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DTC Linearization via Mismatch-Noise
Cancellation for Digital Fractional-N PLLs

Eslam Helal*', Amr I. Eissa

Abstract— Digital-to-time converter (DTC) based quantization
noise cancellation (QNC) has recently been shown to enable
excellent fractional-N PLL performance, but it requires a
highly-linear DTC. Known DTC linearization strategies include
analog-domain techniques which involve performance tradeoffs
and digital predistortion techniques which converge slowly
relative to typical required PLL settling times. Alternatively,
a DTC implemented as a cascade of 1-bit DTC stages can
be made highly linear without special techniques, but such
DTCs typically introduce excessive error from component
mismatches which has so far hindered their use in low-jitter
PLLs. This paper presents a background calibration technique
that addresses this issue by adaptively canceling error from
DTC component mismatches. The technique is entirely digital,
is compatible with a large class of digital fractional-N PLLs,
and has at least an order of magnitude lower convergence time
than the above-mentioned predistortion techniques. The paper
presents a rigorous theoretical analysis closely supported by
simulation results which quantifies the calibration technique’s
convergence time and noise performance.

Index Terms— Fractional-N PLL, digital PLL, digital-to-time
converter (DTC), dynamic element matching (DEM), background
calibration, least-mean-square algorithm (LMS), mismatch-noise
cancellation (MNC), quantization noise cancellation (QNC).

I. INTRODUCTION

HE signal processing performed within any fractional-
N phase-locked loop (PLL) for frequency synthesis
inevitably involves quantization. The resulting quantization
error degrades the PLL’s phase noise unless it is actively
canceled prior to frequency modulation, a process known
as quantization noise cancellation (QNC). An increasingly
popular QNC method uses a digital-to-time converter (DTC)
to cancel most of the quantization error prior to phase
error measurement within the PLL. This prevents the quan-
tization noise from being subjected to the inadvertent but
inevitable nonlinearity of the phase error measurement cir-
cuitry, thereby avoiding fractional spurs which would oth-
erwise be caused by nonlinearly distorting the quantization

error [1], [2], [3], [4], [5].
However, for such DTC-based QNC to be effective, the
DTC must be highly linear. Otherwise, it nonlinearly distorts
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Fig. 1. a) General form of a digital fractional-N PLL driven by an f.z-
frequency reference oscillator, b) general form of a multi-modulus divider-
based PEDC.

the quantization error directly, so it becomes a cause of
fractional spurs in its own right. Several analog and digital
techniques have been proposed to linearize DTC circuits to
address this issue. The published analog techniques generally
increase power consumption or circuit area considerably [6],
(71, [8], [9], [10]

The published digital techniques perform predistortion via
look-up tables (LUTSs) to mitigate DTC nonlinearity, but the
data with which the LUTs are populated must be measured in
background via correlation algorithms which take considerably
longer to converge than typical target PLL settling times [11],
[12], [13]. As examples, the cold-start convergence times of
the techniques presented in [11] and [12] are over 30,000 and
600,000 reference cycles, respectively.

Alternatively, a DTC implemented as a cascade of 1-bit
DTC stages can be made highly linear without any special
linearization techniques provided the stages are sufficiently
buffered so that the state of each stage does not significantly
affect the delays through the other stages. However, such
DTCs typically introduce far more error from component
mismatches than the more commonly used single-stage DTCs,
which has so far stymied their application to DTC-based
QNC in low-jitter PLLs. While dynamic element matching
(DEM) can be applied to cause the DTC error arising from
component mismatches, i.e., the DTC mismatch noise, to be
free of nonlinear distortion and have a highpass spectral shape,
the power of the mismatch noise nevertheless tends to be high
enough that it significantly degrades the PLL’s jitter.

This paper proposes an entirely digital DTC mismatch
noise cancellation (MNC) technique that is applicable to a
large class of digital fractional-N PLLs. The DTC-MNC
technique adaptively measures and cancels DTC mismatch
noise in background within the PLL prior to the PLL’s digital
loop filter, thereby making highly-linear DTCs comprised of
1-bit DTC stages practical for low-jitter digital fractional-N
PLLs (although the technique is also applicable to single-
stage DTCs). The DTC-MNC technique’s convergence time
is an order of magnitude faster than that of the fastest of the
published predistortion techniques and results in significantly
lower simulated jitter and spurious tones than the correspond-
ing reported simulation and measurement results for the pre-
viously published predistortion techniques. The paper presents
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a rigorous analysis closely supported by simulation results
which quantifies the DTC-MNC technique’s convergence time,
and proves that the DTC-MNC technique has no convergence
bias and is unconditionally stable.

II. DTC-BASED QUANTIZATION NOISE CANCELLATION

A. General Form of a Digital PLL With DTC-Based QNC

The general form of a digital fractional-N PLL driven by a
reference oscillator of frequency fr.r is shown in Fig. 1a [14],
[15], [16],[17], [18], [19], [20], [21], [22], [23], [24], [25],
and [26]. The PLL is comprised of a phase-error-to-digital
converter (PEDC), a lowpass digital loop filter, and a digitally
controlled oscillator (DCO). Its objective is to generate a low-
noise oscillatory output signal, vpr(f), with instantaneous
frequency fprr = (N +a) fref, where N is a positive integer
and a is a fractional value bounded in magnitude by 1.

In many digital fractional-N PLLs, the PEDC incorporates a
multi-modulus divider as shown in Fig. 1b. The multi-modulus
divider is controlled such that its nth and (n-1)th rising output
edges are separated by N — o[n] DCO cycles, where v[n] is
an integer-valued digital sequence generated within the PEDC.
The rest of the PEDC digitizes the phase difference between
vref (t) and vygj, (f) to generate p[n], and the PLL’s feedback
loop controls the DCO such that p[n] stays bounded, thereby
ensuring that the divider’s average output frequency is fr.r.
In some PLLs, v[n] is generated by a digital delta-sigma (A X)
modulator such that its average value is —a, and in other PLLs,
v[n] is generated within the PLL’s feedback loop such that its
average converges to —a. In either case, the N —o[n] division
in conjunction with the feedback causing the divider’s average
output frequency to converge to f,.r causes the DCQO’s average
output frequency to converge to (N + a) fref.

The reason that o[n] is restricted to integer values is that
dividers are only capable of counting integer numbers of DCO
cycles. Hence, in all such PLLs, v[n] contains zero-mean
quantization error which ultimately contributes to the PLL’s
overall phase error unless it is canceled prior to the DCO
via QNC.

The quantization process with which the PEDC generates
v[n] happens in the digital domain so the quantization error
is known to the system. One option is to perform QNC
in the digital domain after the PEDC digitizes the phase
difference between v,.s(f) and wvg;,(f). However, in most
PLLs with divider-based PEDCs, quantization error is the
dominant component in v[n] and when the quantization error
is subjected to the inevitable nonlinearity of the PEDC’s phase
error measurement and digitization circuitry, fractional spurs
are induced which digital-domain QNC is unable to cancel.
Therefore, it is desirable to perform QNC prior to phase error
measurement and digitization if possible.

In principle, this can be done by inserting a DTC between
the divider output and the rest of the PEDC. Ideally, the DTC
would introduce a time delay of Tp + ¢[n] to the nth output
edge of the divider, where e[n] represents the effect of the
quantization error on the time of the nth rising output edge of
the divider, and Tp is a constant that is large enough to ensure
that Tp + £[n] > 0 for DTC causality. Hence, the time of the
nth rising edge of the DTC output is the ideal time of the nth
rising edge of the divider output, i.e., the time that would have
resulted had v[n] not been quantized, aside from an additional
fixed delay of Tp. The rest of the PEDC digitizes the phase
difference between v, (f) and vprc(t), so the PLL’s feedback
controls the DCO such that the average value of this difference
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Fig. 2.

converges to zero, thereby causing the average DCO frequency
to converge to (N + a) fref. The primary difference between
this case and that of Fig. 1 is that QNC occurs prior to phase
error measurement and digitization, which has the potential to
significantly reduce spurious tones.

A commonly used DTC circuit is shown in Fig. 2 [7], [8],
and [27]. It consists of inverters [y, I, I3, and I4, and a bank
of capacitors. The ith capacitor’s top plate is connected to
the output of inverter I, and its bottom plate is connected
to or disconnected from ground when the ith bit of the
input codeword c[n] is high or low, respectively. Hence, c[n]
controls the RC time constant at the output of inverter />, and,
consequently, the delay through the DTC.

Inverter I, differs from the other inverters, which are
standard two-transistor inverters, in that it contains resistor
R in series with the drain of the inverter’s pMOS transistor.
The pMOS transistor is chosen to be wide enough that its
on-resistance is small compared to R. This makes the time
constant at the output node of inverter /> relatively indepen-
dent of the transistor’s on-resistance when the inverter’s output
voltage transitions from low-to-high, thereby improving the
DTC’s linearity, i.e., the linearity of the delay between each
rising edge of vg;, () and the corresponding rising edge of
vprc(t) as a function of c[n]. Another advantage of this
design choice is that the large pMOS transistor size results in
a relatively low flicker noise contribution from the transistor.
As the PLL’s timing information is only carried by the times
of the rising edges of the divider and DTC outputs, it is not
necessary for the nMOS transistor in inverter /5 to be large or
to include a resistor in series with its drain.

B. Nonideal DTC Behavior

A DTC’s resolution specifies the number of different delays
that the DTC is able to introduce. For example, if the capac-
itors in the DTC of Fig. 2 have values of 2/C for i = 0,
1,2, ..., b—1, and the ith bit of c¢[xn] controls the transistor
connected to the 2'C capacitor, then the DTC is said to have b
bits of resolution because it can introduce 2° different delays.

In many applications, the minimum step-size of a is so
small that it is not practical to implement a DTC with sufficient
resolution to achieve delays of exactly Tp + £[n], so it is
often necessary to have the DTC input be a quantized version
of g[n]. As described above, the purpose of the DTC is to
cancel the effect of the quantization error in v[n] prior to
the PEDC’s phase error measurement and digitization process,
so quantizing e[n] prior to the DTC appears, at first glance,
to defeat the purpose of the DTC. However, the error from
quantizing £[n] prior to the DTC usually can be made much
smaller than the quantization error in v[n], so the quantization-
noise-induced spurious tones it causes are much smaller than
the those which would have occurred in the absence of the
DTC. Furthermore, the quantization of £[n] is done in the
digital domain, so the quantization error is available within
the PEDC as digital sequence. Hence, if necessary, the small
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Fig. 3. The PEDC of Fig. 1b with a DEM encoder, quantizer Q f, and DTC
gain calibration.

amount of quantization error introduced by the quantization of
g[n] can be canceled within the rest of the PEDC following
the phase error measurement and digitization operation.

Another practical DTC limitation relates to component
mismatches. In the DTC example described above, the 2/C
capacitor would typically be implemented as a parallel com-
bination of 2' unit capacitors of size C for each i = 1, ...,
b — 1. Mismatches among the different unit capacitors from
fabrication errors and systematic layout asymmetries cause the
b capacitors to deviate from their ideal values, which results
in DTC nonlinearity.

If necessary, DEM can be applied to at least partially
address this problem [28], [29]. Provided the number of DTC
capacitors and their nominal values satisfy certain constraints,
a digital DEM encoder can be used prior to the DTC to control
which capacitors are connected and disconnected within the
DTC during each reference period such that the error intro-
duced by component mismatches is either white or highpass
spectrally shaped noise instead of nonlinear distortion [30].

As described above, the DTC ideally introduces a delay to
the nth rising edge of vg;, (f) that well-approximates Tp+e[n].
However, DTC gain error, which is inevitable in practice
because of various types of nonideal circuit behavior, causes
this delay to instead approximate Aprc(Tp +el[n]) where
Aprc is a constant that deviates from its ideal value of unity.
Fortunately, background calibration techniques that adaptively
measure A pr¢ and compensate for it are well-known [4], [22].

Fig. 3 shows a DTC-enabled version of the PEDC of Fig. 1b
in which DTC gain calibration, quantization, and DEM are
applied to address the DTC’s gain error, resolution limitation,
and component mismatches, respectively. The details of the
DEM encoder and the DTC gain calibration are not described
in detail in this paper because they are well-known, established
techniques that are described in detail in the cited references.

The remaining types of nonideal DTC behavior are circuit
noise, and nonlinearity from sources other than component
mismatches. Usually, for a given DTC topology, circuit noise
can only be reduced at the expense of increased power con-
sumption and/or area. Nevertheless, fractional-N PLLs with
DTC-based QNC have been demonstrated with excellent phase
noise performance and power efficiency, so the circuit noise
issue has proven to be manageable [7], [8]. Unfortunately,
DTC nonlinearity from sources other than component mis-
matches remains a significant issue, especially for DTCs with
high dynamic range [6].

C. DTC Linearity Versus Component Mismatch Tradeoff

While careful sizing of the pMOS transistor and resistor in
Inverter I can reduce the nonlinearity of the type of DTC
shown in Fig. 2 as described above, it is often not possible
to reduce it sufficiently to prevent it from causing significant
spurious tones. Consequently, low-jitter fractional-N PLLs
with DTC-based QNC typically incorporate DTC linearization
techniques as mentioned in the introduction.

4995

va(f)| 1-bit DTC| | 1-bit DTC| _|1-bit DTC 1-bit DTC |Vorc(f)
g i

o] _Je]__ Jeiln] o] Jadn

Fig. 4. A DTC implemented as a cascade of M 1-bit DTCs.
Vnr(f) P(n] | pTC-MNC| | Digital Ver(f)
0] pifore sl fpiegior] +(bco)
DC
Nl e I—f,,,-mlc clm:kJ
]

Fig. 5. General form of a digital fractional-N PLL with the MNC technique.

Alternatively, the DTC can be implemented as a cascade
of 1-bit DTC stages as shown in Fig. 4. Ideally, the ith DTC
stage introduces a delay of d;[n] = T; +c;[n]A;, where T; is a
constant delay, ¢;[n] is the ith output bit of the DEM encoder
preceding the DTC, and A; is a constant which represents
the DTC stage’s delay step-size. For example, each 1-bit DTC
stage in Fig. 4 can be implemented by the DTC shown in
Fig. 2 except with a single capacitor and nMOS transistor
in place of the full DTC capacitor bank. To the extent that
the inverters at the input and output of each stage provide
sufficient isolation that the ith stage’s delay, d;[n], does not
depend on cj[n] for any j # i, each DTC stage introduces
one of only two possible delays to its input at any given time
so each 1-bit stage is inherently linear (two points always lie
on a straight line). However, component mismatches cause
the two possible delays from each DTC stage to have static
deviations from their ideal values, which, in the absence of
DEM, would introduce overall DTC nonlinearity. Fortunately,
by scrambling the usage pattern of the DTC stages, the DEM
encoder causes error from component mismatches to introduce
noise-like error instead of nonlinear distortion [30].

However, unlike the single-stage DTC of Fig. 2 wherein
mismatch noise is dominated mainly by unit capacitor mis-
matches, every component within each stage of the multi-stage
DTC contributes to the DTC’s mismatch noise. As mentioned
in the introduction, this typically causes the mismatch noise
from the multi-stage DTC of Fig. 4 to be so high that its
application to QNC in low-jitter PLLs has been problematic to
date. The DTC-MNC technique presented in the next section
addresses this problem.

III. ADAPTIVE DTC MISMATCH NOISE CANCELLATION

The PEDC of Fig. 3 generates an output sequence which
can be written as

plnl = rigeat[n] +r.lnl, (1)

where rideqi[n] is what p[n] would have been had the DTC
not introduced mismatch noise, and r.[n] is the component
of p[n] resulting from DTC mismatch noise. The purpose of
the DTC-MNC technique is to adaptively measure and cancel
re[n]. As explained shortly, this is accomplished by the block
labeled DTC-MNC logic in the digital PLL shown in Fig. 5

In general, DEM causes the DTC’s mismatch noise,
eprcln], to have the form

L
eprcinl = D BiSiln], @)
k=1

where L is a constant that depends on the details of the
DEM encoder, each Si[n] is a white or spectrally shaped
pseudo-random sequence that is known because it is generated
within the DEM encoder, and each Bj is a constant that
is unknown because it depends on the DTC’s component
mismatches [30], [32].
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Fig. 6. DTC-MNC logic details; a) high-level view, b) details of the kth
feedback loop’s si[n] residue amplifier.

The PEDCs in high-performance PLLs must be quite linear
to avoid inducing large spurious tones, so by far the largest
term in p[n] resulting from eprc[n] is a scaled and delayed
version of eprc[n]. While PEDC nonlinearity causes p[n]
to also contain a nonlinearly distorted version of eprc[n]
which the DTC-MNC technique does not completely cancel,
the power ratio of the linear to nonlinear terms is typically
several tens of dB. Provided this ratio is larger than the desired
level of cancellation of eprc[n], which is usually only about
30 dB, then the nonlinearity of the PEDC can be neglected.
Hence, (2) implies that r.[n] can be approximated as

L
reln] =" bysi[n], 3)
k=1

where by is proportional to By, sg[n] = Si[n — @], and Q is
a positive integer delay.

A. DTC Mismatch-Noise Cancellation Implementation

The details of the DTC-MNC logic block in Fig. 5 are
shown in Fig. 6. The structure consists of L feedback loops,
each of which contains the residue estimator block shown in
Fig. 6b. The kth residue estimator accumulates Kr{n]si[n] and
multiplies the result by si[n], where K is a constant called the
DTC-MNC loop gain. For most types of DEM including those
considered in this paper, each si[n] sequence is limited to
values of —1, 0, and 1, so the multiplications are not hardware-
intensive. As proven shortly, the kth feedback loop estimates
and cancels the kth term of (3) in background, i.e., during
normal operation of the PLL.

Although the DTC-MNC technique is applicable to any type
of DEM, the analysis presented in this paper assumes that the
DEM encoder has the general form of that presented in [31]
and [32] and causes the DTC’s mismatch noise to have either
a white or first-order highpass shaped power spectral density
(PSD). In all such cases, sg[n] for each k is a known, zero-
mean pseudo-random sequence called a swifching sequence,
which takes on values of —1, 0, and 1.

It is necessary in the analysis below to keep track of the
values of n for which each switching sequence is non-zero,
so the mth non-negative integer n for which si[n] # 0 is
denoted as Jy, . Therefore, 0 < Jix < Jox < J3x < ..., and
sig[n] = 0if n # Jy i for any value of m.

The two most common options for the switching sequences
in (3) are analyzed in this paper: whife switching sequences
and first-order highpass shaped switching sequences. The
non-zero values of these sequences are given by

=3
seldral=wilr], and se[Jrpl=(—1)"" wy HrTJ] “4)
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respectively, where r = 1, 2, 3, ..., the sequences wy[ p], for all
k and p, are independent zero-mean random variables, each of
which is restricted to values of —1 and 1, and |x | for any real
number x denotes the largest integer less than or equal to x.

The two switching sequence options correspond to the
switching sequences generated by mismatch scrambling and
first-order highpass mismatch shaping DEM encoders, respec-
tively. For the latter case, (4) implies that each successive pair
of non-zero s;[n] values is either 1, —1, or —1, 1, where the
choice between these two possibilities is made randomly with
equal probability and independently from all other variables
in the system.

B. DTC Mismatch-Noise Cancellation Analysis

The DTC-MNC logic is a special case of the multi-loop
least-mean-square (LMS) like noise canceler analyzed in [33]
for the case of white switching sequences, but not for the case
of spectrally-shaped switching sequences. Furthermore, the
DTC-MNC logic for both types of switching sequences differs
in two ways from the noise canceler presented in [33], and
these differences enable the significantly different and much
more precise analysis presented in this paper. One difference
is that the input to the DEM encoder that drives the DTC is
not arbitrary; it is the sum of the quantization noise component
of v[n] and quantization noise from the Q@ quantizer in
Fig. 3, each of which is the result of either dithered digital
quantization or digital AX modulation in typical PLLs. The
analysis presented in this paper relies on the properties of such
DTC input sequences to accurately quantify the convergence
speed of the DTC-MNC technique. The other difference is
that the DTC-MNC logic is simpler than the noise canceler
presented [33], which allows for much tighter error bounds
than were derived in [33].

It follows from Fig. 6 and (3) that

ar[n] = ag[n — 114+ Kug[n — 1] (3)

foreachk =1, 2, ..., L, where

L
ug [n] = s [n] (rsdm: [n]+ > s [n] (b1 — a:[n])) . (6)

=1

The objective of the DTC-MNC logic is to cause r¢[n] = r.[n]
such that r[n] = rigeqi[n]. Fig. 6 implies that

L
reln] =" si[nlax[n], (7)

k=1

with which (3) implies that this objective would be perfectly
achieved if each ai[n] coefficient were equal to by. Therefore,
the convergence error of each accumulator in Fig. 6b is
defined as

Zk[n] = ax[n] — by. (8)
Combining (5), (6), and (8) with n replaced by n + 1 gives
Zk[n + 1] = zx[n] + Ksi [n] ridear[n]

L
—Ksi[n] D si[nlzn]  (9)
=1
for each k = 1, 2, ..., L. Therefore, zx[n] for each
k =1, 2, ..., L is specified for all n = 0 by difference
equations (9) with initial conditions

z;[01 = a;[0] —b; for j=1,2, ...,L. (10)
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The system is considered to be “turned on” at time n = 0,
S0

zj[n]=0 forn <0and j=1,2, ..., L. (11)

The theorems presented below and discussed subsequently,
which are proven in the appendix, apply to switching
sequences given by (4) and system equations (9), (10), and
(11). They quantify the convergence rate and noise perfor-
mance of the DTC-MNC technique provided the switch-
ing sequences, which depend on the DEM encoder’s input
sequence, and r;4..[m] satisfy the theorem hypotheses. Sim-
ulation results that closely support the theorems’ results are
presented in the next subsection.

Theorem 1: For white switching sequences and n > 0,
if neither s;[m] nor rig.qi[m] depend on whether si[n] is zero
or nonzero for any j, k, and n > m, then

Zk[nl], if si[n] =0,
%] (1 = K), if sg[n] #0,

where Zi[n] = E{z[n]}. If, in addition, E{s?[n]} does not
depend on n, and a;[0] =0 for j =1, 2, ..., L, then

Zkn]l = —bi (1 — cK)",

where ¢ = E{sf[m]}.

E{zi[n + 1] si[nl} = (12)

(13)

il

Theorem 2: For white switching sequences and n = 0,

if 0 < K < 2cpin/(cL) neither s;[m] nor rigeqr[m] depend on

whether si[n] is zero or nonzero for any j, k, and n > m,

neither E{sf[n]} nor E{rfdmf [n]} depend on n, and E{sf[n]}
# 0 for all k, then

Kco?
lim sup {a}[n]} C— W,
n—00 N 2esiw—Kck

(14)

where

L
1 o
o2[n] = = > z3nl,

k=1

15)

zz[n] = E{z}[n1}, 02, = E{r},,[n]}, and Cmin and c are
the minimum and average values of ¢; = E{sf[n]} over k =
1, 2, ..., L, respectively.
[
Theorem 3: For first-order highpass shaped switch-
ing sequences and n > 0,if 0 < K < 1/L, E{s}%[n]} does not
depend on n, neither s;[m] nor riz.qi[m] depend on whether
sx[n] is nonzero for any j, k, and n > m, and a;[0] = O for
J= Yu 2pmeydy; then

- 1—-LK\\"
jziln]| < |k (1 —ckK( — )) :

where ¢; = E{s?[m]}.

(16)

O
Theorem 4: For first-order highpass shaped switching
sequences and n > 0, if 0 < a < 1, where

P e 1w KET Pl =k
a=1-— i c
min max 1—2K
GLREE-LOK%E 2
B3 E T
+c( + — )) (17)

K < min{1/L, Y2}, neither s;[m] nor rigeqi[m] depend on
whether s [n] is zero or nonzero for any j, k, and n > m, and
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neither E{s?[n]} nor E{r2,,[n]} depend on n, and E{s?[n]}
# 0 for all k, then

lim sup {o-,f[n]}

n—00

ckK? (2+3KL+3K212+ K313
( + + + )02 (18)

1—a 1K Tideal”

where 62[n], 62, . Ck, Cmin. and ¢ are as defined in the
statement of Theorem 2, and ¢4, is the maximum value of
ck = E{s¥[n]} overk= 1,2, ..., L.

O

Theorems 1 and 3 quantify the convergence rates of the
DTC-MNC technique for white and first-order highpass
switching sequences, respectively, in terms of the statistical
means of zg[n], i.e., Zx[n], for all n > 0. Theorem 1 provides
an exact expression for Z;[n] whereas Theorem 3 provides a
tight upper bound on the magnitude of Zx[n]. The theorems
show that the convergence of the DTC-MNC technique is
unbiased, which, with (8), implies that the mean values of
aj[n] converge exactly to their ideal values, by, for all k. The
theorems also show that each convergence rate is exponential
with a convergence speed that increases with DTC-MNC
loop gain K.

While Theorems 1 and 3 show that the means of zi[n]
converge to their ideal values, they do not by themselves
guarantee that the DTC-MNC logic is unconditionally stable,
as they do not rule out the possibility that the variances of zj[n]
could conceivably diverge. Theorems 2 and 4 address this issue
by bounding the steady state variances of zx[n] for white and
first-order highpass shaped switching sequences, respectively.
They state conditions which ensure that the variances of
Zk[n] are bounded, thereby ensuring unconditional stability.
The bounds they provide are in terms of K, the variance
of rideqi[n], and how frequently the switching sequences are
non-zero over time. The theorems imply that the maximum
variances of zp[n] decrease with K and with the variance of
Tideal|m]. Together with Theorems 1 and 3, they quantify the
convergence speed versus accuracy tradeoff associated with
the choice of DTC-MNC loop gain K.

The theorems also provide insight into the tradeoffs between
white and first-order highpass shaped switching sequences.
Typically, K is small, e.g., less than 27, so Theorems 1 and
3 imply that while the convergence rate is faster for white
switching sequences than for first-order highpass shaped
switching sequences, the difference is relatively small and
decreases with K. However, Theorems 2 and 4 suggest that
the variance of the convergence error is higher for first-order
highpass shaped switching sequences than for white switching
sequences. Nevertheless, first-order highpass shaped switch-
ing sequences suppress mismatch noise at low frequencies,
so error from imperfect convergence introduced by DTC-MNC
with these switching sequences tends to be suppressed at
low frequencies. Consequently, the results suggest that white
switching sequences become increasingly advantageous as the
PLL’s bandwidth is increased whereas the opposite is true as
the PLL’s bandwidth is decreased.

C. DTC Mismatch-Noise Cancellation Simulation Results

This subsection presents simulation results of a digital PLL
enabled by the DTC-MNC technique, and compares them to
the theoretical results presented above. The simulated PLL is
based on that presented in [34] but with the modified PEDC
shown in Fig. 7. The combination of the fixed divide-by-
two and the multi-modulus divider can be viewed as a single
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Fig. 7. Details of the simulated PLL a) high-level view of the PEDC

b) digital ring phase calculator (RPC).

multi-modulus divider that divides by 2(N + a), so the PEDC
has the general form shown in Fig. 1b. The time amplifier
(TA), PFD, cycle counter, phase decoder, and dividers are
exactly as described in [34]. The dual-mode ring oscillator
(DMRO), which has the same topology as that described
in [34], has 31 delay elements and its output frequencies are
approximately 3 GHz and 250 MHz when the u output of
the PFD is high or low, respectively. Quantizers Qs and Q.
are each implemented as 2nd-order A X modulators with LSB
dither [35].

Like the original PLL presented in [34], the modified PLL
has a reference frequency of f,.; = 80 MHz and its output
frequency is tunable from 6 GHz to 7 GHz. All the PLL
simulation results described in this section correspond to
fpLL = 6.4 GHz with af,.y = 104 kHz which is about a
tenth of the PLL’s 1 MHz bandwidth.

The DTC has 9 bits of resolution and has the form shown
in Fig. 4 with M = 20 1-bit DTC stages. It is driven by a
segmented DEM encoder of the type presented in [32] with
the option of either white or first-order highpass mismatch
shaping, and the relative 1-bit DTC stage weights were chosen
based on the tradeoffs presented in [31]. The ith 1-bit DTC
stage has a nominal delay step-size of A; = K; A, where A =
1.4 ps is the DTC’s minimum delay step-size, K1, K2, ..., K12
equal1,1,2,2,4,4, ..., 32,32, respectively, and K13 = K14 =
--- = Kpo = 64. The delay between the DEM encoder and
pln] is 2 reference periods, so the results presented in [32]
imply that r.[n] is given by (3) with L = 19 and s¢[n] =
Si[n — 2] where Si[n] is the DEM encoder’s kth switching
sequence. Hence, the DTC-MNC logic contains 19 residue
estimators. The bus-width of each simulated residue estimator
accumulator is 25 bits. The DTC gain calibration technique is
as presented in [22].

The authors designed a transistor-level version of the DTC
for the Global Foundries 22FDX process, wherein each of the
20 1-bit DTC stages has the form shown in Fig. 2 except
with a single capacitor and transistor in place of the DTC
capacitor bank. Circuit simulations predict that the DTC’s
mid-code phase noise floor relative to the 80 MHz reference
frequency is —161 dBc/Hz and its power consumption is
1.8 mW, which is in line with state-of-the-art designs [6], [7].
Monte-Carlo simulations predict that the DTC’s unit element
delay mismatch has a standard deviation of 3.1%. For the
specific case corresponding to the simulation results presented
below, the resulting DTC integral nonlinearity (INL) ranges
between —1.6 and 1.8 DTC LSBs across the 9-bit DTC input
range. Circuit simulations further predict that the PLL’s worst-
case fractional spur resulting from imperfect isolation among
the 1-bit DTC stages is lower than —70 dBc.
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Fig. 8. PLL phase noise spectra from simulation (solid curves) and theoretical
analysis (dashed curves).

The results presented in [31] ensure that the switching
sequences satisfy (4), which is a requirement of the theorems
presented above. By definition, r;g.qi[m] does not depend on
si[n], and it represents measured PLL phase error so it is
reasonable to expect that E{rﬁimi [#]} does not depend on n
once the PLL is locked. As quantified in [31], whether or
not si[n] is nonzero at time n is a complicated function of
the DEM encoder’s input code value at time n and some
or all the values of sq[n], s2[nl, ..., sg_1[n] at time n. The
DEM encoder’s input sequence consists of quantization noise
and accumulated quantization noise from the Q@ and Q.A X
modulators, respectively, and the LSB dither causes both
quantization noise sequences to be asymptotically white and
uniformly distributed prior to second-order noise shaping [35].
Consequently, it is reasonable to expect that si[n] does not
depend on whether future values of s;[n] are nonzero for
any j and k, and that E{s,%[n]} is nonzero and does not
depend on n. These observations, which are further supported
by simulation results performed by the authors, are consistent
with the hypotheses of the four theorems presented above.

The authors used Cadence Spectre PNOISE circuit simula-
tions to predict the phase noise of each PLL circuit block and
Monte-Carlo simulations to determine component mismatches
within the DTC. The results were back-annotated into a
behavioral, event-driven C-language PLL simulator (along the
lines of those presented in [36] and [37]) which generated all
of the simulation results presented below.

Fig. 8 shows simulated PLL phase noise spectra which
demonstrate the individual and combined effects of DTC
mismatches, DEM, and DTC-MNC relative to the PLL’s
ideal phase noise spectrum. Without DEM or DTC-MNC
(Fig. 8a), the DTC mismatches result in large spurious tones
which degrade the PLL’s RMS total jitter, oy, (integrated
from 10 kHz to 80 MHz) to 550 fs from its ideal value of
90 fs which would have occurred in the absence of DTC
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Fig. 9. Cold start trajectories of 7 [n] for white switching sequences predicted
by Theorem 1(dashed curves) with simulated trajectories (solid curves) of a)
Zk[n] and b) z¢[n].

mismatches. Enabling DEM without DTC-MNC causes the
DTC mismatches to introduce noise rather than spurious tones,
but with either white (Fig. 8b) or first-order highpass shaped
(Fig. 8c) switching sequences, the noise significantly degrades
the PLL’s jitter. In both cases, enabling DTC-MNC cancels
the noise as expected such that the simulated jitter differs
insignificantly from its ideal value of 90 fs.

The results shown in Fig. 8 with DTC-MNC enabled
correspond to a DTC-MNC loop gain of K = 278, The
theoretical results presented in Section III-B as well as the
simulation results presented in Figures 9 and 10 imply that
the corresponding DTC-MNC cold-start settling time — the
time from when DTC-MNC technique is first enabled with
uninitialized registers to the time at which the PLL’s phase
noise profile becomes visually indistinguishable from that
which would have occurred in the absence of DTC mismatches
— is less than 2000 reference periods, i.e., less than 25 us.
As mentioned in the introduction, this is at least an order
of magnitude faster than reported for the published DTC
predistortion techniques [11], [12].

Fig. 9a shows simulated cold-start trajectories (solid curves)
of the 19 Zi[n] sequences for DTC-MNC with K = 2~'% and
white switching sequences along with the corresponding the-
oretical trajectories (dashed curves) predicted by Theorem 1.

The simulated z;[n] trajectories were obtained by averaging
the zx[n] trajectories from ten separate simulation runs starting
from the same initial state. As indicated in the figure, the
simulated and calculated trajectories are extremely close, and
the authors have verified that the simulated and corresponding
theoretical trajectories become visually indistinguishable as
the number of averages is increased. In principle, the aver-
aging option is necessary because Zi[n] in Theorem 1 is the
statistical mean of zi[n]. Nevertheless, as shown in Fig. 9b,
even without averaging, i.e., for only one simulation run,
the simulated trajectories of zi[n] are very close to the
trajectories of zi[n] predicted by Theorem 1. Other values
of K yield results similar to those shown in Fig. 9 aside from
convergence-rate and noise variances differences.

Fig. 10 shows the simulated cold-start trajectories of 522 [n]
for DTC-MNC with white switching sequences and various
loop gains relative to the steady-state bounds predicted by
Theorem 2. As expected, the simulated trajectories remain

4999

Fig. 10. Simulated cold start trajectories (solid curves) of 022 [n] for white
switching sequences with the bounds predicted by Theorem 2 (dashed curves).

45210°

107 _ Shaped 5[n] Sequences

Fig. 11. Simulated cold start trajectories (solid curves) of the magnitudes
of Zj[n] for first-order highpass shaped switching sequences with the bounds
predicted by Theorem 3 (dashed curves).

below the bounds predicted by Theorem 2 after the initial
settling transient. As can be seen in the figure, the bounds
become tighter as K is decreased.

Fig. 11 shows results that correspond to those shown in
Figures 9a, but for the case of first-order highpass shaped
switching sequences. Given that Theorem 3 bounds the magni-
tude of Zi[n], Fig. 11 shows trajectories of the magnitudes of
Zi[n], but otherwise the results including the convergence rates
are very similar those shown in Fig. 9. Furthermore, as can
be seen from Fig. 11, the bound provided by Theorem 3 is
extremely tight.

Fig. 12 shows results that correspond to those shown
in Fig 10, but for the case of first-order highpass shaped
sequences. As with the Fig. 10 results, Fig. 12 shows results
for three values of DTC-MNC loop gain, K. The hypothesis
of Theorem 4 for the parameters of this particular desiFn
example restricts K to be less than or equal to about 21,
so even though the simulation results suggest that O'ZZ [n] has a
steady-state bound and Theorem 3 ensures that Z;[n] converges
to zero for all three cases, Theorem 4 only provides a bound
for one of the three K values.

IV. CONCLUSION

An entirely digital background calibration technique has
been presented that adaptively measures and cancels error
resulting from DTC component mismatches that would
otherwise degrade the phase noise of digital PLLs with DTC-
based quantization noise cancellation. Aside from virtually
eliminating DTC component mismatches as a source of phase
noise in general, the technique indirectly addresses the well-
known DTC nonlinearity problem because it facilitates the use
of inherently-linear DTCs comprised of cascades of 1-bit DTC
stages. Such DTCs tend to introduce excessive error from
component mismatches, which has heretofore hindered their
application to low-jitter PLLs. Published digital predistortion
techniques provide an alternate means of mitigating DTC
nonlinearity, but their convergence rates are at least an order
of magnitude slower than that of the presented technique.
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Fig. 12. Simulated cold start trajectories (solid curves) of 522[:1] for first-order
highpass shaped switching sequences with the bound predicted by Theorem 4
(dashed curve).

A rigorous mathematical analysis has been presented that
precisely quantifies the calibration technique’s settling per-
formance and provides conditions under which it is uncondi-
tionally stable. Closed-loop PLL simulations are notoriously
time-consuming, so it is generally not practical to perform
simulations over all possible PLL operating conditions. Hence,
the results of the analysis are essential to ensure that the
calibration technique is robust and works properly over all
possible PLL operating conditions.

V. APPENDIX: PROOF OF THEOREMS 1-4

Proof of Theorem 1: Replacing n with n— 1 in (9) gives
Zk[n]l = zk[n — 11+ Ks[n — 1rideat[n — 1]

L
—Ksin =11 siln — Nziln — 11 (19)
I=1
for all n. Recursively substituting (19) into itself shows that
Zk[n] is a function, f; ,, of only the variables r;j.,/[m] and
silm] for j=1,2, ..., Land m <n—1, ie.,

4l = Raltitalnl; MY F=12m i Ea—1)
(20)
Given that sg[m] for all m is restricted to values of —1, 0,

and 1, it follows that skz[m] = 1 when si[m] # 0. Hence, (9)
can be written as

Zk[n + 11 = zx[n] (1 — K) + K s [n] rideat [n]

L
—Ksi[n] D s [nlzin] (21)
2k
whenever si[n] # 0.
The theorem hypothesis states that neither s;[m] nor

rideallm] depend on whether si[n] is zero or nonzero for any
J,» k,and n > m, so (20) implies that

E{zk[n]| sk[n] # O} = E {zx[n]} = Zx[n], (22)

and
E {zk[n]l s[n] = 0} = E {zx[n]} = Zi[n].

For white switching sequences, when si[n] # 0 it is
independent of all other random variables in the system, and
(20) implies that zx[n] is not a function of s¢[n], so (21) and
(22) imply

E {zk[n + 11| sk[n] # 0} = Zx[n] (1 — K) .

It follows from (9) that zx[n+ 1] = zz[n] whenever si[n] = 0.
This with (23) implies

E{zk[n + 11l sg[n] = 0} = Zx[n].

(23)

(24)

(25
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Combining (24) and (25) yields (12).

By definition, sf [n] is restricted to values of 1 and 0, so the
condition that ¢, = E{s,%[n]} is independent of n for n > 0
implies that

Pr{sg[n] #0} =ct and Prisg[n] =0} =1—¢c, (26)
where Pr{A} denotes the probability of event A. The proper-
ties of conditional expectations imply
E{zk[n + 11} = E{zk[n + 11| sg[n] = O} Pr {sg[n] = O}

+E {zk[n + 1]| sk[n] # O} Pr {sx[n] # 0},
(27)
so it follows from (12) and (26), that
Zkln + 11 = Zk[n] (1 — ek K) . (28)

If (13) holds for any particular value of n, it follows from
substituting (13) into (28) that it must hold for n4-1. It follows
from (8) that if ai[0] = 0, then Zx[0] = —b¢ so (13) holds
for n = 0. Therefore, (13) must hold for all n =0, 1, 2, ...by
mathematical induction.

O

Proof of Theorem 2: The same reasoning that led to (22)
and (23) implies

E{2im|seln1 # 0} = B {2fim| selm1 = 0} = Z1m1 29)

for all k and n. Given that that zig[n + 1] = zx[n] whenever
si[n] = 0, it follows from (29) that

E { 23in + 11| seln1 = 0} = ZZn.
This with (26) implies

Zin+11= 220 (1 - ) + E [ 2n + 11| sfn] £ 0] cx.
31)

(30)

Squaring both sides of (9) yields

Z2n+1]
= z2[n] + K25} nlr?, 0] + 2K sp[n)rigea ) ziln]

L Gk
+K%s¢ 1 D" sjlnlzjnlsi[nlzin]
I=1 j=1
L
—2 (zk[n] + K si[nlridearln]) K sin] Z*"’f [n]zi[n].
=1
(32)

As indicated by (20), z;[n] does not depend on s;[n] for any i,
J, and n, and by the definition of white switching sequences,
for each integer, i, s;[n] either equals zero or it has zero mean
and is independent of all other random variables in the system.
Therefore, taking the expectation of (32) conditioned on si[n]
# 0 and applying (29) yields

E {231 + 11| seln1 # 0]
= 2[n] (1 — 2K) + K252

Tideal

L
+K2 > ZnlE | sPin) (33)
I=1

seln] # 0}.
Given that 0 < s7[n] < 1, this implies

Tideal

E{ 230+ 1| suln] # 0} < Znl (1 - 2K) + K257
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L —
+K2 D 7finl. (34)
I=1

It follows from (15), (26), (31), and (34) that
Z2in+11 <72 (1 — 2cK) + kK262, + ckK2Lo2[n].

(35)
This with (15) implies
o2ln + 11 < o(n] (1 — 2K min + cLK?) + K?co?, .
(36)
Hence, a._,u2 [n] < y[n], where y[n] satisfies the

constant-coefficient linear difference equation
yin+11=yin] (1 = 2K cpin + cLK?) + xlnl,  (37)
with

_ 2 2
X[n] = ck g .

uln], (38)
and u[n] is the unit step function. This implies that y[n] can
be viewed as the output of a linear time-invariant (LTI) system
with input sequence x[n], where x[n] is a step function.

Solving the z-transform of (37) for the transfer function
from x[n] to y[n] yields

Z—l

g (2K ek 2

where B(z) = Y(z)/X(z), and Y(z) and X(z) are the
z-transforms of y[n] and x[n], respectively. The condition 0
< K < 2Cmin/(cL) implies that |1 — 2Kcmin+ cLK?| < 1,
so the LTT system is stable. As x[n] is a step function, the
properties of stable LTI systems imply that the limit of y[n] as
n — oo is the zero-frequency gain of B(z) times the amplitude
of x[n], i.e.,

B(z) =

(39)

Kco?

Tideal

2Cmin — KcL~

Given that a._,u2 [n] < y[n] for all n, it follows that the upper
bound of O'ZZ [n] in the limit as n — o0, i.e., the limit supremum
of af[n], is bounded by the right side of (40).

lim {y[n]} = cK’o;,  B@’)=

Tideal

(40)

E

Lemma 1: For first-order highpass shaped switching

sequences, if [ # k, m is an even integer, and 0 < K <
1/L, then

| E {sk[Jm i 1510Im k1210 Im k1| < K |E{zlIm—141}] . (41)

Proof: Equation (41) holds by inspection if s;[Jy, ;] = 0.
Therefore, it remains to show that (41) holds when J,, ; =
Jp,1 for some integer p. By definition, s;[J, ] has zero mean
and, if p is odd, is independent of all other contemporaneous
and prior random variables in the system. It follows that (41)
holds if p is odd. It remains to show that (41) holds when
Jmk = Jp, and p is even, so for the remainder of the proof
suppose that J,, = Jp; and p is even.

As zy[n] = zi[n — 1] whenever s;[n — 1] = 0, it follows
from (19) and the definition of J,; that

uldp )l = A = K)uldp_1,1]1 + KsilJp—1,11rideat [T p—1,1]
£

—KsilJp-111D5jlJp-1,112j[Jp_11]. (42)
=1
2

By definition, s;[n] has zero mean for all n and k, the nonzero
values of sg[n] are independent of rig.qi[n'] for all k and n’,
and s;[Jp 1181[Jp—1,11 = —1. Hence, (42) implies

E{silIm i 1silIp 1121l T p 11}
= (1 — K)E{si[Jm k151l p,1)21[ T p—1,11}

+KE{st[Im i skl Ip—1,112k [T p—1,11}
1
+K D E{silImalsjlIp-1112j[Jp—1,11}.
J'Jaél,lk

Equation (20) implies that z;[J,_1,] does not depend on
8i[Jp,1] or 5i[Jp_1,] for any i, and, by definition, s;[J, ;] has
zero mean and is independent of all other contemporaneous
and prior random variables in the system except s;[Jp_11].
Hence, the first term on the right side of (43) is zero. Nearly
identical reasoning implies that if J,,_1 x > Jp_1 then all the
remaining terms on the right side of (43) are also zero, and
if Ju_1,& = Jp—1, then all the remaining terms except the
second term on the right side of (43) are zero. Furthermore,
giventhat J,, ¢ = Jp g and sg[Jp 1] = —se[Jp—1,4], if 1k =
Jp—1, then the second term on the right side of (43) is
—KE{zkg[Jm—-1,k]} if Ju_1k = Jp_1,. Hence, the lemma
holds when J,, 1 = Jp_1,1.

For the remainder of the proof. suppose that J,_j; <
Jp—1,1. As explained above, the first term on the right side
of (43) is zero. The second term on the right side of (43) is
also zero because Jy,_1x # Jp—1,; implies that si[J,_1] =
0. By the same reasoning followed in the first paragraph of the
proof, the jth term in the summation on the right side of (43),
i.e., is zero unless J,_j; = J, ; for some even integer q.
If J,_1,1 = Jg,j for some even integer ¢, then

E{si[Im i1 [Tp—1,112j[Jp—1,11}
= E{st[mlsilJg,j12[ 4,1}

The right side of (44) has the same form as the left side
of (41) but with different indices. Therefore, the results of the
proof so far imply that the right side of (44) is either zero,
K|E{zt[Jm—1,1}], or

2

K D" E{silmilsulJg—1,j12alJg—1,1}.
Wik

As0 < K < 1/L, it follows that K (L —2) < 1. Therefore, (41)
holds if the right side of (44) is either 0 or —KE{zg[Jm—1]}
for each j not equal to [ or k. The above reasoning can be
applied recursively in each case where the right side of (44)
is neither 0 nor —KE{zi[J;z—1,4]} for any j not equal to / or
k. At each recursion step, each potentially non-zero term in
the sum corresponding to (45) has the form of the right side
of (44), but with a reduced value of J; ;. After a finite number
of conversion steps, J,; ; for each term in the sum becomes
small enough that J,,_1 = J,;_1 ;. in which case the term is
either 0 or —KE{zx[Jm—1,4]}-

(43)

(44)

(45)

[l

Proof of Theorem 3: By definition, s;[n] has zero mean for

all n and k, and the nonzero values of si[n] are independent
of rideqt[n’] for all k and n’. Consequently, (21) implies

E {zk[n + 1]] s[n] # 0}
= (1 — K) E {zx[n]| s¢[n] # 0}
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i
—-K Z E {sr[nlsi[n]zi[n]| sx[n] # 0}.

=1
Ik

(46)

By definition, si[n] # O for n = 0 if and only n = J,, ; for
some integer m. Hence, (46) can be written as

E{zi[Imx + 11} = (1 — K) E{zi[ I k1}
L

—K D E{sk[Jm k1510 m )21 [m k1) (47)

i
The right-most equation in (4) implies that for each odd
value of m, si[Jpn k] is independent of all other contempo-

raneous and prior random variables in the system, so (47)
implies
E {2kl + 11} = (1 = K) E {2k [Jm k1} (48)
for odd values of m. For even values of m, (48) does not hold
as Zj[Jm k] depends on sg[ Sy 1 k] and sg[Jm k] = —Sk[Jm—1,k]
if m is even.
Applying Lemma 1 and the triangle inequality to (47) gives
|E {2kl Im i + 11}] < |E {zklIm i1} (1 — K)
+ (L — 1) K?|E {2kl Im-1,1}]| . (49)
Given that m — 1 is odd when m is even, it follows from (48)

that when m is even |[E{z;[Jn_1£]}| = [E{Z;j[Jm £]1}1/(1—-K).
Therefore, (49) can be written as

1-LK
|E {2kl Im i + 11}| < |E {2xlImi1}| (I K ( — ))
(50)

This inequality holds for even values of m, but given that 0
< K < 1/L and, by definition, L > 1, it is a less restrictive
inequality than (48), so it must also hold for odd values of m.

As mentioned above, sg[n] # 0 for n = 0 if and only if
n = Jy  for some value of m > 1. Hence, (50) implies

|E {zi[n + 1]] si[n] # 0}
1—LK
< |E {zx[n]| sg[n] # 0} (1 -K ( - )) (51)
This with (22), (23), (25) and (26) implies

|E {zi[n + 11| si[n] # O} ck + |E {zx[n + 1]] sk[n] = O}
1— LK
(1 —cx) < |zk[n] (1 — K ( = )) (52)

Given that ¢; and 1—c; are both non-negative, it follows from
the definition of Zg[n], (27), the triangle inequality, and (52)

that
1-LK
1-K '

If (16) holds for any particular value of n, it follows from
substituting (16) into (53) that it must hold for n+-1. It follows
from (8) that if ai[0] = 0, then Zx[0] = —b¢ so (16) holds
for n = 0. Therefore, (16) must hold for all n =0, 1, 2, ...by
mathematical induction.

1Zk[n + 11| < |Zk[n]] (1 — K ( (53)

O

Lemma 2: For first-order highpass shaped switching

sequences, if K < 1/L and E{r{%mi [n]} does not depend on n,
then for any n’

Ko}
|E{rideaf[ﬂ’]s,'[n]zi[n]}[ = 7 O rideal

=t (54)
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when n = J,,; and m is a non-negative even integer, and
E {rideat[n'1si[n)zi[n]} = 0, (55)

otherwise.

Proof: If s;[n] = 0, then (55) holds by inspection.
Otherwise, n = J,, ; for some non-negative integer m. If m is
odd, then by the definition of the first order highpass shaped
switching sequences, s;[J;;] is independent of all other
contemporaneous and prior random variables in the system
and it has zero mean, so (55) holds in case too. Therefore,
(55) holds unless n = J,;; and m is a non-negative even
integer, so to show that (54) holds, it is sufficient to evaluate
E{rideatln'15i[Jim,i12i[Jm i1} for the case where m is even.

For the remainder of the proof, suppose that m is even.
Equation (42) holds with p replaced by m and [ replaced by i,
and the definition of the first-order highpass shaped switching
sequences implies that s;[Jy ;15i[Jm—1,;/] = —1 when m is
even, so

§i[JIm,ilzi[Im,i]

= 8i[Jm,ilzi[Jm—1,]]1 (1 — K) — Krideal[Im—1,i]
L

+K ZSJ[Jm—l,flzx[Jm_l,i]-

=1
I£i

(56)

By definition, s;[J,,,;] has zero mean and is independent
of all other contemporaneous and prior random variables in
the system except s;[J—1,;], and (20) implies that z;[J,_1,i]
does not depend on either s;[J;, ;] or 5;[J,—1,i], so it follows
from (56) that

B ot I N ] T 1 i1}
= KBt [ Witaad i =131}

L
+K D" E {ridealn11lIm 1,121l Im-1,i1}.  (57)

=1
I#i

The Cauchy-Schwarz inequality for random variables implies
that

|E {FideatlP)rideatlgl}] < 02, (58)

for any integers p and g [38]. This with (57) and the triangle
inequality implies that

|E {rideatln'18ilJm,i12i [ Jm,i1}|

L
<Ko?, ., + KD |E{rideal11lIm 1,10l Im—1,1}|- (59)
iz
Hence,
|E {rideatln'15i1Jm,i1zilIm,i1}| < Ko2, , + K (L — 1) Ay.
(60)
where

A= }T}‘g{[x‘f {rideatIn VsilIm-1,i121lIm-1,i1}|} .  (61)

As Aj has the same form as the expectation in the lemma
statement, the results of the proof so far apply to it. Substitut-
ing (59) with a change of variables into (61) and substituting
the result into (60) yields

|E {rideatln'15i[Im,i)cilIm,il}| < Ko, , + K*(L—1) 3}, ,
+K*(L—1)* A2, (62)
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where A, like Aq, has the same form as the expectation
in the lemma statement. Recursively repeating this process
N — 2 more times yields

N-1
|E {rldeat'[n 1s; [Jm i1zi[Jm 1]]| L K Z (K (L - 1))
+KV (L — DV An, (63)

where Ay has the same form as the expectation in the
lemma statement. For a sufficiently large value of N, Ay =
|E{rideat[n’1s,[n"124,[n"1}] where n” < 0 in which case it
follows from (11) that Ay = 0. Therefore,

J"zideal K Z (K (L - 1))r’

r=0

|E {rideatln’1si[Jm,i1zilIm,i1}| <

(64)

which implies (54) (in which L has been used in place of
L — 1 to simplify the expression at the expense of a slightly
looser bound).
O
Lemma 3: For first-order highpass shaped switching
sequences, if p is even and K < %2 then

E{dUpi) < 7= E{dpa). 69
Proof: Equation (42) can be rewritten as
Zildpil = zilJp_1,i]1 + A, (66)

where
L
A = Ksi[Tp_1,i] | rideatlTp—1,i1 — D 5i[Tp_1,i12;[Tp—1,1 }
j=1
(67)
Therefore,

2p,il = 22 1] + A% + 2Azi[Jp_1,i], (68)

S0
E{210p.01) 2 E{2Up-1,1} + 2B {AzilIp-1,1} . (69)

Given that p is even, p—1 is odd, so s;[J,_1 ;], which has
zero mean, is independent of all other contemporaneous and
prior random variables in the system. Consequently,

2E {Azi[Jp—1]} = —2KE {z?[Jp_,,,-]} .0
This with (69) and K < %2 implies (65).
O

Lemma 4: For first-order highpass shaped switching
sequences and any integers j £l andm > 1,if K < min{1/L,
Y} and E{rJ ‘deq M1} does not depend on n, then

|E {sj[Im k12 [ k1510 Im k)21 [ Im k 1}
1+ KL\ ,
K (] = KL) ridea!'

% (E {Ztma} + E{tma})

+2K (1+KL) ZE [Z,-[-fm k]}

1-2K @

5003

Proof: By definition, s;[J,;] for each nonnegative odd
value of r has zero mean and is independent of all other
contemporaneous and prior random variables in the system,
and (20) implies that zy[J,;] does not depend on s;[J, ;] for
any i and [’. Therefore,

E {8j[Jm k12 [ Jm k1510 k121 [ Tm,k]} = O

unless Jy p = Jp j and Jp ) = Jy 1, where p and g are even
integers. For the remainder of the proof, suppose Jy, = Jp,;
and Jy, = Jg 1, where p and g are even integers, so

E {5;[dm k12 [ Tm k151 [ m k121 [ Tom 11}

(72)

s B el A alal T i), £73)
and (56) with a change of indices implies
8ilJp,j12jlJp.i]
= 8jlJp,j12jlJp-1,;1(1 — K)
L
—K | rideatldp—1,j1 = D seldp_1,jler[p_1,j1| (74)
r'=1
r'#j
and
si[Jg,1zilJg 1]
= si[Jg Nzl Jg—1,11 (1 — K)
%
—K | rideatldg1,0 = D seldg1,02- g 1,1 | - (75)
=

The remainder of the proof bounds the expectation of the
product of (74) and (75) by bounding the magnitudes of the
expectations of the various product terms individually and
applying the triangle inequality.

The expectations of several of the product terms contain
Tideal- Given that J, ; = J,; and J, | > J4_1 1, the definition
of the switching sequences and (20) imply that s;[J, ;] is
independent of z;[Jp_1,j1rideal[Jg—1,1], SO

E{K (1 — K)sj[Jp,jlalJp-1,jIrideatl Jg—1,1} = 0. (76)
The same reasoning further implies that
E{K (1 — K)silJg )2l dg-1,1)ideatlIp—1,j1} = 0. (77)

Lemma 2, inequality (58), and the triangle inequality imply

that
1+ KL
2 2 2
Jrideal <K (1 . KL) O-Fideaf’

(78)

IR|<K? (1+M)

1-KL

where R is the expectation of the remaining product terms that
contain r;deal.

Equation (20) implies that z;[n] is not a function of
sg[n'] for any i, k, and n’ > n—1. Given that j #
I, if Jp_1,;j > Jg_1; then s;[Jp, ;] is independent of
zjlJp—1,j1810Jg 11211 J4—1,]. Otherwise, s;[J, 1] is independent
of zj[Jg—1,115;[Jp,j12;[Jp—1,;]. Hence,

Ea 10 1% i 0 1M Rl 9y -]} =0 (79)
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Given that the switching sequences are bounded in magni-
tude by 1, each of the terms of the product of (74) and (75)
that have yet to be considered satisfy

K (1K) |E {s; 1,12 p—1,18:[Jg—1,112: [Tg—1,11}]

< K (1= K) E {|2;[Jp-1,j12r[Jg—1,1]},

K (1 - K) |E {silJg1021lJg—1,1180 [T p—1,j12 [T p—1,;1}|

< K (1 —K) E{|uldg-1,)2r[Tp-1,j1|}, (81)

(80)

or
K?|E {sp[Jp-1,j12rp-1,j18: [Jg—1,002: [ Jg-1,11}]
< K?E (|29 [Jp-1,jR2rg-141]} . (82)
The Cauchy-Schwarz inequality implies that
E {|zuldp-1,j120[g—1,11}
< VEZ2Up 1 AW E (2B Uar]), (83)
for any u and w. This with Lemma 3 implies

E {|zulJp1, lwldg—1,1|}

1
= 1—2K \/E {ZE[JPJ]}\/E {ZEJ[JQ,I]}- (84)

For any non-negative real numbers a and b,
2
ﬁx/f; = (max {\/E, \/E}) =max {a,b} <a+b, (85)
so (84) implies
E {|Zu[Jp—l,j]Zw[Jq—l,l] }
2 , 2
< —= (E{2) + E{221a)) . @6

Given that J,r = Jp; and Jup = Jg, it follows
from (74)-(82), (86), and the triangle inequality that

| E {5 [m k12 [T k151 LI k121 LJom 11}

1+ KL
2 2
K (1 _ KL)JFideaI

L

+% 3 (E {z?[Jm,k]} +E {zE[Jm,;c]})

A

+% i (£ {z%[Jm,k]} +E {ZE![Jm,k]})
=

L L

(87)

which implies (71) (wherein L has been used in place of L — 1
for simplicity at the expense of a slightly looser bound). [

Proof of Theorem 4: Equations (26) hold by the same
argument made in the proof of Theorem 1, and (29), (30),
(31), and (32) hold by the same arguments made in the proof
of Theorem 2.

By definition, n = J,, ; for some integer m if and only if
sk[n] # 0, so

Pr{s¢[n] # 0} = dp i +Pr{n = Jpx for some odd m},
(88)
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where
dnj =Pr{n = J, for some even m}. (89)
This and (26) imply that
0 <dpk <c, (90)
and
Pr{n = Jn for some odd m} = cr — dp. 91)

Therefore, it follows from (31) that

2Zin+1]

=F {z%[n + 1]’ n = Jy for some even m } dp
+E {zf[n + 1]’ n = Jyy for some odd m} (ck — dnk)

+22ln] (1 — c) . 92)

Equation (32) implies that z:% [n+1] = 2:% [n] whenever si[n]
= 0, so it follows from (32) and the definition of J,, ; that
24l T + 11
_ .2 2. 1D
= Zi [ k] + Krigeai[Im k]

2K rideat [ Im ;18K [ Im k124 [ Im k]
L L

K2 8ilIm k12 [ k151 I k121 [T ]
=1 j=1

=2 (2k[Jm k15[ Im k] + KTideatl I m k1)

L
KD sildm izl il,
I=1

93)

which can be rearranged as
2l Ik + 11
= 2¢[Jm il (1 —2K)
+ K21l 1 +2K (1 — K) kL k1 ideat [ Im 12k [T 4]

L
+K* D 27U il
=1

L L
K2 D" 51 Im k12 [ k1510 121 0T k]
=1 j=1
i#
—2K (2k[Im k18K [Im k] + KTideat[Im k1)

L
> silIm k121 LI 1.

=1
Ik

%4

The next steps in the proof apply the triangle inequality to
bound E{z%[.lm,k +1]} by summing bounds on the magnitudes
of the expectations of the individual terms in (94).

Lemmas 2 and 4 (using L in place of L — 1 for simplicity
at the expense of slightly looser bounds) can be applied to
bound magnitudes of the expectations of several of these
terms. Lemma 2 implies that

2K (1 — K) | E {st[Jm k1rideat [ Im k12 [Im i1}
2K2(1-K) ,

< =KL Tideal *

0, if m is odd,

if m is even, (95)
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and
L 3 2
2K-Lo=
2K? 3| E {ridealm 1510 m k1210 Im k1}| < ——5
o

(96)
Lemma 4 with (15) and (29) imply

L; L
K2 |E {si19m k12 [ k1510 I k1210 I 11}

=1 j=1

J#
2+ KL i EE
e g 3 452 2
<2K°L (m) g, [Jmil +K'L (m) Orideal”
97
and
L
2K D" |E {2l I k15K L Im 151 Ldm )21 [ Im 41} |
7k
2K2(1-K) L= 2,2 (3+2KLY\ ,
= L 7 21 2K°L* | —— J,
T GlImi] + 2K ) % UmA]
1+ KL
3 2
+2K°L (m) rideat* 28)

It follows from (15), (29), (30), (92), (94), (95), (96), (97),
(98), the triangle inequality, and again using L in place of
L —1 that
2K*(1 - K)L*=
42%[”]

1-2K
6+8KL+2K%*L%\ ,
o;[n]
1-2K %
4+3KL+K?L?\ ,
1— KL Tideal

2n + 11 < 2211 (1 — 2 K) + &

+er K2L (1 T

+c K2 (1 +KL

2K2(1-K) ,

I—KL Tideal *
Summing both sides of (99) over k, dividing the result by L,
and applying (15) yields

+dn & (99)

o2ln + 11 < ac?[n] + x[n] (100)
where a is given by (17),
4+3KL+ K212
=ulnK?|c(1+KL
x[n] = uln] [C( + T—KL )
210-K)] ,

+dn m] Fideal ? (101)

1 L
dy = Egdn,ks (102)

and u[n] is the unit step function (because the system is
“turned on” at time n = 0). Hence, af[n] < y[n], where y[n]
satisfies the constant coefficient, linear difference equation

yvin 4 1] = ay[n] + x[n]. (103)

The definitions of the first-order switching sequences, Jy, .
and c¢; imply

1—cp Ck
Ck 1—cp

Prti1,k = MigPnk, Where My = [ ], (104)

5005

and

_ [ Pr{largest J, x < n has odd m}
Pk = Pr {largest J,, x < n has even m]

]. (105)

The matrix M; is a Markov matrix and = = [ %] is a
probability vector that satisfies My = =, so it follows that
all elements of Mﬁ, and, hence, of p,; converge to 2 as
n — oo [38]. Given that d, ; = cPr{largest J,, x < n has odd
m}, it follows from (102) that

(106)

Yiiiih 2l i
nl{go rz—2

Solving the z-transform of (103) for the transfer function
from x[n] to y[n], yields

Z_l

1—az7V’
where B(z) = Y(z)/X(z), and Y(z) and X(z) are the z-

transforms of y[n] and x[n], respectively. The properties of
stable LTI systems imply that

st =5 () i

B(z) = (107)

(108)

The limit supremum of azz[n] as n — oo is less than or equal
to (108) because s2[n] < y[n], so (18) follows from (17),
(101), (106), (107) and (108).

O
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