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Observation of hydrodynamization and 
local prethermalization in 1D Bose gases

Yuan Le1, Yicheng Zhang1, Sarang Gopalakrishnan1,2, Marcos Rigol1 & David S. Weiss1 ✉

Hydrodynamics accurately describe relativistic heavy-ion collision experiments  
well before local thermal equilibrium is established1. This unexpectedly rapid onset  
of hydrodynamics—which takes place on the fastest available timescale—is called 
hydrodynamization2–4. It occurs when an interacting quantum system is quenched 
with an energy density that is much greater than its ground-state energy density5,6. 
During hydrodynamization, energy gets redistributed across very different energy 
scales. Hydrodynamization precedes local equilibration among momentum modes5, 
which is local prethermalization to a generalized Gibbs ensemble7,8 in nearly integrable 
systems or local thermalization in non-integrable systems9. Although many theories 
of quantum dynamics postulate local prethermalization10,11, the associated timescale 
has not been studied experimentally. Here we use an array of one-dimensional Bose 
gases to directly observe both hydrodynamization and local prethermalization.  
After we apply a Bragg scattering pulse, hydrodynamization is evident in the fast 
redistribution of energy among distant momentum modes, which occurs on 
timescales associated with the Bragg peak energies. Local prethermalization can be 
seen in the slower redistribution of occupation among nearby momentum modes.  
We find that the timescale for local prethermalization in our system is inversely 
proportional to the momenta involved. During hydrodynamization and local 
prethermalization, existing theories cannot quantitatively model our experiment. 
Exact theoretical calculations in the Tonks–Girardeau limit12 show qualitatively 
similar features.

Hydrodynamization has been theoretically explored in high 
energy2–5,13,14, cosmological15 and photo-excited correlated metal16 
contexts. These calculations typically involve simplified Hamiltonians 
that do not directly correspond to measurable physical systems. The 
process of hydrodynamization has not been directly observed in any  
system. We observe hydrodynamization using trapped one-dimensional 
(1D) Bose gases with point contact interactions (Lieb–Lininger (LL) 
gases17), quenching them with a Bragg pulse. The high energy density 
imparted by the pulse compared to the ground-state energy density 
of our ultracold gases allows us to realize this universal phenomenon. 
The near-integrability of trapped LL gases provides a framework from 
which we draw a general picture that applies to non-integrable systems.

As the strong coupling Tonks–Girardeau (TG) limit of our 1D Bose 
gases is exactly solvable, we first explain the physics of hydrodynami-
zation and local prethermalization for a homogeneous TG gas. As we 
will see, our theoretical insights transfer to trapped systems with finite 
coupling such as the ones in the experiments. The TG Hamiltonian can 
be mapped onto non-interacting fermions by a change of variables 
that acts non-locally on the boson field operators. The prequench 
ground state is a Fermi sea, with a many-body wavefunction given by 

∏Ψ c� = ˆ 0�θ θ θp <
†

F
∣ ∣∣ ∣ , where ĉθ

† creates a fermion with momentum θ and 
θF is the Fermi momentum. Anticipating generalization to the 

finite-coupling regime, we will refer to the fermions as quasiparticles 
and their momenta as rapidities.

A Bragg pulse in the Raman–Nath regime transforms the initial wave-
function to ∏ ∑Ψ t J b c( )� = ( ( )e ˆ ) 0�θ θ n n
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, where 

k = 2π/λ, λ is the Bragg pulse wavelength, m is the atomic mass, t is 
time, 2πħ is Planck’s constant, Ji(b) are Bessel functions of the first kind, 
n is an integer and b depends on the Bragg pulse area18. The rapidity 
distribution (which we denote as f(θ), see Fig. 1a) is conserved after the 
pulse7. The many-body wavefunction, on the other hand, evolves rap-
idly owing to the different phase factors associated with different 
quasiparticle rapidities. As the momentum distribution function of 
the bare particles (which we denote as f(p), see Fig. 1a) is determined 
by complicated multibody quasiparticle correlations of ∣Ψ t( )�  (Meth-
ods), relative phase evolution in the rapidity basis results in a change 
of occupancy of the momentum modes. The fastest rate at which f(p) 
can evolve is associated with the highest energy difference between 
significantly populated rapidity states and, consequently, results in a 
redistribution of energy among widely different momentum modes. 
This is the essence of hydrodynamization. For b ≲ 1, the characteristic 
hydrodynamization frequency, ωhd, is proportional to the energy  
difference between the n = 0 and ±1 Bragg orders, ωhd = ħ(2k)2/2m.  
Figure 1b shows the evolution of f(p) on that fast timescale, Thd = 2π/ωhd.
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Because it happens so fast, the long-lived nature of the quasiparti-
cles and the conservation of rapidities associated with integrability 
are not necessary for hydrodynamization. Non-integrable interact-
ing many-body systems allow for a similar quasiparticle description 
on some short timescale. As long as the quench energy significantly 
exceeds the ground-state energy density, one expects that these quasi-
particles will live much longer than the hydrodynamization timescale. 
So the above description of hydrodynamization applies.

The Bragg pulse quench provides a natural spatial view of hydro-
dynamization. It creates a λ/2-scale density oscillation (Fig. 1c), which 
tends to flatten on the timescale that the particles of the n = ±1 side 
momentum peaks traverse λ/2, (λ/2)/(2ħk/m), that is, of the order of 
π/ωhd. Viewed another way, the Bragg pulse creates two overlapped, 
oppositely directed, rapidly moving clouds that collide with each other 
and the stationary cloud. Hydrodynamization can occur even before 
the centre of masses of these clouds have traversed the average inter-
particle spacing. The collision energy, imparted with the creation of the 
Bragg peaks, is partially transferred to the momentum modes between 
the moving side peaks on hydrodynamization timescales (Fig. 1a,b; for 

a visualization of this experiment in a trap see the inset of Fig. 2). The 
situation is qualitatively similar in relativistic heavy-ion collisions, in 
which part of the kinetic energy in the centre of mass frame is rapidly 
redistributed from the colliding nuclei to the stationary emerging 
quark–gluon plasma. Quantitatively, the scale of collision energies in 
the two systems, which is inversely proportional to the timescale of 
hydrodynamization, differs by 18 orders of magnitude.

We call the evolution after hydrodynamization ‘local prethermaliza-
tion’, during which the system approaches the local generalized Gibbs 
ensemble (GGE). Local thermalization has been studied in many cold 
atom experiments19, as has global prethermalization8,20,21, for which 
the local GGE remains satisfied while the entire system relaxes to a 
global (prethermal) equilibrium state. A Bragg pulse suddenly changes 
the many-body wavefunction and, even after hydrodynamization, 
the correlations in the many-body wavefunction have not yet locally 
equilibrated to the post-quench condition, the new local GGE. In the 
TG limit, the mapping to non-interacting fermions shows that f(p) is 
dominated by non-local correlations that involve fluctuations of the 
number of quasiparticles over a length scale ℓp = 2ħπ/p (Methods). 
Those fluctuations grow after the quench, as the fast quasiparticles 
in the n = ±1 Bragg peaks (with velocities v±1 = ±2ħk/m) move relative 
to the quasiparticles in the central peak. We expect the timescale for 
equilibration of f(p) to relate to the time it takes the fast quasiparti-
cles to cross ℓp, τp ≈ ℓp/∣v±1∣ = πm/(pk). Hence, after a Bragg pulse, local 
prethermalization of the bosonic momentum distribution occurs on 
timescales that are inversely proportional to p and k. Beyond the TG 
limit, this is expected to hold true in general for nearly integrable 1D 
systems with long-lived quasiparticles, as in our experimental setup22,23. 
Using the local density approximation, it also applies to trapped sys-
tems at least as long as the density profile does not change significantly 
during local prethermalization.

Our experiment starts with a bundle of nearly zero temperature 1D 
gases consisting of 87Rb atoms confined in a blue-detuned 
two-dimensional (2D) lattice, with axial trapping provided by crossed 
red-detuned dipole trapping beams (Methods). We pulse on an axial 
lattice beam with wavevector k0 = 2π/(775 nm) for 6 μs and then meas-
ure the momentum distribution (Methods) as a function of the time 
tev after the pulse. Bragg pulses have previously been used with 1D gases 
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Fig. 1 | Evolution of a homogeneous TG gas after a Bragg quench.  
a, Momentum and rapidity distributions. The grey curve is f(θ), which does  
not evolve. The blue curve is f(p) right after the quench. Relative phase 
evolution among rapidity states shows up as evolution of f(p). The red dashed 
curve shows f(p) after hydrodynamization. It differs from the blue curve largely 
by the transfer of energy from the side peaks to the modes between the peaks. 
The green curve shows f(p) after partial local prethermalization. It mostly only 
differs from the red curve in the vicinity of the peaks. b, Time evolution of f(p). 
The modes near ±ħk are populated very rapidly because they are composed  
of the widest range of rapidities, which therefore dephase most rapidly, in 
approximately Thd/(2π). Closer to the momentum peaks, hydrodynamization is 
essentially complete by Thd (marked by a white dashed line). The slower change 
associated with local prethermalization can most easily be seen in the subtle 
later evolution of the central peak. c, Time evolution of the spatial density. The 
λ/2 density oscillation in space (z) produced by the Bragg pulse is strongly 
reduced during hydrodynamization. The residual oscillations decay 
polynomially in time33,34 and are unrelated to local prethermalization. Similar 
figures were presented in ref. 18 for larger b and in ref. 7 for a lattice quench. 
a.u., arbitrary units.
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Fig. 2 | Evolving momentum distributions. Each curve is the momentum 
distribution for γ = 2.30  at some time after the Bragg scattering quench. Before 
0.5 ms, the side peaks have not yet noticeably been affected by the trap so they 
remain at their initial momenta. The insert is a sketch showing the spatial 
distribution and momenta of the atoms after the Bragg quench. It is like a 
collision that starts from complete overlap at t = 0.
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to prepare quantum Newton’s cradles20,24,25 and to measure dynamical 
structure factors26,27. Figure 2 shows a set of momentum distributions 
for an initial (pre-Bragg pulse) weighted average dimensionless inter-
action strength, γ0, of 2.3 (Methods). The curves range over the first 
1.5 ms, which is short compared with the axial oscillation period of 
16.7 ms. The expected Bragg side peaks are visible, as is their eventual 
slowing down (see the 1.5 ms curve) due to the axial trap. In what follows 
we focus on short times, for which the side peaks are not significantly 
affected by the presence of the trap and remain at their initial momenta. 
Corresponding TG theory curves are shown in Extended Data Fig. 1.

Hydrodynamization causes rapid changes in the energy distribution 
of the system. To see it, we integrate the kinetic energy in successive 

momentum ranges (denoted by their average momentum, p) and plot 
those integrated energies as a function of time in units of the recoil 
energy, E ħk m= ( ) /2r 0

2 . Experimental data for momentum groups up to 
the first Bragg peak are shown in Fig. 3a–c for γ =0  3.4, 2.3 and 0.94, respec-
tively. Results from TG-gas theory are shown in Fig. 3d–f, for single 1D 
gases with the same average energy per particle as the experimental 
curves in Fig. 3a–c. The early time dynamics are due to hydrodynamiza-
tion. Extended Data Figs. 2 and 3 show the evolution of the experimental 
rapidity distribution for γ = 2.30  and the theoretical TG rapidity distribu-
tion with the same average rapidity energy, respectively (see also  
ref. 18). Extended Data Fig. 4 shows the rapidities version of Fig. 3b. As 
expected, the rapidity distribution does not evolve on these timescales.
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Fig. 3 | Hydrodynamization. Each curve is the time evolution of the integrated 
energy in a different 0.2ħk0 wide momentum group. The central momentum of 
each colour-coded group is shown in the legend. a–c, Experimental curves for 
γ = 3.40  (a), 2.3 (b) and 0.94 (c). See Methods for an explanation of the error bars. 
d–f, Theoretical curves for single 1D gases in the TG-gas limit. The average 
energies per particle of the three theory figures are the same as the experimental 
figures immediately above them in a–c, respectively. Hydrodynamization is 

evident in the approximately 33 μs period oscillations of the few lowest and 
highest momentum groups in each figure. The most dramatic feature of 
hydrodynamization is the very rapid initial energy changes in the intermediate 
momentum groups. Variations among the different experimental and 
theoretical figures are discussed in the text. The dashed lines are guides to  
the eye.
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The details of Fig. 3 cannot be predicted without a dynamical model 
that can be solved at finite coupling after this strong quench. From the 
experimental results, several general observations can be made.  
Figure 3b is the clearest experimental result to interpret, as it is at a 
‘sweet spot’ where the three dominant momentum peaks are well 
resolved but the occupation of the intermediate momentum modes 
is not too small. The p = 1.9 and 2.1 curves show an oscillation period 
of approximately Thd/2 = 33 μs, and the p = 0.1, 0.3 and 0.5 curves show 
an out of phase oscillation. The momentum oscillation period is half 
the spatial oscillation period seen in Fig. 1c, presumably because the 
phase of the underlying density distribution does not affect the momen-
tum occupancies. The intermediate curves from p = 0.7 to 1.5 all show 
a rapid rise with a characteristic time of approximately (Thd/2)/π. These 
momentum modes must draw from a very wide range of rapidity modes 
in both the central and side peaks for the dephasing to occur so rapidly.

Figure 3a has qualitatively similar hydrodynamization features to 
Fig. 3b. The ωhd oscillations of the side momentum peak (p = 1.9 and 
2.1) are less pronounced than in Fig. 3b, indicating that the central peak 
rapidities play less of a role there. The intermediate p  curves also rise 
rapidly. As in Fig. 3b, they must draw from a wide range of rapidity 
components, but they have more oscillations with Thd/2; this seems 
reasonable given the narrower rapidity distributions of each peak and 
correspondingly slower dephasing times. The dephasing in Fig. 3c is 

faster in all momentum curves, which is a consequence of wider rapid-
ity distributions. In the intermediate p  curves, hydrodynamization 
manifests as rapid initial downturns.

The various hydrodynamization features of the TG-gas theory shown 
in Fig. 3d–f are similar to those in the associated experiments. One 
would not expect them to be identical because the mapping between 
rapidities and momenta are different for different values of γ. The 
hydrodynamization timescale is predictably the same for all these 
results, and the hydrodynamization dephasing times are qualitatively 
similar for experiment and theory curves with the same rapidity energy 
per particle (those in the same column). The biggest difference between 
the theory and experiment (other than the absence of noise in the 
theory) is that the energy changes during hydrodynamization are about 
2.5 times greater in the theory. One can perhaps qualitatively under-
stand this because the prequench kinetic energy in our experimental 
range of γ0 ranges from 20% to 65% of the rapidity energy, with the rest 
being interaction energy. For infinite γ, all the energy is kinetic. The 
rapid initial decay of the p =1.9 and 2.1 peaks in the theory may also 
relate to the absence of interaction energy. Qualitative differences 
with the experiment are not finite temperature effects (Extended  
Data Fig. 5).

The onset of local prethermalization is also visible in Fig. 3. After 
hydrodynamization dephasing is complete, which takes approximately 
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Fig. 4 | Local prethermalization. a, For a range of γ0 we plot p50, the momentum 
line dividing the atoms in the central peak in half, as a function of the time  
after the Bragg pulse. The different coloured curves correspond to different 
experimental γ0, as shown in the key. Local prethermalization is essentially 
complete by the time each curve reaches its peak. The slow decreases in p50 
after local prethermalization results from the Bragg side peaks gradually 
separating from the centre peak, so that the local GGE slowly evolves 
throughout the gas. TG-gas calculations, for which we have access to the spatial 
distributions, confirm this understanding. b, A typical TG theory p50(tev) curve. 
The result is for a single 1D gas with k = 4k0 and a peak 1D density of 1.36 (μm)−1. 
Small hydrodynamization oscillations are just barely visible throughout local 
prethermalization in the theory. c, Local prethermalization timescales versus 

k �( )−1. The black experimental points show the time constants extracted from 
curves such as those in a. As for all the experimental data, k = k0 for this curve. 
See Methods for an explanation of the error bars. The blue points use the upper 
and right axes, and show the time constants extracted from curves such as 
those in b for a fixed k = 4k0 (crosses) or a fixed ϵ = 0.06885ħk0 (open circles). 
The solid, dotted and dashed lines are least-squares fits to the associated 
points; all the intercepts are zero to within a few standard deviations 
(−5.8 ± 4.9, −0.47 ± 0.13, 0.25 ± 0.081 for the black squares, blue crosses and 
blue circles, respectively). These results validate our qualitative model, which 
says that the local prethermalization rate scales inversely with p and the Bragg 
peak velocity. The slope of the experimental line is 2.6 times the slope of the 
theory lines.
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Thd (approximately 65 μs) for all curves, the energies continue to evolve, 
approaching their GGE values on progressively longer timescales as 
the momentum decreases. This can be most clearly seen in the theory 
(Fig. 3d–f) and in the lower γ0 experimental results (Fig. 3c), looking 
from the p  = 1.5 to 0.3 curves in each panel. Local prethermalization is 
more than twice as fast in the theory than it is in the experiments with 
the same rapidity energy. It is, however, difficult to consistently extract 
local prethermalization time constants because of the diversity of 
curve shapes and the modest separation of hydrodynamization and 
local prethermalization timescales in this momentum range.

To better study local prethermalization, we focus on the redistribu-
tion among momentum modes for which the occupations are large 
and vary rapidly with momentum. We find a robust observable in the 
momentum dividing line, pf, between the f % of lower momentum atoms 
in the central peak (between −ħk0  and +ħk0) and the rest. Here f = 50 
selects a momentum near the full-width at half-maximum of the central 
peak. Figure 4a shows a set of experimental p50 curves as a function of 
time (see Extended Data Figs. 6 and 7 for curves that show other pos-
sible observables). We extract τp50

 from each of the curves in Fig. 4a by 
finding the time at which p50 is half way between its initial and peak 
values (Methods).

In Fig. 4c, we plot τp50
 for a range of γ0, choosing the abscissa to be 

�1/ 0, where ϵ0 is the calculated average prequench energy per parti-
cle from LL theory. The data fit to a straight line with an intercept close 
to zero. We also find that p50 at the midpoint of local prethermalization, 
p50

m , is proportional to �0  (Extended Data Fig. 8). Qualitatively, we 
expect τp50

 to be inversely proportional to the effective momentum 
being measured, which we will call p50. The linear fits in Fig. 4c and 
Extended Data Fig. 8 together strongly imply that both �0  and p50

m  are 
proportional to p50, so that the local prethermalization rate is in fact 
inversely proportional to momentum. The linear fits also work well for 
f = 40 and 60 (Extended Data Fig. 8a,c), although the ratio of pf

 to p f
m 

depends on f.
Because the hydrodynamization features in the theory are larger 

and local prethermalization is faster, we calculate p50 for simulations 
with k = 4k0 to achieve a better separation of timescales (1/ωhd ∝ 1/k2 
while τ k∝ 1/p50

). An example of p50(tev) is shown in Fig. 4b and the theo-
retical results for τp50

 versus �1/  are the blue crosses in Fig. 4c. The 
linear fit crosses the axes near the origin, as in the experiment. The blue 
open circles show τp50

 versus 1/k. The fact that its linear fit also 
nearly crosses the origin validates the velocity part of our dimensional 
argument. While both experiment and theory show that τ C k �= /( )p50

, 
the associated constant C differs for the two. Specifically, C C= 2.6exp th, 
which is consistent with the results in Fig. 3. The difference in C is pre-
sumably related to the difference in the strength of δ-function interac-
tions, which has a fixed, finite value in the experiment and is infinite in 
the theory. (It is neither due to temperature effects nor to the average 
over 1D gases (Extended Data Fig. 9)). The time for the TG gas to reach 
the local GGE is about twice τp50

 (Fig. 4b), which we find is approxi-
mately  five times faster than the time it takes the Bragg scattered com-
ponents to traverse the wavelength associated with p50

m .
We have used nearly integrable 1D Bose gases to explain the behaviour 

of many-body quantum systems immediately after a rapid, high-energy 
quench. There are two distinct timescales. The first is hydrodynami-
zation, during which short distance variations in the wavefunctions 
smooth out and energy is rapidly redistributed among distant momen-
tum modes. Although hydrodynamization is qualitatively the same 
in a wide range of many-body quantum systems, it is easier to study 
with cold atoms because one can rapidly shut off interactions and thus 
measure evolving momentum distributions with good time resolu-
tion. The second is local prethermalization, which in our experiment 
involves a redistribution among nearby momentum modes on time-
scales that vary inversely with momentum. We find that local prether-
malization is surprisingly fast. For nearly integrable systems such as 
the trapped LL gas, the system approaches the local GGE during local 

prethermalization. Local prethermalization can also occur in far from 
integrable systems when there are extra conserved quantities10.

Outside of the hard-core limit, no existing theory can calculate the 
complete dynamics during hydrodynamization and local prethermali-
zation, which makes it an important frontier of many-body dynamical 
theory. Generalized hydrodynamics (GHD) was developed to calculate 
the local dynamics of the rapidity distribution, with the assumption of 
local equilibration to the GGE23,28–30. GHD is only concerned with the 
spatially resolved rapidity distribution, n(θ, z). After the quench, the 
rapidity distribution does not change until the side peaks start to climb 
the trap potential, which happens after local prethermalization (Fig. 2 
and Extended Data Fig. 2). The short distance density oscillations are 
strongly reduced during hydrodynamization (Fig. 1c), so the spatial dis-
tribution is nearly constant during local prethermalization. Therefore, 
n(θ, z) does not change during local prethermalization despite the fact 
that f(p) changes; a GHD calculation that starts right after hydrody-
namization will accurately describe the ensuing dynamics in the trap.

There is a strong parallel between our experiment and relativistic 
heavy-ion collisions, for which hydrodynamics is also valid after hydro-
dynamization. There are, however, two qualitative differences. First, 
hydrodynamic quantities evolve during local thermalization in rela-
tivistic heavy-ion collisions. How accurate GHD remains when n(θ, x) 
varies during local prethermalization, and how GHD might need to 
be improved if it is not, is an open question that can be studied with 
quenches in much tighter traps, both theoretically for the TG gas and 
experimentally for all γ. Second, nuclear matter is far from integrable. 
Additional experimental work can shed more light on why and the 
extent to which hydrodynamic descriptions apply during local ther-
malization. Bragg scattering quenches in unitary three-dimensional 
gases may be good candidates for such studies, as these gases 
have been shown to locally thermalize on short and controllable  
timescales31,32.
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Methods

Experimental setup
We create a Bose–Einstein condensate of 87Rb in the F = 1, mf = 1 ground 
state by evaporative cooling in a compressible red-detuned crossed 
dipole trap made with 1,064 nm wavelength light and final beam waists 
of 57 μm (ref. 35). We control the atom number in the Bose–Einstein 
condensate, which ranges from 2 × 105 to 3.4 × 105 atoms, by varying 
the final evaporation depth of the crossed dipole trap. We then ramp 
up the crossed dipole trap to powers that range from 5.8 to 157 mW, 
which allows us to start with a range of initial trap densities. We next 
create a bundle of 1D gases by adiabatically ramping up a blue-detuned 
40Er-deep 2D lattice made with diameter 432 μm, power 139 mW, wave-
length 775 nm, retroreflected pairs of crossed beams. For our Bragg 
scattering experiment, we pulse on a similar axial lattice beam pair. 
The lattice and Bragg beam pairs are all mutually offset from each other 
by radio frequencies to prevent mutual interference. The depth of the 
Bragg lattice is 27Er. During the 6 μs pulse, the incipient first momentum 
sidebands move approximately 70 nm, which is not negligibly small 
compared with the lattice period of 387.5 nm. The evolution of the 
system during the pulse slightly modifies the shape and relative peak 
heights of the rapidity distributions compared to a shorter pulse on 
a non-interacting gas, but the difference is qualitatively unimportant 
to the postpulse evolution that we study in this Article.

Lieb–Liniger model
The experimental system can be modelled as a 2D array of independent 
1D gases. Each 1D gas is described by the LL Hamiltonian in the presence 
of a confining potential U(z) (ref. 17),

∑ ∑ħ
m z

U z g δ z z= −
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where m is the mass of a 87Rb atom and N is the number of atoms. g 
(>0 in our case) is the strength of the effective 1D contact interaction, 
which depends on the depth of 2D lattice36. In the absence of a confin-
ing potential U(z), Hamiltonian (1) is exactly solvable via the Bethe 
ansatz17,37. All observables in the equilibrium states depend only on the 
dimensionless coupling strength γ = mg/n1Dħ2, where n1D is the particle 
density in the 1D gas. We use the local γ(z) = mg/n1D(z)ħ2 in the trapped 
system.

The number of particles in each 1D gas depends on its (x, y) position, 
which can be modelled as
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where N(0, 0) is the number of particles in the central 1D gas and RTF is 
the Thomas–Fermi radius38. The total number of atoms in the system 
is Ntot = ∑x,yN(x, y). With the experimentally measured RTF and Ntot, we 
can find N(x, y). The averaged γ  for the experimental system is defined 
as

∫∑γ
N

n z x y γ z x y z=
1

( ; , ) ( ; , )d . (3)
x ytot ,

1D

n1D(z; x, y) can be calculated from the Bethe ansatz solution of the homo-
geneous LL model using the local density approximation and knowl-
edge of N(x, y) and U(z).

Momentum and rapidity measurements
To measure momentum distributions, we turn off the 2D lattice and 
the crossed dipole trap suddenly and let the atoms expand in free space 
for a time of flight, TOF (TOF = 42 ms for γ = 2.3 − 7.6 and TOF =  45 ms 
for γ = 0.940 ), before taking an absorption image22. When the 2D lattice 

is turned off, the atom cloud expands rapidly in the transverse direction 
and the energies associated with atom–atom interactions decrease 
significantly before the momentum distribution can evolve. The initial 
cloud sizes range from 15 to 25 μm for γ = 0.940  to 7.6. The TOF is limited 
by the transverse expansion that is essential to the momentum meas-
urement22.

To measure rapidity distributions, we expand the atoms in an approx-
imately flat potential in one dimension until the distribution reaches 
its asymptotic shape22,23. The flat potential is made by leaving a shallow 
axial trap on to cancel the anti-trap from the blue-detuned lattice. After 
the Bragg pulse, the rapidity distribution of the central peak does not 
change on the short timescale of approximately 0.5 ms, before the 
movement of atoms in the axial trap starts to affect the distribution 
(Extended Data Fig. 2). The flat potential has a finite size of approxi-
mately 40 μm, which means that the rapidity measurement is only 
accurate for the central peak. The side peaks are distorted, as they fall 
down the potential hill of the blue-detuned lattice. However, the distor-
tion does not significantly change during the first approximately 0.5 ms 
of evolution, so the message of Extended Data Fig. 4, that the rapidities 
do not evolve in this time, is not undermined. We only show rapidities 
measurements for the condition γ = 2.30 , because the flat potential is 
not long enough when γ0 is higher and the side peaks are not well enough 
separated from the central peak when γ0 is lower.

Energy error bar
Each time point in the energy curves of Fig. 3 is obtained from an aver-
age of ten images, taken in two groups of five during the experiment. 
To minimize extra noise associated with background drifts, it is neces-
sary to average at least five images before extracting the energy. We 
combine the data for these averages in two ways, first by combining 
the images within each temporally separated group of five and second 
by combining them into groups of odd and even images. For each group-
ing approach, we calculate average errors by taking the average over 
all time points of the root-mean-square difference between the two 
groups. The grouping makes no difference for the γ = 2.30  data, but for 
the other data the average error tends to be higher for the temporally 
separated groups, which is indicative of small experimental drifts. The 
average errors calculated using temporally separated groups are higher 
than the ones calculated using the odd and even group by 86% for the 
γ = 0.940  data and 76% for the γ = 3.40  data. To account for the error 
associated with the drift, without overstating its contribution to the 
total error, for all the curves we use the average of the average errors 
obtained with the two grouping approaches.

Time constants from the pf curves
The shape of the pf (tev) curves are not universal (Fig. 4a,b), so they will 
not all fit to the same simple function. There are two reasons for the 
differences among these curves. First, there are things that affect the 
calculated or measured momentum distributions. Theoretically, 
momentum distributions for different densities are affected differently 
by particle number effects. Experimentally, high γ0 momentum distri-
butions are somewhat broadened by finite-size contributions to the 
momentum measurements. They are negligible for γ = 0.940  and 
become more significant at higher γ0, for which the initial cloud lengths 
are larger (as large as 25 μm for γ = 6.90 ) and the kinetic energies are 
smaller. As a check on the importance of this effect, we deconvolved 
the initial size effects under the assumption that the initial momentum 
distributions are the theoretical bosonic distributions. We find that 
the extracted time constants barely change as a result, so we present 
only the directly measured pf (tev).

The second reason that these curves have different shapes relates 
to the motion of the side peaks. The pf (tev) curves eventually decay 
from their peak value because the local GGE changes as the side peaks 
progressively overlap less with the central peak. The effect is larger 
and faster when the density is higher and the initial cloud length is 
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smaller, that is, at lower γ0 or higher average density. The effect is also 
evident from the difference between the γ = 3.40  and 3.7 curves in Fig. 4a, 
for which the difference in γ0 is due to a difference in initial density.

We have tried two ways to extract relatively universal time constants 
from these varied shape curves. For the first method, which we use 
in Fig. 4c, we determined the minimum (p50

i ) and maximum (p50
e ) of 

p50 for the initial rise and find the average of the two, (p p p= ( + )/250
m

50
e

50
i ). 

We determine the time at which p50
m  is reached by fitting the three 

nearest to p50
m  points to a straight line. The second method was to 

identify how long it takes to rise from 20% to 80% of the maximum 
change in p50, for which those points were determined with local lin-
ear fits. Both approaches give similar results for the time constant as 
a function of 1/ �  (Fig. 4c), with quantitatively comparable linear 
dependence. We chose to use the first method because it gives some-
what more similar values for the γ = 3.40  and 3.7 curves, despite their 
rather different shapes. For γ0 = 0.94, 2.3 and 3.4, the pf (tev) curves 
were taken with about three times as many points as at the earliest 
times. To minimize the effect of fluctuations on the time constants, 
we smooth the curves by averaging each pf (tev) with two neighbour-
ing points. The smoothed curves are then used to extract the time  
constants.

To calculate the error bars for the time constants, we first find p∆ 50
m  

by combining in quadrature the errors from determining the minimum 
and maximum of the p50 ( p∆ 50

i , p∆ 50
e ) with the fitting error associated 

with the offset from p50
m  of the linear fit of the three points near p50

m . We 
then use the slope of the linear fit line to convert p∆ 50

m  to τ∆ p50
.

The theoretical time constants plotted in Fig. 4c are extracted as 
follows. We first smooth the theoretical curve ∼p t( )50 ev  by averaging 
each p50(tev) with its neighbouring points within a time interval δtev, 

∑p t p t N( ) = ( )/t t t t50 ev ∈[ ±δ /2] 50 δev ev ev
∼ . N tδ ev

 is the total number of data 
points used for the average. By choosing δtev such that it matches the 
oscillation period for hydrodynamization, we try to minimize its  
effect on the local prethermalization time constant. Then, as when  
extracting the experimental time constants, we define the time con-
stant as the time at which p p p= ( + )/250

m
50
e

50
i∼ ∼ ∼  is reached. We estimate 

the error associated with the smoothing procedure to be p∆ =50
m

∑ p t p t N N[ ( ) − ( )] /( )t t t50 50
2

δ ev
∼ . The average is done for t ∈ [t30%, t70%], 

where t30% and t70% are the times when ∼p50 changes by 30% and 70%, 
respectively.

Tonks–Girardeau limit
We model the TG limit (γ → ∞) of the LL Hamiltonian (1) using the 
low-site-occupancy regime of the lattice hard-core boson Hamiltonian,

H ∑ ∑J b b U z b b= − ( ˆ ˆ+ h.c. ) + ( ) ˆ ˆ , (4)
j

L

j j
j

L

j j jHCB
=1

−1
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where h.c. denotes the Hermitian conjugate, J is the hopping amplitude 
and L is the total number of lattice sites. b̂ j

†
 and b̂j create and annihilate, 

respectively, a hard-core boson at site j, with the additional constraints 
b bˆ = ˆ = 0j j

†2 2
 to enforce the hard-core condition. The position of site j in 

the lattice is taken to be zj = (j − L/2)a, where a is the lattice spacing.  
In the limit of vanishing site occupancy (n b b= � ˆ ˆ� → 0j j j

†
 at all sites), in 

which the average distance between particles is much larger than a, 
the lattice Hamiltonian (4) is equivalent to the continuum TG limit of 
the LL Hamiltonian (1) (refs. 22,39.). The parameters of the two Hamil-
tonians satisfy the relation  J = ħ2/(2ma2).

The momentum distributions studied experimentally are, up to a 
normalization constant,

∣ ∣ ∣ ∣∑f p t Ψ t b b Ψ t Ψ t b b Ψ t( , ) ∝ � ( ) ˆ ˆ ( )� = e � ( ) ˆ ˆ ( )� , (5)p p
jl

p z z ħ
j l

† i ( − )/ †
j l

where b̂ p
†

 and b̂p create and annihilate, respectively, a hard-core boson 
at momentum p, and ∣Ψ t( )�  is the time-evolving state.

The one-body correlations ∣ ∣Ψ t b b Ψ t� ( ) ˆ ˆ ( )�j i
†

 of the 1D lattice 
hard-core bosons can be computed exactly by mapping the hard- 
core boson Hamiltonian onto non-interacting spinless fermions via 
the Jordan–Wigner transformation, which yields40
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The ‘string operator’ Ŝj l−  ‘counts’ fermion number fluctuations between 
positions zj and zl, and we note that Ψ t( )�∣  was written in the main text 
in terms of fermion creation operators in rapidity space, ĉθ

†. Recall that 
∑c cˆ = e ˆθ j

θz ħ
j

† i / †j .
Plugging equation (6) in equation (5), one can see that f(p, t) is dom-

inated by the non-local real-space correlation function C(ℓp, t), namely, 
that f(p, t) ≈ C(ℓp, t), where ∑C t Ψ t c S c Ψ t( , ) ≡ � ( ) ˆ ˆ ˆ ( )�p j j a j a

†
/ + /pp

ℓ ∣ ∣ℓ ℓ  
involves the quantum fluctuations in the number of fermions over a 
length scale ℓp = 2ħπ/p. C(ℓp, t) is the non-local real-space correlation 
function mentioned in the main text in the context of the theoretical 
discussion about local prethermalization.

Exact numerical calculations of equation (5) are carried out using 
properties of Slater determinants39,41. For the ground-state calculations, 
we choose the lattice spacing to be a = 5 × 10−9 m and simulate systems 
with up to L = 12,000 lattice sites. We verify that lattice effects are negli-
gible by doing some of the calculations on a lattice with twice as large a 
and checking that the results do not change within the desired accuracy. 
Owing to the much higher computational cost of the finite-temperature 
calculations41, the finite-temperature data presented in Extended Data 
Figs. 5 and 9 were obtained for a = 3.2 × 10−8 m (a = 4 × 10−8 m) on a lattice 
with L = 1,500 sites for T = 5 nK (10 nK).

Our numerical calculations start at t = 0 from the ground (or 
finite-temperature) state of equation  (4) with N particles and a 
Gaussian-shaped trapping potential

U z U
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where U0 is the strength of the Gaussian trap and W is the trap width. 
As in the experiments, the quench is implemented by evolving the 
initial state under Hamiltonian (4) with the addition of the Bragg pulse 
potential (characterized by an amplitude Upulse and a wave number k)

U z U kz( ) = cos ( ), (8)pulse pulse
2

for a time tpulse. At times t = tpulse + tev, the system evolves under the ini-
tial Hamiltonian (7), and it is during those times that we calculate the 
momentum and rapidity distributions. For Figs. 1 and 3 and Extended 
Data Figs. 1, 3, 5, 6 and 9, we use tpulse = 6 μs, as in the experiment. Figure 4 
and Extended Data Figs. 8c,d all use k = 4k0 to shorten the hydrodynami-
zation timescale relative to the local prethermalization timescales. To 
minimize many-body evolution during the Bragg pulse, we decrease 
tpulse to 1 μs in those calculations, while increasing Upulse to keep the 
fraction of atoms in the central peak fixed.

Data availability
The data for all the figures can be found at https://doi.org/10.7910/
DVN/KFGNRH. Source data are provided with this paper.
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Extended Data Fig. 1 | Theoretical momentum distributions. Calculations 
are done for a single 1D tube in the TG limit at zero temperature. We use the same 
trap and quench parameters as in the γ = 2.30  experiment, and choose the atom 

number in the tube to be N = 32 in order to match the experimental average 
energy density. These curves match the experimental evolution times in Fig. 1.



Extended Data Fig. 2 | Experimental rapidity distributions for γ 2.3=0  at a 
sequence of times after the Bragg scattering quench. The central part of the 
rapidity distribution does not appreciably change over 1.5 ms, which is less 
than 10% of the trap oscillation period. The rapidities measurement for the side 
peaks are slightly distorted by the fact that the flat potential does not extend 
far enough for atoms moving that fast (after they have moved approximately  

20 μm, they are accelerated slightly). Still, since the distortion is approximately 
the same for all times within the first approximately 0.5 ms, the fact that the 
measured distribution does not change implies that that part of the rapidity 
distribution also remains constant. After approximately1 ms, the side peaks 
start to be noticeably slowed as they climb up the potential of the Gaussian 
axial trap.
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Extended Data Fig. 3 | Theoretical rapidity distributions. These simulations 
are done for a single 1D tube in the TG limit at zero temperature with same trap 
and quench parameters as in the γ = 2.30  experiment. The atom number in the 

tube is chosen to be N = 32 in order to match the experimental average energy 
density. These curves match the experimental evolution times of Extended 
Data Fig. 2.



Extended Data Fig. 4 | Integrated experimental rapidity energy. The curves 
are extracted from the rapidity profiles for γ = 2.30  integrating over different  
0.2 ħk wide rapidity groups. The different colours denote different rapidity 
groups (as in Fig. 3), defined in the key. For the average rapidity θ ħk ħk= 0.5 − 1.3  
curves, we have horizontally shifted the points for times longer than tev = 20 μs 

in order to better resolve the different rapidity group energies at the same 
time. The dashed lines show the average energy for each rapidity group.  
There is no detectable change in the energy of each rapidity group in the first 
approximately 300 μs, in stark contrast to the 3 dB-scale rapid changes in the 
energies associated with momentum groups in Fig. 3b.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Effect of finite temperature on momentum 
distributions and integrated kinetic energy. a–c, Theoretical momentum 
distributions for a single 1D tube in the TG limit at 0 nK, 5 nK and 10 nK, 
respectively (see Methods). We use the same trap and quench parameters as in 
the γ = 3.40  experiment, and choose the atom number in the tube to be N = 29 to 
match the experimental average energy density. These temperatures are the 
highest we expect there to be in the experiment. One can see that the effect is 
mostly to smooth out the sharp peaks. Note also that similar smoothing also 
results from finite time-of-flight in the experiment [24]. d–f, Corresponding 

theoretical integrated kinetic energy at 0 nK, 5 nK and 10 nK, respectively.  
Each curve shows the time evolution of the integrated energy in a different  
0.2 ħk0 wide momentum group. Curves in the same momentum group have 
very similar shapes at zero and finite temperatures. Since hydrodynamization 
involves a much larger energy scale than that associated with these 
temperatures, it is not surprising that temperature does not significantly 
affect the signatures of hydrodynamization. We conclude that the differences 
between the experimental and theoretical results in Fig. 3 are not a result of 
finite temperature effects.
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Extended Data Fig. 6 | The time evolution of the occupations (O) of different 
momentum groups within the central peak. a, Experimental curves for γ = 2.30  
are plotted on a log scale. Each curve is obtained by integrating the area of the 
normalized momentum distribution within the designated momentum range. 
Different colours denote the different momentum groups as shown in the 
legend. The last three momentum groups, 0.30 − 0.36 ħk, 0.36 − 0.42 ħk, and 
0.42 − 0.48 ħk, have twice the integration range, so their occupations are 
divided by 2. b, Theoretical curves for a single 1D gas in the TG limit with the 

same average energy as in the experiment with γ = 2.30 . In both the experiment 
and the theory, the occupation of higher momentum groups evolves faster 
than the lower ones, as expected for local prethermalization. The fact that  
each of these curves has a different shape makes it difficult to quantitatively 
compare time constants among them. The theoretical curves evolve more than 
twice as fast as the experimental curves, presumably reflecting the difference 
between infinite and finite g (see Eq. (1)). k = k0 for the experiment and k = 4k0 
for the theory.



Extended Data Fig. 7 | Time evolution of the FWHM. a, The evolution of the 
FWHM of the central peak in the momentum distributions after the Bragg 
scattering quench for different coupling strengths. To a greater degree than 
for the p50(tev) curves of Fig. 3, these curves all have different shapes. b, The 
evolving momentum distribution of the central peak for γ = 0.940 . These curves 

correspond to the first five points of the orange curve in a. The momentum 
distribution clearly evolves during the first 0.05 ms, even though the FWHM 
does not change. This illustrates that the FWHM is not a reliable marker of the 
evolution of these momentum distributions.
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Extended Data Fig. 8 | Relationships among pf, τpf
, and ϵ. a, Experimental 

time constants associated with p40 (red circles), p50 (black squares), and p60 
(blue triangles) as functions of k �1/ . As in all the experiments presented in  
this paper, k is fixed at k0. The time constants are extracted from curves like 
those in Fig. 4a (see Methods). The dashed lines are least-squares linear fits; the 
intercepts are −2.5 ± 5.6, −5.8 ± 4.9, −6.0 ± 3.5 for p40, p50, and p60, respectively. 
The data are consistent with linear relationships between the time constant 
associated with each pf and the inverse of the square root of average energy per 
particle. For a given momentum distribution, the actual values of p40 and p60 
span a range of ~ ± 30% around the steepest part of the distribution (at ~ p50).  
b, Experimental p50 vs �. The green triangles, magenta squares, and orange 
circles correspond to the initial (pi

50), middle (pm
50), and final (p e

50) values of p50 
for each experimental condition, extracted from Fig. 4a. The dashed lines are 
least-squares linear fits; the intercepts are (3.5 ± 0.9) × 10−2, (1.7 ± 0.6) × 10−2, 
and (3.8 ± 4.4) × 10−3 for pi

50, pm
50, and p e

50, respectively. The pi
50 points at the 

lowest ϵ (highest γ0) conditions are more likely to be affected by finite-size 

corrections to their momentum distributions. The data show a linear 
relationship between each measured value and � . c, Theoretical time 
constants obtained from the p40, p50, and p60 curves simulated with k = 4k0.  
The time constants are obtained from curves like those in Fig. 4b. The error 
bars are smaller than the marker size. The solid lines are least-squares linear 
fits; the intercepts are −0.065 ± 0.047, − 0.47 ± 0.13, and −0.67 ± 0.10 for p40, 
p50, and p60, respectively. d, Theoretical p50 vs �, simulated with k = 4k0. The 
intercepts are (14 ± 1.3) × 10−4, (2.7 ± 0.53) × 10−4, and (−19 ± 1.2) × 10−4, for pi

50, 
pm

50, and p e
50, respectively. The momentum feature that is most clearly 

proportional to �  is pm
50. Since that is the midpoint value of p50 during the 

evolution, it is likely to be close to p50, the effective momentum to which the p50 
measurement is sensitive. Taken all together, this figure shows that, for p50, the 
time constants are proportional to �1/ , which is in turn proportional to the 
characteristic momentum being measured. We have repeated the entire 
analysis for p40 and p60 and the conclusions are the same.



Extended Data Fig. 9 | Effect of the average over 1D gases and of finite 
temperature on p50. We plot theoretical simulations of p50 in the TG limit  
with the same trap and quench parameters as in the γ = 3.40  experiment. For  
the average over 1D gases, we use the Thomas-Fermi distribution with 
experimentally measured RTF = 23 μm and a total particle number of Ntot =  
2.75 × 105 (see Methods). To simplify the calculations, we round the particle 
number in each tube in steps of 5. The circles show the results of ground  
state simulations for a single tube with N = 29 particles (which matches the 

experimental average energy density). The squares show the results of  
ground state simulations after averaging over all the 1D gases, as occurs in  
the experimental setup. The triangles (stars) show simulations for a single  
tube with N = 29 particles at a temperature of T = 5 nK (10 nK). We did the finite 
temperature simulations with a larger discretization a = 3.2 × 10−8 m (a = 4 ×  
10−8 m) due to numerical limitations (see Methods). The results show no 
significant changes in the time constant due to either the average over tubes  
or finite temperature.
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