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Abstract

Missing data presents a challenge for machine learning applications specifically when utiliz-
ing electronic health records to develop clinical decision support systems. The lack of these
values is due in part to the complex nature of clinical data in which the content is personal-
ized to each patient. Several methods have been developed to handle this issue, such as
imputation or complete case analysis, but their limitations restrict the solidity of findings.
However, recent studies have explored how using some features as fully available privileged
information can increase model performance including in SVM. Building on this insight, we
propose a computationally efficient kernel SVM-based framework (L-SVMp+) that lever-
ages partially available privileged information to guide model construction. Our experiments
validated the superiority of L,-SVMp+ over common approaches for handling missingness
and previous implementations of SVMp+ in both digit recognition, disease classification and
patient readmission prediction tasks. The performance improves as the percentage of avail-
able privileged information increases. Our results showcase the capability of L-SVMp+ to
handle incomplete but important features in real-world medical applications, surpassing tra-
ditional SVMs that lack privileged information. Additionally, L-SVMp+ achieves comparable
or superior model performance compared to imputed privileged features.

Author summary

Clinical problems often suffer from missing value issues, which require careful consider-
ation. There are various approaches developed to tackle this problem, including imputa-
tion methods, but these methods have limitations. In this study, we introduced an
efficient algorithm called /,- SVMp+ to address missing values in important features using
a partially available privileged information framework. Our approach offers a novel per-
spective for handling missing values by regarding them as privileged information to guide
the training process. Our results indicate that (1) our proposed method outperforms the
standard SVM, SVMp+; and (2) Our approach achieves comparable or superior
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the PhysioNet Restricted Health Data, a freely-
available medical research data platform. The
dataset is available to qualified investigators which
have been formally approved and under the terms
of a data use agreement. https:/physionet.org/
content/heart-failure-zigong/1.3/ and contact
contact@physionet.org for more information. The
UCI heart disease dataset is publicly accessible on
https://archive.ics.uci.edu/ml/datasets/heart
+disease.
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performance to two commonly used imputation methods. This non-parametric approach
offers a new direction for handling missing values and may potentially avoid imputation-
related bias and overfitting in the model. With further testing and validation, our
approach may lead to more accurate diagnoses and better treatment outcomes for
patients.

Introduction

Clinical Decision Support Systems (CDSS) rely heavily on machine learning algorithms to pro-
vide accurate predictions, but these algorithms are often challenged by missing values in Elec-
tronic Health Records (EHR) [1-3]. Given the complex nature of medical data, this is a
common hurdle to algorithmic developments. For example, a patient in one condition might
undergo multiple radiology scans while another patient receives specific lab tests, leading to
missingness in both data modalities. Some other times, the information crucial for predicting
patient outcomes could be missing due to various reasons such as changes in protocol and lim-
ited data access between institutions. Traditionally, researchers have resorted to methods like
complete case analysis, dropping features, and imputation to handle missing data. Complete
case analysis refers to discarding samples that have any missing values and restricting the
study cohort to those with complete data [4]. Alternatively, all the features with missing values
can be dropped from the analysis entirely. Despite of some successful applications, both meth-
ods may result in potential loss of valuable information or unnecessary reduction of sample
size [5-7]. Instead of removing missing data, imputation replaces missing entries with pre-
dicted values based on the available data. Imputation has been increasingly and widely adopted
in medical research [8]. When using this approach, however, it is important to note the poten-
tial reduction of model generalizability and reliability if obscuring the mechanisms of missing
data [9].

Alternatively, a strategy called learning using partially available privileged information
(LUPAPI) can make use of the important feature without imputation while addressing the
issue of missingness [10]. This concept is derived from learning using privileged information
(LUPI) [11]. Under the LUPI framework, high-quality features only available at the training
stage but not during the testing stage are considered privileged information (PI) [12]. During
the model training process, PI can play a teaching role to guide the model construction. Once
trained, the model no longer has access to PI in the testing stage, just like the students taking
exams without the teacher’s assistance. This concept has been applied for object detection and
image segmentation in computer vision tasks [13-15], but is also important for healthcare
applications [10, 16, 17]. The LUPI framework allows models to use clinical information that
may not be available at the time of prediction, such as lab tests or imaging results, but that can
guide the model in learning the relationship between the main features and outcome. The
LUPI paradigm was proposed for Support Vector Machines (SVMs) by Vapnik and Vashist
[11, 12] which they called the SVM+ model. Apart from SVM, the LUPI paradigm can be
applied to other machine learning algorithms and has already been applied to K-means [18]
and Convolutional Neural Network for different tasks [13].

In practice, it is difficult to apply the LUPI scheme to clinical problems due to the sparse
availability of PI across the training data. Assuming that only a portion of the patients has PI at
the training stage, Sabeti proposed the LUPAPI paradigm [10] and provided an SVMp+ imple-
mentation. Unlike the standard LUPI framework, which required access to the PI for all train-
ing samples, LUPAPI guides the construction of the decision hyperplane of the SVMp+ using
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slack functions defined on the partially available privileged feature space and slack variables
for training samples without PI. Although the SVMp+ algorithm can handle sparse PI, it is
computationally inefficient and incapable of modeling large datasets. This is due to constrain-
ing the slack variable and functions to be positive which doubles the number of dual variables
and using a sequential minimal optimization (SMO)-style algorithm [19] which complicates
working set selection.

In this paper, we present a novel extension of the LUPAPI paradigm, which resolve the lim-
itations of the existing SVMp+ algorithm. Our proposed algorithm is based on J,-loss [20], by
which the number of dual variables is reduced. Besides, the derived dual representation is in
the same form as one-class SVM, which could thus be solved using the existing state-of-the-art
SVM solver LIBSVM [21] efficiently. We demonstrate the effectiveness of our algorithm
through experiments on three datasets—digit recognition using the MNIST+ dataset, disease
classification on the UCI heart disease dataset and readmission prediction on the PhysioNet
Heart Failure dataset. Our results show that our proposed algorithm outperforms the SVMp
+ algorithm in terms of model performance and training time. Additionally, the readmission
prediction task demonstrates that our algorithm achieves better results than imputation or fea-
ture elimination, making it a promising solution for handling missing values in EHR for CDSS
applications.

Methods
Learning using partially available privileged information

In the LUPAPI paradigm, the additional privileged information is contained only in a subset
of the training samples and is not available in the testing stage. We represent the training data
as triplets {(x;,5,,%,)} fori=1, ..., m and pairs {(x;, y;)} fori=m+ 1, ..., n, where n and m
denote the sizes of the training dataset and the subset with privileged information respectively.
For the ith training sample, x, € R’ represents the main features, X, € R? represents the privi-
leged features when they are available, and y; = 1 is the sample’s label.

In the special case when m = 0, the original SVM model can learn from the training data
(x5, ¥;) a decision hyperplane of the form

where w € R denotes the weight vector and b € R denotes the bias, which could then be used
ow € R%. By incorporating a feature map ¢ : RY — R’ and using
the kernel matrix K = @ ® where ® = [¢(x1), . . ., ¢(x,,)] denotes the data matrix of the feature
vectors, the kernel SVM model can learn a decision boundary of the form

to classify new data points x,

where w € R/, which is not necessarily a hyperplane. In the case when m > 1 and with the
privileged information x,, the model is guided to learn a new decision boundary with
improved classification performance for new data points.

In [10], the SVMp+ was developed. The whole framework is based on SVM+ that [12] pro-
posed, but there is one major difference. For those data points that have privileged informa-

tion, the decision boundary is represented with the slack function f(x) = w”¢(x) + b, while
for the data points which lack privileged information, the decision boundary is guided by slack
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variable (. The formula is shown below:

min f||w|| +f||~\| +CZC+CZ( "6(x,) + ) (1)

i=m+1

y(wip(x)+b)>1— (WoEx)+b) forl<i<m

WipE)+b>0 for1<i<m
" y(wio(x) +b) >1-( form+1<i<n

(>0 form+1<i<n

where C, C and y are hyperparameters greater than zero. The dual optimization problem can
be formulated as:

Logvl +IN G S+ Z (%)

—Z(x X+ b)) — 1+ W'$(%,) +b)
—Zui(WT¢(ii) +b)

—’;f(y (w'o(x) +b) —1+8)
_izr:;vigr

0<o,<C form+1<i<n

s.t. 0<a for1<i<m

1

0<§, for1<i<m

The paper adopted the alternating SMO-style algorithm to optimize the dual cost function.
Nevertheless, the working set is too complicated (at least 9 sets of maximally sparse feasible
directions) and the dual variables interact. Therefore, the proposed algorithm is computation-
ally slow.

Solving the kernel 12-SVMp+ problem

In this part, we present a computationally efficient algorithm for solving kernel SVMp+. Based
on the LUPAPI framework, we introduced /,-loss into the kernel SVMp+ objective function
and transforming it into one-class SVM. Here, we denote by w, #, ¢ and ¢ the weight vectors
and feature maps for the main and privileged features taking values in the feature spaces R’

and R/ respectively. To simplify the formula, we absorb the bias terms into the weight vectors
by introducing an auxiliary dimension to the weight vectors and feature maps.
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Following the approach of Li in [20], we formulate the kernel /,-SVMp+ model as the fol-
lowing optimization problem:

><z

min —uwn P> +22w

= 1
o i=mt

(2)

ywip(x) > p—w'p(x) for1<i<m

yiw'o(x;)

v

p—¢ form+1<i<n

where , C, C are the hyperparameters of the model, ; is the slack variable for the training
samples without privileged information, and #”¢ (%,) is the slack function for the training
samples with privileged information defined in the privileged feature space. Therefore, the
decision boundary learned from (x;, y;) is further tuned by using the slack variables as well as
slack functions during the training stage.

To solve the constrained convex optimization problem involved in the L,-SVMp+ model,
we first transform the primal problem to its Lagrange dual problem by using non-negative
Lagrange multipliers. The Lagrangian function is given by:

1

£:§IIWII2 *H~ I”+ = ZC +5 Z "9(%,)" = p
i=m+1
—Za (W d(x;) = p+ WG (X))
- Z ﬁi(yin¢(Xi) —pt Cr)
i=m+1
By taking the partial derivatives with respect to the primal variables w, w, p and (5,41, . . ., {s

and setting them to zero, we obtain:

aE m n
8_ =0—-w= Zaiyi¢(xi) + Z ﬂiyi¢(xi)
w i=1 i=m+1
oL - . -
5n =0 W= Z (0T + CDOT) (%))
oL -
—1= fo + Z B;
8p i=m+1
oc B
o VT
where I denotes the identity matrix of the appropriate dimension, ® = [&5(&1 )yenes g?)(fcm)]

denotes the data matrix of the privileged feature vectors, and the inverse matrix exists for all

but a finite set of values of the ratio <.

After combining ; and f; into a single n-dimensional dual variable o = [y, . . ., Q> Brs1s
.» B,]", we substitute the four equations back into the Lagrangian function to obtain:
K(yI, +CK)™ 0

0 Cc'I

n—m

1 1
L= —EocT<AyKAy)oc —§ocT
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where A, denotes the diagonal matrix with y, . . ., y, along the diagonal, 0 denotes the zero
matrix of the appropriate dimensions, and K = ®"® and K = ®"® are the kernel matrices for
the main and privileged features respectively, and arrive at the Lagrange dual problem in
matrix format

o

. 1,
min 50{ <AyKAy+ 0 o

K(yI, +CK)™" 0 ])
o

subject to the constraints that the entries of the vector & are all non-negative and sum to 1.

Therefore, the loss function is in the form of ; «" Ga, which shares the same form as a kernel
one-class SVM with kernel matrix G. This problem is considered a quadratic programming
problem and can be solved by a standard SMO algorithm implemented in common SVM solv-
ers such as LIBSVM. After calling the one-class SVM solver from LIBSVM to find the dual
solution oy, we could then compute the decision boundary as

T T _
aminAy(I) ¢(‘xnew) =0.

Although the formula for the one-class SVM kernel matrix G involves taking the inverse
of a matrix, which is computationally expensive, the matrix in question is of moderate size
m x m. Moreover, the benefit of using highly efficient algorithms for both matrix inversion
and solving one-class SVM makes the overall approach computationally efficient.

Dataset

We utilized three datasets to illustrate the improvements of I,-loss SVM+ under the LUPAPI
paradigm on model performance for binary classification over alternative methods.

o MNIST+ dataset [12, 20]: A subset of the public MNIST+ dataset for classifying hand-writ-
ten digits was used to benchmark algorithmic performance. Images for two digits: ‘5’ and ‘8’
were selected and split into training, validation, and test sets of 100, 4002, and 1866 images
respectively. All images were resized to 10 by 10 pixels and then flattened into 100 — d vectors
which were used as main features. The training images were appended by PI in the form of a
textual description which was converted to a 21 — d vector.

o UCI heart disease dataset [22]: This dataset is composed of four databases: Cleveland, Hun-
gary, Long Beach, and Switzerland, and initially included 76 attributes. In order to maintain
consistency with other published papers, we used a subset of 14 attributes. One attribute
identified whether the patient had heart disease, one attribute was for patient identification,
and one described the data source. The remaining attributes were considered as main fea-
tures, except for ‘slope’, which represented the slope of the peak exercise ST segment and
was used as privileged information. After filtering out samples with missing main feature val-
ues, the dataset was reduced to 740 samples.

PhysioNet Heart Failure dataset: This dataset was derived from the PhysioNet Heart Failure
dataset. As part of the PhysioNet Restricted Health Data [23-25], PhysioNet Heart Failure
dataset included EHR of 2008 patients admitted to Zigong Fourth People’s Hospital with
heart failure between December 2016 to June 2019. The patient cohort for our analysis was
generated by selecting non-emergency patients whose discharging department and admis-
sion ward were both labeled as “cardiology”. With the guidance of the cardiologist, 20 infor-
mative features are identified and used as the main features. After removing patients who
had missing values for any of the listed features, the derived dataset contains 779 patients.
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Table 1. Demographic characteristics of patients in the PhysioNet heart failure dataset.

Features Count Percentage (%)
Gender
Male 459 58.92
Female 320 41.08
Age (years)
(21,29] 3 0.39
(29,39] 5 0.64
(39,49] 30 3.85
(49,59] 39 501
(59,69] 147 18.87
(69,79] 324 41.59
(79,89] 202 25.93
(89,110] 29 3.72

https://doi.org/10.1371/journal.pdig.0000281.t001

The demographic statistics of the dataset are presented in Table 1 and clinical characteristics
are listed in Table 2. Specifically, the dataset contains the left ventricular end-diastolic diame-
ter (LVEDD) measurements for part of the patients, which is an important predictor of

advanced heart failure [26-28].

Table 2. Clinical characteristics of patients in the PhysioNet heart failure dataset.

Features Units Mean + Std
Body temperate Centigrade Scale 36.41 +0.43
Pulse bpm 82.65 + 20.46
Respiration bpm 18.74 + 1.17
SBP mmHg 128.56 + 23.29
DBP mmHg 75.27 £13.27
MAP mmHg 93.03 + 15.01
WBC 10°/L 6.84+2.93
HCT % 0.35 + 0.069
PLT 10°/L 140.51 + 55.74
BMI kg/m® 21.89 £ 15.19
BNP pg/ml 1202.03 £ 1310.52
Creatine umol/L 108.79 + 78.53
Potassium mmol/L 4.01+0.71
Chloride mmol/L 101.84 + 5.66
Sodium mmol/L 138.46 + 4.54
Calcium mmol/L 2.31+0.18
Albumin g/L 37.07 £ 4.68
NYHA class class 1
LVEDD mm 53.79 £ 11.50

SBP = systolic blood pressure; DBP = diastolic blood pressure; MAP = mean arterial pressure; WBC = white blood
cell; HCT = hematocrit; PLT = platlet; BMI = body mass index; BNP = brain natriuretic peptide; NYHA = New York

Heart Association; LVEDD = left ventricular end-diastolic diameter

https://doi.org/10.1371/journal.pdig.0000281.t002
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Baselines

o Standard SVM: SMO-based fitcsvm [29] in MATLAB

« SVMp+: An implementation based on SMO algorithm. It solves the quadratic programming
problem in Eq 1 [10].

o Mean imputation: The mean of non-missing values for every feature is computed to fill the
missing values for all samples.

o Iterative Imputation: Iteratively estimating each feature based on the remaining features and
then filling in the missing values. It is implemented in Python scikit-learn library [30].

Evaluation metrics
The model performance was evaluated by F1 score, Area Under the Receiver Operating Char-

acteristic Curve (AUROC) and Area Under Precision-Recall Curve (AUPRCQC). F1 is the har-
monic mean of recall and precision, defined as

2x TP

F1 Score —
O = ENt2x TP+ FP

where TP = true positive; FN = false negative; FP = false positive. F1 score reported here is the
maximum based on a series of thresholds between 0 and 1.

Experiments and results
Digital recognition task on MNIST+

Experimental design. The original MNIST+ dataset was split into training, validation,
and testing sets as shown in Fig 1A, and this same split scheme was used for all experiments.
The best hyperparameter combinations for each experiment were selected based on perfor-
mance on the validation dataset, and the model performance was evaluated using the testing
dataset. In the standard SVM models, only the main features were used for training, while
both the main and privileged features were utilized in the SVMp+ and L,-SVMp+ models. To
compare the performance of SVMp+ and ,,-SVMp+ when privileged information (PI) is only
partially available in training, PI was randomly sampled under a specific seed to provide avail-
ability ranging from 50% to 90%. This sampling was repeated independently five times to yield
five sets of PI under each availability level. Additionally, the sampling was performed to ensure
robustness and provide statistical measures for the reported results.

Model performance. Fig 2 illustrates several evaluation metrics, including the area under
the receiver operating characteristic (AUC), the area under the Precision-Recall curve
(AUPRCQ), the F1 score and training time of standard SVM, SVMp+ and L,-SVMp-+. The train-
ing of standard SVM does not include any privileged information, therefore represented by PI
ratio of 0%. The line reflects the change in mean values, while the bar represents the standard
deviation across different models (when applicable). As a supplement, Table 3 lists clearer
details of the mean values of the AUC, AUPRC, and F1 scores given different PI availability
(Detailed model performance are shown in Supplementary S1 Table).

The standard SVM trained without any PI achieved an AUC of approximately 0.86. There
is at least a 5% jump in AUC performance when PI is included in model training (6.7% for
SVMp+ and 10.2% for L,-SVMp+ with 50% PI ratio respectively). Specifically, the AUC perfor-
mance of the [,-SVMp+ is around 0.95 to 0.96. It slightly increases as the percentage of PI goes
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Fig 1. A: data split method for MNIST+; B: UCI heart disease and PhysioNet Heart Failure dataset split method: LVEDD or slope was regarded as

privileged information (PI) in the analysis. All the patients with PI values were assigned to the training set and patients with missing PI values were
randomly added to the training set with different probabilities to simulate different privilege information levels. The variables s1, s2, and s3 indicate
distinct training sizes, whereas the variables r1, r2, and r3 correspond to their respective PI ratio levels.

https://doi.org/10.1371/journal.pdig.0000281.g001

up and reaches its highest value of 0.959 when the availability of PI is above 90%. As for the
SVMp+ model, the best AUC of 0.92 is reached when 60% of the PI is present. Then, the per-
formances have some fluctuations for different availability. But in general, the AUC values of
the [,-SVMp+ models are around 3% better than that in the SVMp+ model, given a fixed PI
availability.

The AUPRC performances of the models follow a similar trend to that of the AUC. When

using standard SVM, the AUPRC is roughly 0.85. Involving PI in training would contribute to

10% and 5% increases in performance with L,-SVMp+ and SVMp+ models, respectively.

When PI availability increases from 50% to 90%, the AUPCR of the ,-SVMp+ model increases
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Fig 2. Model performance on MNIST+: The x-axis is the ratio of privileged information.
https://doi.org/10.1371/journal.pdig.0000281.9002

steadily from 0.983 to 0.95 and remains on the same level when PI is fully available. The
SVMp+ models, on the other hand, show slight drops in AUPRC performance.

In terms of the F1 Score, the baseline SVM model gives a value of 0.668. When using I,-
SVMp+, the metric value increases to 0.872 under 50% availability and gradually grows to
0.892. However, the F1 Score of the SVMp+ model shows a decrease after adding PI, with the

Table 3. Model performance comparison on MNIST+ dataset with ratio of privileged information varying.

PI Availability AUC AUPRC F1 Training time (s)
Standard SVM 0% 0.861 0.850 0.668 0.0068
L,-SVMp+ 50% 0.949 0.938 0.872 0.0008
60% 0.953 0.943 0.878 0.0020
70% 0.956 0.947 0.886 0.0026
80% 0.956 0.948 0.885 0.0029
90% 0.959 0.950 0.892 0.0026
100% 0.959 0.951 0.892 0.0033
SVMp+ 50% 0.919 0.902 0.492 2.0683
60% 0.920 0.901 0.504 2.9464
70% 0.918 0.899 0.590 3.6230
80% 0.916 0.897 0.642 5.0336
90% 0.919 0.900 0.578 6.4068
100% 0.917 0.894 0.597 5.3134

https://doi.org/10.1371/journal.pdig.0000281.t003
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mean value ranging from 0.49 to 0.64. In general, the L,-SVMp+ model performs better on the
F1 Score than the SVMp+ model, and the difference between the two could be more than 3%.
When PI availability ranges from 50% to 90%, Fig 2 illustrates the standard deviation across
different experiments. With regards to the AUC and AUPRC, the SVMp+ models show either
slightly smaller or equivalent standard deviations in comparison to the ,-SVMp+ model. In
contrast, the standard deviation of the SVMp+ model is much bigger than its [,-SVMp+ coun-
terpart in terms of the F1 Score, indicating that the I,-SVMp+ model is more robust.
Moreover, the [,-SVMp+ model shows clear superiority over the SVMp+ model regarding
training times and is approximately one thousand times faster than the SVMp+ algorithm.

Heart disease classification task on UCI dataset

Experimental design. Our objective is to develop a binary classifier utilizing the UCI
dataset to identify patients with heart diseases. The missing rate of slope is up to 28.24% in the
original dataset and to make the best use of it, all patients with slope were first assigned to the
training set. Then, to simulate different levels of PI, the rest patients were randomly shuffled
and then added into training or assigned to validation and test sets. The detailed split strategy
is illustrated in Fig 1B. The shuffles result in three data groups; each has unique training, vali-
dation, and test set combinations. More specifically, within each group, the training set takes
up 73%, 76%, and 80% of the original dataset, with PI availability of 98%, 94%, and 90% in
training, respectively.

Standard SVM was carried out on the main features as a baseline without any privileged
information, while SVMp+ and L,-SVMp+ were performed on each data group with different
PI availability. In addition, to compare imputation with our proposed method, we impute the
slope variable to make it fully available for each data group with either (1) mean imputation or
(2) iterative imputations and then treat the slope as part of the main feature to perform stan-
dard SVM.

In all experiments performed, the optimal hyper-parameter combination was selected
based on the validation performance and the corresponding models were applied to test sets
for final results.

Model performance. Table 4 displays the performance of five models on different data
groups (Detailed model performances are shown in Supplementary S2 Table). Standard SVM
trained with any imputation method and ,,-SVMp+ algorithm outperformed the standard
SVM among all data groups regarding AUC, AUPRC and F1 score. In group 1, the standard
SVM trained with iterative imputed PI achieved the highest AUPRC and F1 score. Neverthe-
less, the [,-SVMp+ model obtained the best AUC (0.841), as well as a good AUPRC (0.608)
and F1 score (0.685), which are comparable to the iterative imputation methods. In group 2,
the ,-SVMp+ model exhibited the best model performance with the highest AUC (0.844),
AUPRC (0.640), and F1 score (0.692). For group 3, the iterative imputation methods demon-
strated the best performance regarding AUC and AUPRC, although L,-SVMp+ had similar
results with a 1.1% decrease in AUC and a 1.7% decrease in AUPRC respectively. L,-SVMp+
achieved the best F1 score with 0.694 in this experimental setup. SVMp+ only outperformed
standard SVM in group 1 and group 2 with AUC increased by 1.22% and 2.86% respectively
while performing worst in group 3. In addition, it took ~ 1000 times slower than /,-SVMp+
when using different training proportions.

The table also includes the AUC difference between the training and testing sets, measuring
model fitting characteristics. The SVMp+ and L,-SVMp+ models achieved the smallest AUC
differences between the training and test sets in all three data groups, indicating good fitting
characteristics.

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000281  June 29, 2023 11/17


https://doi.org/10.1371/journal.pdig.0000281

PLOS DIGITAL HEALTH

Algorithm efficiency improvement

Table 4. Comparison of model performance on the UCI HF dataset.

Data Split Metrics SVM w. Imputed slope slope as PI
SVM MeanImp® MultiImph L,-SVMp+ SVMp+
Group 1 AUC 0.818 0.837 0.840 0.841 0.828
73% for training AUPRC 0.573 0.603 0.610 0.608 0.525
F1 score 0.652 0.687 0.690 0.685 0.687
AUC diff* 0.107 0.0984 0.0960 0.0570 0.0548
Training Time (s) 0.0722 0.0182 0.0164 0.0424 58
Group 2 AUC 0.804 0.837 0.844 0.844 0.827
76% for training AUPRC 0.571 0.616 0.630 0.640 0.534
F1 score 0.641 0.670 0.687 0.692 0.692
AUC diff* 0.122 0.100 0.0935 0.0571 0.0568
Training Time (s) 0.2221 0.0173 0.0164 0.0406 60
Group 3 AUC 0.852 0.862 0.870 0.860 0.825
80% for training AUPRC 0.606 0.623 0.635 0.624 0.512
F1 score 0.673 0.674 0.694 0.694 0.664
AUC diff* 0.058 0.074 0.0657 0.0395 0.0551
Training Time (s) 0.078 0.0168 0.0173 0.0664 61

*AUC diff = Train AUC—Test AUC;
“ Mean Imputation.

¥ Iterative Imputation

https://doi.org/10.1371/journal.pdig.0000281.t004

Readmission prediction task on heart failure dataset

Experimental design. The task aims to predict patient readmission within six months
based on the Heart Failure dataset introduced in Dataset Section. LVEDD, with a missing rate
up to 36.3% in the original dataset, is considered PI for its important role in heart failure pre-
diction. The data partition strategy and experimental setups are identical in the UCI heart dis-
ease classification problem as Fig 1B depicted. Shuffling leads to three data groups consisting
of unique training, validation, and test sets. More specifically, within each group, the training
set takes up 66%, 70%, and 75% of the original dataset, with PI availability of 97%, 92%, and
86% in training, respectively.

Model performance

Table 5 presents the test performance of various models on different evaluation metrics
(Detailed model performance on training and validation sets are shown in Supplementary S3
Table). As listed in Table 5, the standard SVM consistently achieves the lowest performance on
AUC, regardless of the proportion of training data in the original dataset. However, The stan-
dard SVM trained with mean-imputed PI achieved slightly better AUC values than the stan-
dard SVM alone, while the standard SVM with iterative imputed PI achieved an even better
AUC than the mean-imputed ones, with a 1%-2% increase. The [,-SVMp+ model achieves the
highest AUC performance among all models and training set proportions, with AUC values of
0.564, 0.565, and 0.596 when the training set proportion is 66%, 70%, and 75%, respectively. In
terms of the AUPRC, the ,-SVMp+ model is still the best-performing model, regardless of the
data groups. In group 1, the standard SVM trained with mean-imputed PI obtained the worst
performance. In groups 2 and 3, the standard SVM, the standard SVM trained with mean-
imputed PI, and the one with iterative imputed PI showed increasing performance under a
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Table 5. Comparison of model performance on the PhysioNet HF dataset.

Data Split Metrics SVM w. Imputed LEVDD LEVDD as PI
SVM MeanImp® MultiImpb L,-SVMp+ SVMp+
Group 1 AUC 0.525 0.527 0.547 0.564 N.A**
66% for training AUPRC 0.547 0.546 0.564 0.573
F1 score 0.705 0.701 0.701 0.709
AUC diff* 0.303 0.449 0.429 0.158
Training Time (s) 0.076 0.025 0.025 0.022 >48 hours
Group 2 AUC 0.534 0.550 0.562 0.565 N.A**
70% for training AUPRC 0.531 0.542 0.559 0.567
F1 score 0.696 0.690 0.692 0.701
AUC diff* 0.249 0.427 0.414 0.168
Training Time (s) 0.148 0.026 0.025 0.023 >48 hours
Group 3 AUC 0.536 0.546 0.556 0.596 N.A**
75% for training AUPRC 0.544 0.551 0.561 0.598
F1 score 0.708 0.703 0.701 0.714
AUC diff* 0.239 0.430 0.420 0.153
Training Time (s) 0.063 0.030 0.030 0.039 >48 hours

*AUC diff = Train AUC—Test AUC;
**N.A.: no results obtained after 48 hours’ training.
“ Mean Imputation.

¥ Iterative Imputation

https://doi.org/10.1371/journal.pdig.0000281.t005

fixed training set proportion. Regarding the F1 score, [,-SVMp+ remains optimal, while the
standard SVM model achieves the second-best performance. The standard SVM models
trained with mean-imputed or iterative-imputed PI data have the same level of F1 score and
perform worse than the standard SVM model. It is worth noting that the SVMp+ model is
unable to provide any performance metric due to its inability to converge in training after 48
hours, indicating poor scalability in implementation. The training times for the rest of the
models are mostly less than 1 second.

Besides, The [,-SVMp+ achieved the best generalizability regarding the AUC differences
between the training and testing sets. The standard SVM gives the second smallest difference,
while the two SVM models run on the imputed dataset have the same level of high AUC differ-
ences, indicating that they are likely to overfit the training set.

Discussion

There are several strategies to address missingness in EHR data analysis, including discarding
patients with missing values, dropping the features and data imputation; however, all will
potentially compromise the study reliability when the missing mechanism is ignored. Initially
designed for utilizing partially accessible privileged information, SVMp+ achieved success on
the ARDS detection task. Nevertheless, its computational inefficiency poses a challenge to its
application on a larger dataset.

In this work, an /,-SVMp+ algorithm is proposed for efficiently solving kernel SVM in the
case of learning using partially available privileged information. The improvements were made
by applying an I, loss to the primal problem, simplifying its dual form and reducing the num-
ber of dual variables. This dual form is analogous to one-class SVM and can be efficiently
solved by SMO solvers such as LIBSVM [21]. On MINST+, a dataset of a small scale in terms
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of total training numbers, the /,-SVMp+ displays comparable computational efficiency to the
standard SVM model and is more than ten times faster than the previous SVMp+ implementa-
tion. This result is in line with previous findings from the [,-loss kernel SVM algorithm [20].
Furthermore, when tested on the UCI heart disease dataset and the PhysioNet heart failure
dataset, both of which are larger in scale compared to MINST+, the L,-SVMp+ algorithm was
able to converge within a second. In contrast, the SVMp+ algorithm exhibited much slower
convergence and even failed to converge after 48 hours when tested on the PhysioNet dataset.

The L,-SVMp+ algorithm also shows better performances compared to the SVMp+ algo-
rithm on MINST+. Although both of the algorithms show superior testing outcomes on AUC
and AUPRC compared to the standard SVM, the AUC, AURPC, and F1 Score achieved by
I,-SVMp+ are constantly better than those from the SVMp+ algorithm when the available per-
centage of privileged information range from 50% to 100%. This indicates that the /,-SVMp+
algorithm itself is more effective than SVMp+ and can find an appropriate separation hyper-
plane more accurately with the help of privileged information. Noteworthy, the F1 score for
the SVMp+ model on the MNIST+ dataset exhibits a significant decline in the mean value,
coupled with a large standard deviation, when compared to the standard SVM baseline. Fur-
thermore, while SVMp+ demonstrates improvement at training ratios of 73% and 76% on the
UCI dataset, it shows a decrease in performance in comparison to the standard SVM model at
a training ratio of 75%. These are indications of instability in the SVMp+ model. It may be
caused by the alternating SMO-style algorithm and unoptimized implementation. But these
problems were avoided in 1,-SVMp+ by directly using a well-established solver.

The L,-SVMp+ algorithm outperformed the standard SVM algorithm in building a binary
classifier for UCI heart disease patients and achieved comparable performance to the SVM
model trained with imputed PI. Additionally, when predicting readmission using the Physi-
oNet Heart Failure dataset, the proposed algorithm consistently outperformed the standard
SVM and SVM model trained with imputed LEVDD across all three data groups, demonstrat-
ing the best overall performance. Firstly, this result further supports our findings on MINST
+ that privileged information could improve the model’s performance even when it is only
partially available and I,-SVMp+ remains effective in utilizing privileged information. Sec-
ondly, the results show empirical evidence that the LUPI paradigm could be superior to impu-
tation methods when the missing information is important. Imputation relies on assumptions
about the underlying data distribution and can result in biased estimates if those assumptions
are incorrect or if the missing mechanism is unaware. This statement is supported by Table 5
and consistent with [31, 32], where imputation-based methods display larger AUC differences
compared to the standard SVM model and LUPI-based I,-SVMp+ model, indicating that they
are prone to overfitting the training data.

Although the results from the dataset suggest that /,-SVMp+ algorithm is either superior or
on par with iterative imputation in handling missing data, there is currently a lack of theoreti-
cal support to make a concrete statement to that effect. Therefore, in future work, we will
explore this hypothesis further by conducting theoretical analyses and experiments on large
datasets to provide stronger evidence.

Future research should address the limitations present in the current work. The first limita-
tion pertains to the lack of interpretability in clinical features. SHAP values, a method for
explaining machine learning model outputs by calculating feature contributions to predic-
tions, will be considered in the future to help interpret the model and rank feature importance,
as suggested by Lundberg and Lee [33]. The second limitation concerns the fact that the test
subset for the Heart Failure dataset is not a holdout but is randomly shuffled due to the high
percentage of privileged information in the observations. Finally, the algorithm’s application is
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currently limited to only one partially available privileged information. To conduct a more
comprehensive analysis, we will incorporate more variables with missing values.

Conclusion

In this study, we introduced a highly efficient algorithm for solving the kernel SVMp+ prob-
lem. Our approach involves adding an I,-regularizer to the original formulation, thereby con-
verting the problem into a one-class SVM. This enables efficient and accurate optimization
using an embedded SMO solver. We conducted extensive experimentation on three different
tasks to evaluate the performance of our approach. Our results demonstrated that our method
outperforms other common approaches for handling missing values, and showed superior effi-
ciency and accuracy. In summary, the proposed algorithm presents a novel and highly effective
solution for kernel SVMp+ in the context of missing values.
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