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Hydrodynamics accurately describe relativistic heavy-ion collision experiments
wellbefore local thermal equilibrium is established’. This unexpectedly rapid onset
of hydrodynamics—which takes place on the fastest available timescale—is called
hydrodynamization®™*. It occurs when an interacting quantum system is quenched

with an energy density that is much greater thanits ground-state energy density>®.
During hydrodynamization, energy gets redistributed across very different energy
scales. Hydrodynamization precedes local equilibration among momentum modes®,
which s local prethermalization to ageneralized Gibbs ensemble”®in nearly integrable
systems or local thermalization in non-integrable systems®. Although many theories
of quantum dynamics postulate local prethermalization'®*, the associated timescale
has not been studied experimentally. Here we use an array of one-dimensional Bose
gasesto directly observe both hydrodynamization and local prethermalization.
After we apply a Bragg scattering pulse, hydrodynamizationis evident in the fast
redistribution of energy among distant momentum modes, which occurs on
timescales associated with the Bragg peak energies. Local prethermalization can be
seeninthe slower redistribution of occupation among nearby momentum modes.
We find that the timescale for local prethermalization in our system is inversely
proportional to the momentainvolved. During hydrodynamization and local
prethermalization, existing theories cannot quantitatively model our experiment.
Exact theoretical calculations in the Tonks-Girardeau limit> show qualitatively

similar features.

Hydrodynamization has been theoretically explored in high
energy*>"*"*, cosmological® and photo-excited correlated metal™
contexts. These calculations typically involve simplified Hamiltonians
that do not directly correspond to measurable physical systems. The
process of hydrodynamization has not been directly observed in any
system. We observe hydrodynamizationusing trapped one-dimensional
(1D) Bose gases with point contact interactions (Lieb-Lininger (LL)
gases”), quenching them with a Bragg pulse. The high energy density
imparted by the pulse compared to the ground-state energy density
of our ultracold gases allows us to realize this universal phenomenon.
The near-integrability of trapped LL gases provides aframework from
whichwe draw ageneral picture that applies to non-integrable systems.

As the strong coupling Tonks-Girardeau (TG) limit of our 1D Bose
gasesis exactly solvable, we first explain the physics of hydrodynami-
zation and local prethermalization for ahomogeneous TG gas. As we
will see, our theoretical insights transfer to trapped systems with finite
couplingsuch asthe onesinthe experiments. The TG Hamiltonian can
be mapped onto non-interacting fermions by a change of variables
that acts non-locally on the boson field operators. The prequench
ground state is a Fermi sea, with a many-body wavefunction given by
Y= n\0|<0p é§|0), where ég creates a fermion with momentum 6 and
6, is the Fermi momentum. Anticipating generalization to the

finite-coupling regime, we will refer to the fermions as quasiparticles
and their momenta as rapidities.

ABraggpulseinthe Raman-Nath regime tran;sforms theinitial wave-
functionto|¥(t)) = ”\6\<6r (Zn-ln (b)e™it©+n2r0) /(meégmzhk”o)' where
k=2m/A, Ais the Bragg pulse wavelength, m is the atomic mass, tis
time, 2mtiis Planck’s constant, /,(b) are Bessel functions of the first kind,
nisaninteger and b depends on the Bragg pulse area™. The rapidity
distribution (which we denote asf(6), see Fig.1a) is conserved after the
pulse’. The many-body wavefunction, on the other hand, evolves rap-
idly owing to the different phase factors associated with different
quasiparticle rapidities. As the momentum distribution function of
the bare particles (which we denote as f(p), see Fig. 1a) is determined
by complicated multibody quasiparticle correlations of |/ (¢)) (Meth-
ods), relative phase evolution in the rapidity basis results in a change
of occupancy of the momentum modes. The fastest rate at which f(p)
can evolve is associated with the highest energy difference between
significantly populated rapidity states and, consequently, resultsina
redistribution of energy among widely different momentum modes.
Thisisthe essence of hydrodynamization. For b <1, the characteristic
hydrodynamization frequency, w,, is proportional to the energy
difference between the n =0 and 1 Bragg orders, w4 = hi(2k)*/2m.
Figure 1b shows the evolution of f(p) on that fast timescale, T,y = 210/ w,,q.
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Fig.1|Evolution ofahomogeneous TG gas after aBragg quench.
a,Momentum and rapidity distributions. The grey curveis f(6), which does
notevolve. The blue curveisf(p) right after the quench. Relative phase
evolutionamongrapidity states shows up as evolution of f(p). The red dashed
curve shows f(p) after hydrodynamization. It differs from the blue curve largely
by the transfer of energy from the side peaks to the modes between the peaks.
Thegreen curve shows f(p) after partial local prethermalization. It mostly only
differs fromthered curveinthe vicinity of the peaks. b, Time evolution of f(p).
Themodesnear +thkare populated very rapidly because they are composed
ofthe widestrange of rapidities, which therefore dephase most rapidly, in
approximately T,,/(2m). Closer to the momentum peaks, hydrodynamizationis
essentially complete by T, 4 (marked by awhite dashed line). The slower change
associated withlocal prethermalization can most easily be seeninthe subtle
later evolution of the central peak. ¢, Time evolution of the spatial density. The
A/2density oscillationin space (z) produced by the Bragg pulse is strongly
reduced during hydrodynamization. The residual oscillations decay
polynomially in time****and are unrelated to local prethermalization. Similar
figureswere presentedinref.18 forlarger bandinref.7foralattice quench.
a.u., arbitrary units.

Because it happens so fast, the long-lived nature of the quasiparti-
cles and the conservation of rapidities associated with integrability
are not necessary for hydrodynamization. Non-integrable interact-
ing many-body systems allow for a similar quasiparticle description
on some short timescale. As long as the quench energy significantly
exceeds the ground-state energy density, one expects that these quasi-
particles will live muchlonger than the hydrodynamization timescale.
So the above description of hydrodynamization applies.

The Bragg pulse quench provides a natural spatial view of hydro-
dynamization. It creates aA/2-scale density oscillation (Fig. 1c), which
tends to flatten on the timescale that the particles of the n = 1 side
momentum peaks traverse A/2, (1/2)/(2hk/m), that is, of the order of
/w,q. Viewed another way, the Bragg pulse creates two overlapped,
oppositely directed, rapidly moving clouds that collide witheach other
and the stationary cloud. Hydrodynamization can occur even before
the centre of masses of these clouds have traversed the average inter-
particle spacing. The collision energy, imparted with the creation of the
Bragg peaks, is partially transferred to the momentum modes between
the moving side peaks on hydrodynamization timescales (Fig.1a,b; for
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Fig.2|Evolving momentumdistributions. Each curveis the momentum
distribution for y;,=2.3at some time after the Bragg scattering quench. Before
0.5ms, the side peaks have not yet noticeably been affected by the trap so they
remainat theirinitialmomenta. Theinsertis asketch showing the spatial
distribution and momenta ofthe atoms after the Bragg quench. Itislikea
collision that starts from complete overlapat¢=0.

avisualization of this experimentin a trap see the inset of Fig. 2). The
situation is qualitatively similar in relativistic heavy-ion collisions, in
which part of the kinetic energy in the centre of mass frame is rapidly
redistributed from the colliding nuclei to the stationary emerging
quark-gluon plasma. Quantitatively, the scale of collision energies in
the two systems, which is inversely proportional to the timescale of
hydrodynamization, differs by 18 orders of magnitude.

We call the evolution after hydrodynamization ‘local prethermaliza-
tion’,during which the system approaches the local generalized Gibbs
ensemble (GGE). Local thermalization has been studied in many cold
atom experiments”, as has global prethermalization®?*?, for which
the local GGE remains satisfied while the entire system relaxes to a
global (prethermal) equilibrium state. A Bragg pulse suddenly changes
the many-body wavefunction and, even after hydrodynamization,
the correlations in the many-body wavefunction have not yet locally
equilibrated to the post-quench condition, the new local GGE. In the
TG limit, the mapping to non-interacting fermions shows that f(p) is
dominated by non-local correlations that involve fluctuations of the
number of quasiparticles over a length scale £, = 2At/p (Methods).
Those fluctuations grow after the quench, as the fast quasiparticles
in the n=+1Bragg peaks (with velocities v,; = +2hk/m) move relative
to the quasiparticles in the central peak. We expect the timescale for
equilibration of f(p) to relate to the time it takes the fast quasiparti-
clestocross?,, 7,~¢,/|v,| =Ttm/(pk). Hence, after a Bragg pulse, local
prethermalization of the bosonic momentum distribution occurs on
timescales that are inversely proportional to p and k. Beyond the TG
limit, this is expected to hold true in general for nearly integrable 1D
systems with long-lived quasiparticles, asin our experimental setup®%,
Using the local density approximation, it also applies to trapped sys-
tems at least as long as the density profile does not change significantly
during local prethermalization.

Our experiment starts with a bundle of nearly zero temperature 1D
gases consisting of ¥Rb atoms confined in a blue-detuned
two-dimensional (2D) lattice, with axial trapping provided by crossed
red-detuned dipole trapping beams (Methods). We pulse on an axial
lattice beam with wavevector k, = 21t/(775 nm) for 6 ps and then meas-
ure the momentum distribution (Methods) as a function of the time
t,, after the pulse. Bragg pulses have previously been used with 1D gases
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Fig.3|Hydrodynamization. Each curveisthe time evolution of the integrated
energyinadifferent 0.27k, wide momentumgroup. The centralmomentum of
each colour-coded groupisshowninthelegend.a-c, Experimental curves for
V=34 (a), 2.3 (b) and 0.94 (c). See Methods for an explanation of the error bars.
d-f, Theoretical curves for single 1D gasesin the TG-gas limit. The average
energies per particle of the three theoryfigures are the same as the experimental
figuresimmediately above themin a-c, respectively. Hydrodynamization s

to prepare quantum Newton’s cradles?®*? and to measure dynamical
structure factors?*?. Figure 2 shows a set of momentum distributions
for aninitial (pre-Bragg pulse) weighted average dimensionless inter-
action strength, y;,, of 2.3 (Methods). The curves range over the first
1.5 ms, which is short compared with the axial oscillation period of
16.7 ms. The expected Bragg side peaks are visible, as is their eventual
slowing down (see the 1.5 ms curve) due to the axial trap. In what follows
we focus on short times, for which the side peaks are not significantly
affected by the presence of the trap and remain at their initialmomenta.
Corresponding TG theory curves are shown in Extended Data Fig. 1.
Hydrodynamization causes rapid changes in the energy distribution
of the system. To see it, we integrate the kinetic energy in successive

evidentin the approximately 33 pus period oscillations of the few lowest and
highest momentumgroupsineachfigure. The most dramatic feature of
hydrodynamizationis the veryrapidinitial energy changesin the intermediate
momentum groups. Variationsamong the different experimental and
theoretical figures are discussed in the text. The dashed lines are guides to
theeye.

momentum ranges (denoted by their average momentum, p) and plot
those integrated energies as a function of time in units of the recoil
energy, E, = (hk)?/2m. Experimental data for momentum groups up to
thefirst Bragg peakareshowninFig. 3a-cfory,=3.4,2.3and 0.94, respec-
tively. Results from TG-gas theory are shown in Fig. 3d-f, for single 1D
gases with the same average energy per particle as the experimental
curvesinFig.3a-c.The early time dynamics are due to hydrodynamiza-
tion. Extended Data Figs. 2and 3 show the evolution of the experimental
rapidity distribution for y = 2.3 and the theoretical TG rapidity distribu-
tion with the same average rapidity energy, respectively (see also
ref.18). Extended Data Fig. 4 shows the rapidities version of Fig. 3b. As
expected, therapidity distribution does not evolve on these timescales.
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Fig.4|Local prethermalization. a, For arange of jjwe plot ps,, the momentum
linedividing the atoms in the central peakin half, as afunction of the time

after the Bragg pulse. The different coloured curves correspond to different
experimental y;,, as shown in the key. Local prethermalizationis essentially
complete by the time each curvereachesits peak. The slow decreases in ps,
afterlocal prethermalization results from the Bragg side peaks gradually
separating from the centre peak, so that the local GGE slowly evolves
throughout the gas. TG-gas calculations, for which we have access to the spatial
distributions, confirm thisunderstanding. b, Atypical TG theory ps,(t.,) curve.
Theresultis for asingle 1D gas with k = 4k, and a peak 1D density 0of1.36 (um)™.
Small hydrodynamization oscillations are just barely visible throughout local
prethermalizationinthe theory. c, Local prethermalization timescales versus

The details of Fig. 3 cannot be predicted without adynamical model
that can be solved at finite coupling after this strong quench. From the
experimental results, several general observations can be made.
Figure 3bis the clearest experimental result to interpret, asitisata
‘sweet spot’ where the three dominant momentum peaks are well
resolved but the occupation of the intermediate momentum modes
is not too small. The p=1.9 and 2.1 curves show an oscillation period
of approximately T;,/2 =33 ps,and the p=0.1,0.3 and 0.5 curves show
an out of phase oscillation. The momentum oscillation period is half
the spatial oscillation period seen in Fig. 1c, presumably because the
phase of the underlying density distribution does not affect the momen-
tum occupancies. Theintermediate curves from p =0.7 to1.5all show
arapidrise withacharacteristic time of approximately (7;,4/2)/m. These
momentum modes must draw from a very wide range of rapidity modes
inboth the central and side peaks for the dephasing to occur sorapidly.

Figure 3a has qualitatively similar hydrodynamization features to
Fig. 3b. The w,4 oscillations of the side momentum peak (p=1.9 and
2.1) areless pronounced thanin Fig. 3b, indicating that the central peak
rapidities play less of arole there. The intermediate p curves alsorise
rapidly. As in Fig. 3b, they must draw from a wide range of rapidity
components, but they have more oscillations with T,4/2; this seems
reasonable given the narrower rapidity distributions of each peak and
correspondingly slower dephasing times. The dephasing in Fig. 3c is
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(k-/€)%. The black experimental points show the time constants extracted from
curvessuchasthoseina. Asfor all the experimental data, k = k, for this curve.
See Methods for an explanation of the error bars. The blue points use the upper
andrightaxes, and show the time constants extracted from curves such as
thoseinbforafixed k= 4k, (crosses) or afixed € = 0.06885hk, (open circles).
Thesolid, dotted and dashed lines are least-squares fits to the associated
points; alltheintercepts are zero to withinafew standard deviations
(-5.8+4.9,-0.47+0.13,0.25 + 0.081 for the black squares, blue crosses and
bluecircles, respectively). These results validate our qualitative model, which
saysthat thelocal prethermalization rate scales inversely with pand the Bragg
peak velocity. Theslope of the experimental line is 2.6 times the slope of the
theorylines.

fasterinallmomentum curves, whichis aconsequence of wider rapid-
ity distributions. In the intermediate p curves, hydrodynamization
manifests as rapid initial downturns.

The various hydrodynamization features of the TG-gas theory shown
in Fig. 3d-f are similar to those in the associated experiments. One
would not expect them to be identical because the mapping between
rapidities and momenta are different for different values of y. The
hydrodynamization timescale is predictably the same for all these
results, and the hydrodynamization dephasing times are qualitatively
similar for experiment and theory curves with the same rapidity energy
per particle (those in the same column). The biggest difference between
the theory and experiment (other than the absence of noise in the
theory)isthat the energy changes during hydrodynamization are about
2.5times greater in the theory. One can perhaps qualitatively under-
stand this because the prequench kinetic energy in our experimental
range of y; ranges from 20% to 65% of the rapidity energy, with the rest
being interaction energy. For infinite y, all the energy is kinetic. The
rapid initial decay of the p=1.9 and 2.1 peaks in the theory may also
relate to the absence of interaction energy. Qualitative differences
with the experiment are not finite temperature effects (Extended
DataFig.5).

The onset of local prethermalization is also visible in Fig. 3. After
hydrodynamization dephasingis complete, which takes approximately



T..a (approximately 65 ps) for all curves, the energies continue to evolve,
approaching their GGE values on progressively longer timescales as
the momentum decreases. This can be most clearly seeninthe theory
(Fig. 3d-f) and in the lower y, experimental results (Fig. 3¢), looking
fromthe p=1.5t00.3 curvesineach panel. Local prethermalizationis
more than twice as fastin the theory thanitisin the experiments with
the same rapidity energy. It is, however, difficult to consistently extract
local prethermalization time constants because of the diversity of
curve shapes and the modest separation of hydrodynamization and
local prethermalization timescales in this momentum range.

Tobetter study local prethermalization, we focus on the redistribu-
tion among momentum modes for which the occupations are large
and vary rapidly with momentum. We find a robust observable in the
momentumdividingline, p, between thef% of lower momentumatoms
in the central peak (between —hk, and +hk,) and the rest. Here f= 50
selectsamomentum near the full-width at half-maximum of the central
peak. Figure 4a shows a set of experimental p5, curves as afunction of
time (see Extended Data Figs. 6 and 7 for curves that show other pos-
sible observables). We extract T, from each ofthe curvesinFig. 4aby
finding the time at which p, is half way between its initial and peak
values (Methods).

In Fig. 4c, we plot T, for arange of y,, choosing the abscissa to be
1/./eg, where €, is the calculated average prequench energy per parti-
clefromLLtheory. Thedatafittoastraightlinewithaninterceptclose
tozero. Wealso find that ps, at the midpoint of local prethermalization,
pYy is proportional to /€, (Extended Data Fig. 8). Qualitatively, we
expect7, to be inversely proportional to the effective momentum
being measured, which we will call p, .. The linear fits in Fig. 4c and
Extended DataFig. 8 together strongly imply thatboth /€, and pgj are
proportional to p,, so that the local prethermalization rate is in fact
inversely proportional to momentum. The linear fits also work well for
f=40and 60 (Extended Data Fig. 8a,c), although the ratio ofpf to pf
dependsonf.

Because the hydrodynamization features in the theory are larger
and local prethermalization is faster, we calculate p, for simulations
with k = 4k, to achieve a better separation of timescales (1/wpq = 1/k*
whilez, o1/k).Anexample of psy(t.,) is showninFig. 4bandthe theo-
retical results for Tp,, Versus 1/-/€ are the blue crosses in Fig. 4c. The
linear fit crosses the axes near the origin, asin the experiment. The blue
open circles show 7, versus 1/k. The fact that its linear fit also
nearly crosses the origin validates the velocity part of our dimensional
argument. While both experiment and theory show that T,,,=C/(k-J€E),
theassociated constant Cdiffers for the two. Specifically, Coy, = 2.6 Cyp,
whichis consistent with the resultsin Fig. 3. The differencein Cis pre-
sumably related to the differencein the strength of 6-functioninterac-
tions, which has afixed, finite valuein the experiment andis infinitein
thetheory. (Itis neither due to temperature effects nor to the average
over 1D gases (Extended DataFig. 9)). The time for the TG gas to reach
the local GGE is about twice 7, (Fig. 4b), which we find is approxi-
mately five times faster than the time it takes the Bragg scattered com-
ponents to traverse the wavelength associated with pgz).

We have used nearly integrable 1D Bose gases to explain the behaviour
of many-body quantum systems immediately after arapid, high-energy
quench. There are two distinct timescales. The first is hydrodynami-
zation, during which short distance variations in the wavefunctions
smooth outandenergyisrapidly redistributed among distant momen-
tum modes. Although hydrodynamization is qualitatively the same
in a wide range of many-body quantum systems, it is easier to study
with cold atoms because one canrapidly shut offinteractions and thus
measure evolving momentum distributions with good time resolu-
tion. The second is local prethermalization, which in our experiment
involves a redistribution among nearby momentum modes on time-
scalesthat vary inversely with momentum. We find that local prether-
malization is surprisingly fast. For nearly integrable systems such as
the trapped LL gas, the system approaches the local GGE during local

prethermalization. Local prethermalization can also occur in far from
integrable systems when there are extra conserved quantities'.

Outside of the hard-core limit, no existing theory can calculate the
complete dynamics during hydrodynamization and local prethermali-
zation, whichmakesit animportant frontier of many-body dynamical
theory. Generalized hydrodynamics (GHD) was developed to calculate
thelocal dynamics of the rapidity distribution, with the assumption of
local equilibration to the GGE?**73°, GHD is only concerned with the
spatially resolved rapidity distribution, n(, z). After the quench, the
rapidity distribution does not change until the side peaks start to climb
the trap potential, which happens after local prethermalization (Fig. 2
and Extended Data Fig. 2). The short distance density oscillations are
strongly reduced during hydrodynamization (Fig. 1c), so the spatial dis-
tributionis nearly constant duringlocal prethermalization. Therefore,
n(6, z) does not change duringlocal prethermalization despite the fact
that f(p) changes; a GHD calculation that starts right after hydrody-
namization will accurately describe the ensuing dynamicsin the trap.

There is a strong parallel between our experiment and relativistic
heavy-ion collisions, for which hydrodynamicsis also valid after hydro-
dynamization. There are, however, two qualitative differences. First,
hydrodynamic quantities evolve during local thermalization in rela-
tivistic heavy-ion collisions. How accurate GHD remains when n(6, x)
varies during local prethermalization, and how GHD might need to
be improved ifitis not, is an open question that can be studied with
quenchesin much tighter traps, both theoretically for the TG gas and
experimentally for ally. Second, nuclear matter is far fromintegrable.
Additional experimental work can shed more light on why and the
extent to which hydrodynamic descriptions apply during local ther-
malization. Bragg scattering quenches in unitary three-dimensional
gases may be good candidates for such studies, as these gases
have been shown to locally thermalize on short and controllable
timescales™*,
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Methods

Experimental setup

We create aBose-Einstein condensate of “Rbinthe F=1, m;=1ground
state by evaporative cooling in a compressible red-detuned crossed
dipole trap made with1,064 nmwavelength light and final beam waists
of 57 um (ref. 35). We control the atom number in the Bose-Einstein
condensate, which ranges from 2 x 10° to 3.4 x 10° atoms, by varying
the final evaporation depth of the crossed dipole trap. We then ramp
up the crossed dipole trap to powers that range from 5.8 to 157 mW,
which allows us to start with a range of initial trap densities. We next
create abundle of 1D gases by adiabatically ramping up ablue-detuned
40E,-deep 2D lattice made with diameter 432 pm, power 139 mW, wave-
length 775 nm, retroreflected pairs of crossed beams. For our Bragg
scattering experiment, we pulse on a similar axial lattice beam pair.
Thelattice and Bragg beam pairs are allmutually offset from each other
byradio frequencies to prevent mutual interference. The depth of the
Bragglatticeis 27E,. During the 6 pus pulse, the incipient first momentum
sidebands move approximately 70 nm, which is not negligibly small
compared with the lattice period of 387.5 nm. The evolution of the
system during the pulse slightly modifies the shape and relative peak
heights of the rapidity distributions compared to a shorter pulse on
anon-interacting gas, but the difference is qualitatively unimportant
to the postpulse evolution that we study in this Article.

Lieb-Liniger model

The experimental system canbe modelled asa2D array ofindependent
1D gases.Each 1D gasis described by the LL Hamiltonianin the presence
of a confining potential U(z) (ref.17),

N 2 2
HLL=Z{—2’7m£2_+U<z,~>}+g 2 6-z), W
J

Jj=1 1<j<IsN

where mis the mass of a®Rb atom and N is the number of atoms. g
(>0inour case) is the strength of the effective 1D contact interaction,
which depends onthe depth of 2D lattice®. In the absence of a confin-
ing potential U(z), Hamiltonian (1) is exactly solvable via the Bethe
ansatz"¥. All observablesinthe equilibriumstates depend only on the
dimensionless coupling strength y = mg/n,,h* where n,yis the particle
density inthe 1D gas. We use the local y(z) = mg/n,,(z)i*in the trapped
system.

Thenumber of particlesineach 1D gas depends onits (x, y) position,
which canbe modelled as

2,272
N(x,y)=N(O,0)[l—xR:y } , )

TF
where N(0, 0) is the number of particlesin the central 1D gas and Ry is
the Thomas-Fermi radius®®. The total number of atoms in the system
is Nioe = 2.,N(x, ¥). With the experimentally measured Ry and N,,,, we
canfind N(x,y). The averaged y for the experimental systemis defined
as

1
y = np(Z; X, YY(z; X, y)dz.
y Ntotx%;‘l‘ 1wz XYY X,y 3)

np(z; x,y) canbe calculated from the Bethe ansatz solution of the homo-
geneous LL model using the local density approximation and knowl-
edge of N(x, y) and U(2).

Momentum and rapidity measurements

To measure momentum distributions, we turn off the 2D lattice and
the crossed dipole trap suddenly and let the atoms expandin free space
foratime of flight, TOF (TOF = 42 msfory =2.3 - 7.6 and TOF = 45 ms
fory,=0.94), before taking an absorption image?. When the 2D lattice

isturned off, the atom cloud expands rapidly in the transverse direction
and the energies associated with atom-atom interactions decrease
significantly before the momentum distribution canevolve. Theinitial
cloudsizes range from15to 25 pmfor y = 0.94t07.6. The TOF islimited
by the transverse expansion that is essential to the momentum meas-
urement*,

To measure rapidity distributions, we expand the atoms in anapprox-
imately flat potential in one dimension until the distribution reaches
itsasymptotic shape??, The flat potential is made by leaving a shallow
axial trap onto cancel the anti-trap from the blue-detuned lattice. After
the Bragg pulse, therapidity distribution of the central peak does not
change on the short timescale of approximately 0.5 ms, before the
movement of atoms in the axial trap starts to affect the distribution
(Extended Data Fig. 2). The flat potential has a finite size of approxi-
mately 40 pm, which means that the rapidity measurement is only
accurate for the central peak. The side peaks are distorted, as they fall
downthe potential hill of the blue-detuned lattice. However, the distor-
tion does not significantly change during the first approximately 0.5 ms
ofevolution, so the message of Extended Data Fig. 4, that the rapidities
donotevolveinthis time, isnot undermined. We only show rapidities
measurements for the condition y, = 2.3, because the flat potential is
notlongenoughwheny;jis higher and the side peaks are not well enough
separated from the central peak when y, is lower.

Energy error bar

Eachtime pointinthe energy curves of Fig. 3is obtained fromanaver-
age of tenimages, taken in two groups of five during the experiment.
To minimize extranoise associated with background drifts, itisneces-
sary to average at least five images before extracting the energy. We
combine the data for these averages in two ways, first by combining
theimages within each temporally separated group of five and second
by combining theminto groups of odd and evenimages. For eachgroup-
ing approach, we calculate average errors by taking the average over
all time points of the root-mean-square difference between the two
groups. The grouping makes no difference for the y = 2.3data, but for
the other data the average error tends to be higher for the temporally
separated groups, whichisindicative of small experimental drifts. The
average errors calculated using temporally separated groups are higher
than the ones calculated using the odd and even group by 86% for the
¥, =0.94 data and 76% for the y, = 3.4 data. To account for the error
associated with the drift, without overstating its contribution to the
total error, for all the curves we use the average of the average errors
obtained with the two grouping approaches.

Time constants from the p,curves

Theshape of the p(t.,) curves are not universal (Fig. 4a,b), so they will
not all fit to the same simple function. There are two reasons for the
differences among these curves. First, there are things that affect the
calculated or measured momentum distributions. Theoretically,
momentum distributions for different densities are affected differently
by particle number effects. Experimentally, high yy momentum distri-
butions are somewhat broadened by finite-size contributions to the
momentum measurements. They are negligible for y,=0.94 and
become moresignificantathigher y, for which theinitial cloud lengths
are larger (as large as 25 um for y, = 6.9) and the kinetic energies are
smaller. As a check on the importance of this effect, we deconvolved
theinitial size effects under the assumption that the initial momentum
distributions are the theoretical bosonic distributions. We find that
the extracted time constants barely change as a result, so we present
only the directly measured py(t.,).

The second reason that these curves have different shapes relates
to the motion of the side peaks. The py(t,,) curves eventually decay
fromtheir peak value because the local GGE changes as the side peaks
progressively overlap less with the central peak. The effect is larger
and faster when the density is higher and the initial cloud length is
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smaller, thatis, at lower y, or higher average density. The effectis also
evidentfrom the difference between the y, = 3.4and 3.7 curvesinFig. 4a,
for which the difference in y;, is due to a difference in initial density.

We have tried two ways to extract relatively universal time constants
from these varied shape curves. For the first method, which we use
in Fig. 4c, we determined the minimum (piso) and maximum (pg) of
psofortheinitialriseandfind theaverageofthetwo, (p, = (p5, + ps)/2).
We determine the time at which p?o is reached by fitting the three
nearest to pJ, points to a straight line. The second method was to
identify how long it takes to rise from 20% to 80% of the maximum
change in ps,, for which those points were determined with local lin-
ear fits. Both approaches give similar results for the time constant as
afunction of 1/./€ (Fig. 4c), with quantitatively comparable linear
dependence. We chose to use the first method because it gives some-
whatmoresimilar values for the y, = 3.4 and 3.7 curves, despite their
rather different shapes. For y, = 0.94, 2.3 and 3.4, the p/(t.,) curves
were taken with about three times as many points as at the earliest
times. To minimize the effect of fluctuations on the time constants,
we smooth the curves by averaging each p,(t,,) with two neighbour-
ing points. The smoothed curves are then used to extract the time
constants.

To calculate the error bars for the time constants, we first find Apgy
by combiningin quadrature the errors from determining the minimum
and maximum of the ps, (Apiso, ApS) with the fitting error associated
with the offset from p of thelinear fit of the three points near pg. We
thenuse the slope of the linear fit line to convert Apg to Az, .

The theoretical time constants plotted in Fig. 4c are extracted as
follows. We first smooth the theoretical curve p, (t.,) by averaging
each p;(t.,) with its neighbouring points within a time interval &¢.,,
Py (tey) = zte[teviﬁtev/z] Pso(8)/Nse,, - Ny, is the total number of data
points used for the average. By choosing &¢,, such that it matches the
oscillation period for hydrodynamization, we try to minimize its
effect on the local prethermalization time constant. Then, as when
extracting the experimental time constants, we define the time con-
stant as the time at which pg, = (55, + P’y ))/2 is reached. We estimate
the error associated with the smoothing procedure to be Apg, =
/2[ [p5,(0) —ﬁso(t)]z/(Nﬁteth) . The average is done for t € [t;0, t705],
where &30, and ;o are the times when p,, changes by 30% and 70%,
respectively.

Tonks-Girardeau limit
We model the TG limit (y > «) of the LL Hamiltonian (1) using the
low-site-occupancy regime of the lattice hard-core boson Hamiltonian,

L-1 L
AT AT A
Hucs= -/ Z (bj+1bj+ h.c.)+ z U(Zj)bjbjr (4)
Jj=1 j=1

whereh.c.denotes the Hermitian conjugate, /is the hopping amplitude
and L is the total number of lattice sites. 5 ;and b;create and annihilate,
rggpegtzively, ahard-coreboson atsitej, with the additional constraints
b; =b; =0toenforcethehard-core condition. The position of site; in
the lattice is taken to be z;= (j — L/2)a, where a is the lattice spacing.
In the limit of vanishing site occupancy (n; = (5jlij-) > 0 atall sites), in
which the average distance between particles is much larger than a,
the lattice Hamiltonian (4) is equivalent to the continuum TG limit of
the LL Hamiltonian (1) (refs. 22,39.). The parameters of the two Hamil-
tonians satisfy the relation /= h%/(2ma®).

The momentum distributions studied experimentally are, up to a
normalization constant,

Fp, 0= WO BLb, 1W(©) = Y P =0Mw()] 616, 1w(®), (5
Jjl

N ~ o .
where b ,and b,create and annihilate, respectively, ahard-core boson
atmomentum p, and |¥(t)) is the time-evolving state.

The one-body correlations (¥(¢)| 5}5,- |W(t)y of the 1D lattice
hard-core bosons can be computed exactly by mapping the hard-
core boson Hamiltonian onto non-interacting spinless fermions via
the Jordan-Wigner transformation, which yields*°

WO BIY (@) = WOIES, W@,

max(j-1,[-1) (6)
e |,

where §;_, = exp{in
m=min(j,{)

The ‘string operator’ §;_, ‘counts’ fermion number fluctuations between

positions z;and z, and we note that |¥/(¢)) was written in the main text

in terms of fermion creation operators in rapidity space, ¢}, Recall that

ch=Y etulhet,

Plugging equation (6) in equation (5), one cansee thatf{(p, t) isdom-
inated by the non-local real-space correlation function C(¢,, t), namely,
that fip, ) ~ C(,, ), where C(¢,,0) = 3 (W(OI €15, /aCjvr,ja 1W(O)
involves the quantum fluctuations in the number of fermions over a
length scale £,=2h1/p. C(¢,, t) is the non-local real-space correlation
function mentioned in the main text in the context of the theoretical
discussion about local prethermalization.

Exact numerical calculations of equation (5) are carried out using
properties of Slater determinants®*., For the ground-state calculations,
we choose thelattice spacingtobe a =5 x 10 mand simulate systems
withuptoL =12,000 lattice sites. We verify that lattice effects are negli-
gible by doing some of the calculations onalattice with twice aslarge a
and checkingthat the results do not change withinthe desired accuracy.
Owing to the much higher computational cost of the finite-temperature
calculations®, the finite-temperature data presented in Extended Data
Figs.5and 9 were obtained fora=3.2x10®m(a=4 x 10" m) onalattice
with L =1,500 sites for T=5 nK (10 nK).

Our numerical calculations start at ¢t = 0 from the ground (or
finite-temperature) state of equation (4) with N particles and a
Gaussian-shaped trapping potential

2
U(z) = U{l—exp[—%ﬂ, @

where U, is the strength of the Gaussian trap and Wis the trap width.
As in the experiments, the quench is implemented by evolving the
initial state under Hamiltonian (4) with the addition of the Bragg pulse
potential (characterized by an amplitude U,,. and a wave number k)

Upulse(z) = UpulseCOSZ(kZ), (8)

foratimet,. At times t =t + t.,, the system evolves under the ini-
tial Hamiltonian (7), and it is during those times that we calculate the
momentum and rapidity distributions. For Figs.1and 3 and Extended
DataFigs.1,3,5,6and 9, we uset,,, = 6 ps, asinthe experiment. Figure 4
and Extended Data Figs. 8c,d all use k = 4k, to shorten the hydrodynami-
zationtimescale relative to the local prethermalization timescales. To
minimize many-body evolution during the Bragg pulse, we decrease
t,uise to 1 ps in those calculations, while increasing U, to keep the
fraction of atoms in the central peak fixed.

Data availability

The data for all the figures can be found at https://doi.org/10.7910/
DVN/KFGNRH. Source data are provided with this paper.
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aredoneforasingle1D tubeinthe TGlimitatzerotemperature. Weusethesame  energy density. These curves match the experimental evolution timesinFig. 1.
trap and quench parameters asin the yj, = 2.3 experiment, and choose the atom
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Extended DataFig.2| Experimental rapidity distributionsfor y,=2.3ata
sequence of times after the Bragg scattering quench. The central part of the
rapidity distribution does not appreciably change over 1.5ms, whichis less
than10% of the trap oscillation period. The rapidities measurement for the side
peaksareslightly distorted by the fact that the flat potential does not extend
farenough for atoms moving that fast (after they have moved approximately

6 (hk)

20 um, they are accelerated slightly). Still, since the distortion is approximately
the same for all times within the first approximately 0.5 ms, the fact that the
measured distribution does not change implies that that part of the rapidity
distribution also remains constant. After approximatelyl ms, the side peaks
start to be noticeably slowed as they climb up the potential of the Gaussian
axialtrap.
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aredoneforasingle1D tubeinthe TGlimit at zero temperature withsametrap density. These curves match the experimental evolution times of Extended
and quench parametersasin the y,=2.3experiment. Theatom number in the DataFig.2.
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Extended DataFig.5|See next page for caption.



Extended DataFig. 5| Effect of finite temperature onmomentum
distributions and integrated kinetic energy. a-c, Theoreticalmomentum
distributions for asingle 1D tubeinthe TG limitat 0 nK,5nKand 10 nK,
respectively (see Methods). We use the same trap and quench parametersasin
they,=3.4 experiment, and choose the atom number in the tubetobe N=29 to
match theexperimental average energy density. These temperatures are the
highest we expect there tobeinthe experiment. One cansee thattheeffectis
mostly tosmooth out the sharp peaks. Note also that similar smoothing also
results from finite time-of-flight in the experiment [24]. d-f, Corresponding

theoreticalintegrated kineticenergy at O nK, 5nK and 10 nK, respectively.
Each curve shows the time evolution of the integrated energy in a different
0.2 hk,wide momentum group. Curvesinthe same momentum group have
verysimilar shapesat zero and finite temperatures. Since hydrodynamization
involvesamuch larger energy scale than that associated with these
temperatures, itis notsurprising that temperature does not significantly
affect the signatures of hydrodynamization. We conclude that the differences
between the experimental and theoretical resultsin Fig.3 are notaresult of
finite temperature effects.
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Extended DataFig. 6| The time evolution of the occupations (0) of different
momentum groups within the central peak. a, Experimental curvesfory =23
areplotted onalogscale.Each curveis obtained by integrating the area of the
normalized momentum distribution within the designated momentumrange.
Different colours denote the different momentumgroups asshowninthe
legend. Thelast three momentum groups, 0.30 - 0.36 ik, 0.36 — 0.42 ik, and
0.42-0.48 hk, have twice theintegration range, so their occupationsare
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divided by 2.b, Theoretical curves for asingle 1D gasin the TG limit with the for the theory.

0-0.03hk

0.03 —0.06hk
0.06 — 0.09hk
0.09 - 0.12hk
0.12 - 0.15hk
0.15-0.18hk
0.18 = 0.21hk
0.21 — 0.24hk
0.24 - 0.27hk
0.27 — 0.30hk
0.30 - 0.36hk
0.36 — 0.42hk
0.42 — 0.48hk

sameaverage energy asin the experimentwith y,=2.3.Inboth the experiment
and the theory, the occupation of higher momentum groups evolves faster
thanthelower ones, as expected for local prethermalization. The fact that
eachofthese curveshasadifferent shape makesit difficult to quantitatively
compare time constants among them. The theoretical curves evolve more than
twice as fastas the experimental curves, presumably reflecting the difference
betweeninfinite and finite g (see Eq. (1)). k = k, for the experiment and k = 4k,
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Extended DataFig.7| Time evolution ofthe FWHM. a, The evolution of the correspond to thefirst five points of the orange curveina. The momentum
FWHM of the central peak in the momentum distributions after the Bragg distribution clearly evolves during the first 0.05 ms, even though the FWHM
scattering quench for different coupling strengths. Toagreater degree than doesnotchange. Thisillustrates that the FWHM s not areliable marker of the
forthe pso(t.,) curves of Fig. 3, these curves all have different shapes. b, The evolution of these momentum distributions.

evolvingmomentum distribution of the central peak for y;,= 0.94. These curves
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Extended DataFig. 8| Relationshipsamongp,, 7, ,ande. a, Experimental

1

iatedwithp,, (red circles),pml(black squares),and py,

(blue triangles) as functions of 1/k-/€. Asin all the experiments presented in
this paper, kis fixed at k,. The time constants are extracted from curves like
thoseinFig. 4a (see Methods). The dashed lines are least-squares linear fits; the
interceptsare -2.5+5.6,-5.8 +4.9,-6.0 + 3.5for p,o, Pso, and pe,, respectively.

Thedataare consiste

ntwithlinear relationships between the time constant

associated witheach p;and theinverse of the squareroot of average energy per
particle. For agiven momentum distribution, the actual values of p,,and p¢,
spanarange of -+ 30% around the steepest part of the distribution (at ~ ps).

b, Experimental ps, vs~/€. The green triangles, magentasquares, and orange
circles correspond to the initial (pgo), middle (pg'g), and final (pgo) values of ps,
foreachexperimental condition, extracted from Fig.4a. The dashed lines are

least-squares linear fi

ts; theinterceptsare (3.5+0.9) 1072, (1.7 £ 0.6) 1072,

and (3.8 +4.4) x 10> for pgo, p,and p¢, respectively. The péo pointsatthe
loweste (highest ) conditions are more likely to be affected by finite-size
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corrections to theirmomentum distributions. The datashowalinear
relationship between each measured value and -/€. ¢, Theoretical time
constants obtained fromthe p,q, pso, and p¢, curves simulated with k = 4k,

Thetime consta
barsare smaller

ntsare obtained from curveslike those in Fig.4b. The error
thanthe marker size. The solid lines are least-squares linear

fits; theinterceptsare -0.065 + 0.047, - 0.47 + 0.13,and -0.67 + 0.10 for p,,,
Pso-and peo, respectively. d, Theoretical ps, vs /€, simulated with k = 4k,. The

interceptsare (1

4+13)x10™,(2.70.53) x 107, and (-19 £ 1.2) x 10°*, for pl, ,

Py and pg, respectively. The momentum feature thatis most clearly

proportional to

~J€is p. Since thatis the midpoint value of ps, during the

evolution, itislikely to be close to p; , the effective momentum to which the ps,

measurementis

sensitive. Taken all together, this figure shows that, for ps,, the

time constantsare proportionalto1/./¢, whichisinturn proportional to the
characteristicmomentum being measured. We have repeated the entire

analysis forp,,a

nd p¢,and the conclusions are the same.
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Extended DataFig. 9| Effect of the average over 1D gases and of finite
temperature onp;,. We plot theoretical simulations of p,, in the TG limit
with the same trap and quench parameters asin the yj, = 3.4 experiment. For
theaverage over 1D gases, we use the Thomas-Fermi distribution with
experimentally measured Ry =23 umand a total particle number of N, =
2.75 x10° (see Methods). To simplify the calculations, we round the particle
numberineachtubeinstepsofS. Thecircles show the results of ground
state simulations forasingle tube with N=29 particles (which matches the
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experimental average energy density). The squares show the results of
ground state simulations after averaging over all the 1D gases, asoccursin
the experimental setup. The triangles (stars) show simulations for asingle
tube with N=29 particlesatatemperature of T=5nK (10 nK). We did the finite
temperature simulations withalarger discretizationa=3.2x10®*m (a =4 x
10~®m) due to numerical limitations (see Methods). The results show no
significant changesin the time constant due to either the average over tubes
or finite temperature.
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