

OPEN ACCESS

Citation: Zhang Y, Gao Z, Wittrup E, Gryak J, Najarian K (2023) Increasing efficiency of SVMp+ for handling missing values in healthcare prediction. PLOS Digit Health 2(6): e0000281. https://doi.org/10.1371/journal.pdig.0000281

Editor: Mecit Can Emre Simsekler, Khalifa University of Science and Technology, UNITED ARAB EMIRATES

Received: February 20, 2023

Accepted: May 29, 2023

Published: June 29, 2023

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pdig.0000281

Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: The MNIST+ data are collected from https://github.com/wenli-vision/symplus_matlab, which is public and well-preprocessed. The heart failure dataset is a part of

RESEARCH ARTICLE

Increasing efficiency of SVMp+ for handling missing values in healthcare prediction

Yufeng Zhang 1*, Zijun Gao 1, Emily Wittrup 1, Jonathan Gryak 12,4, Kayvan Najarian 13,4,5

1 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America, 2 Department of Computer Science, Queens College, City University of New York, New York, United States of America, 3 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, United States of America, 4 Michigan Institute for Data Science, University of Michigan, Ann Arbor, Michigan, United States of America, 5 Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, United States of America

* chloezh@umich.edu

Abstract

Missing data presents a challenge for machine learning applications specifically when utilizing electronic health records to develop clinical decision support systems. The lack of these values is due in part to the complex nature of clinical data in which the content is personalized to each patient. Several methods have been developed to handle this issue, such as imputation or complete case analysis, but their limitations restrict the solidity of findings. However, recent studies have explored how using some features as fully available privileged information can increase model performance including in SVM. Building on this insight, we propose a computationally efficient kernel SVM-based framework (I₂-SVMp+) that leverages partially available privileged information to guide model construction. Our experiments validated the superiority of l₂-SVMp+ over common approaches for handling missingness and previous implementations of SVMp+ in both digit recognition, disease classification and patient readmission prediction tasks. The performance improves as the percentage of available privileged information increases. Our results showcase the capability of I2-SVMp+ to handle incomplete but important features in real-world medical applications, surpassing traditional SVMs that lack privileged information. Additionally, l₂-SVMp+ achieves comparable or superior model performance compared to imputed privileged features.

Author summary

Clinical problems often suffer from missing value issues, which require careful consideration. There are various approaches developed to tackle this problem, including imputation methods, but these methods have limitations. In this study, we introduced an efficient algorithm called l_2 - SVMp+ to address missing values in important features using a partially available privileged information framework. Our approach offers a novel perspective for handling missing values by regarding them as privileged information to guide the training process. Our results indicate that (1) our proposed method outperforms the standard SVM, SVMp+; and (2) Our approach achieves comparable or superior

the PhysioNet Restricted Health Data, a freely-available medical research data platform. The dataset is available to qualified investigators which have been formally approved and under the terms of a data use agreement. https://physionet.org/content/heart-failure-zigong/1.3/ and contact content/heart-failure-zigong/1.3/ and contact contact@physionet.org for more information. The UCI heart disease dataset is publicly accessible on https://archive.ics.uci.edu/ml/datasets/heart+disease.

Funding: This material is based upon work supported by the National Science Foundation under Grant No. 1722801 and Grant No. 2014003. YZ received funding from National Science Foundation (NSF) Grant No. 2014003, ZG received funding from NSF Grant No. 1722801. EW and KN both received funding from NSF Grant No. 1722801 and Grant No. 2014003. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

performance to two commonly used imputation methods. This non-parametric approach offers a new direction for handling missing values and may potentially avoid imputation-related bias and overfitting in the model. With further testing and validation, our approach may lead to more accurate diagnoses and better treatment outcomes for patients.

Introduction

Clinical Decision Support Systems (CDSS) rely heavily on machine learning algorithms to provide accurate predictions, but these algorithms are often challenged by missing values in Electronic Health Records (EHR) [1-3]. Given the complex nature of medical data, this is a common hurdle to algorithmic developments. For example, a patient in one condition might undergo multiple radiology scans while another patient receives specific lab tests, leading to missingness in both data modalities. Some other times, the information crucial for predicting patient outcomes could be missing due to various reasons such as changes in protocol and limited data access between institutions. Traditionally, researchers have resorted to methods like complete case analysis, dropping features, and imputation to handle missing data. Complete case analysis refers to discarding samples that have any missing values and restricting the study cohort to those with complete data [4]. Alternatively, all the features with missing values can be dropped from the analysis entirely. Despite of some successful applications, both methods may result in potential loss of valuable information or unnecessary reduction of sample size [5–7]. Instead of removing missing data, imputation replaces missing entries with predicted values based on the available data. Imputation has been increasingly and widely adopted in medical research [8]. When using this approach, however, it is important to note the potential reduction of model generalizability and reliability if obscuring the mechanisms of missing data [9].

Alternatively, a strategy called learning using partially available privileged information (LUPAPI) can make use of the important feature without imputation while addressing the issue of missingness [10]. This concept is derived from learning using privileged information (LUPI) [11]. Under the LUPI framework, high-quality features only available at the training stage but not during the testing stage are considered privileged information (PI) [12]. During the model training process, PI can play a teaching role to guide the model construction. Once trained, the model no longer has access to PI in the testing stage, just like the students taking exams without the teacher's assistance. This concept has been applied for object detection and image segmentation in computer vision tasks [13-15], but is also important for healthcare applications [10, 16, 17]. The LUPI framework allows models to use clinical information that may not be available at the time of prediction, such as lab tests or imaging results, but that can guide the model in learning the relationship between the main features and outcome. The LUPI paradigm was proposed for Support Vector Machines (SVMs) by Vapnik and Vashist [11, 12] which they called the SVM+ model. Apart from SVM, the LUPI paradigm can be applied to other machine learning algorithms and has already been applied to K-means [18] and Convolutional Neural Network for different tasks [13].

In practice, it is difficult to apply the LUPI scheme to clinical problems due to the sparse availability of PI across the training data. Assuming that only a portion of the patients has PI at the training stage, Sabeti proposed the LUPAPI paradigm [10] and provided an SVMp+ implementation. Unlike the standard LUPI framework, which required access to the PI for all training samples, LUPAPI guides the construction of the decision hyperplane of the SVMp+ using

slack functions defined on the partially available privileged feature space and slack variables for training samples without PI. Although the SVMp+ algorithm can handle sparse PI, it is computationally inefficient and incapable of modeling large datasets. This is due to constraining the slack variable and functions to be positive which doubles the number of dual variables and using a sequential minimal optimization (SMO)-style algorithm [19] which complicates working set selection.

In this paper, we present a novel extension of the LUPAPI paradigm, which resolve the limitations of the existing SVMp+ algorithm. Our proposed algorithm is based on l_2 -loss [20], by which the number of dual variables is reduced. Besides, the derived dual representation is in the same form as one-class SVM, which could thus be solved using the existing state-of-the-art SVM solver LIBSVM [21] efficiently. We demonstrate the effectiveness of our algorithm through experiments on three datasets—digit recognition using the MNIST+ dataset, disease classification on the UCI heart disease dataset and readmission prediction on the PhysioNet Heart Failure dataset. Our results show that our proposed algorithm outperforms the SVMp+ algorithm in terms of model performance and training time. Additionally, the readmission prediction task demonstrates that our algorithm achieves better results than imputation or feature elimination, making it a promising solution for handling missing values in EHR for CDSS applications.

Methods

Learning using partially available privileged information

In the LUPAPI paradigm, the additional privileged information is contained only in a subset of the training samples and is not available in the testing stage. We represent the training data as triplets $\{(\mathbf{x_i}, y_i, \tilde{\mathbf{x_i}})\}$ for i = 1, ..., m and pairs $\{(\mathbf{x_i}, y_i)\}$ for i = m+1, ..., n, where n and m denote the sizes of the training dataset and the subset with privileged information respectively. For the ith training sample, $x_i \in \mathbb{R}^d$ represents the main features, $\tilde{\mathbf{x_i}} \in \mathbb{R}^d$ represents the privileged features when they are available, and $y_i = \pm 1$ is the sample's label.

In the special case when m = 0, the original SVM model can learn from the training data (x_i, y_i) a decision hyperplane of the form

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{new}} - b = 0$$

where $w \in \mathbb{R}^d$ denotes the weight vector and $b \in \mathbb{R}$ denotes the bias, which could then be used to classify new data points $x_{\text{new}} \in \mathbb{R}^d$. By incorporating a feature map $\phi : \mathbb{R}^d \to \mathbb{R}^f$ and using the kernel matrix $K = \Phi^T \Phi$ where $\Phi = [\phi(x_1), \ldots, \phi(x_n)]$ denotes the data matrix of the feature vectors, the kernel SVM model can learn a decision boundary of the form

$$\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}_{\mathrm{new}}) - b = 0$$

where $w \in \mathbb{R}^f$, which is not necessarily a hyperplane. In the case when $m \ge 1$ and with the privileged information \tilde{x}_i , the model is guided to learn a new decision boundary with improved classification performance for new data points.

In [10], the SVMp+ was developed. The whole framework is based on SVM+ that [12] proposed, but there is one major difference. For those data points that have privileged information, the decision boundary is represented with the slack function $f(x) = \tilde{\mathbf{w}}^T \phi(\tilde{\mathbf{x}}) + \tilde{b}$, while for the data points which lack privileged information, the decision boundary is guided by slack

variable ζ . The formula is shown below:

$$\min_{\mathbf{w}, \mathbf{b}, \tilde{\mathbf{w}}, \tilde{b}, \zeta} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{\gamma}{2} \|\tilde{\mathbf{w}}\|^2 + C \sum_{i=m+1}^n \zeta_i + \tilde{C} \sum_{i=1}^m \left(\tilde{\mathbf{w}}^T \tilde{\phi}(\tilde{\mathbf{x}}_i) + \tilde{b} \right)$$
(1)

$$\text{s.t.} \quad \begin{cases} y_i(\mathbf{w}^T\phi(\mathbf{x_i}) + b) \geq 1 - (\tilde{\mathbf{w}}^T\tilde{\phi}(\tilde{\mathbf{x}}_i) + \tilde{b}) & \text{ for } 1 \leq i \leq m \\ \\ \tilde{\mathbf{w}}^T\phi(\tilde{\mathbf{x}}_i) + \tilde{b} \geq 0 & \text{ for } 1 \leq i \leq m \\ \\ y_i(\mathbf{w}^T\phi(\mathbf{x_i}) + b) \geq 1 - \zeta_i & \text{ for } m+1 \leq i \leq n \\ \\ \zeta_i \geq 0 & \text{ for } m+1 \leq i \leq n \end{cases}$$

where C, \tilde{C} and γ are hyperparameters greater than zero. The dual optimization problem can be formulated as:

$$\mathcal{L} = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{\gamma}{2} \|\tilde{\mathbf{w}}\|^2 + \frac{C}{2} \sum_{i=m+1}^n \zeta_i^2 + \frac{C}{2} \sum_{i=1}^m (\tilde{\mathbf{w}}^T \tilde{\phi}(\tilde{\mathbf{x}}_i))^2$$

$$- \sum_{i=1}^m \alpha_i (y_i (\mathbf{w}^T \phi(\tilde{\mathbf{x}}_i + b)) - 1 + \tilde{\mathbf{w}}^T \tilde{\phi}(\tilde{\mathbf{x}}_i) + \tilde{b})$$

$$- \sum_{i=m+1}^m \mu_i (\tilde{\mathbf{w}}^T \phi(\tilde{\mathbf{x}}_i) + \tilde{b})$$

$$- \sum_{i=m+1}^n \beta_i (y_i (\mathbf{w}^T \phi(\mathbf{x}_i) + b) - 1 + \zeta_i)$$

$$- \sum_{i=m+1}^n v_i \zeta_i.$$
s.t.
$$\begin{cases} 0 \le \alpha_i \le C & \text{for } m+1 \le i \le n \\ 0 \le \alpha_i & \text{for } 1 \le i \le m \\ 0 \le \beta_i & \text{for } 1 \le i \le m \end{cases}$$

The paper adopted the alternating SMO-style algorithm to optimize the dual cost function. Nevertheless, the working set is too complicated (at least 9 sets of maximally sparse feasible directions) and the dual variables interact. Therefore, the proposed algorithm is computationally slow.

Solving the kernel *l*2-SVMp+ problem

In this part, we present a computationally efficient algorithm for solving kernel SVMp+. Based on the LUPAPI framework, we introduced l_2 -loss into the kernel SVMp+ objective function and transforming it into one-class SVM. Here, we denote by w, \tilde{w} , ϕ and $\tilde{\phi}$ the weight vectors and feature maps for the main and privileged features taking values in the feature spaces \mathbb{R}^f and $\mathbb{R}^{\tilde{f}}$ respectively. To simplify the formula, we absorb the bias terms into the weight vectors by introducing an auxiliary dimension to the weight vectors and feature maps.

Following the approach of Li in [$\underline{20}$], we formulate the kernel l_2 -SVMp+ model as the following optimization problem:

$$\min_{\substack{\mathbf{w}, \tilde{\mathbf{w}}, \rho \\ \zeta_{m+1}, \dots, \zeta_n}} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{\gamma}{2} \|\tilde{\mathbf{w}}\|^2 + \frac{C}{2} \sum_{i=m+1}^n \zeta_i^2 + \frac{\tilde{C}}{2} \sum_{i=1}^m (\tilde{\mathbf{w}}^T \tilde{\phi}(\tilde{\mathbf{x}}_i))^2 - \rho$$
(2)

s.t.
$$\begin{cases} y_i \mathbf{w}^T \phi(\mathbf{x_i}) \ge \rho - \tilde{\mathbf{w}}^T \tilde{\phi}(\tilde{\mathbf{x}}_i) & \text{for } 1 \le i \le m \\ y_i \mathbf{w}^T \phi(\mathbf{x_i}) \ge \rho - \zeta_i & \text{for } m + 1 \le i \le n \end{cases}$$

where γ , C, \tilde{C} are the hyperparameters of the model, ζ_i is the slack variable for the training samples without privileged information, and $\tilde{w}^T \tilde{\phi}(\tilde{x}_i)$ is the slack function for the training samples with privileged information defined in the privileged feature space. Therefore, the decision boundary learned from (x_i, y_i) is further tuned by using the slack variables as well as slack functions during the training stage.

To solve the constrained convex optimization problem involved in the l_2 -SVMp+ model, we first transform the primal problem to its Lagrange dual problem by using non-negative Lagrange multipliers. The Lagrangian function is given by:

$$\mathcal{L} = \frac{1}{2} \|\mathbf{w}\|^{2} + \frac{\gamma}{2} \|\tilde{\mathbf{w}}\|^{2} + \frac{C}{2} \sum_{i=m+1}^{n} \zeta_{i}^{2} + \frac{\tilde{C}}{2} \sum_{i=1}^{m} (\tilde{\mathbf{w}}^{T} \tilde{\phi}(\tilde{\mathbf{x}}_{i}))^{2} - \rho$$
$$- \sum_{i=1}^{m} \alpha_{i} (y_{i} \mathbf{w}^{T} \phi(\mathbf{x}_{i}) - \rho + \tilde{\mathbf{w}}^{T} \tilde{\phi}(\tilde{\mathbf{x}}_{i}))$$
$$- \sum_{i=m+1}^{n} \beta_{i} (y_{i} \mathbf{w}^{T} \phi(\mathbf{x}_{i}) - \rho + \zeta_{i}).$$

By taking the partial derivatives with respect to the primal variables w, \tilde{w}, ρ and $\zeta_{m+1}, \ldots, \zeta_n$ and setting them to zero, we obtain:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial w} &= 0 \to w = \sum_{i=1}^{m} \alpha_{i} y_{i} \phi(x_{i}) + \sum_{i=m+1}^{n} \beta_{i} y_{i} \phi(x_{i}) \\ \frac{\partial \mathcal{L}}{\partial \tilde{w}} &= 0 \to \tilde{w} = \sum_{i=1}^{m} \alpha_{i} (\gamma I + \tilde{C} \tilde{\Phi} \tilde{\Phi}^{T})^{-1} \tilde{\phi}(\tilde{x}_{i}) \\ \frac{\partial \mathcal{L}}{\partial \rho} &= 0 \to 1 = \sum_{i=1}^{m} \alpha_{i} + \sum_{i=m+1}^{n} \beta_{i} \\ \frac{\partial \mathcal{L}}{\partial \zeta_{i}} &= 0 \to \zeta_{i} = \frac{\beta_{i}}{C} \end{split}$$

where I denotes the identity matrix of the appropriate dimension, $\tilde{\Phi} = \left[\tilde{\phi}(\tilde{x}_1), \dots, \tilde{\phi}(\tilde{x}_m)\right]$ denotes the data matrix of the privileged feature vectors, and the inverse matrix exists for all but a finite set of values of the ratio $\frac{\tilde{c}}{a}$.

After combining α_i and β_i into a single *n*-dimensional dual variable $\alpha = [\alpha_1, ..., \alpha_m, \beta_{m+1}, ..., \beta_n]^T$, we substitute the four equations back into the Lagrangian function to obtain:

where Δ_y denotes the diagonal matrix with y_1, \ldots, y_n along the diagonal, 0 denotes the zero matrix of the appropriate dimensions, and $K = \Phi^T \Phi$ and $\tilde{K} = \tilde{\Phi}^T \tilde{\Phi}$ are the kernel matrices for the main and privileged features respectively, and arrive at the Lagrange dual problem in matrix format

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^T \Biggl(\Delta_{\mathbf{y}} K \Delta_{\mathbf{y}} + \begin{bmatrix} \tilde{K} (\gamma I_{\mathbf{m}} + \tilde{C} \tilde{K})^{-1} & 0 \\ 0 & C^{-1} I_{\mathbf{n}-\mathbf{m}} \end{bmatrix} \Biggr) \mathbf{x}$$

subject to the constraints that the entries of the vector α are all non-negative and sum to 1.

Therefore, the loss function is in the form of $\frac{1}{2}\alpha^T G\alpha$, which shares the same form as a kernel one-class SVM with kernel matrix G. This problem is considered a quadratic programming problem and can be solved by a standard SMO algorithm implemented in common SVM solvers such as LIBSVM. After calling the one-class SVM solver from LIBSVM to find the dual solution α_{\min} , we could then compute the decision boundary as

$$\alpha_{\min}^T \Delta_{\mathbf{y}} \Phi^T \phi(\mathbf{x}_{\text{new}}) = 0.$$

Although the formula for the one-class SVM kernel matrix G involves taking the inverse of a matrix, which is computationally expensive, the matrix in question is of moderate size $m \times m$. Moreover, the benefit of using highly efficient algorithms for both matrix inversion and solving one-class SVM makes the overall approach computationally efficient.

Dataset

We utilized three datasets to illustrate the improvements of l_2 -loss SVM+ under the LUPAPI paradigm on model performance for binary classification over alternative methods.

- MNIST+ dataset [12, 20]: A subset of the public MNIST+ dataset for classifying hand-written digits was used to benchmark algorithmic performance. Images for two digits: '5' and '8' were selected and split into training, validation, and test sets of 100, 4002, and 1866 images respectively. All images were resized to 10 by 10 pixels and then flattened into 100 d vectors which were used as main features. The training images were appended by PI in the form of a textual description which was converted to a 21 d vector.
- UCI heart disease dataset [22]: This dataset is composed of four databases: Cleveland, Hungary, Long Beach, and Switzerland, and initially included 76 attributes. In order to maintain consistency with other published papers, we used a subset of 14 attributes. One attribute identified whether the patient had heart disease, one attribute was for patient identification, and one described the data source. The remaining attributes were considered as main features, except for 'slope', which represented the slope of the peak exercise ST segment and was used as privileged information. After filtering out samples with missing main feature values, the dataset was reduced to 740 samples.
- PhysioNet Heart Failure dataset: This dataset was derived from the PhysioNet Heart Failure dataset. As part of the PhysioNet Restricted Health Data [23–25], PhysioNet Heart Failure dataset included EHR of 2008 patients admitted to Zigong Fourth People's Hospital with heart failure between December 2016 to June 2019. The patient cohort for our analysis was generated by selecting non-emergency patients whose discharging department and admission ward were both labeled as "cardiology". With the guidance of the cardiologist, 20 informative features are identified and used as the main features. After removing patients who had missing values for any of the listed features, the derived dataset contains 779 patients.

Table 1. Demographic characteristics of patients in the PhysioNet heart failure dataset.

Features	Count	Percentage (%)
Gender		
Male	459	58.92
Female	320	41.08
Age (years)		
(21,29]	3	0.39
(29,39]	5	0.64
(39,49]	30	3.85
(49,59]	39	5.01
(59,69]	147	18.87
(69,79]	324	41.59
(79,89]	202	25.93
(89,110]	29	3.72

https://doi.org/10.1371/journal.pdig.0000281.t001

The demographic statistics of the dataset are presented in <u>Table 1</u> and clinical characteristics are listed in <u>Table 2</u>. Specifically, the dataset contains the left ventricular end-diastolic diameter (LVEDD) measurements for part of the patients, which is an important predictor of advanced heart failure [26–28].

Table 2. Clinical characteristics of patients in the PhysioNet heart failure dataset.

Features	Units	Mean ± Std
Body temperate	Centigrade Scale	36.41 ± 0.43
Pulse	bpm	82.65 ± 20.46
Respiration	bpm	18.74 ± 1.17
SBP	mmHg	128.56 ± 23.29
DBP	mmHg	75.27 ± 13.27
MAP	mmHg	93.03 ± 15.01
WBC	10 ⁹ /L	6.84 ± 2.93
НСТ	%	0.35 ± 0.069
PLT	$10^{9}/L$	140.51 ± 55.74
BMI	kg/m ²	21.89 ± 15.19
BNP	pg/ml	1202.03 ± 1310.52
Creatine	umol/L	108.79 ± 78.53
Potassium	mmol/L	4.01 ± 0.71
Chloride	mmol/L	101.84 ± 5.66
Sodium	mmol/L	138.46 ± 4.54
Calcium	mmol/L	2.31 ± 0.18
Albumin	g/L	37.07 ± 4.68
NYHA class	class	III
LVEDD	mm	53.79 ± 11.50

SBP = systolic blood pressure; DBP = diastolic blood pressure; MAP = mean arterial pressure; WBC = white blood cell; HCT = hematocrit; PLT = platlet; BMI = body mass index; BNP = brain natriuretic peptide; NYHA = New York Heart Association; LVEDD = left ventricular end-diastolic diameter

https://doi.org/10.1371/journal.pdig.0000281.t002

Baselines

- Standard SVM: SMO-based fitcsvm [29] in MATLAB
- SVMp+: An implementation based on SMO algorithm. It solves the quadratic programming problem in Eq 1 [10].
- Mean imputation: The mean of non-missing values for every feature is computed to fill the missing values for all samples.
- Iterative Imputation: Iteratively estimating each feature based on the remaining features and then filling in the missing values. It is implemented in Python scikit-learn library [30].

Evaluation metrics

The model performance was evaluated by F1 score, Area Under the Receiver Operating Characteristic Curve (AUROC) and Area Under Precision-Recall Curve (AUPRC). F1 is the harmonic mean of recall and precision, defined as

$$F1 Score = \frac{2 \times TP}{FN + 2 \times TP + FP}$$

where TP = true positive; FN = false negative; FP = false positive. F1 score reported here is the maximum based on a series of thresholds between 0 and 1.

Experiments and results

Digital recognition task on MNIST+

Experimental design. The original MNIST+ dataset was split into training, validation, and testing sets as shown in Fig 1A, and this same split scheme was used for all experiments. The best hyperparameter combinations for each experiment were selected based on performance on the validation dataset, and the model performance was evaluated using the testing dataset. In the standard SVM models, only the main features were used for training, while both the main and privileged features were utilized in the SVMp+ and l_2 -SVMp+ models. To compare the performance of SVMp+ and l_2 -SVMp+ when privileged information (PI) is only partially available in training, PI was randomly sampled under a specific seed to provide availability ranging from 50% to 90%. This sampling was repeated independently five times to yield five sets of PI under each availability level. Additionally, the sampling was performed to ensure robustness and provide statistical measures for the reported results.

Model performance. Fig 2 illustrates several evaluation metrics, including the area under the receiver operating characteristic (AUC), the area under the Precision-Recall curve (AUPRC), the F1 score and training time of standard SVM, SVMp+ and l_2 -SVMp+. The training of standard SVM does not include any privileged information, therefore represented by PI ratio of 0%. The line reflects the change in mean values, while the bar represents the standard deviation across different models (when applicable). As a supplement, Table 3 lists clearer details of the mean values of the AUC, AUPRC, and F1 scores given different PI availability (Detailed model performance are shown in Supplementary S1 Table).

The standard SVM trained without any PI achieved an AUC of approximately 0.86. There is at least a 5% jump in AUC performance when PI is included in model training (6.7% for SVMp+ and 10.2% for l_2 -SVMp+ with 50% PI ratio respectively). Specifically, the AUC performance of the l_2 -SVMp+ is around 0.95 to 0.96. It slightly increases as the percentage of PI goes

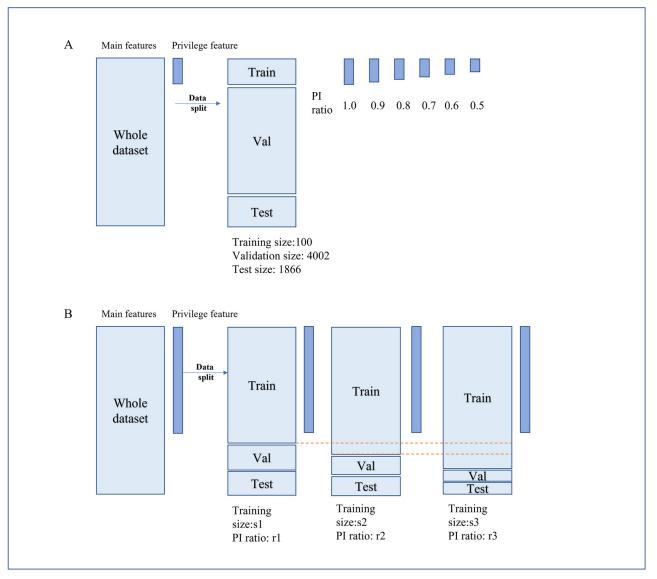


Fig 1. A: data split method for MNIST+; B: UCI heart disease and PhysioNet Heart Failure dataset split method: LVEDD or *slope* was regarded as privileged information (PI) in the analysis. All the patients with PI values were assigned to the training set and patients with missing PI values were randomly added to the training set with different probabilities to simulate different privilege information levels. The variables s1, s2, and s3 indicate distinct training sizes, whereas the variables r1, r2, and r3 correspond to their respective PI ratio levels.

https://doi.org/10.1371/journal.pdig.0000281.g001

up and reaches its highest value of 0.959 when the availability of PI is above 90%. As for the SVMp+ model, the best AUC of 0.92 is reached when 60% of the PI is present. Then, the performances have some fluctuations for different availability. But in general, the AUC values of the l_2 -SVMp+ models are around 3% better than that in the SVMp+ model, given a fixed PI availability.

The AUPRC performances of the models follow a similar trend to that of the AUC. When using standard SVM, the AUPRC is roughly 0.85. Involving PI in training would contribute to 10% and 5% increases in performance with l_2 -SVMp+ and SVMp+ models, respectively. When PI availability increases from 50% to 90%, the AUPCR of the l_2 -SVMp+ model increases

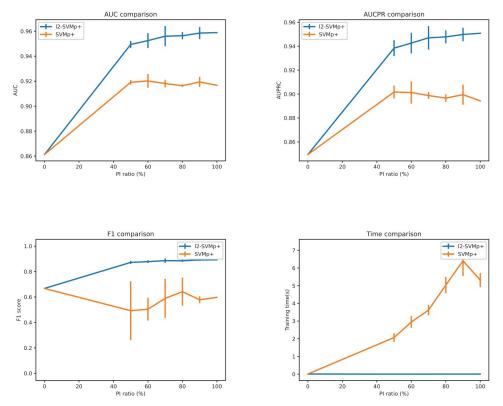


Fig 2. Model performance on MNIST+: The x-axis is the ratio of privileged information.

https://doi.org/10.1371/journal.pdig.0000281.g002

steadily from 0.983 to 0.95 and remains on the same level when PI is fully available. The SVMp+ models, on the other hand, show slight drops in AUPRC performance.

In terms of the F1 Score, the baseline SVM model gives a value of 0.668. When using l_2 -SVMp+, the metric value increases to 0.872 under 50% availability and gradually grows to 0.892. However, the F1 Score of the SVMp+ model shows a decrease after adding PI, with the

Table 3. Model performance comparison on MNIST+ dataset with ratio of privileged information varying.

	PI Availability	AUC	AUPRC	F1	Training time (s)
Standard SVM	0%	0.861	0.850	0.668	0.0068
l_2 -SVMp+	50%	0.949	0.938	0.872	0.0008
	60%	0.953	0.943	0.878	0.0020
	70%	0.956	0.947	0.886	0.0026
	80%	0.956	0.948	0.885	0.0029
	90%	0.959	0.950	0.892	0.0026
	100%	0.959	0.951	0.892	0.0033
SVMp+	50%	0.919	0.902	0.492	2.0683
	60%	0.920	0.901	0.504	2.9464
	70%	0.918	0.899	0.590	3.6230
	80%	0.916	0.897	0.642	5.0336
	90%	0.919	0.900	0.578	6.4068
	100%	0.917	0.894	0.597	5.3134

https://doi.org/10.1371/journal.pdig.0000281.t003

mean value ranging from 0.49 to 0.64. In general, the l_2 -SVMp+ model performs better on the F1 Score than the SVMp+ model, and the difference between the two could be more than 3%.

When PI availability ranges from 50% to 90%, Fig.2 illustrates the standard deviation across different experiments. With regards to the AUC and AUPRC, the SVMp+ models show either slightly smaller or equivalent standard deviations in comparison to the l_2 -SVMp+ model. In contrast, the standard deviation of the SVMp+ model is much bigger than its l_2 -SVMp+ counterpart in terms of the F1 Score, indicating that the l_2 -SVMp+ model is more robust.

Moreover, the l_2 -SVMp+ model shows clear superiority over the SVMp+ model regarding training times and is approximately one thousand times faster than the SVMp+ algorithm.

Heart disease classification task on UCI dataset

Experimental design. Our objective is to develop a binary classifier utilizing the UCI dataset to identify patients with heart diseases. The missing rate of *slope* is up to 28.24% in the original dataset and to make the best use of it, all patients with *slope* were first assigned to the training set. Then, to simulate different levels of PI, the rest patients were randomly shuffled and then added into training or assigned to validation and test sets. The detailed split strategy is illustrated in Fig 1B. The shuffles result in three data groups; each has unique training, validation, and test set combinations. More specifically, within each group, the training set takes up 73%, 76%, and 80% of the original dataset, with PI availability of 98%, 94%, and 90% in training, respectively.

Standard SVM was carried out on the main features as a baseline without any privileged information, while SVMp+ and l_2 -SVMp+ were performed on each data group with different PI availability. In addition, to compare imputation with our proposed method, we impute the *slope* variable to make it fully available for each data group with either (1) mean imputation or (2) iterative imputations and then treat the *slope* as part of the main feature to perform standard SVM.

In all experiments performed, the optimal hyper-parameter combination was selected based on the validation performance and the corresponding models were applied to test sets for final results.

Model performance. Table 4 displays the performance of five models on different data groups (Detailed model performances are shown in Supplementary S2 Table). Standard SVM trained with any imputation method and l_2 -SVMp+ algorithm outperformed the standard SVM among all data groups regarding AUC, AUPRC and F1 score. In group 1, the standard SVM trained with iterative imputed PI achieved the highest AUPRC and F1 score. Nevertheless, the l_2 -SVMp+ model obtained the best AUC (0.841), as well as a good AUPRC (0.608) and F1 score (0.685), which are comparable to the iterative imputation methods. In group 2, the l_2 -SVMp+ model exhibited the best model performance with the highest AUC (0.844), AUPRC (0.640), and F1 score (0.692). For group 3, the iterative imputation methods demonstrated the best performance regarding AUC and AUPRC, although l_2 -SVMp+ had similar results with a 1.1% decrease in AUC and a 1.7% decrease in AUPRC respectively. l_2 -SVMp+ achieved the best F1 score with 0.694 in this experimental setup. SVMp+ only outperformed standard SVM in group 1 and group 2 with AUC increased by 1.22% and 2.86% respectively while performing worst in group 3. In addition, it took ≈ 1000 times slower than l_2 -SVMp+ when using different training proportions.

The table also includes the AUC difference between the training and testing sets, measuring model fitting characteristics. The SVMp+ and l_2 -SVMp+ models achieved the smallest AUC differences between the training and test sets in all three data groups, indicating good fitting characteristics.

Table 4. Comparison of model performance on the UCI HF dataset.

Data Split	Metrics		SVM w. Imputed slope		slope as PI	
		SVM	MeanImp ^a	MultiImp ^b	l ₂ -SVMp+	SVMp+
Group 1 73% for training	AUC	0.818	0.837	0.840	0.841	0.828
	AUPRC	0.573	0.603	0.610	0.608	0.525
	F1 score	0.652	0.687	0.690	0.685	0.687
	AUC diff*	0.107	0.0984	0.0960	0.0570	0.0548
	Training Time (s)	0.0722	0.0182	0.0164	0.0424	58
Group 2	AUC	0.804	0.837	0.844	0.844	0.827
76% for training	AUPRC	0.571	0.616	0.630	0.640	0.534
	F1 score	0.641	0.670	0.687	0.692	0.692
	AUC diff*	0.122	0.100	0.0935	0.0571	0.0568
	Training Time (s)	0.2221	0.0173	0.0164	0.0406	60
Group 3 80% for training	AUC	0.852	0.862	0.870	0.860	0.825
	AUPRC	0.606	0.623	0.635	0.624	0.512
	F1 score	0.673	0.674	0.694	0.694	0.664
	AUC diff*	0.058	0.074	0.0657	0.0395	0.0551
	Training Time (s)	0.078	0.0168	0.0173	0.0664	61

^{*}AUC diff = Train AUC—Test AUC;

https://doi.org/10.1371/journal.pdig.0000281.t004

Readmission prediction task on heart failure dataset

Experimental design. The task aims to predict patient readmission within six months based on the Heart Failure dataset introduced in *Dataset* Section. LVEDD, with a missing rate up to 36.3% in the original dataset, is considered PI for its important role in heart failure prediction. The data partition strategy and experimental setups are identical in the UCI heart disease classification problem as <u>Fig 1B</u> depicted. Shuffling leads to three data groups consisting of unique training, validation, and test sets. More specifically, within each group, the training set takes up 66%, 70%, and 75% of the original dataset, with PI availability of 97%, 92%, and 86% in training, respectively.

Model performance

Table 5 presents the test performance of various models on different evaluation metrics (Detailed model performance on training and validation sets are shown in Supplementary S3 Table). As listed in Table 5, the standard SVM consistently achieves the lowest performance on AUC, regardless of the proportion of training data in the original dataset. However, The standard SVM trained with mean-imputed PI achieved slightly better AUC values than the standard SVM alone, while the standard SVM with iterative imputed PI achieved an even better AUC than the mean-imputed ones, with a 1%-2% increase. The l_2 -SVMp+ model achieves the highest AUC performance among all models and training set proportions, with AUC values of 0.564, 0.565, and 0.596 when the training set proportion is 66%, 70%, and 75%, respectively. In terms of the AUPRC, the l_2 -SVMp+ model is still the best-performing model, regardless of the data groups. In group 1, the standard SVM trained with mean-imputed PI obtained the worst performance. In groups 2 and 3, the standard SVM, the standard SVM trained with mean-imputed PI, and the one with iterative imputed PI showed increasing performance under a

^a Mean Imputation.

^b Iterative Imputation

Table 5. Comparison of model performance on the PhysioNet HF dataset.

Data Split	Metrics		SVM w. Imputed LEVDD		LEVDD as PI	
		SVM	MeanImp ^a	MultiImp ^b	l ₂ -SVMp+	SVMp+
Group 1 66% for training	AUC	0.525	0.527	0.547	0.564	N.A.**
	AUPRC	0.547	0.546	0.564	0.573	
	F1 score	0.705	0.701	0.701	0.709	
	AUC diff*	0.303	0.449	0.429	0.158	
	Training Time (s)	0.076	0.025	0.025	0.022	>48 hours
Group 2 70% for training	AUC	0.534	0.550	0.562	0.565	N.A.**
	AUPRC	0.531	0.542	0.559	0.567	
	F1 score	0.696	0.690	0.692	0.701	
	AUC diff*	0.249	0.427	0.414	0.168	
	Training Time (s)	0.148	0.026	0.025	0.023	>48 hours
Group 3 75% for training	AUC	0.536	0.546	0.556	0.596	N.A.**
	AUPRC	0.544	0.551	0.561	0.598	
	F1 score	0.708	0.703	0.701	0.714	
	AUC diff*	0.239	0.430	0.420	0.153	
	Training Time (s)	0.063	0.030	0.030	0.039	>48 hours

^{*}AUC diff = Train AUC—Test AUC;

https://doi.org/10.1371/journal.pdig.0000281.t005

fixed training set proportion. Regarding the F1 score, l_2 -SVMp+ remains optimal, while the standard SVM model achieves the second-best performance. The standard SVM models trained with mean-imputed or iterative-imputed PI data have the same level of F1 score and perform worse than the standard SVM model. It is worth noting that the SVMp+ model is unable to provide any performance metric due to its inability to converge in training after 48 hours, indicating poor scalability in implementation. The training times for the rest of the models are mostly less than 1 second.

Besides, The l_2 -SVMp+ achieved the best generalizability regarding the AUC differences between the training and testing sets. The standard SVM gives the second smallest difference, while the two SVM models run on the imputed dataset have the same level of high AUC differences, indicating that they are likely to overfit the training set.

Discussion

There are several strategies to address missingness in EHR data analysis, including discarding patients with missing values, dropping the features and data imputation; however, all will potentially compromise the study reliability when the missing mechanism is ignored. Initially designed for utilizing partially accessible privileged information, SVMp+ achieved success on the ARDS detection task. Nevertheless, its computational inefficiency poses a challenge to its application on a larger dataset.

In this work, an l_2 -SVMp+ algorithm is proposed for efficiently solving kernel SVM in the case of learning using partially available privileged information. The improvements were made by applying an l_2 loss to the primal problem, simplifying its dual form and reducing the number of dual variables. This dual form is analogous to one-class SVM and can be efficiently solved by SMO solvers such as LIBSVM [21]. On MINST+, a dataset of a small scale in terms

^{**} N.A.: no results obtained after 48 hours' training.

^a Mean Imputation.

^b Iterative Imputation

of total training numbers, the l_2 -SVMp+ displays comparable computational efficiency to the standard SVM model and is more than ten times faster than the previous SVMp+ implementation. This result is in line with previous findings from the l_2 -loss kernel SVM algorithm [20]. Furthermore, when tested on the UCI heart disease dataset and the PhysioNet heart failure dataset, both of which are larger in scale compared to MINST+, the l_2 -SVMp+ algorithm was able to converge within a second. In contrast, the SVMp+ algorithm exhibited much slower convergence and even failed to converge after 48 hours when tested on the PhysioNet dataset.

The l_2 -SVMp+ algorithm also shows better performances compared to the SVMp+ algorithm on MINST+. Although both of the algorithms show superior testing outcomes on AUC and AUPRC compared to the standard SVM, the AUC, AURPC, and F1 Score achieved by l_2 -SVMp+ are constantly better than those from the SVMp+ algorithm when the available percentage of privileged information range from 50% to 100%. This indicates that the l_2 -SVMp+ algorithm itself is more effective than SVMp+ and can find an appropriate separation hyperplane more accurately with the help of privileged information. Noteworthy, the F1 score for the SVMp+ model on the MNIST+ dataset exhibits a significant decline in the mean value, coupled with a large standard deviation, when compared to the standard SVM baseline. Furthermore, while SVMp+ demonstrates improvement at training ratios of 73% and 76% on the UCI dataset, it shows a decrease in performance in comparison to the standard SVM model at a training ratio of 75%. These are indications of instability in the SVMp+ model. It may be caused by the alternating SMO-style algorithm and unoptimized implementation. But these problems were avoided in l_2 -SVMp+ by directly using a well-established solver.

The l_2 -SVMp+ algorithm outperformed the standard SVM algorithm in building a binary classifier for UCI heart disease patients and achieved comparable performance to the SVM model trained with imputed PI. Additionally, when predicting readmission using the PhysioNet Heart Failure dataset, the proposed algorithm consistently outperformed the standard SVM and SVM model trained with imputed LEVDD across all three data groups, demonstrating the best overall performance. Firstly, this result further supports our findings on MINST + that privileged information could improve the model's performance even when it is only partially available and l_2 -SVMp+ remains effective in utilizing privileged information. Secondly, the results show empirical evidence that the LUPI paradigm could be superior to imputation methods when the missing information is important. Imputation relies on assumptions about the underlying data distribution and can result in biased estimates if those assumptions are incorrect or if the missing mechanism is unaware. This statement is supported by Table 5 and consistent with [31, 32], where imputation-based methods display larger AUC differences compared to the standard SVM model and LUPI-based l_2 -SVMp+ model, indicating that they are prone to overfitting the training data.

Although the results from the dataset suggest that l_2 -SVMp+ algorithm is either superior or on par with iterative imputation in handling missing data, there is currently a lack of theoretical support to make a concrete statement to that effect. Therefore, in future work, we will explore this hypothesis further by conducting theoretical analyses and experiments on large datasets to provide stronger evidence.

Future research should address the limitations present in the current work. The first limitation pertains to the lack of interpretability in clinical features. SHAP values, a method for explaining machine learning model outputs by calculating feature contributions to predictions, will be considered in the future to help interpret the model and rank feature importance, as suggested by Lundberg and Lee [33]. The second limitation concerns the fact that the test subset for the Heart Failure dataset is not a holdout but is randomly shuffled due to the high percentage of privileged information in the observations. Finally, the algorithm's application is

currently limited to only one partially available privileged information. To conduct a more comprehensive analysis, we will incorporate more variables with missing values.

Conclusion

In this study, we introduced a highly efficient algorithm for solving the kernel SVMp+ problem. Our approach involves adding an l_2 -regularizer to the original formulation, thereby converting the problem into a one-class SVM. This enables efficient and accurate optimization using an embedded SMO solver. We conducted extensive experimentation on three different tasks to evaluate the performance of our approach. Our results demonstrated that our method outperforms other common approaches for handling missing values, and showed superior efficiency and accuracy. In summary, the proposed algorithm presents a novel and highly effective solution for kernel SVMp+ in the context of missing values.

Supporting information

S1 Table. Performance of model on MNIST+ training, validation, and testing datasets with varying ratios of privileged information.

(XLSX)

S2 Table. Comparison of model performance on the UCI training, validation and testing dataset.

(XLSX)

S3 Table. Comparison of model performance on the HF training, validation and testing dataset.

(XLSX)

Author Contributions

Conceptualization: Yufeng Zhang.

Data curation: Yufeng Zhang. Formal analysis: Yufeng Zhang.

Funding acquisition: Kayvan Najarian.

Investigation: Yufeng Zhang.

Methodology: Yufeng Zhang, Kayvan Najarian.

Project administration: Emily Wittrup, Jonathan Gryak, Kayvan Najarian.

Resources: Kayvan Najarian.

Software: Yufeng Zhang.

Supervision: Jonathan Gryak, Kayvan Najarian.

Validation: Yufeng Zhang, Zijun Gao.

Visualization: Yufeng Zhang.

Writing – original draft: Yufeng Zhang, Zijun Gao, Emily Wittrup.

Writing – review & editing: Yufeng Zhang, Zijun Gao, Emily Wittrup.

References

- Li J, Yan XS, Chaudhary D, Avula V, Mudiganti S, Husby H, et al. Imputation of missing values for electronic health record laboratory data. NPJ digital medicine. 2021; 4(1):147. https://doi.org/10.1038/s41746-021-00518-0 PMID: 34635760
- 2. Hu Z, Melton GB, Arsoniadis EG, Wang Y, Kwaan MR, Simon GJ. Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record. Journal of biomedical informatics. 2017; 68:112–120. https://doi.org/10.1016/j.jbi.2017.03.009 PMID: 28323112
- Haneuse S, Arterburn D, Daniels MJ. Assessing missing data assumptions in EHR-based studies: a complex and underappreciated task. JAMA Network Open. 2021; 4(2):e210184–e210184. https://doi.org/10.1001/jamanetworkopen.2021.0184 PMID: 33635321
- Hughes RA, Heron J, Sterne JA, Tilling K. Accounting for missing data in statistical analyses: multiple imputation is not always the answer. International journal of epidemiology. 2019; 48(4):1294–1304. https://doi.org/10.1093/ije/dyz032 PMID: 30879056
- White IR, Carlin JB. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. Statistics in medicine. 2010; 29(28):2920–2931. https://doi.org/10.1002/sim.3944 PMID: 20842622
- Bartlett JW, Carpenter JR, Tilling K, Vansteelandt S. Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics. 2014; 15(4):719–730. https://doi.org/10.1093/biostatistics/kxu023 PMID: 24907708
- Janssen KJ, Donders ART, Harrell FE Jr, Vergouwe Y, Chen Q, Grobbee DE, et al. Missing covariate data in medical research: to impute is better than to ignore. Journal of clinical epidemiology. 2010; 63(7):721–727. https://doi.org/10.1016/j.jclinepi.2009.12.008 PMID: 20338724
- Hayati Rezvan P, Lee KJ, Simpson JA. The rise of multiple imputation: a review of the reporting and implementation of the method in medical research. BMC medical research methodology. 2015; 15:1– 14. https://doi.org/10.1186/s12874-015-0022-1 PMID: 25880850
- Hasan MK, Alam MA, Roy S, Dutta A, Jawad MT, Das S. Missing value imputation affects the performance of machine learning: A review and analysis of the literature (2010–2021). Informatics in Medicine Unlocked. 2021; 27:100799. https://doi.org/10.1016/j.imu.2021.100799
- Sabeti E, Drews J, Reamaroon N, Warner E, Sjoding MW, Gryak J, et al. Learning using partially available privileged information and label uncertainty: application in detection of acute respiratory distress syndrome. IEEE Journal of Biomedical and Health Informatics. 2020; 25(3):784–796. https://doi.org/10.1109/JBHI.2020.3008601
- **11.** Vapnik V, Izmailov R, et al. Learning using privileged information: similarity control and knowledge transfer. J Mach Learn Res. 2015; 16(1):2023–2049.
- Vapnik V, Vashist A. A new learning paradigm: Learning using privileged information. Neural networks. 2009; 22(5-6):544–557. https://doi.org/10.1016/j.neunet.2009.06.042 PMID: 19632812
- Lambert J, Sener O, Savarese S. Deep learning under privileged information using heteroscedastic dropout. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 8886–8895.
- Sharmanska V, Quadrianto N. In the era of deep convolutional features: Are attributes still useful privileged data? In: Visual Attributes. Springer; 2017. p. 31–48.
- Wang X, Wu Y, Zhu L, Yang Y. Symbiotic attention with privileged information for egocentric action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34; 2020. p. 12249–12256.
- 16. Li Y, Meng F, Shi J. Learning using privileged information improves neuroimaging-based CAD of Alzheimer's disease: a comparative study. Medical & biological engineering & computing. 2019; 57(7):1605–1616. https://doi.org/10.1007/s11517-019-01974-3 PMID: 31028606
- Shaikh TA, Ali R, Beg M. Transfer learning privileged information fuels CAD diagnosis of breast cancer. Machine Vision and Applications. 2020; 31(1):1–23.
- Feyereisl J, Aickelin U. Privileged information for data clustering. Information Sciences. 2012; 194:4– 23. https://doi.org/10.1016/j.ins.2011.04.025
- 19. Platt J. Sequential minimal optimization: A fast algorithm for training support vector machines. 1998;.
- Li W, Dai D, Tan M, Xu D, Van Gool L. Fast algorithms for linear and kernel svm+. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 2258–2266.
- Chang CC. "LIBSVM: a library for support vector machines," ACM Transactions on Intelligent Systems and Technology, 2: 27: 1–27: 27, 2011. Available from: https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
- 22. UCI heart disease dataset; Available from: https://archive.ics.uci.edu/ml/datasets/heart+disease.

- 23. Zhang Z, Cao L, Zhao Y, Xu Z, Chen R, Lv L, Xu P. Hospitalized patients with heart failure: integrating electronic healthcare records and external outcome data (version 1.3). PhysioNet. 2022. Available from: https://doi.org/10.13026/5m60-vs44.
- 24. Zhang Z, Cao L, Chen R, Zhao Y, Lv L, Xu Z, et al. Electronic healthcare records and external outcome data for hospitalized patients with heart failure. Scientific Data. 2021; 8(1):1–6. https://doi.org/10.1038/s41597-021-00835-9 PMID: 33547290
- Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, Physio-Toolkit, and PhysioNet: components of a new research resource for complex physiologic signals. circulation. 2000; 101(23):e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215 PMID: 10851218
- Catanzaro JN, Makaryus JN, Makaryus AN, Sison C, Vavasis C, Fan D, et al. Echocardiographic predictors of ventricular tachycardia. Clinical Medicine Insights: Cardiology. 2014; 8:CMC–S18499. https://doi.org/10.4137/CMC.S18499 PMID: 25861227
- 27. Kajimoto K, Minami Y, Otsubo S, Sato N, of the Acute Decompensated Heart Failure Syndromes (ATTEND) Registry I, et al. Sex differences in left ventricular cavity dilation and outcomes in acute heart failure patients with left ventricular systolic dysfunction. Canadian Journal of Cardiology. 2018; 34 (4):477–484. https://doi.org/10.1016/j.cjca.2018.01.019 PMID: 29571428
- Aleong RG, Mulvahill MJ, Halder I, Carlson NE, Singh M, Bloom HL, et al. Left ventricular dilatation increases the risk of ventricular arrhythmias in patients with reduced systolic function. Journal of the American Heart Association. 2015; 4(8):e001566. https://doi.org/10.1161/JAHA.114.001566 PMID: 26231842
- 29. fitcsvm;. Available from: http://www.mathworks.com/help/stats/fitcsvm.html.
- scikit-learn iterative imputer; Available from: https://scikit-learn.org/stable/modules/generated/sklearn.impute.lterativelmputer.html#sklearn.impute.lterativelmputer.
- Tang F, Xiao C, Wang F, Zhou J, Lehman LwH. Retaining privileged information for multi-task learning. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2019. p. 1369–1377.
- **32.** Pechyony D, Vapnik V. On the theory of learning with privileged information. Advances in neural information processing systems. 2010;23.
- **33.** Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Advances in neural information processing systems. 2017;30.