically similar shapes and cracks (or notches):

𝜎𝑁 =

√

𝐸′𝐺𝑓
𝑔′0𝑐𝑓 + 𝑔0𝐷

=
𝜎0

√

1 +𝐷∕𝐷0
(59)

Here 𝜎0 = (𝐸′𝐺𝑓∕𝑐𝑓 𝑔′0)
1∕2 and 𝐷0 = (𝑔′0∕𝑔0)𝑐𝑓 (transitional size). This law is now embodied in the concrete design code, ACI Standard

318/2019, for the scaling of brittle failures of concrete structures. The material characteristic length, 𝑐𝑓 , of concrete has been shown
to be about 0.4𝑙0 for 𝜎𝑥𝑥 ≈ 0 (here 𝑙0 = 𝐸′𝐺𝑓∕𝜎2𝑦 = Irwin’s characteristic length (Cusatis and Schauffert, 2011; Bažant and Yu, 2011)).

To fit test data, Eq. (59) is rearranged as a linear regression plot:

𝑌 = 𝐴𝑋 + 𝐶 where 𝑋 = 𝐷, 𝑌 = 1∕𝜎2 , 𝐴 = 1∕(𝜎2𝐷 ), 𝐶 = 1∕𝜎2 (60)
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Fig. A.1. The dependence of the effective YZ’s size 𝑟𝑝 on the structure size 𝐷 in specimens with three-point-bend configuration (Nguyen et al., 2021).

Fig. A.2. (a) The finite element mesh in front of the blunt notch tip. (b) The dependence of Alumina measured fracture energy on the notch radii normalized
by the grain size, reproduced from Nishida et al. (1994), which serves as a qualitative reference point for the aluminum alloy used in this study.

Fig. A.3. The evolution of the YZ with positive and negative 𝜎𝑥𝑥 in the gap test configuration (the scale bar represents 5 mm).

Data regression yields 𝐴 and 𝐶, and then one can evaluate 𝐺𝑓 and 𝑐𝑓 from the last equation. This method of measuring material
fracture characteristics has become the international standard recommendation of RILEM (TC89-FMT, 1990) (also endorsed by the
ACI-446 Committee), and is in wide use. Eqs. (59) can be used even when structures of different sizes 𝐷 are not geometrically
similar, but a different 𝑔(𝛼) must then be used for various specimens.

Note that the effective size 𝑐𝑓 cannot distinguish the length and width of the FPZ because both have a similar effect on the
energy release rate. The fact that changing the FPZ width has a similar effect as changing 𝑐𝑓 which is demonstrated by analysis
based on configurational forces (Bažant, 1990). One should also realize that the FPZ width should be more than 𝑑𝑐 and less than
about 10𝑑 where 𝑑 = inhomogeneity size (here the crystal size, about 0.5 μm); 3𝑑 is a reasonable guess (Bažant et al., 1984).
19
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Fig. A.4. The fitting of the scaling law in Eq. (23) (a,c) and Eq. (34) (b,d) against numerical predictions based on the constitutive law in Bai and Wierzbicki
(2010) (both extrinsic 𝜎𝑥𝑥 and 𝜎𝑧𝑧).

Fig. A.5. The fitting of the scaling law in Eq. (40) against numerical predictions based on the constitutive law in Bai and Wierzbicki (2010) (extrinsic 𝜎𝑥𝑥 only).

Appendix B. Comments on 1970s Westinghouse’s experiments on geometrically scaled specimens

The asymptotic matching as 𝐷 → ∞ in this study and Nguyen et al. (2021) receives additional support from large scaling
experiment on steel carried out at Westinghouse company in the mid 1970s (see Fig. A.6). These experiments were intended to
identify the size at which the LEFM is valid, and thus the fracture energy 𝐺𝑓 of steel becomes equal to the critical value 𝐽𝑐𝑟 of the
J-integral.

The tests showed that the 𝐽𝑐𝑟 was equal to 𝐺𝑓 for the largest specimen size shown in figure. For smaller specimens this was
not the case (partly because, as already mentioned here and found long ago, the compact-tension specimens experience appreciable
non-zero ‘‘intrinsic’’ 𝑇 -stresses).
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Fig. A.6. Compact-tension tests with geometrically scaled specimens at Westinghouse (private communication through professor Jimmy Hsia (Editor, JMPS),
NTU, Singapore.

Unfortunately, the data from these classical tests of various size were, apparently, not published—perhaps because, in the 1970s,
the research community was not interested in the scaling problems of solid mechanics.

Appendix C. Calculation of dimensionless angular functions and work expressions in classical HRR theory

The expressions for angular functions in Eqs. (10)–(12) were not presented in the preceding study (Nguyen et al., 2021). However,
they are needed to predict the mechanical response and size effect of the structural-scale strength when experimental data for
calibration are unavailable or scant. Calculating the partial derivatives in the linearized strain expression 𝑒𝑖𝑗 = 1

2 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), one
finds that the dimensionless angular function in Eq. (11) is:

𝜑𝑖𝑗 (𝜃) =
1
2

{𝐹𝑖(𝜃)𝜉𝑗 (𝜃) + 𝐹𝑗 (𝜃)𝜉𝑖(𝜃)
𝑛 + 1

+ 𝐹 ′
𝑖 (𝜃)𝜉

⟂
𝑗 (𝜃) + 𝐹

′
𝑗 (𝜃)𝜉

⟂
𝑖 (𝜃)

}

(61)

where 𝝃(𝜃) and 𝝃⟂(𝜃) are the unit position vector and its orthogonal counterpart. Functions 𝐹𝑖 could, in theory, be also calculated from
functions 𝜑𝑖𝑗 . However, it would involve solving a stress function that satisfies Eqs. (10)–(12) and boundary conditions numerically.

Because the Ramberg–Osgood constitutive law, Eq. (3), does not allow expressing 𝑠𝑖𝑗 in terms of 𝑒𝑖𝑗 explicitly, the calculation
of strain energy density, 𝑊 = ∫ 𝑠𝑖𝑗d𝑒𝑖𝑗 , is facilitated if we first calculate the density of complementary strain energy (or Gibbs free
energy), which is defined as 𝑊 ∗ = ∫ 𝑒𝑖𝑗d𝑠𝑖𝑗 . Since it is path-independent, we get a general result even if we conveniently integrate
along a proportional loading path, 𝑠𝑖𝑗 = 𝑆𝑖𝑗𝜇 where 𝑆𝑖𝑗 are constants, the loading parameter, 𝜇, runs from 0 to 1, and 𝑆𝑖𝑗 = [𝑠𝑖𝑗 ]𝜇=1.
This way, 𝑊 becomes a integral over 𝜇 only. Noting Eqs. (11) and (12) and integrating, we get

𝑊 ∗ =
𝛼𝑝𝜖𝑦

(𝑛 + 1)𝜎𝑛𝑦

( 3
2
𝑠𝑖𝑗𝑠𝑖𝑗

)

𝑛+1
2 (62)

The density 𝑊 of strain energy (or Helmholtz free energy) is a function of 𝑒𝑖𝑗 . However, since it is impossible to invert Eq. (3)
in a closed form, we must express 𝑊 in terms of 𝑠𝑖𝑗 . We can do so exploiting Legendre transformation 𝑊 = 𝑠𝑖𝑗𝑒𝑖𝑗 −𝑊 ∗, which is
derived by integrating ∫ 𝑒𝑖𝑗d𝑠𝑖𝑗 by parts. This gives

𝑊 =
𝑛𝛼𝑝𝜖𝑦

(𝑛 + 1)𝜎𝑛𝑦

(3
2
𝑠𝑖𝑗𝑠𝑖𝑗

)

𝑛+1
2 (63)

Here 𝑠𝑖𝑗 must be regarded as functions of 𝑒𝑖𝑗 , given implicitly by Eq. (3). To obtain the 𝐽 -integral, we must also evaluate

𝜈𝑗𝑠𝑖𝑗𝑢𝑖,1 = 𝜈𝑗𝛼𝑝𝜖𝑦𝜎𝑦

(

𝑟
𝑟𝑝

)−1
𝜓𝑖𝑗 (𝜃)𝜒𝑖(𝜃) (64)

where 𝜒𝑖(𝜃) =
𝐹𝑖(𝜃) 𝜉1(𝜃) + 𝐹 ′

𝑖 (𝜃)𝜉
⟂
1 (𝜃) (65)
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The 𝐽 -integral may now be calculated at 𝑟 = 𝑟𝑝:

𝐽 = 𝛼𝑝𝜖𝑦𝜎𝑦𝑟𝑝𝜅 (66)

where 𝜅 = ∫

𝜋

−𝜋

[

𝜈1
𝑛

𝑛 + 1

( 3
2
𝜓𝑖𝑗 (𝜃)𝜓𝑖𝑗 (𝜃)

)

𝑛+1
2 − 𝜈𝑗𝜓𝑖𝑗 (𝜃)𝜒𝑖(𝜃)

]

d𝜃 (67)

Note that, instead of the radius 𝑟′𝑝 of the 𝑇 -modified energy matching zone, one must use the effective YZ radius 𝑟𝑝. Evaluation
f ∬ [Eq. (15)] 𝑟d𝜃 d𝑟 shows that the total strain energy in the circle of radius 𝑟𝑝 per unit width in the transverse direction, is

expressed as

𝑊 = 𝑛
𝑛 + 1

𝛼𝑝𝜎𝑦𝜖𝑦𝑟
2
𝑝 ∫

𝜋

−𝜋
𝜑𝑖𝑗 (𝜃)𝜓𝑖𝑗 (𝜃)d𝜃 (68)

Appendix D. Effect of notch width, or crack bluntness, on fracture parameters

The notch bluntness is known to increase the specimen ductility and affect the fracture parameters (Nishida et al., 1994), as the
material response shifts toward material strength domination (see Fig. A.2b). For the fracture and size effect tests of quasibrittle
materials such as concrete, it is known that the fracture parameters measured will not be affected if the width of the notch front is
less than about 1/3 of the maximum size of the material inhomogeneity (or mineral aggregate).

This condition is easy to satisfy for concrete. However, for polycrystalline metals, in which the crystals size is of the order of up
to a few tens of micrometers, achieving sufficient notch sharpness is a challenge.

Appendix E. A brief summary of Bai–Wierzbicki damage constitutive model for metal

To characterize the behavior of aluminum alloy for different structural sizes and different crack-parallel stress levels, one needs
a damage constitutive law for the FPZ of aluminum under complex triaxial stress states. For that, the best existing model seems to
be the model of Bai and Wierzbicki (2010). Its key points follow.

In this model, the Mohr–Coulomb (M–C) fracture criterion is used to describe the onset of ductile fracture in aluminum as an
isotropic material initially free of microcracks. This criterion has been extensively used in rock and soil mechanics as it correctly
accounts for the effects of hydrostatic pressure as well as the Lode angle. It turns out that these two parameters, which are critical
for characterizing the fracture of geomaterials, are also useful for the fracture of ductile metals (Bai and Wierzbicki, 2008; Xue,
2007; Barsoum, 2006; Wilkins et al., 1980). The local Cartesian form of the M–C criterion is transformed to the spherical coordinate
system, where the axes are the equivalent strain to fracture strain 𝜖𝑓 , the stress triaxiality 𝜂 and the normalized Lode angle parameter
𝜃̄. For the proportional loading, the fracture surface is shown to be an asymmetric function of 𝜃̄. The M–C fracture criterion is
found to predict almost exactly the exponential decay of material ductility with stress triaxiality, which is in accordance with the
theoretical analysis of Rice and Tracey (1969) and with the empirical equations of Hancock and Mackenzie (1976) and Johnson
and Cook (1985). The M–C criterion also predicts a form of Lode angle dependence that is close to parabolic. The results for the
tested aluminum alloy were used to calibrate and validate the proposed M–C fracture model (Bai and Wierzbicki, 2010).

Another advantage of the M–C fracture model is that it predicts uniquely the orientation of the fracture surface. The direction
cosines of the unit normal vector of the fracture surface are functions of the ‘‘friction’’ coefficient in the M–C criterion. In the M-C
criterion, the three relevant parameters are three invariants of the stress tensor 𝝈 defined by (Bai and Wierzbicki, 2008):

𝑝 = −𝜎𝑚 = −1
3
tr([𝜎]) = −1

3
(

𝜎1 + 𝜎2 + 𝜎3
)

(69)

𝑞 = 𝜎̄ =
√

3
2
𝐒 ∶ 𝐒 =

√

1
2

[

(

𝜎1 − 𝜎2
)2 +

(

𝜎2 − 𝜎3
)2 +

(

𝜎3 − 𝜎1
)2
]

𝑟 =
( 9
2
𝐒 ⋅ 𝐒 ∶ 𝐒

)1∕3
=
[ 27
2

det(𝐒)
]1∕3

=
[ 27
2

(

𝜎1 − 𝜎𝑚
) (

𝜎2 − 𝜎𝑚
) (

𝜎3 − 𝜎𝑚
)

]1∕3
(70)

here 𝐒 is the deviatoric tensor. The dimensionless hydrostatic pressure 𝜂 and the normalized Lode angle are defined by:

𝜂 =
−𝑝
𝑞

=
𝜎𝑚
𝜎̄

(71)

𝜃̄ = 1 − 6𝜃
𝜋

= 1 − 2
𝜋
arccos

(

𝑟
𝑞

)3
(72)

he extended plasticity is described by:

2𝜎̄2𝑘𝑦 =
(

𝜎1 − 𝜎2
)2𝑘 +

(

𝜎2 − 𝜎3
)2𝑘 +

(

𝜎3 − 𝜎1
)2𝑘 (73)

𝜎̄ = 𝐴𝜀̄𝑛
[

1 − 𝑐𝜂
(

𝜂 − 𝜂0
)] [

𝑐𝑠𝜃 +
(

𝑐𝑎𝑥𝜃 − 𝑐𝑠𝜃
)

𝛾
]

(74)

𝑐𝑎𝑥𝜃 =
{

1 for 𝜃̄ ≥ 0
𝑐𝑐𝜃 for 𝜃̄ < 0

(75)
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Fig. A.7. Characterization experiments of Al 6061-T651 and the fitting of Bai–Wierzbicki’s model for specimens subjected to (a) uniaxial tension and (b)
compression.

Table 1
Parameters for Bai–Wierzbicki damage constitutive model.
𝐸 𝜈 𝑚 𝐴 𝜖𝑦 𝑁 𝐷𝑐 𝑐1 𝑐2
72 000. 0.334 6. 450. 0.0068 0.097 1.001 0.6 510.

𝑐𝑠𝜃 𝑐𝑔 𝜂𝑐𝑢𝑡𝑜𝑓𝑓 𝑐𝜂 𝜂0 𝑐𝑠𝜃 𝑐𝑐𝜃
0.922 0.001 1. 0.05 0.3333 1. 1.

Finally, the constitutive relation can be summarized as:

𝜀̄𝑓 =

{

𝐴
𝑐2

[

1 − 𝑐𝜂
(

𝜂 − 𝜂◦
)]

[

𝑐𝑠𝜃 +

√

3

2 −
√

3

(

𝑐𝑎𝑥𝜃 − 𝑐𝑠𝜃
)

(

sec
(

𝜃̄𝜋
6

)

− 1
)

]

⎡

⎢

⎢

⎣

√

1 + 𝑐21
3

cos
(

𝜃̄𝜋
6

)

+ 𝑐1

(

𝜂 + 1
3
sin

(

𝜃̄𝜋
6

))

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

− 1
𝑛

Appendix F. Results of the characterization tests of aluminum alloy 6060-T651

The parameters necessary to define the functions in Appendix E can be found in Bai and Wierzbicki (2010) and their values are
presented in Table 1.

The parameters in Table 1 were optimized to capture the characterization results in Figs. A.7 and the size effect results in Nguyen
et al. (2021) and the gap test with 𝜎 = 0 in Fig. 9.
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Fig. A.8. The distribution of principal stresses when (a) 𝑀 = 0, 𝜎𝑝𝑎𝑑 ≠ 0 and (b) 𝑀 > 0, 𝜎𝑝𝑎𝑑 ≠ 0.

Appendix G. Other details of the gap tests for aluminum alloy

The grain size, as well as the material microstructure of a specific metallic material, depends on the chemical element of metal,
the alloy stoichiometry, and metal purity. In addition, depending on the manufacturing and processing methods, the FPZ size of the
same alloy type may vary widely, as already mentioned in the introduction (Shankar et al., 2005; Zhang et al., 2018). In this study,
the grain size is taken as 40 μm, which gives optimum fits of the characterization tests of alloy 6061-T651, including the uniaxial
compression, direct tension, and size effect tests 𝜎𝑥𝑥 (see Nguyen et al. (2021, Fig. 5), Fig. 3 and Appendix D for the fitting details).
While grain size analyses using the optical and electron microscope can be found elsewhere (Zhang et al., 2018; Rathinasuriyan
et al., 2019), relating these analyses to the present material fracture properties would be a major task beyond the scope of the
present study.

The size-effect experiments at any structure size were 𝐽 -controlled, as evidenced by the match of the 𝐽 -values measured at the
peak load for all specimens sizes (Nguyen et al., 2021) and also those computed using the size effect law. This has been shown
in the previous studies (Nguyen et al., 2021; Bažant et al., 1987), which are extended here. In addition, Fig. A.3 showed that the
yielding zone dominated the crack tip region in most cases, which documents the 𝐽 -controlled nature of the crack growth at least
up to the peak load. For these reasons, and because of the fact that the size effect tests serve to be an alternative to the conventional
𝐽 -measurement techniques (ASTM-E1820, 2020), the 𝐽 vs. 𝛥𝑎 measurements appeared to be redundant.

Although the stress–strain fields at the crack front were not mapped experimentally, the depiction of these fields in the numerical
simulations shown in Fig. A.8 should suffice to show that the crack-parallel stress distribution was nearly uniform within the HRR
field. Extracting accurate stress–strain fields from the experiments in the pre-peak regime calls for techniques that can provide
high-resolution displacement fields (down to sub-micrometer per pixel) such as electronic speckle pattern interferometry (Gåsvik,
2003) or high resolution digital image correlation (Carroll et al., 2013), which alone would require a major separate experimental
effort.
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