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We provide a new perspective on the study of parameterized optimization prob-
lems. Our approach combines methods for post-optimal sensitivity analysis and
ordinary differential equations to quantify the uncertainty in the minimizer due
to uncertain parameters in the optimization problem. We illustrate the proposed
approach with a simple analytic example and an inverse problem governed by an
advection diffusion equation.
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1. Introduction

A common class of problems in the sciences and engineering involves solving optimization problems

constrained by differential equations. Examples include inverse problems and optimal design or control

problems. To illustrate, we consider the following advection diffusion equation:

—ku” +ovu' = s in (0,1),
ku' = au on x = 0, (1)
!
KU = —au onz=1.

Here u(z) is the temperature at a point = € [0,1], x is the diffusion coefficient, v is wind velocity, a models

a heat transfer coefficient, and s is a source term defined by

s(z) = aexp (—200(z — ¢)?), (2)

which models a localized source with a and ¢ indicating its magnitude and location.
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Suppose we have measurements of the temperature throughout the domain and we seek to use this

T

information to estimate the parameter vector m = [k v]T € RZ This involves solving an optimization

problem of the form,

i J(m) = 5 [ (ule) = (@) do-+ G m — m ®)

where u is the solution of (1) (which depends on m), u°"

mY is a prior estimate of m, and 8 > 0 is a regularization parameter.

Note that the objective function J also depends on the vector of model parameters 8 =[a ¢ o] € R?

is the observed temperature across the domain,

that parameterize the volume source term and the heat transfer. In practice, these parameters might not
be known exactly. Thus, it is imperative to understand how the uncertainty in these parameters affects the
estimated parameter m* obtained by solving (3). In the present work, we propose an approach for analyzing
such parameterized optimization problems, without the need for repeated solutions of the optimization
problem.

The study of parameterized optimization problems can be found in the early works [1,2] followed by more
advanced developments in [3-5]. These works, and references therein, provide extensive theory concerning
the differentiability of optimal solutions with respect to parameter perturbations. This field has assumed
various names as it arises in different parts of the literature. Herein we refer to it as post-optimality
sensitivity analysis as it provides a local sensitivity study of the optimal solution. Developments from [6-9]
extended the use of post-optimality sensitivities to optimization problems constrained by partial differential
equations. Recent work from [10-12] has focused on making this sensitivity analysis scalable for high-
dimensional parameter spaces and extending its use for various classes of parametric uncertainty. However,
post-optimality sensitivity analysis is local in the sense that it is only valid in a neighborhood of a nominal
parameter value. This article borrows concepts from the post-optimal sensitivity analysis literature and
couples them with a time stepping algorithm to move through the parameter space to perform efficient
global analysis.

We detail the mathematical setup of the parameterized optimization problems under study in Section 2.
Our proposed approach is presented in Section 3. We illustrate the effectiveness of our approach in Section 4,
for an analytic test problem as well as the inverse advection diffusion problem discussed above. Concluding
remarks are given in Section 5.

2. Preliminaries

In this section, we lay out the mathematical setup of the optimization problems under study. Let U be a
compact subset of R? and consider parameterized optimization problems of the form

min J(m, ), (4)

meU

where 6 is a vector of parameters. These parameters are fixed when solving the optimization problem, but
in practice are uncertain and can be modeled as random variables. We assume that 6 belongs to a compact
set @ C RP and @ € O is a nominal parameter vector. Let m* be a minimizer of J(m, @) and Uy C U be
an open set that contains m*. To facilitate our parametric study of (4), we assume that

1. for each 6 € O, there exists a unique minimizer m*(0) in Up; and
2. J is twice continuously differentiable in m and 6.

It follows that m*(0) is a differentiable function on 6.
Verifying the above assumptions for an optimization problem arising from science or engineering appli-
cations would be difficult in general. However, these assumptions have an intuitive interpretation. Namely,
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Fig. 1. Illustration of the sets Uy, = [0.5,1.0] shaded in the left panel and © = [0.2,0.4] X [0.65,0.85] shaded in the right panel.
Each curve in the left panel is J(m, 0), defined by (6), evaluated for a 0 sample depicted in the right panel by *. The unique local
minimizers in Uy are denoted by open circles in the left panel.

we consider well-behaved optimization problems whose minimizers are unique in a suitable region around
nominal parameters @ and minimizer m*. Such assumptions are reasonable in many optimization problems
arising in physical applications. Also, in practice, the set @ will be a user-specified region around the nominal
parameter vector 8. Specifically, we consider the typical situation where © is defined as

6 = [él —El,él +61] X [ég—&g,ég-f—é‘g] X -0 X [ép—Ep,ép"f'Ep], (5)

where ¢, is some percentage of the corresponding nominal value 6, k = 1,...,p. The ;s indicate the level
of uncertainty in the physical parameters in the model. It is common that the parameters 0 are assumed
to be uniformly distributed random variables on the respective intervals, but more general distributions on
compact sets are admissible.

To illustrate these concepts, consider the objective function

J(m,0) = /(m —01)(m — 0.5)(m — 63)dm, (6)

which, for 8 € {# € R? : 0 < ; < 0.5 and 0.5 < 65 < 1}, will have two local minima at §; and 6. Letting
U =10,1] and © = [0.2,0.4] x [0.65,0.85], we may take Uy = (0.5,1.0) to restrict our analysis to the local
minima at 6. This is depicted in Fig. 1 to demonstrate how the choice of Uy ensures minimizer uniqueness
needed to enable our parameter study.

3. Method
In this section, we outline an approach for approximating m* (5), where 0 is a generic element of 6.

3.1. An initial value problem for m*(é)

To study how the optimal solution changes with 8 we compute the Jacobian of m* with respect to 6.
This Jacobian, denoted by D, can be computed by differentiating through first order optimality condition

oJ
om
implicitly. It follows from the Implicit Function Theorem that

(m”(6),0) =0,

D(m*(6),0) = —H(m’(6),6)'B(m"(6),0),
3
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where
0%J 02J

Hm©0).0) = 5zl meorey ™ B OO =556 o100

The Jacobian D is known as the post-optimality sensitivity operator.
For a given 6 € @, we begin by considering the points on the line-segment joining 8 to 6,

0(t)=0+t(60-0), tel0,1]. (7)

Based on our assumptions on J and m*, we can consider m* as a differentiable function of ¢, m*(t) =
m*(0(t)). Taking the derivative of m* with respect to ¢ and applying the Chain Rule gives

dm*  om* d0 -

= o g = D (0(1).0(1)(0 - 0). (8)
For notational convenience, we define
F(t,;m*) = —H(m",0(1)) ' B(m",0(1))(0 - 9). (9)

Then we may determine m*(¢), for ¢ € [0, 1], by solving the following initial value problem (IVP)

dm* .
dt = (t7T )7
m*(0) = m*(8).

(10)

To specify the initial condition, the optimization problem (4) needs to be solved. This is the only solution

of the optimization problem required in our approach. For each parameter 8, we will solve the IVP (10) up
to ¢ = 1 to determine the corresponding local minimum m*(1) = m*(6(1)) = m*(0). The right hand side
function f (9) is the post optimality sensitivity operator acting on @ — 6 and hence the IVP depends on the

parameter sample 6.

3.2. Time-stepping to approzimate m*(0)

We can apply common numerical methods to solve the IVP (10). In this work, we study the use of forward
Euler. Specifically, let h = 1/N be a step-size and ¢, = nh, n =0,..., N. The forward Euler discretization
of (10) is

my , =m, +hf(t,,m;), n=01,... N-1, (11)
where m{ = m*(0) and m} ~ m*(t,), n =1,..., N. Finally, the approximation to m*(g) is given by
m*(0) = m*(ty) ~ mjy. (12)

Notice that (11) resembles Newton’s method for optimization. In particular, computing m*(6) via
Newton’s method iterates with search directions of the form

_I_I(,rngewton7 5)—1g(mgewton, 5)7

where mYe"*" denotes the nth Newton iterate and g(m,lfeWton,é) denotes the gradient of J with respect
to m, evaluated at mY°"*". On the other hand, time marching via (11) has search directions of the form

~H(m;,, 0(tn))"'B(m;,, 0(t,))h(0 — 8) ~ —H(m;,, 0(t,)) "' (g(m},, 0(tn+1)) — g(m},, 0(t0))),

where the latter approximation follows since B is the derivative of g with respect to 6. Note that
g(m?,0(t,)) is expected to be small since it is the gradient evaluated at an approximate minimizer. Time
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marching via (11) takes a size h perturbation of 8 and updates the solution via a Newton like step whereas
resolving the optimization problem takes the full parameter step 6 — 0 and then employs Newton iterations
to update m. Note also that in resolving the optimization problem via Newton’s method, employing a line
search algorithm such as Armijo’s method [13] is typically necessary.

An alternate point of view regarding the time stepping (11) is performing continuation on the parameters
60,01, ...,0xN and using an approximate Newton step to update m after each parameter perturbation.

A benefit of solving (10) is that computing f(t,, m)) = D(m}, 6,,)(6 — ) at each time step provides

post-optimality sensitivity information in the direction @ — 6. This gives additional insight about how the

minimizer depends on the uncertain parameters.

3.8. Computational considerations

Computing (9) requires access to the Hessian H and the matrix B of mixed second order partial
derivatives. For optimization problems governed by partial differential equations, such derivative information
can be obtained efficiently using adjoint state methods; see e.g., [14]. Specifically, in that context, one obtains
adjoint based expressions for applying H and B to vectors [11]. In large-scale computations, the inverse
Hessian apply is computed by performing a linear solve using the Conjugate-Gradient method, which only
requires applications of the Hessian on vectors. An alternative approach for obtaining the required derivatives
is automatic differentiation. Simple finite-difference approaches might be applicable as well if the gradient
can be computed exactly and differenced to approximate the second derivatives.

It is also possible to use methods other than forward Euler to numerically solve the IVP (10). Generally,
implicit methods would be very challenging to implement for the present IVP, due the requirement of a
nonlinear solve in each step. On the other hand, higher order explicit Runge-Kutta methods or predictor
corrector methods will be straightforward to implement. However, we caution that the faster convergence
might come at a cost of making the time-stepping more expensive than resolving the optimization problem
for different realizations of 6. A thorough investigation of the time-stepping approaches that are tractable
for (10) and analysis of the related computational cost is beyond scope of the present study and will be
pursued in future work.

4. Numerical examples
4.1. A one-dimensional example

Consider the function 0
1

J(m’ 0) - 1+ efam

+6;m%, meR,0cO.

Here © C R? corresponds to taking 40% of @ around their nominal values @ = [I 3 0.1]7. In Fig. 2 (left),
we show J with & = 6, and in Fig. 2 (right), we display several realizations of the function J(m, @),
corresponding to random draws from the (uniform) distribution of 8. This demonstrates significant variations
in the location of the minimizer.

In Fig. 3 (left), we show the probability density function (pdf) of m}, for a few choices of N in (11). We
also track the convergence of the mean and standard deviation in Fig. 3 (middle/right). The optimization
problem was solved for 5000 realizations of 6 to generate a reference distribution for m*(0). From Fig. 3
we see that a small IV is sufficient for approximating the pdf of m*. In fact, N = 1 provides a reasonable
approximation, and as N grows, the pdf of m}, approaches that of m* rapidly. Also, the mean and standard
deviation exhibit a first order convergence consistent with the convergence rate of forward Euler.
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Fig. 2. The nominal model J(m, @) (left) and several realizations of the model (right) for the one-dimensional example. In the left
panel, the black dot indicates the location of the minimizer.
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Fig. 3. Convergence of the pdfs (left), the mean (middle), and standard deviation (right), as N increases, for the one-dimensional
example. In the middle and right panels, the dashed lines indicate O(h), where h = 1/N.
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Fig. 4. Convergence of the joint pdfs for increasing N on the differential equation constrained example.

4.2. A differential equation constrained example

We revisit our illustrative optimization problem (3) and consider estimating the pdf of the optimal
solution. We draw 5000 parameter samples from a uniform distribution modeling +20% uncertainty around
the nominal parameter vector 6 = [10.0 0.05 1.0]T. Fig. 4 displays the joint pdf computed by solving
the optimization problem for each parameter sample (left) and compares it with the estimated joint pdf
coming from our proposed approach using N = 1,6,12, and 20 time steps. In each of these cases, we solve
the optimization problem once for @ = @ and then solve the IVP (10) for each parameter sample to estimate
the minimizer. Using the same samples, Fig. 5 shows the convergence of marginal pdfs of the minimizer. We
observe that some information about the correlation structure in the joint pdf and the marginal pdf for &
can be inferred with a small N. The marginal pdf of a exhibits complex features that are not easily resolved
with a small IV; nonetheless, for modest values of N we are able to capture many of its features.

We next compare the computational cost of our proposed time-stepping approach against repeatedly
solving the optimization problem for each realization of 8. We use a trust region algorithm for solving the
optimization problem, whose cost per iteration is approximately the same as that of a time step (11). In
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Fig. 5. Convergence of the marginal pdfs for increasing N on the differential equation constrained example.

the present study, we average the number of iterations required by the optimization algorithm when solving
the optimization problem for each of the 5000 parameter samples. We observed an average of 6.58 iterations
when resolving the optimization problem. This cost is slightly greater than that of using N = 6 time steps
to approximate the minimizer via our proposed approach. However, there are many nuisances related to
optimization algorithm and algorithmic parameter choices. Our comparison here highlights how the cost are
comparable in a simplified setting but a more detailed study is required in future work.

5. Conclusion

The time-stepping approach introduced in this article is a new perspective on a classical problem of
studying parametric uncertainty in optimization problems. Tools from post-optimality sensitivity analysis
have traditionally been used to perform local parameter studies [4]. By formulating an ordinary differential
equation driven by the post-optimality sensitivity, our approach offers a mathematically rigorous approach
to transition from local to global parameter studies. We conjecture that with suitable time discretizations,
the computational cost of our approach can be less than the cost of resolving the optimization problem for
each new parameter sample. Many questions remain. These include the trade-offs between higher order time
integration schemes, finer temporal discretizations, and stability of the time stepping. Further, there may be
opportunities to leverage information from previous time steps for preconditioning of future solves or reusing
time steps to explore multiple parameter samples. Exploiting such structure may enable further gains in the
computational performance of our approach relative to the base line of repeatedly resolving optimization
problems.

Optimization problems constrained by partial differential equations (PDEs) frequently translate to high-
dimensional parameters that result from the discretization of functions. The proposed approach will scale
efficiently to such problems. Using the adjoint method for derivative calculation, the action of the Hessian or
the mixed second derivative matrix on a vector can be computed using two linear PDE solves, regardless of
the parameter dimension. The curse of dimensionality appears in the potential need for many matrix—vector
products to explore the space; however, a low-rank structure is commonly present and can be exploited to
accelerate computations.

Another area of inquiry is to extract global sensitivity information alongside the distribution of the
optimal solution. Each time step computes the action of the post-optimality sensitivity operator for a
different sample. Understanding how to aggregate this sensitivity information will provide valuable insights
that are not available from repeated optimization solves. Such global aggregation of sensitivity information
is common in the derivative-based global sensitivity analysis literature [15,16] and uncertainty quantification
more broadly [17].



A. Alexanderian, J. Hart and M. Stevens Applied Mathematics Letters 140 (2028) 108548

Data availability

No data was used for the research described in the article.

Acknowledgments

This article has been authored by an employee of National Technology & Engineering Solutions of Sandia,
LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The employee owns
all right, title and interest in and to the article and is solely responsible for its contents. The United States
Government retains and the publisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this article or allow others to do so, for United States Government purposes. The
DOE will provide public access to these results of federally sponsored research in accordance with the DOE
Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
This paper describes objective technical results and analysis. Any subjective views or opinions that might
be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the
United States Government. SAND2023-10468J.

This work was supported by the US Department of Energy, Office of Advanced Scientific Computing
Research, Field Work Proposal 20-023231.

The work of A. Alexanderian and M. Stevens was supported in part by National Science Foundation,
United States of America under grant DMS-1745654. The work of A. Alexanderian was also supported in
part by the National Science Foundation, United States of America under grant DMS-2111044.

References

[1] A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New
York, 1968.

[2] A.V. Fiacco, Sensitivity analysis for nonlinear programming using penalty methods, Math. Program. 10 (3) (1976)
287-311.

[3] J.F. Bonnans, Directional derivatives of optimal solutions in smooth nonlinear programming, J. Optim. Theory Appl.
73 (1) (1992) 27-45.

[4] J.F. Bonnans, A. Shapiro, Optimization problems with perturbations: A guided tour, STAM Rev. 40 (2) (1998) 228-264.

[5] J.F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, 2013.

[6] R. Griesse, Parametric sensitivity analysis in optimal control of a reaction diffusion system. I. Solution differentiability,
Numer. Funct. Anal. Optim. 25 (1-2) (2004) 93-117.

[7] R. Griesse, Parametric sensitivity analysis in optimal control of a reaction-diffusion system — part II: practical methods
and examples, Optim. Methods Softw. 19 (2) (2004) 217-242.

[8] R. Griesse, Stability and Sensitivity Analysis in Optimal Control of Partial Differential Equations (Habilitation Thesis),
Karl-Franzens University Graz, 2007.

[9] K. Brandes, R. Griesse, Quantitative stability analysis of optimal solutions in PDE-constrained optimization, J. Comput.
Appl. Math. (2006).

[10] J. Hart, B. van Bloemen Waanders, R. Herzog, Hyper-differential sensitivity analysis of uncertain parameters in
PDE-constrained optimization, Int. J. Uncertain. Quantif. 10 (3) (2020) 225-248.

[11] I. Sunseri, J. Hart, B. van Bloemen Waanders, A. Alexanderian, Hyper-differential sensitivity analysis for inverse
problems constrained by partial differential equations, Inverse Problems 36 (12) (2020) 125001, http://dx.doi.org/10.
1088,/1361-6420/abaf63.

[12] A.K. Saibaba, J. Hart, B. van Bloemen Waanders, Randomized algorithms for generalized singular value decomposition
with application to sensitivity analysis, Numer. Linear Algebra Appl. 28 (4) (2021).

[13] S. Wright, J. Nocedal, Numerical optimization, Springer Science 35 (67-68) (1999) 7.

[14] M.D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, 2003.

[15] I. Sobol’, S. Kucherenko, Derivative based global sensitivity measures and the link with global sensitivity indices, Math.
Comput. Simulation 79 (2009) 3009-30017.



A. Alexanderian, J. Hart and M. Stevens Applied Mathematics Letters 140 (2023) 108548

[16] I. Sobol’, S. Kucherenko, A new derivative based importance criterion for groups of variables and its link with the global
sensitivity indices, Comput. Phys. Comm. 181 (2010) 1212-1217.

[17] R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, in: Computational Science and
Engineering Series, vol. 12, STAM, 2013.



	A new perspective on parameter study of optimization problems
	Introduction
	Preliminaries
	Method
	An initial value problem for vecm*(widetilde θ)
	Time-stepping to approximate vecm*(widetilde θ)
	Computational considerations

	Numerical examples
	A one-dimensional example
	A differential equation constrained example

	Conclusion
	Data availability
	Acknowledgments
	References


