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Abstract: In the existing database on shear load capacity, tests of very large beams are scarce. Valuable additions to the database have

recently been made in 2021 at the University of California, Berkeley (UCB), and in 2015 at the University of Toronto. These two tests were

the largest ever among the standard three-point-bend type tests conducted so far. They verified the effects of beam size and of steel stirrups on

the ultimate load, Vu, provided that the same concrete and steel are used. The present analysis, which deals in detail only with the UCB test,

shows that the subsequent public blind competitions to predict the Vu measured in both tests were meritless and potentially misleading. The

reason is that, similar to design codes, the only information provided to the competitors (besides the E modulus) was the required concrete

compression strength, f 0
c, whereas the mean compressive and tensile strengths, fracture energy, initial creep data, and so on, were not pro-

vided. The fault of a competition of this kind is evidenced by (1) finite-element fracture simulations, (2) analysis of the huge statistical scatter

of a database of 784 tests and a previous database in which f 0
c was also the only concrete property used, like in the design code, and

(3) estimation of the statistical error due to anchoring code provisions to the classical shear strength approximation 2
ffiffiffiffiffi

f 0
c

p

(psi), which

was set at about 65% below the mean of the data cloud in the database. The winning prediction of the UCB competition had an error

of only 2.7% of the measured failure load, even though the probability of success is here shown to have been between 0.14% and

8.46%, with 0.90% being the best estimate. Hence, competitions of this type are, in essence, a lottery. Furthermore, the fact that the winning

predictions in both competitions happened to be obtained by cross-section strain analysis based on beam mechanics, and no fracture

mechanics, is potentially misleading. This, of course, does not detract from the value of the UCB and Toronto experiments as important

and unique additions to the database and as verifications of the load capacity for the particular concrete used. DOI: 10.1061/JSENDH.

STENG-12242. © 2023 American Society of Civil Engineers.
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Introduction

An important test of shear failure of a reinforced concrete beam was

conducted in 2021 at the University of California, Berkeley (UCB),

under the direction of Professor Jack Moehle, with an advisory

committee consisting of Evan Bentz, Michael Collins, David

Fields, Neil Hawkins, and Dominic Kelly (Zhai et al. 2022).

The test was unique and important because, compared with a labo-

ratory test, the beam was very large (total depth 3.56 m and span

21.34 m) and because cases without and with stirrups were com-

pared. Only one similar beam of this kind (4.0 m deep), with and

without stirrups, has been tested so far, at the University of Toronto

(Collins et al. 2015). Both these beams represented thin slices or a

very thick and wide one-way slab. Another very large beam,

subjected to a uniform load, was tested in Tokyo (Iguro et al.

1984; Shioya and Akiyama 1994). Beams of depths up to 2.0 m

failing in shear were tested by Bernat and García (2020) in

Barcelona, Spain, and 1.89 m by Yoshida et al. (2000) in Toronto.

To determine the shear load capacity without and with stirrups

from one and the same large beam, vertical stirrups were installed

only in the left half-span (Fig. 1). On the first loading (Phase 1), the

shear failure occurred on the right side having no stirrups. The load-

ing was stopped right after the maximum load, and the damaged

side still retained some integrity and suffered only partial damage.

The damaged side with no stirrups was then retrofitted with straps

consisting of high strength steel bars on the beam sides, so as to

make the failed half-span much stronger than the other one.

Furthermore, extra flexural reinforcement bars were added by

means of grouting. This achieved a second loading (Phase 2) that

caused failure in the left half-span with stirrups under a much

higher load. What has been learned by the contractor is the load

capacities of its very thick foundation slabs to be built using the

same concrete and reinforcement.

A blind public competition for predicting the load capacities with

and without stirrups was organized, with 59 participants. The win-

ning prediction, whose errors in load capacity was þ2.7% without

stirrups and −9.8% with stirrups, was obtained by Lawrence

Burkett, who used spreadsheet calculations to determine the shear

force and moment distributions along the beam and then the com-

puter program Response 2000 developed by E. Bentz at University

of Toronto. Only the UCB competition is here analyzed in detail,

although the conclusions will also apply to a competition of the

same kind organized by E. Bentz after the Toronto test.
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The main objective of this study is to determine whether or not

the method of the winning prediction is of any use for design code

improvement.

Test Description

The specified compressive strength of concrete f 0
c was 30MPa,

from which the Young’s modulus was estimated as E ¼ 25 GPa.

Coarse aggregate ASTM C33 #67 of maximum size 25 mm and

fine aggregate ASTM C33 were used (ASTM 2003). The longitu-

dinal reinforcement ratio is ρw ¼ As=bwd, where d is the effective

depth, which is the distance from the top face to the centroid of the

flexural reinforcement of area As. This longitudinal reinforcement

ratio was 0.85% in the left half-span and 0.46% in the right half-

span. The longitudinal reinforcing bars consisted of steel ASTM

A1035 Grade 120 at the bottom and A1035 Grade 100 at the

top (ASTM 2015). The stirrups of shear reinforcement in the left

half-span consisted of steel No. 5 A615 Grade 60. In all simulations,

the steel bars were assumed to be attached to the mesh nodes, with

no slip (although slip between the mesh nodes was unhindered).

Missing Input Data and Questionable Aspects of the
Competition

Similar to the previous Toronto competition (Collins et al. 2015),

the following basic material parameters important for FE crack

band analysis were not made available to the competitors:

q1 ¼ ft; q2 ¼ Gf; q3 ¼ Eeff ; q4 ¼ Eeq; q5 ¼ kf

ð1Þ

where ft = mean tensile strength of concrete;Gf = material fracture

energy; Eeff ¼ E=ð1þ φÞ is the effective modulus, where φ is the

short-time creep coefficient, which is not negligible for the 2-day

duration of each loading and for an even longer duration of self-

weight loading (φ ¼ 0.1–0.2 as estimated here); Eeq = equivalent

elastic modulus of the damaged half-span accounting for the

strengthening effect of steel straps (its effect on the load capacity

is negligible but not on the maximum deflection); and kf = friction

coefficient at the sliding support. All the parameters q1, q2, q3, q4,

and q5 can be measured by inexpensive standardized procedures

(Gf according to the 1989 RILEM Recommendation TC89-

FMT based on the size-effect tests feasible even in old testing

machines without servocontrol) (Bažant et al. 2021; Bažant and

Kazemi 1990; Bažant and Planas 2019; RILEM 1991).

Doubtless the reason these data in Eq. (1) were not measured

was that the design code ACI 318 (ACI 2019) does not, and cannot,

require them. The code must be universal, applicable to all con-

cretes. However, the competition is not a design code. It necessi-

tates these data because the prediction is to be made for one

particular concrete, not for concretes in general.

The safety margin of the design code is much larger than one

might infer from the load factors and the understrength factors. The

total safety factor, defined as the failure load divided by the design

load, was estimated to range from 1.7 to 8 for the RC beam shear [it

was about 1.3 to 8 before the size effect was introduced into the

code equation (ACI 2019)]. The reason is that the code equation

was not set as the optimum mean fit of the cloud of worldwide

database of the test results for different concretes (Reineck et al.

2014). Rather it was set at the lower margin of the data cloud, which

was about 65% below the optimum mean fit [Fig. 1(a) in Bažant

and Yu (2006)]. This amounts to a covert safety margin.

This margin is further complicated by the indirect size effect

hidden in excessive dead load factors [discussed in detail by Bažant

and Frangopol (2002)]. These factors are 1.4 or 1.2 in ACI (2019)

depending on whether earth or water pressure, etc., is simultaneous

with self-weight and 1.4 in the European Model Code (fib 2013),

although in practice, the error in the weight of concrete cannot ex-

ceed 3% (except as a blunder). The excessive factor penalizes large

beams compared with small beams because the self-weight of the

latter is negligible. This amounts to a covert size-effect factor,

which, however, does not have a realistic form.

Given that the design code equation taking into account only

concrete strength gives the load capacities in the database with such

an enormous error, how can the winning prediction, having the

same limited information (concrete strength fc
0 only) predict the

UCB test result with an error of only 2.7%? Only by luck.

Can the Crack Band Analysis Fit the UCB
Test Data?

Lacking relevant input data, we are forced to answer here an inverse

question: can one find plausible and realistic values of input param-

eters q1, q2, q3, q4, and q5 for which the finite-element (FE) frac-

ture analysis would give close agreement with the test results? If

one can, it will, of course, not suffice to validate the FE fracture

analysis. But it will suffice to show that a poor FE prediction in

this competition does not invalidate the FE fracture analysis,

and that a negative conclusion about the FE would be unfounded.

Here, we answer this question by using the FE crack band model

(Bažant and Oh 1983) with the microplane model M7 as the

material constitutive damage law (Caner and Bažant 2013; Nguyen

et al. 2021). This model came out superior by far when, in an

extensive recent study (Bažant et al. 2022), eight computational

models for fracture and damage, including the phase field, peri-

dynamic and crack band (M7) models, were compared with a set

of 11 distinctive fracture and failure experiments relevant to prac-

tice, all but one on concrete. In view of the success of the FE

crack band model in these extensive comparisons, it would be

quite disturbing if the FE crack band model were found incapable

of fitting the UBC test.

F

21.3 m

y x

z

3.56 m

0.25 mstirrups longitudinal reinforcement bars

Fig. 1. The beam tested, with the dimensions.
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FE Simulations with M7 Crack Band Model

The stress–strain curves of the longitudinal bars and of stirrups are

shown in Fig. 2. These curves, digitized, were directly used as steel

properties in the FE code. The friction coefficient of the sliding of

the beam over the end support was not reported, although it has a

nonnegligible effect on the load capacity. It was considered in the

computations as 0.03.

In the crack band model, the finite-element size, h, is not arbi-

trary. In the damage zone, h must be treated as a material property,

the material characteristic length. It affects the results and repre-

sents a material fracture characteristic that defines the Gf . The sim-

ulation used h ¼ 30 mm, which is reasonable for the maximum

aggregate size of about 25 mm.

It is important to note that the loading in the test was quite slow,

proceeding at a rate too low to ignore the effect of short-time creep

of concrete. It took about 1 day to reach the maximum load in

the right half-span (Phase 1), and about 2 days in the left half-

span (Phase 2). The interval between these two phases was about

3 weeks, during which the creep under self-weight was increasing

the deflection. This is to be compared with the typical initial

(short-time) creep curve of concrete under sustained constant

stress shown in Fig. 3(a) (the magnitude of this creep is not

widely appreciated). The curve in Fig. 3(a) is based on extensive

creep test data filtered for errors (Bažant and Jirásek 2018;

Bažant et al. 2015; Rasoolinejad et al. 2018).

In view of the lack of detailed short-time creep data and precise

load history, the only way to take creep at least approximately into

account is by elastic analysis based on the effective modulus,

EeffðtÞ ¼ E0=½1þ φðtÞ� ¼ 1=JðtÞ, where E is the Young’s elastic

modulus of concrete, and φðtÞ is the creep coefficient representing

the relative increase of strain after sudden load application under

constant stress ( <f 0
c) sustained up to current time t. It is clear that

the EeffðtÞ for loading durations of 1 or 2 days (representing the

inverse of compliance J) is significantly smaller than the standard

elastic modulus E0, which corresponds roughly to a 10-min load

duration. Because E0 was not measured, it was estimated from

f 0
c using the ACI formula (ACI 2019), which gave E0 ¼ 25.7 GPa.

Upon consideration of these facts, the effective elastic modulus for

slow loading was taken as E ¼ 22.5 GPa.
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Fig. 2. Constitutive laws of steel materials used in simulations.

Fig. 3. (a) Compliance function for short-time creep curve (after error filtering) based on the test data of Müller et al. (1999); (b) evolution of

compressive strength of concrete used in the test (1 psi ¼ 6,894.76 Pa); and (c and d) simulation of concrete compressive and tensile tests based

on three different calibrations.

© ASCE 04023113-3 J. Struct. Eng.



Phase 2 presents even more difficult questions. The loading jack

was unloaded, although the self-weight remained. The strengthen-

ing of the damaged right half-span with high-strength steel straps

took, as it seems, up to a week. Then the beam was reloaded, which

took again about 2 days. More creep occurred due to self-weight,

and also due to reloading in Phase 2 after the pause in experiment.

Even more uncertain is the stiffness of the retrofitted right half-

span, in which the damage reduced the stiffness of the concrete

per se, whereas the straps increased the stiffness significantly.

As a rough guess, the effective elastic modulus of the right half-

span, treated as an elastic body with no strength limit, was taken

as E ¼ 25 GPa, which made it stiffer overall than the left half-span.

For predicting the maximum load in Phase 2, this guess is not

important but plays some role, albeit minor, in predicting the maxi-

mum deflection in Phase 2, which was measured and should be

matched. The left half-span underwent in Phase 2 further creep, and

so its effective elastic modulus for Phase 2 analysis was reduced to

21 GPa. As expected, the Phase 2 loading produced shear failure in

the left half-span with stirrups.

In the microplane model M7 (Caner and Bažant 2013; Nguyen

et al. 2021), which was adopted as the material damage constitutive

model for concrete, the free input parameters k1, k2, k3, and k4 con-

trol the compressive and tensile strength of the concrete. For a

given mean compression strength fc, the tensile strength ft can vary

considerably, and varying the input free parameters of M7 reflects

that. For the same fc, the values of fracture energy Gf can differ

even more. The M7 coding and a sample FE crack band coding

of the present analysis can be freely downloaded (Bažant 2023).

In the load-deflection diagrams of the beam shown in Figs. 3(c

and d), the postpeak softening must be ignored because of the

dynamic postpeak softening instability. A loading system stiff

enough to prevent this instability would be difficult and costly to

install for such a large beam, and it would even be unnecessary

because only the load capacity is of interest.

Comparisons of FE Crack Band Predictions with
Experiments

The FE crack band simulations of the tests used the ABAQUS

Explicit 2022 finite-element code with microplane model M7 in-

troduced through the user’s subroutine VUMAT. The inevitable fic-

titious kinetic energy in the explicit simulations based on dynamic

relaxation was kept negligible compared with the strain energy to

ensure quasi-static response.

Due to the hydration of the concrete (Sakthivel et al. 2019),

we extrapolated the compressive strength from given experimental

results in Fig. 3(b). Among the three combinations of the M7 input

parametera giving the compressive and tensile uniaxial stress–

strain curves shown in Figs. 3(c and d), Combination 1 yielded

good fits of the UCB test both in Phase 1 and Phase 2. So this

is the combination that was used. Its parameters were k1 ¼
55 × 10−6, k2 ¼ 36, k3 ¼ 80, and k4 ¼ 90, for which

E ¼ 25 GPa; ft ¼ 1.34 MPa; Gf ¼ 25.6 J=m2 ðCombination 1Þ

ð2Þ

It led to close fits of the measured load capacities without and

with stirrups. More than that, it also gave good fits of the measured

maximum deflections [Figs. 4(a and b)]. The self-weight effect was

automatically included in the FE analysis. Also, the simulations

of Phases 1 and 2 should not follow the loading-unloading loop

because in the experiment this loop must have eliminated the

seating deformations at supports which surely distorted the initial

loading [Figs. 4(a and b)].

The midspan deflections at the peak load in Phases I and II were

predicted as 24 and 85 mm, respectively, which agreed closely with

the observed deflection peaks. Fig. 5(a) further shows the predicted

fracture patterns at maximum load. They all look realistic.

It appeared, however, that the same sample test data could also

be fitted with two other, equally realistic, combinations of M7

material parameters. One was k1 ¼ 76.5 × 10−6, k2 ¼ 70, k3 ¼ 30,

and k4 ¼ 65, for which

E ¼ 25 GPa; ft ¼ 1.87 MPa; Gf ¼ 44.9 J=m2 ðCombination 2Þ

ð3Þ

and the other was k1 ¼ 92 × 10−6, k2 ¼ 160, k3 ¼ 20, and

k4 ¼ 65, for which

E ¼ 25 GPa; ft ¼ 2.25 MPa; Gf ¼ 64.7 J=m2 ðCombination 3Þ

ð4Þ

while the value of φ was kept the same. Importantly, the measured

fc value [Figs. 3(c and d)] was also matched for all three combi-

nations. For the three parameter combinations, the FE crack band

model with M7 delivered, respectively, the load capacities given in

Table 1. From Fig. 5(b), it is also evident that the crack profiles are

similar for all three combinations, even though the error of Combi-

nation 3 is large. Hence, it is insufficient to judge models only by

the crack profiles.

Fig. 6 shows another interesting feature, namely, the calcu-

lated stresses in the stirrups are very nonuniform (although this

Fig. 4. Comparison of the load-displacement curve between the simulation (with M7) and the test result without and with stirrups.
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nonuniformity cannot be verified because no strain gauges were

bonded to the stirrups). Stirrups 1 and 12, which never yielded,

were outside the range of the main diagonal crack. All the others

were in the range of plastic hardening of stirrups. The limit ana-

lysis, underlying the design codes, assumes all the stirrups

to have at maximum load the same stress, fy, but this is not

true here.

The foregoing results based on fracture mechanics are one-way

to document the problem of misleading nature of ill-informed

predictions based on incomplete material data, missing ft, Gf , Eeff

or φ, and Eeq. Another way to document this problem is by

statistical analysis of the existing huge databases on beam shear

failure, such as the database of ACI 445d/DAfStb (Reineck

et al. 2014), which represents a modest expansion of the previous

ACI 445F database with 784 data (Reineck et al. 2003; Fig. 7),

which is, in turn, a major expansion of the original Northwestern

University database of 296 data (Bažant and Kim 1984). The 2015

test at University of Toronto was not included in the ACI 445d/

DAfStb database because this database was created earlier.

Statistical Estimation of Uncertainty of V When
Only f c Is Known

Estimation Based on Shear Stress Effect in ACI-ASCE

Database without Size Effect

Fig. 8(a) shows in dimensionless form the classical experimental

database of ACI-ASCE Committee 426 (MacGregor et al. 1997;

ACI 1977), which describes how the cross-section average shear

stress at maximum load, characterized by the dimensionless ordi-

nate V=ð
ffiffiffiffiffiffiffiffiffiffi

f 0
cσ1

p

bwdÞ in which σ1 ¼ 1 psi ¼ 1 MPa=145, depends

on the longitudinal reinforcement ratio As=bwd. As usual,
ffiffiffiffiffi

f 0
c

p

in-

troduces the generally accepted approximate effect of f 0
c on shear

strength. This classical database involves no correction for the size

effect of d, which means that the persistent narrow Europe–Japan–

US disagreements about the proper form of the size-effect equation

for design codes do not affect the data statistics.

The shaded narrow vertical strip in the figure shows a group of

data points chosen so that the number of points was significant

(25 in this case) and that the test parameters were relatively close

those of the UCB test. The coefficient of variations of the ordinates

of the points in this group is 22.4%. Because the probability

Fig. 5. Crack profile (logarithmic strain patterns) at the peak load without and with stirrups, resulting from Combinations 1 and 3.

Table 1. Peak load for different combinations in simulation

Simulations

No stirrups

(kN)

Error

(%)

With stirrups

(kN)

Error

(%)

Combination 1 511 3.4 2,298 3.1

Combination 2 673 36.2 2,455 10.1

Combination 3 884 78.9 2,529 13.5

1

2

3
4

5
67

10

12

8 9 11

1~12: stirrups from the center to the side

Fig. 6. Maximum stress values along each stirrup at the peak load.

3

9

27

002022

[in]

Large size range

UCB test (2021)

784 tests

Fig. 7. Scatter of the shear strength exhibited from the ACI 445D

database of 784 weighted points (1 in: ¼ 25.4 mm).

© ASCE 04023113-5 J. Struct. Eng.



distribution is not known, we considered two extreme choices: (1) a

uniform (rectangular) distribution between the margin points, and

(2) the normal (or Gaussian) distribution with coefficient of varia-

tion 22.4%, as shown in Figs. 8(b and c). From the probability con-

tent of the strips of width �2.7% in Figs. 8(b and c) that are

centered at the ordinate corresponding to the UCB test, we infered

that the probability of the wining prediction was as follows:

P ¼ 4.77% for uniform distribution

P ¼ 4.40% for normal distribution ð5Þ

So, our uncertainty about the type of probability distribution has

almost no effect.

Estimation Based on d > 1.75 m from ACI 445F

Database without Size-Effect Shift

Fig. 9(a) shows in double logarithmic scale the ACI 445F world-

wide database of 784 tests [ACI Committee 318 (ACI 2019)] of

beams of various sizes d, without stirrups, plotted as relative shear

strength X ¼ V=V0 with V0 ¼ 14.5bwd
ffiffiffiffiffiffiffiffiffiffi

f 0
cσ1

p

ρ
1=3
w , versus beam

depth d. Here, V0 has been determined by optimal fitting (or non-

linear regression) of the whole database with the energetic size-

effect law embedded in the shear provisions of ACI 445/2019.

Because there is no statistical data basis for beams comparable

to the UCB test, we must widen the scope by considering from the

database the group of nine tests of depth >1.75 m marked in

Fig. 9(a) by a vertical dashed line. We assumed that the coefficient

of variation of this group, found to be ωD ¼ 22.0%, was approx-

imately the same (Luo et al. 2021) as could be expected if the UCB

test was repeated on different concretes. The probability analysis

was, and must be, carried out in the linear scale even though

the data in the figures are shown in the logarithmic scale.

First, let us ignore the size effect on the statistics. The group

of nine data points does not suffice to determine the type of

probability distribution. So we again assumed two extremes:

(1) the rectangular distribution spanning the extreme points,

and (2) the normal distribution, both shown in Figs. 9(b and c).

For each of them, we located the shaded strips of width �2.7%

[Figs. 9(b and c)] that are centered at coordinate Xc representing

the centroid of the group of nine data points, The centroid was

found to be Xc ¼ 5.87.

Now we want to find the probability of the prediction being

within �2.7% of the load capacity observed in the UCB test.

The data do not suffice to decide the probability distribution func-

tion (PDF) of shear load capacity [which was analyzed in detail

by Luo et al. (2021)]. The width of this interval (or strip) is ΔX ¼

2 × 2.7%V=ðbwd
ffiffiffiffiffiffiffiffiffiffi

f 0
cσ1

p

ρ
1=3
w Þ and its center lies in Fig. 7 at coor-

dinate Xc ¼ V=ðbwd
ffiffiffiffiffiffiffiffiffiffi

f 0
cσ1

p

ρ
1=3
w Þ. The probability of the winning

prediction is thus estimated to be

P ¼ 8.46% for uniform distribution

P ¼ 6.78% for normal distribution
ðbut size effect ignoredÞ

ð6Þ

Estimation Based on d > 1.75 m from ACI 445F

Database with Size Effect Considered

The size effect is an important factor. According to the energetic

size-effect law (SEL), V=V0 ¼ ð1þ d=d0Þ
−1=2 [incorporated with

a cutoff into ACI 318-2019 (ACI 2019)], we denote V0 ¼ c × bwd

ðf 0
cσ1Þ

1=2ρ
1=3
w , where c ¼ 14.5 is a constant to be determined.

A 3.56-m-deep beam that corresponds to the dimension of UCB

test (2021) is marked in Fig. 9(a). For the data of large beams,

(a)

(b) (c)

Fig. 8. (a) Relationship between the relative shear load capacity and the reinforcement ratio; and (b and c) probability of a good prediction when

considering no size effect using a uniform distribution and normal distribution.
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the theoretical VSE=V0 value, corresponding to the group of nine

data of average size d ¼ 1
n

P

n
i¼1 di (n ¼ 9, i ¼ 1; 2; : : : ; 9 numbers

of data points), was obtained by means of the size-effect law

ξ1 ¼ VSE=V0 ¼ ð1þ d=d0Þ
−1=2 ð7Þ

where the subscript SE labels the V calculated from the size-effect

law. The mean of the group of nine data is

ξ2 ¼
1

n

X

n

i¼1

ðVi=V0iÞ ð8Þ

By comparing these two numbers, we can get the correc-

tion factor η ¼ ξ2=ξ1 ¼ 1.15 from the size-effect curve fitted to

the original data. This factor is further applied as the size-effect

correction for the UCB test of large beam. Thus, the mean is

obtained

V=V0 ¼ ηð1þ d=d0Þ
−1=2 ¼ 0.33; where d ¼ 3.3 m ð¼130 in:Þ

ð9Þ

The mean of the PDF will change accordingly in the normal

distribution. In this most realistic estimation, the value for the prob-

ability of the winning estimate of load capacity [Fig. 9(d)] is thus

found to be

P ¼ 0.90% ðnormal distribution corrected by SELÞ ð10Þ

One reason for this low value is the factor ρ1=3 in the design code
equation. The ρ value in the UCB test was unusually low for beams,

which causes that this factor shifts the data point in Fig. 9(a) higher

than it would lie for beams with a normal ρ-value. Doubtless, the
reason for the low ρ value is that the UCB test was intended to

represent a vertical slice of foundation footings, which normally

have a much lower ρ than structural RC beams.

Among all the present estimates, P ¼ 0.90% (Eq. 10), looks

most realistic. However, because statistics are always debatable

and often face many hidden obstacles [as recently elucidated by

Nobel Prize winner Kahneman et al. (2021)], we present here

all our estimates of the probability of winning prediction, which

ranged from 0.14% to 8.46%.Whichever one the reader may prefer,

it is clear that the winning prediction was obtained by some divine

inspiration.

Nevertheless, this is also a point that makes the UCB com-

petition (as well as the Toronto competition) valuable. It clarifies

the big uncertainty in shear strength predictions based on insuffi-

cient data. But in no way can one draw any conclusions for the

choice of size-effect equation for the design code ACI 318/2019

(Moehle 2019).

Role of Self-Weight in Cross-Section Models

The strong variation of shear force along the beam caused by big

self-weight loading raises a further question about all predictions

that did not use FE fracture analysis and evaluated V at some criti-

cal cross section (Bentz 2000) whose distance, xV , from the support

was either estimated or implied by some simplified argument. The

critical xV does not occur at the traditionally assumed distance d

from the support.

The estimation of xV played a big role in a previous similar com-

petition to predict the shear capacity of a beam 4 m deep, without

and with stirrups, tested at the University of Toronto in 2015. For a

design equation using the size-effect law, it was observed that due

to big self-weight, a small shift of xV would change a poor predic-

tion to a perfect one.

(a)

(c) (d)

(b)

Fig. 9. (a) Size-effect law fitting of the ACI 445D database; (b and c) calculation for a good prediction using different probability distributions

(uniform and normal); and (d) corrected calculation of probability of a good prediction due to size-effect law.
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Conclusions

Based on the analyses conducted and results obtained, the follow-

ing conclusions can be made:

1. A close FE prediction of failure load in a RC beam shear is

impossible without knowing, in addition to f 0
c, five relevant

material parameters that vary widely from one concrete to

another. They include the tensile and compressive strengths,

material fracture energy, effective elastic modulus as reduced

by short-time creep, and the mean (rather than the required)

strength of concrete test cylinders.

2. The present FE analysis showed that there exist realistic values

of the aforementioned five parameters that lead to a close fit of

the data measured in the UCB test. This, of course, does not

prove the validity of the FE fracture approach. But it shows

that the UCB test does not disprove it either.

3. For the predictions lacking the relevant input data, the predic-

tion competition is a matter of chance, i.e., the prediction com-

petition is essentially a lottery. Nevertheless, the two prediction

competitions have been useful in demonstrating (1) the enor-

mous degree of uncertainty of load capacity predictions when

only the required compression strength of concrete, f 0
c, is

specified, and (2) the importance of testing additional material

parameters enabling realistic predictions.

4. The design code equation, as well as a simple strain-based

cross-section analysis, can yield a close prediction of one indi-

vidual test only by luck. The design equation has been set to

give estimates that lie at the lower margin of the data cloud in a

database covering all possible concretes (by contrast, the

trends indicated by the form of this equation, e.g., the form

of the equation describing the effect of the beam size or of the

shear span, are what should closely agree with a series of indi-

vidual tests of different sizes on one and the same concrete).

5. The huge scatter of the database also explains why the under-

strength factors stated in the code and further hidden under-

strength factors built into the code equation have to be so large.

6. Considering the ranges of several large databases that are

relevant to the UCB test, and assuming that the test data within

these ranges follow either the uniform distribution or the nor-

mal distribution, the probability of winning prediction accord-

ing to various degrees of statistical simplification was found to

range from 0.14% to 8.46% based on the ACI 445F database

without size-effect shifts, 0.90% for the same but with size-

effect shifts, and <5% for the classical ACI-ASCE shear data-

base with no size effect. The most realistic estimate was

0.90%. Interestingly, the consideration of size effect reduces

the probability of the winning prediction.

7. It further follows that the competitions held do not validate the

method of analysis used for the winning predictions, which

was the same for both UCB and Toronto tests.

8. Because the design code must apply to all concretes, and be-

cause thousands of designs have to be conducted on the basis of

the required strength only, the precise type of concrete often is

not, and cannot, be specified in advance. Consequently, large

statistical variability of structural strength must, unfortunately,

be accepted, which makes very large overall safety factors

inevitable. This uncertainty can be reduced by a design based

on realistic finite-element fracture analysis considering all the

material parameters. However, ignoring the design code would

deprive the designer from the legal protection that it provides.

9. In a beam as heavy as in the UCB contest, the variation of

shear force along the beam due to self-weight is so strong that,

in absence of FE fracture analysis, the choice of location of the

critical cross section for sectional analysis is a big unknown.

Knowing the correct location can greatly improve the predic-

tion. This is another factor that makes the predictions based on

simple cross-section analysis a matter of chance.

10. As a byproduct of the M7 FE crack band analysis, it was found

that the stresses in stirrups at maximum load of the UCB beam

are not uniform and not equal to yield limit fy. Rather, they vary

strongly from one stirrup to another. This is not what is assumed

in design codes and represents an additional reason why the

safety factors have to be so large. In view of this observation,

strain gages should, in future tests, be mounted on the stirrups.

11. From a single test (or even a few tests), nothing can be inferred

for the correctness of the design code. The code predicts, for

given f 0
c, the ultimate load value that is at the margin of a wide

data band and, in the case of beam shear, equals roughly 35%

of the data mean. Applying the understrength and load factors

to that load value, one gets a design strength estimate that is,

by experience, safe. But the load of failure probability of one

in a million, which statistical experts consider safe, cannot be

calculated from a failure load that corresponds to the data

cloud margin, even if the type of probability distribution is

known, because this distribution must be anchored in the mean

(or in the regression curve) of the database.

12. The valuable contributions of the UCB test, as well as the

Toronto test, were that they significantly improved the data-

base and made blatantly clear the pitfalls of competitions based

on the required concrete strength only. Further large-scale

beam shear tests should be performed to enlarge the database.

13. To make future competitions for large-scale test prediction

meaningful, it will be necessary to carry out and report to the

competitors the tensile and compressive strengths, material

fracture energy, and effective elastic modulus as reduced by

short-time creep. All these tests are standardized (for fracture

energy in RILEM TC89-FMT), and their cost is negligible

compared with the large-beam test).

In summary, succinctly, the two big beam tests were valuable,

but the competitions were misleading.

Broader Implications for CO2 Emissions

The safety factors, over or covert, have consequences for CO2

emissions. The worldwide CO2 emissions from cement production

are about to exceed those from all the cars and trucks in the world

and are rising sharply. This problem is aggravated by both exces-

sive and inadequate safety margins. To explain it, imagine hypo-

thetically that all the structures are arranged, as in Fig. 10, in a

increased CO2 emissions

10-9

10-6

10-3
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economic
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Risk intolerable cracking, reduced lifespan 

CO2 emissions increased with a delay
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Too safe, wasteful 
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F
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bi
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y

Fig. 10. Estimated failure probability versus the number of structures.
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decreasing sequence of their failure probability (as if known). The

excessively high safety factors highlighted by this study, giving

unnecessarily low pf, lead to an excessive use of concrete, and thus

of cement. This increases CO2 emissions.

However, excessively low safety factors also increase the

emissions—in the long run. They lead to more cracking, which

allows ingress of water and various corrosive ions. This impairs the

durability and requires early replacement of the concrete structure.

If the lifetimes of concrete structures could be doubled, the envi-

ronmental benefit would be enormous. For that goal, the safety

factors and structural analysis methods matter.

Appendix. Alternative Method to Calculate the
Probability of Prediction within �2.7% of Test
Result

Fig. 11(a) shows in double logarithmic scale the relative shear load

capacities V=V0 without stirrups as revealed by 784 tests assembled

from the worldwide ACI 445F database (V is the shear force and V0

is the normalizing constant) (Yu et al. 2016). The diameter of each

data circle is proportional to the weight of each data point, which

was obtained by dividing the range of log d into vertical strips of

equal width Δ log d and assigning the same combined weight to

each strip. This weighting minimizes the statistical bias due to data

crowding for small sizes and scarcity at large sizes.

To quantify scatter in the range corresponding to the UCB test,

we mark in the figure a narrow vertical strip corresponding to the

parameters of this test (we cannot consider a vertical line, i.e, a strip

of zero width, because the chance of a test point lying on such a line

would be negligible). The coefficient of variation of the ordinates of

the weighted data points on this strip, corresponding to the case of

no stirrups, has been evaluated as ωD ¼ 32.5%.

But ωD is not a correct characteristic of scatter because the equa-

tion for the normalizing factors V0 and d0 of the ordinates and

coordinates of data points is also uncertain. This equation is

characterized by a certain coefficient of variation ω0. It is obvious

that random scatter of V0 and d0 must increase the coefficient of

variation of the data on y ¼ V=V0 when plotted in these uncertain

coordinates. So the ordinates yi (1; 2; : : : ; ni) of the points in the

vertical strip, characterized by a certain mean ȳ and coefficient of

variation ωD, have been spread apart due to the uncertainty in V0

and d0. This uncertainty is characterized by further coefficients of

variation ωV0 and ωd0, and also by the difference Δy ¼ yn–y1

between the highest and lowest points. Taking antilog of each

coordinate, we find yn ¼ 0.60, y1 ¼ 0.20, andΔy ¼ 0.40. For lack

of information and for the sake of simplicity, we will assume that

the distribution of the y-data in this strip are rectangular. This

means that the probability density of y in this strip is uniform, equal

to 1=Δy, and the mean is ȳ ¼ ðy1 þ ynÞ=2 ¼ 0.40.

Aside from V0 and d0, one must also consider the random error

of the form itself of the size-effect law, which was used by Bažant

and Yu (2005) to construct the data plot in the figure. This error is

characterized by a certain coefficient of variation ωSE. Its value can

be inferred from size-effect tests on one and the same concrete, and

according to the numerous plots of beam shear tests made by

Bažant and Yu (2005), we have, roughly, ωSE ¼ 5%. Furthermore,

the uncertainty in function
ffiffiffiffiffi

f 0
c

p

converting fc to ft should also be

considered, being roughly characterized by a certain coefficient of

variation ωf ¼ 5%.

As known from statistics (Benjamin and Cornell 2014; Bulmer

1979; Haldar and Mahadevan 2000), if the correlations of random

variables are negligible, we have the approximation ω2
D ¼ ω2

Vþ
ω2
V0

þ ω2
d0
þ ω2

SE þ ω2
f. From this it follows that if the UCB test

could be repeated for many different concretes with different fc,

the true coefficient of variation, ωV , of the UCB shear load capacity

in the UCB test would be approximately

ωV ¼ ðω2
D − ω2

V0
− ω2

d0
− ω2

SE − ω2
fÞ

1=2 ð11Þ

The coefficient of variation ωV0 characterizes the uncertainty

in the form of the dependencies of V0 on the shear span a=d
(especially in the exponent 0.7) and on f 0

c [including uncertainty

of exponent 1=2, which is considered as 1=3 in fibModel Code (fib

2013)]. Approximately ωV0 ¼ 0.10. The ωd0 characterizes the un-

certainty in the form of the dependence of transitional size d0 on f
0
c

(especially in exponent −0.7). Approximately again, ωd0 ¼ 0.10

(the values of d, d0, f
0
c, and a=d are different for different data

points on the vertical strip). Based on these considerations,

Eq. (7) yields, for the case of no stirrups, the following estimate:

ωV ¼ ð0.3252 − 0.102 − 0.102 − 0.052 − 0.052Þ1=2 ¼ 28.4%

ð12Þ

This characterizes the error of shear force when only fc is

known, and after the bias in the coordinates due to randomness

of parameters V0 and d0 has been eliminated. This decrease in

d/d
0

L
o
g
-s
c
a
le

Log-scale(a) (b)

V
u
/V
0

784 tests

Fig. 11. (a) Scatter of shear strength in ACI 445D database of 784 tests’ weighted points, weighted to counter sparsity and normalized for known

trends (reproduced, curves are unrelated); and (b) calculation for a good prediction using normal probability distributions.
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coefficient of variation means that the spread of the rectangular

distribution must be reduced from Δy to Δy 0 ¼ ð0.284=0.325Þ
Δy ¼ 0.874Δy.

If we say a good prediction is within �2.7% of the measured

maximum (or ultimate) load Vu, we may again consider a uni-

form probability distribution of Vu=V0 (normalized value) within

the interval ð−0.027; 0.027Þ Vu=V0 centered at the measured

Vu=V0. The probability content of this interval is equal to the

fraction of this interval within the spread Δy 0 of the unbiased

rectangular probability distribution of V0=Vu when only fc
known, which is (0.054Vu=V0Þ=Δy 0. This is the probability

of a good prediction. But after calculation, we find that the

UCB test is out of the range of the existing database (P ¼ 0),

which means that the uniform distribution is not appllicable

in this situation. Furthermore, if we consider the distribution

of Vu=V0 as a normal distribution, then the probability of a good

prediction will be changed to 0.14%, as already shown in

Fig. 11(b).

If we choose to use the relative shear load capacities V=bwd
without stirrups, as revealed in double logarithmic scale by 784

tests assembled from the worldwide ACI 445F database and shown

in Fig. 12(a), then the probability will change accordingly, as

shown in Figs. 11(b and c). Then, if the deterministic part of the

size effect is ignored

P ¼ 6.23% for uniform distribution

P ¼ 5.02% for normal distribution
ð13Þ
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