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In brief

Reproducibility measurements are

crucial for data interpretation. The signal

of interest in context-specific CRISPR

screens is often sparse. We show that

sparsity complicates the interpretation of

standard reproducibility measures like

replicate correlation. We provide

recommendations for reporting

reproducibility of CRISPR screens and

present the WBC score as an improved

metric.
ll

mailto:maximilian.billmann@gmail.�com
mailto:chadm@umn.�edu
https://doi.org/10.1016/j.cels.2023.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2023.04.003&domain=pdf


ll
Brief report

Reproducibility metrics
for context-specific CRISPR screens
Maximilian Billmann,1,2,8,* Henry N. Ward,3 Michael Aregger,4,5 Michael Costanzo,5 Brenda J. Andrews,5,6

Charles Boone,5,6 Jason Moffat,5,6,7 and Chad L. Myers1,3,*
1Department of Computer Science and Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
2Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn 53127, Germany
3Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
4National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
5Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
6Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
7Program in Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Research and Learning Centre, 686 Bay Street,
Toronto, ON M5G0A4, Canada
8Lead contact

*Correspondence: maximilian.billmann@gmail.com (M.B.), chadm@umn.edu (C.L.M.)
https://doi.org/10.1016/j.cels.2023.04.003
SUMMARY
CRISPR screens are used extensively to systematically interrogate the phenotype-to-genotype problem. In
contrast to early CRISPR screens, which defined core cell fitness genes,most current efforts now aim to iden-
tify context-specific phenotypes that differentiate a cell line, genetic background, or condition of interest,
such as a drug treatment. While CRISPR-related technologies have shown great promise and a fast pace
of innovation, a better understanding of standards and methods for quality assessment of CRISPR screen
results is crucial to guide technology development and application. Specifically, many commonly used met-
rics for quantifying screen quality do not accurately measure the reproducibility of context-specific hits. We
highlight the importance of reporting reproducibility statistics that directly relate to the purpose of the screen
and suggest the use of metrics that are sensitive to context-specific signal. A record of this paper’s trans-
parent peer review process is included in the supplemental information.
INTRODUCTION

CRISPR screens see widespread use in the functional geno-

mics community for interrogating gene function. Most promi-

nently, loss-of-function CRISPR screens measure how the

perturbation of each individual gene, across a library of tar-

geted genes, affects cell fitness within a pool of cells. Each

gene’s measurement is, in essence, composed of three ele-

ments: a fitness effect common to all cell types, a fitness ef-

fect specific to the biological context of the experiment

(including cell type), and measurement error. Focusing on

the first element, CRISPR screens completed across hun-

dreds of different human cell types have now definitively iden-

tified the core genes that are essential across many cell

types.1,2 Given that the core essential genes have been

well-established, many CRISPR loss-of-function screens

now focus on identifying genes that are essential in specific

contexts, including different cell types, genetic backgrounds,

or environmental conditions.1,3–8 Context-specific gene es-

sentiality is important to explore because it can potentially

help to guide functional annotation of the majority of genes

in the human genome or elucidate disease mechanisms and

therapy possibilities. However, the reproducibility of the
418 Cell Systems 14, 418–422, May 17, 2023 ª 2023 Elsevier Inc.
context-specific effects discovered by CRISPR screens is

inconsistently reported. Biological replicate screen reproduc-

ibility is typically reported using correlation measures on the

level of normalized readcount data or fitness effects. At those

processing steps, the data largely reflects covariation due to

the guide RNA (gRNA) representation in the library and/or

the consensus (not context-specific) gene essentiality,

respectively—neither provides an accurate estimate of the

reproducibility of context-specific effects, which is often

the main focus of the screen. Moreover, the interpretation of

the commonly used metric, a correlation coefficient, is unclear

due to the typical sparsity of effects in such screens.

RESULTS AND DISCUSSION

To illustrate our point, we assess alternative reproducibility

metrics across data processing levels of differential genome-

wide CRISPR-Cas9 screens to identify genetic interactions

(GIs) with the fatty acid synthase (FASN).9 First, we report the

Pearson correlation coefficient (PCC) between independently

replicated screens at the following points of data processing:

starting gRNA abundance, end gRNA abundance, a fitness

score reflecting the log2 fold change (LFC) between the end
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and starting gRNA abundance, the context-specific effect as

measured by the differential LFC (dLFC; raw GI score), and,

finally, a fully normalized dLFC score (expressed as the quanti-

tative genetic interaction [qGI] score; see Aregger et al.9 for de-

tails) (Figure 1A).

Within-context (FASN knockout [KO]) replicate correlations

were highest for starting readcounts (r = 0.97 for gRNA, r =

0.97 for gene-level measures), reflecting the fact that the

gRNA library distribution is reproducible (Figure 1B).

Removing this library effect from the endpoint readcounts

to obtain LFC fitness values also results in high PCCs at

the gene-level (r = 0.92) and slightly lower gRNA-level

PCCs of 0.82 (Figure 1B). This shows that both unwanted

technical features of the experiment and general fitness ef-

fects are highly reproducible. However, in this context, we

aim to identify GIs with FASN, i.e., FASN-specific fitness ef-

fects, and thus all of the measures above fail to measure

the reproducibility associated with the focus of our screen.

Once dLFC values are computed between the FASN KO

query and wild-type reference screens, the PCC between

replicate screens drops substantially to 0.3 (gRNA-level)

and 0.5 (gene-level), and further to 0.21 (gRNA-level) and

0.42 (gene-level) when experimental artifacts are computa-

tionally normalized, which is reflected in the qGI score (Fig-

ure 1B). In summary, the replicate correlations decrease

with more accurate quantification of the biological signal

of interest, which is context-specific effects (in this case,

GIs). Importantly, fitness score (LFC)-based replicate corre-

lations cannot approximate context-specific effect reproduc-

ibility (Figure S1A–S1C), and such comparisons are particu-

larly problematic for comparative evaluation of data from

different sets of genes or different cell models.

To illustrate why focusing on the appropriate screen statis-

tics is important for reporting reproducibility, we further

analyzed the FASN KO but compared it with five non-FASN

KO screens. Under the simple assumption that biological rep-

licates of the same genetic screen should exhibit more similar-

ity than genetic screens with different query mutations, we

computed a score that captures the similarity of two or

more replicates of the same screen relative to the similarity

of different screens, which we will subsequently refer to as

the ‘‘within-vs.-between context replicate correlation’’ (WBC)

score (see STAR Methods). Despite their high correlations,

readcounts and LFC data did not distinguish within-context

(same KO) replicates from between-context (different KO)

pairs (Figure 1C), confirming that the high similarity does not

indicate reproducibility of the main quantity of interest. In

contrast, despite low within-context replicate PCCs, the

dLFC measure exhibited strong WBC scores (Z > 3), and

these were further improved in the qGI score (Figure 1C).

We note that only the context-specific scores (dLFC and

qGI) capture the biologically relevant signals in this case,

which are GIs with the FASN query mutation. For example,

only dLFC and qGI scores are able to identify the gene

LUR1 as a top interacting partner (Figure 1D), which was

recently characterized as playing a functional role in lipid

metabolism with FASN.9 Using simple replicate PCC as a

measure of reproducibility, one would conclude that these

context-specific scores are of lower quality than the less bio-
logically relevant scores from earlier stages of data process-

ing, but a context-specific reproducibility score such as the

WBC score suggests the opposite. Both the metric one choo-

ses to quantify reproducibility and the stage of data process-

ing at which this measurement is taken are important for mak-

ing accurate conclusions about data quality.

To demonstrate the generality of our findings beyond GI

screens, we performed a similar analysis on the reproducibility

of cell-line-specific effects in 693 screens within the Cancer

Dependency Map (DepMap).1,8 We made the assumption

that screens performed in the same cell line (replicate screens

in this case) contain context (cell line)-specific effects that

distinguish a given cell line from other cell lines and that those

effects are quantified by dLFC rather than LFC values. We

tested how the PCC and WBC quantify screen replication

and how those metrics change when we focus on the cell-

line-specific (dLFC) signal. Again, we found that the within-

context (same cell line) replicate correlation decreased sub-

stantially between the fitness effect (LFC; mean r = 0.81)

and the cell-line-specific deviation from the consensus fitness

profile (dLFC; mean r = 0.47) (Figure 1E). In contrast, the WBC

score indicates that the dLFC metric reflects the context-spe-

cific signal with much higher quality (Figure 1F), which is the

main goal in building such a cancer dependency map. Specif-

ically, significant (Z > 3) and highly significant (Z > 5) repro-

ducibility scores for cell-line-specific effects are found for

99.9% and 91.3% of all cell lines by using the dLFC metric,

respectively, while only 10.1% and 1.2% of cell lines reach

the same significance level when using the LFC metric (Fig-

ure 1F). A metric like the WBC score provides additional res-

olution compared with simple correlation measures, empha-

sizing the reproducibility of context-specific effects

(Figures 1G–1I and S1D). We note that the antagonistic rela-

tionship between replicate correlation and data normalization

extends to non-CRISPR screens, including the most compre-

hensive GI data to date, recorded in yeast (Figures S2A and

S2B).10,11

Perhaps one of the reasons why informative reproducibility

measures are not consistently reported is that they tend to be

relatively low, which may be viewed as evidence for poor quality

data. How high should we expect replicate correlation to be for a

high-quality CRISPR screen? Global metrics such as the PCC

are highly impacted by the sparsity of the signal one is

measuring, and in most cases, one would expect context-spe-

cific genetic effects to be rare.8–10 For instance, simulated

genome-wide screening data (�18k genes) with normally distrib-

uted noise and 18 (0.1% density) or 180 (1% density) strong

(12s) true hits, densities typical of context-specific screens,

would result in a PCC of 0.13 and 0.59, respectively. In contrast,

a hit density of 10%, which is more typical for pure fitness phe-

notypes in genome-wide screens, results in a PCC of 0.93 (Fig-

ure 1J). Thus, we should expect low PCC measures in genome-

scale screens, even where a small number of hits are highly

reproducible, due to the sparsity of context-specific fitness

effects.

We note that there have been other complementary efforts

to establish best practices for conducting CRISPR screens

and analyzing the resulting data.2,12,13 In particular, Behan

et al. recognized the challenges of computing correlation
Cell Systems 14, 418–422, May 17, 2023 419
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Figure 1. Reproducibility metrics for context-specific signal in CRISPR screens

(A) Summary of the context-specific CRISPR-Cas9 screening and differential effect identification process.

(B) Between-replicate Pearson correlation coefficients (PCCs) for start and endpoint readcount data, the log2 fold change (LFC) thereof, and the differential LFC

(dLFC) and qGI scores. Bars represent the mean of the three pairwise comparisons, and dots represent the individual pairs. Screens were independently

performed (starting from preparation and transfection of the gRNA library).

(C) Within-FASN KO replicate to between FASN KO and non-FASN KO screen ratio of PCCs (WBC; see STAR Methods for details). Bars and dots represent the

same as explained in (B).

(D) Ranking of LUR1 (previous C12orf49) among the 17,804 genes screened in FASNKO cells at each data processing step as defined in Aregger et al.9 Ranks are

means of the three biological replicates.

(E and F) Between-replicate PCC (E) and WBC (F) of LFC and dLFC data from cancer dependency map (DepMap) genome-wide screens in 693 cell lines.

(G and H) Comparison of between-screen replicate PCCs on LFC and dLFC level for each of the 693 DepMap screens with the dLFC WBC. The four cell lines

shown in (I) are highlighted.

(I) Reproducibility of dLFC effects in four cell lines with different sets of replicate PCCs andWBCs. The consensus fitness is the per-gene mean LFC value across

all replicates and 693 cell lines. The cell-line-specific fitness is the per-gene LFCmeasured in each given cell line (SKBR3, violet; HCC1187, purple; MEL202, cyan;

A2780, green). Circle size indicates each gene’s dLFC reproducibility and corresponds to the per-gene dLFC product between replicate screens.

(J) PCC between simulated screening data with normally distributed noise at increasing numbers of hits with weak, medium, and strong amplitude. Hit strength is

defined as a multiple of the standard deviation of the noise distribution (s).
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between replicate screens based on whole dependency pro-

files. Specifically, they noted that including the core essential

genes in this calculation inflates the correlation such that rep-

licates of the same screen are generally less distinguishable

from replicates of different screens. Second, they noted that

including guides targeting genes that never showed pheno-

types led to pessimistic estimates of reproducibility due to

the sparsity of signal across the dependency profile. Behan

et al. addressed these issues by pre-processing the data to

find the most variable signal (excluding both core essential

genes and genes with no phenotypes) and to compute corre-

lations on that subset of the data, which provides a more

informative report of the data reproducibility. We address

related issues here, but rather than the pre-filtering of profiles,

which may depend on the specific gRNA library used or a

large collection of screens, we instead suggest that reproduc-

ibility analysis should be performed on scores that capture

context-specific signal (e.g., dLFC). Furthermore, we propose

a new metric, the WBC score, which is more directly interpret-

able than a correlation coefficient when applied to a sparse

profile. Our suggested approach can be applied to a variety

of CRISPR screening contexts.

In conclusion, we highlight the importance of reporting appro-

priate reproducibility statistics for CRISPR screens. Biological

replicate screens should be performed to establish the quality

of data in any screening context and, importantly, the reported

statistics should directly relate to the purpose of the screen. In

addition to standard correlation measures, we suggest the use

of additional metrics, such as the WBC, which are sensitive to

context-specific signal.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Replicate correlation of genome-wide CRISPR-Cas9

screens in HAP1 FASN KO cells

B The within-vs-between context replicate correlation

(WBC) score

B Cancer Dependency Map (DepMap) replicate screen

comparison

B Bin-wise replicate correlation analysis of LFC and qGI

scores
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

CRISPR screening readcount, log2-

foldchange and qGI data

Aregger et al.9 GEO: GSE148627

DepMap gRNA-level log-

foldchange data

https://depmap.org/portal/download/ 20Q3: Achilles_logfold_change.csv

SGA yeast fitness and genetic

interaction data

https://boonelab.ccbr.utoronto.ca/

condition_sga11
File S3

Software and algorithms

R version 4.2.1 https://www.r-project.org/ NA

Bowtie v0.12.8 http://bowtie-bio.sourceforge.net/

index.shtml

NA

code implementing the WBC score This Paper Method S1
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Maximilian Billmann

(maximilian.billmann@gmail.com).

Materials availability
No materials have been generated for this study.

Data and code availability
All data had been publicly available prior to this study.8,9,11 The code implementing the WBC score is provided as Method S1. Any

additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Replicate correlation of genome-wide CRISPR-Cas9 screens in HAP1 FASN KO cells
HAP1 genome-wide CRISPR-Cas9 screening data was taken from Aregger et al.9 The three biological replicates were independently

screened (including gRNA library preparation and transfection). The gRNA-level comparisons use values from70,006 gRNAs that had

an initial abundance at the start of the experiment of at least 40 readcounts. The gene-level comparisons use values from 17,804

genes, considering a gene whenever at least two gRNA sequences pass all QC thresholds. The fitness scores represent the log2-

fold-change (LFC) between the start and endpoint gRNA abundance. The quantitative genetic interaction (qGI) score represents

the differential fitness effect between a wild-type control and query gene (here FASN) knockout screen after correcting query

gene-unspecific screening artifacts. LFC and qGI scores were generated as described in Aregger et al.9

The within-vs-between context replicate correlation (WBC) score
To define the Within-vs-Between context replicate Correlation (WBC) score for a given screen, its biological replicate correlation is

scaled to its expected background correlation distribution: themean and standard deviation of its correlation with screens performed

in another context (e.g. query mutation). This converts the correlation coefficients into a metric with an unambiguous statistical inter-

pretation that can be interpreted as a z-score. Notably, each context (e.g. a set of screens done in a cell line within a larger set of

screens covering multiple cell lines) creates its own background correlation distribution. This is important, because even at the

same data processing level, signal sparsity substantially differs between contexts, and the background correlation is dependent

on the abundance of the within-context signal. An example for this trend is illustrated for 693 distinct cell lines taken from the

DepMap (Figures S3A and S3B).

For the example shown in detail in this work, the FASN genetic interaction screens, genome-wide CRISPR-Cas9 screens

completed in isogenic HAP1 cells were divided into those harboring a FASN loss-of-function mutation (n = 3) and those harboring

a mutation different from FASN (n = 5), namely LDLR, SREBF1, SREBF2, ACACA and C12orf49/LUR1. At each data processing
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step, all pairwise Pearson correlation coefficients (PCC) within the FASN KO context and between FASN KO and each of the 5 re-

maining KO contexts were computed. From these comparisons, the mean PCC (rwithin) and the WBC score were computed as

follows:

WBC =
rwithin � rbetween

sbetween

Where:

rwithin =

PN
i = 1

ri

N

rbetween =

PM
j = 1

rj

M

sbetween =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM
j = 1

ðrj � rbetweenÞ2

M � 1

vuuut

Here, N refers to the 3 possible pairwise comparisons between FASN replicated screens (within-FASN KO), and M refers to the 15

possible pairwise combinations between FASN replicated screens and LDLR, SREBF1, SREBF2, ACACA and C12orf49/LUR1

screens.

While larger N and M provide more robust estimates of the WBC, we found that WBCs derived from any combination of 2, 3 or 4 of

the LDLR, SREBF1, SREBF2, ACACA and C12orf49/LUR1 screens as well as only using 2 FASN KO screens provided stable mea-

sures of context-specific signal that distinguished scores derived from different stages of data processing (Figures S4A and S4B).

Cancer Dependency Map (DepMap) replicate screen comparison
LFC gRNA data (20Q3 release) was downloaded from the DepMap website [https://depmap.org/portal/download/]. gRNA values

were mapped and mean-summarized per gene to obtain gene-level LFC data (shown in Figure 1E). Only cell lines with at least

two replicates were considered in this analysis. To generate dLFC values, all screens were initially adjusted by quantile-normalizing

gene-level LFC data using the R function normalizeQuantiles. Next, the scores for each gene across all screens were median

centered at 0 so that if a gene was more essential in a cell line compared to its median fitness score, it had a negative score. The

reproducibility of the cell line-specific signal was computed both on LFC and dLFC-level using the within-cell line PCC and the

WBC comparing within-cell line PCCs to between-cell line PCCs.

Bin-wise replicate correlation analysis of LFC and qGI scores
To test how CRISPR screening fitness scores (LFC) affect the reproducibility of context-specific (qGI) scores, each gene was as-

signed to one of five bins with the intent to keep the range of qGI scores constant in each bin and having five incrementally increasing

ranges of LFC scores in those bins. This was done by moving a window along the vector of qGI scores (representing the mean qGI

score of both replicated screens). In each window, all genes had similar qGI but potentially different LFC scores. Genes with themost

extreme LFC values were assigned to the first bin, genes with the next most extreme LFC values to the second bin and so on, thereby

generating five bins with similar qGI ranges but different LFC ranges.
e2 Cell Systems 14, 418–422.e1–e2, May 17, 2023

https://depmap.org/portal/download/

	CELS988_proof_v14i5.pdf
	Reproducibility metrics for context-specific CRISPR screens
	Introduction
	Results and discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Replicate correlation of genome-wide CRISPR-Cas9 screens in HAP1 FASN KO cells
	The within-vs-between context replicate correlation (WBC) score
	Cancer Dependency Map (DepMap) replicate screen comparison
	Bin-wise replicate correlation analysis of LFC and qGI scores





