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SUMMARY

CRISPR screens are used extensively to systematically interrogate the phenotype-to-genotype problem. In
contrast to early CRISPR screens, which defined core cell fitness genes, most current efforts now aim to iden-
tify context-specific phenotypes that differentiate a cell line, genetic background, or condition of interest,
such as a drug treatment. While CRISPR-related technologies have shown great promise and a fast pace
of innovation, a better understanding of standards and methods for quality assessment of CRISPR screen
results is crucial to guide technology development and application. Specifically, many commonly used met-
rics for quantifying screen quality do not accurately measure the reproducibility of context-specific hits. We
highlight the importance of reporting reproducibility statistics that directly relate to the purpose of the screen
and suggest the use of metrics that are sensitive to context-specific signal. A record of this paper’s trans-

parent peer review process is included in the supplemental information.

INTRODUCTION

CRISPR screens see widespread use in the functional geno-
mics community for interrogating gene function. Most promi-
nently, loss-of-function CRISPR screens measure how the
perturbation of each individual gene, across a library of tar-
geted genes, affects cell fitness within a pool of cells. Each
gene’s measurement is, in essence, composed of three ele-
ments: a fitness effect common to all cell types, a fitness ef-
fect specific to the biological context of the experiment
(including cell type), and measurement error. Focusing on
the first element, CRISPR screens completed across hun-
dreds of different human cell types have now definitively iden-
tified the core genes that are essential across many cell
types.”” Given that the core essential genes have been
well-established, many CRISPR loss-of-function screens
now focus on identifying genes that are essential in specific
contexts, including different cell types, genetic backgrounds,
or environmental conditions.’*® Context-specific gene es-
sentiality is important to explore because it can potentially
help to guide functional annotation of the majority of genes
in the human genome or elucidate disease mechanisms and
therapy possibilities. However, the reproducibility of the
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context-specific effects discovered by CRISPR screens is
inconsistently reported. Biological replicate screen reproduc-
ibility is typically reported using correlation measures on the
level of normalized readcount data or fitness effects. At those
processing steps, the data largely reflects covariation due to
the guide RNA (gRNA) representation in the library and/or
the consensus (not context-specific) gene essentiality,
respectively—neither provides an accurate estimate of the
reproducibility of context-specific effects, which is often
the main focus of the screen. Moreover, the interpretation of
the commonly used metric, a correlation coefficient, is unclear
due to the typical sparsity of effects in such screens.

RESULTS AND DISCUSSION

To illustrate our point, we assess alternative reproducibility
metrics across data processing levels of differential genome-
wide CRISPR-Cas9 screens to identify genetic interactions
(Gls) with the fatty acid synthase (FASN).® First, we report the
Pearson correlation coefficient (PCC) between independently
replicated screens at the following points of data processing:
starting gRNA abundance, end gRNA abundance, a fitness
score reflecting the log2 fold change (LFC) between the end
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and starting gRNA abundance, the context-specific effect as
measured by the differential LFC (dLFC; raw Gl score), and,
finally, a fully normalized dLFC score (expressed as the quanti-
tative genetic interaction [qGl] score; see Aregger et al.” for de-
tails) (Figure 1A).

Within-context (FASN knockout [KQ]) replicate correlations
were highest for starting readcounts (r = 0.97 for gRNA, r =
0.97 for gene-level measures), reflecting the fact that the
gRNA library distribution is reproducible (Figure 1B).
Removing this library effect from the endpoint readcounts
to obtain LFC fitness values also results in high PCCs at
the gene-level (r = 0.92) and slightly lower gRNA-level
PCCs of 0.82 (Figure 1B). This shows that both unwanted
technical features of the experiment and general fitness ef-
fects are highly reproducible. However, in this context, we
aim to identify Gls with FASN, i.e., FASN-specific fitness ef-
fects, and thus all of the measures above fail to measure
the reproducibility associated with the focus of our screen.
Once dLFC values are computed between the FASN KO
query and wild-type reference screens, the PCC between
replicate screens drops substantially to 0.3 (gRNA-level)
and 0.5 (gene-level), and further to 0.21 (gRNA-level) and
0.42 (gene-level) when experimental artifacts are computa-
tionally normalized, which is reflected in the qGl score (Fig-
ure 1B). In summary, the replicate correlations decrease
with more accurate quantification of the biological signal
of interest, which is context-specific effects (in this case,
Gls). Importantly, fitness score (LFC)-based replicate corre-
lations cannot approximate context-specific effect reproduc-
ibility (Figure S1A-S1C), and such comparisons are particu-
larly problematic for comparative evaluation of data from
different sets of genes or different cell models.

To illustrate why focusing on the appropriate screen statis-
tics is important for reporting reproducibility, we further
analyzed the FASN KO but compared it with five non-FASN
KO screens. Under the simple assumption that biological rep-
licates of the same genetic screen should exhibit more similar-
ity than genetic screens with different query mutations, we
computed a score that captures the similarity of two or
more replicates of the same screen relative to the similarity
of different screens, which we will subsequently refer to as
the “within-vs.-between context replicate correlation” (WBC)
score (see STAR Methods). Despite their high correlations,
readcounts and LFC data did not distinguish within-context
(same KO) replicates from between-context (different KO)
pairs (Figure 1C), confirming that the high similarity does not
indicate reproducibility of the main quantity of interest. In
contrast, despite low within-context replicate PCCs, the
dLFC measure exhibited strong WBC scores (Z > 3), and
these were further improved in the gGl score (Figure 1C).
We note that only the context-specific scores (dLFC and
qGl) capture the biologically relevant signals in this case,
which are Gls with the FASN query mutation. For example,
only dLFC and qGl scores are able to identify the gene
LUR1 as a top interacting partner (Figure 1D), which was
recently characterized as playing a functional role in lipid
metabolism with FASN.° Using simple replicate PCC as a
measure of reproducibility, one would conclude that these
context-specific scores are of lower quality than the less bio-
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logically relevant scores from earlier stages of data process-
ing, but a context-specific reproducibility score such as the
WBC score suggests the opposite. Both the metric one choo-
ses to quantify reproducibility and the stage of data process-
ing at which this measurement is taken are important for mak-
ing accurate conclusions about data quality.

To demonstrate the generality of our findings beyond Gi
screens, we performed a similar analysis on the reproducibility
of cell-line-specific effects in 693 screens within the Cancer
Dependency Map (DepMap)."® We made the assumption
that screens performed in the same cell line (replicate screens
in this case) contain context (cell line)-specific effects that
distinguish a given cell line from other cell lines and that those
effects are quantified by dLFC rather than LFC values. We
tested how the PCC and WBC quantify screen replication
and how those metrics change when we focus on the cell-
line-specific (dLFC) signal. Again, we found that the within-
context (same cell line) replicate correlation decreased sub-
stantially between the fitness effect (LFC; mean r = 0.81)
and the cell-line-specific deviation from the consensus fitness
profile (ALFC; mean r = 0.47) (Figure 1E). In contrast, the WBC
score indicates that the dLFC metric reflects the context-spe-
cific signal with much higher quality (Figure 1F), which is the
main goal in building such a cancer dependency map. Specif-
ically, significant (Z > 3) and highly significant (Z > 5) repro-
ducibility scores for cell-line-specific effects are found for
99.9% and 91.3% of all cell lines by using the dLFC metric,
respectively, while only 10.1% and 1.2% of cell lines reach
the same significance level when using the LFC metric (Fig-
ure 1F). A metric like the WBC score provides additional res-
olution compared with simple correlation measures, empha-
sizing the reproducibility of context-specific effects
(Figures 1G-11 and S1D). We note that the antagonistic rela-
tionship between replicate correlation and data normalization
extends to non-CRISPR screens, including the most compre-
hensive Gl data to date, recorded in yeast (Figures S2A and
SQB).m’”

Perhaps one of the reasons why informative reproducibility
measures are not consistently reported is that they tend to be
relatively low, which may be viewed as evidence for poor quality
data. How high should we expect replicate correlation to be for a
high-quality CRISPR screen? Global metrics such as the PCC
are highly impacted by the sparsity of the signal one is
measuring, and in most cases, one would expect context-spe-
cific genetic effects to be rare.>'° For instance, simulated
genome-wide screening data (~18k genes) with normally distrib-
uted noise and 18 (0.1% density) or 180 (1% density) strong
(120) true hits, densities typical of context-specific screens,
would result in a PCC of 0.13 and 0.59, respectively. In contrast,
a hit density of 10%, which is more typical for pure fitness phe-
notypes in genome-wide screens, results in a PCC of 0.93 (Fig-
ure 1J). Thus, we should expect low PCC measures in genome-
scale screens, even where a small number of hits are highly
reproducible, due to the sparsity of context-specific fitness
effects.

We note that there have been other complementary efforts
to establish best practices for conducting CRISPR screens
and analyzing the resulting data.”''® In particular, Behan
et al. recognized the challenges of computing correlation
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Figure 1. Reproducibility metrics for context-specific signal in CRISPR screens

(A) Summary of the context-specific CRISPR-Cas9 screening and differential effect identification process.

(B) Between-replicate Pearson correlation coefficients (PCCs) for start and endpoint readcount data, the log, fold change (LFC) thereof, and the differential LFC
(dLFC) and Gl scores. Bars represent the mean of the three pairwise comparisons, and dots represent the individual pairs. Screens were independently
performed (starting from preparation and transfection of the gRNA library).

(C) Within-FASN KO replicate to between FASN KO and non-FASN KO screen ratio of PCCs (WBC; see STAR Methods for details). Bars and dots represent the
same as explained in (B).

(D) Ranking of LUR1 (previous C120rf49) among the 17,804 genes screened in FASN KO cells at each data processing step as defined in Aregger et al.? Ranks are
means of the three biological replicates.

(E and F) Between-replicate PCC (E) and WBC (F) of LFC and dLFC data from cancer dependency map (DepMap) genome-wide screens in 693 cell lines.

(G and H) Comparison of between-screen replicate PCCs on LFC and dLFC level for each of the 693 DepMap screens with the dLFC WBC. The four cell lines
shown in (I) are highlighted.

(I) Reproducibility of dLFC effects in four cell lines with different sets of replicate PCCs and WBCs. The consensus fitness is the per-gene mean LFC value across
allreplicates and 693 cell lines. The cell-line-specific fitness is the per-gene LFC measured in each given cell line (SKBR3, violet; HCC1187, purple; MEL202, cyan;
A2780, green). Circle size indicates each gene’s dLFC reproducibility and corresponds to the per-gene dLFC product between replicate screens.

(J) PCC between simulated screening data with normally distributed noise at increasing numbers of hits with weak, medium, and strong amplitude. Hit strength is
defined as a multiple of the standard deviation of the noise distribution (o).
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between replicate screens based on whole dependency pro-
files. Specifically, they noted that including the core essential
genes in this calculation inflates the correlation such that rep-
licates of the same screen are generally less distinguishable
from replicates of different screens. Second, they noted that
including guides targeting genes that never showed pheno-
types led to pessimistic estimates of reproducibility due to
the sparsity of signal across the dependency profile. Behan
et al. addressed these issues by pre-processing the data to
find the most variable signal (excluding both core essential
genes and genes with no phenotypes) and to compute corre-
lations on that subset of the data, which provides a more
informative report of the data reproducibility. We address
related issues here, but rather than the pre-filtering of profiles,
which may depend on the specific gRNA library used or a
large collection of screens, we instead suggest that reproduc-
ibility analysis should be performed on scores that capture
context-specific signal (e.g., dLFC). Furthermore, we propose
a new metric, the WBC score, which is more directly interpret-
able than a correlation coefficient when applied to a sparse
profile. Our suggested approach can be applied to a variety
of CRISPR screening contexts.

In conclusion, we highlight the importance of reporting appro-
priate reproducibility statistics for CRISPR screens. Biological
replicate screens should be performed to establish the quality
of data in any screening context and, importantly, the reported
statistics should directly relate to the purpose of the screen. In
addition to standard correlation measures, we suggest the use
of additional metrics, such as the WBC, which are sensitive to
context-specific signal.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

e KEY RESOURCES TABLE
e RESOURCE AVAILABILITY
O Lead contact
O Materials availability
O Data and code availability
e METHOD DETAILS
O Replicate correlation of genome-wide CRISPR-Cas9
screens in HAP1 FASN KO cells
O The within-vs-between context replicate correlation
(WBC) score
O Cancer Dependency Map (DepMap) replicate screen
comparison
O Bin-wise replicate correlation analysis of LFC and qGl
scores
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data

CRISPR screening readcount, log,- Aregger et al.’ GEO: GSE148627
foldchange and qGl data

DepMap gRNA-level log- https://depmap.org/portal/download/ 20Q8: Achilles_logfold_change.csv
foldchange data

SGA yeast fitness and genetic https://boonelab.ccbr.utoronto.ca/ File S3
interaction data condition_sga'’

Software and algorithms

R version 4.2.1 https://www.r-project.org/ NA

Bowtie v0.12.8 http://bowtie-bio.sourceforge.net/ NA
index.shtml

code implementing the WBC score This Paper Method S1

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Maximilian Billmann
(maximilian.billmann@gmail.com).

Materials availability
No materials have been generated for this study.

Data and code availability
All data had been publicly available prior to this study.>®'" The code implementing the WBC score is provided as Method S1. Any
additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Replicate correlation of genome-wide CRISPR-Cas9 screens in HAP1 FASN KO cells

HAP1 genome-wide CRISPR-Cas9 screening data was taken from Aregger et al. The three biological replicates were independently
screened (including gRNA library preparation and transfection). The gRNA-level comparisons use values from 70,006 gRNAs that had
an initial abundance at the start of the experiment of at least 40 readcounts. The gene-level comparisons use values from 17,804
genes, considering a gene whenever at least two gRNA sequences pass all QC thresholds. The fitness scores represent the log2-
fold-change (LFC) between the start and endpoint gRNA abundance. The quantitative genetic interaction (qGl) score represents
the differential fitness effect between a wild-type control and query gene (here FASN) knockout screen after correcting query
gene-unspecific screening artifacts. LFC and qGl scores were generated as described in Aregger et al.’

The within-vs-between context replicate correlation (WBC) score
To define the Within-vs-Between context replicate Correlation (WBC) score for a given screen, its biological replicate correlation is
scaled to its expected background correlation distribution: the mean and standard deviation of its correlation with screens performed
in another context (e.g. query mutation). This converts the correlation coefficients into a metric with an unambiguous statistical inter-
pretation that can be interpreted as a z-score. Notably, each context (e.g. a set of screens done in a cell line within a larger set of
screens covering multiple cell lines) creates its own background correlation distribution. This is important, because even at the
same data processing level, signal sparsity substantially differs between contexts, and the background correlation is dependent
on the abundance of the within-context signal. An example for this trend is illustrated for 693 distinct cell lines taken from the
DepMap (Figures S3A and S3B).

For the example shown in detail in this work, the FASN genetic interaction screens, genome-wide CRISPR-Cas9 screens
completed in isogenic HAP1 cells were divided into those harboring a FASN loss-of-function mutation (n = 3) and those harboring
a mutation different from FASN (n = 5), namely LDLR, SREBF1, SREBF2, ACACA and C120rf49/LUR1. At each data processing

Cell Systems 14, 418-422.e1-e2, May 17, 2023 el
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step, all pairwise Pearson correlation coefficients (PCC) within the FASN KO context and between FASN KO and each of the 5 re-
maining KO contexts were computed. From these comparisons, the mean PCC (p,;;») and the WBC score were computed as
follows:

WBC = Pwithin — Pbetween

Obetween
Where:
N
> b
=1
Pwithin = N
M
Z 14
i=1
Ppetween = M

M —\2
231 (pj - pbetween)
j=

Opetween = M — 1
Here, N refers to the 3 possible pairwise comparisons between FASN replicated screens (within-FASN KO), and M refers to the 15
possible pairwise combinations between FASN replicated screens and LDLR, SREBF1, SREBF2, ACACA and C120rf49/LUR1
screens.
While larger N and M provide more robust estimates of the WBC, we found that WBCs derived from any combination of 2, 3 or 4 of
the LDLR, SREBF1, SREBF2, ACACA and C120rf49/LUR1 screens as well as only using 2 FASN KO screens provided stable mea-
sures of context-specific signal that distinguished scores derived from different stages of data processing (Figures S4A and S4B).

Cancer Dependency Map (DepMap) replicate screen comparison

LFC gRNA data (20Q3 release) was downloaded from the DepMap website [https://depmap.org/portal/download/]. gRNA values
were mapped and mean-summarized per gene to obtain gene-level LFC data (shown in Figure 1E). Only cell lines with at least
two replicates were considered in this analysis. To generate dLFC values, all screens were initially adjusted by quantile-normalizing
gene-level LFC data using the R function normalizeQuantiles. Next, the scores for each gene across all screens were median
centered at 0 so that if a gene was more essential in a cell line compared to its median fitness score, it had a negative score. The
reproducibility of the cell line-specific signal was computed both on LFC and dLFC-level using the within-cell line PCC and the
WBC comparing within-cell line PCCs to between-cell line PCCs.

Bin-wise replicate correlation analysis of LFC and qGl scores

To test how CRISPR screening fitness scores (LFC) affect the reproducibility of context-specific (qGl) scores, each gene was as-
signed to one of five bins with the intent to keep the range of qGlI scores constant in each bin and having five incrementally increasing
ranges of LFC scores in those bins. This was done by moving a window along the vector of qGl scores (representing the mean qGl
score of both replicated screens). In each window, all genes had similar Gl but potentially different LFC scores. Genes with the most
extreme LFC values were assigned to the first bin, genes with the next most extreme LFC values to the second bin and so on, thereby
generating five bins with similar gGl ranges but different LFC ranges.
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