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ARTICLE INFO ABSTRACT

Diarrheal disease is the second largest cause of mortality in children younger than 5, yet our ability to anticipate
and prepare for outbreaks remains limited. Here, we develop and test an epidemiological forecast model for
childhood diarrheal disease in Chobe District, Botswana. Our prediction system uses a compartmental suscep-
tible-infected-recovered-susceptible (SIRS) model coupled with Bayesian data assimilation to infer relevant
epidemiological parameter values and generate retrospective forecasts. Our model inferred two system para-
meters and accurately simulated weekly observed diarrhea cases from 2007-2017. Accurate retrospective
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forecasts for diarrhea outbreaks were generated up to six weeks before the predicted peak of the outbreak, and
accuracy increased over the progression of the outbreak. Many forecasts generated by our model system were
more accurate than predictions made using only historical data trends. Accurate real-time forecasts have the
potential to increase local preparedness for coming outbreaks through improved resource allocation and
healthcare worker distribution.

1. Introduction

Diarrhea is the second leading cause of death in children under 5
years of age worldwide; it kills more children than HIV/AIDS, measles,
and malaria combined (Bryce et al., 2005). Rates of under-5 diarrhea in
Africa are particularly high, with an estimated incidence of 3.3 episodes
of diarrheal disease per child each year, and 11% of under-5 mortality
caused by diarrhea (Fischer Walker et al., 2013; Walker et al., 2012).

Botswana is a politically stable, middle-income country in southern
Africa whose government has invested in free healthcare and piped
water for its citizens. However, the country still experiences seasonal
outbreaks of diarrhea that result in under-5 morbidity and case fatality
rates as high as 30% and 20%, respectively (Statistics Botswana and
Ministry of Health, 2009). Annual outbreaks occur during the pro-
nounced wet and dry seasons (Alexander et al., 2013, 2012), and attack
rates are highest for children younger than one year (Kaltenthaler et al.,
1996; Mach et al., 2009). Further, rates of diarrhea incidence vary
considerably from year-to-year. For instance, in 2006 Botswana ex-
perienced a diarrhea outbreak that resulted in a four-fold increase in
the number of cases of diarrhea among young children, and 25% more
diarrheal deaths than in the previous two years (Mach et al., 2009).
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Hospitals and clinics in Botswana have limited resources and are
understaffed. Hence, few resources are available to prospectively in-
vestigate outbreak dynamics (Alexander and Blackburn, 2013). During
the 2006 outbreak, the Botswana Ministry of Health announced the
occurrence of the outbreak a month after it began and had no projec-
tions of the outbreak trajectory, leaving hospitals and clinics un-
prepared for its magnitude. Real-time forecasts of the outbreak timing,
scale, and progression might have prevented diarrhea cases and deaths
had such predictions been available and well-integrated into public
health and clinical response.

Diarrhea is a syndrome that can be caused by a variety of viruses,
bacteria, and parasites. To date, the etiology of childhood diarrhea in
Botswana is not well characterized. Several studies have investigated
pathogen specific diarrhea, but they rely on small convenience samples.
One study found that 20% and 3.5% of children with diarrhea tested
positive for Shigella and Salmonella, respectively (Urio et al., 2001),
whereas other analyses estimated the prevalence of Shigella to be 4%
(Rowe et al., 2010), and the prevalence of Salmonella to be 38% (Creek
et al., 2010). Rotavirus prevalence estimates range from 6% to 78%
(Basu et al., 2003; Creek et al., 2010; Welch et al., 2013), and pre-
valence estimates for Cryptosporidium range from 2% to 60% (Alexander

Received 16 November 2018; Received in revised form 8 July 2019; Accepted 13 September 2019

Available online 16 September 2019

1755-4365/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).


https://doi.org/10.1016/j.epidem.2019.100372
http://www.sciencedirect.com/science/journal/17554365
https://www.elsevier.com/locate/epidemics
mailto:akheaney@berkeley.edu
https://doi.org/10.1016/j.epidem.2019.100372

A K. Heaney, et al.

et al., 2012; Creek et al., 2010; Goldfarb et al., 2014; Rowe et al., 2010).

Here we develop and test an epidemiological forecasting model for
childhood diarrhea in Botswana. Due to the inconsistencies in diarrhea
etiology estimation, we use a compartmental model to represent the
dynamics of diarrhea as a syndrome. While compartmental models are
traditionally used to characterize the propagation of a single pathogen,
they have been previously used to accurately forecast influenza-like-
illness syndrome (Shaman and Karspeck, 2012; Biggerstaff et al., 2016).
However, parameter estimations derived from model simulations of
syndromic data cannot be interpreted in a traditional manner as they
represent the transmission dynamics of multiple pathogens. Here we
focus on two syndromic parameters: 1) the basic reproduction number
Ry and 2) the typical period between infections ¢. Traditionally, R,
represents the number of secondary infections resulting from one in-
fected individual in a completely susceptible population, but in our
analysis it describes the force of transmission for one or more pathogens
(Diekmann and Heesterbeek, 2000). Similarly, J traditionally re-
presents the rate of waning immunity to a pathogen but here we use it
to estimate the time between diarrhea infections. Because these para-
meters represent the dynamics of multiple pathogens, we allow their
flexible adjustment over time in order to capture seasonal and annual
variations in multi-pathogen transmission.

Our compartmental model is coupled with Bayesian inference, or
data assimilation, methods that adjust the model state variables and
parameters to optimal values using time series observations of diarrhea
incidence. This process enables ensemble forecasting of future condi-
tions with the optimized model. In effect, the data assimilation ‘trains’
the model to represent current outbreak dynamics and thus facilitates
better forecasting of future conditions, including prediction of outbreak
peak timing and attack rate. Similar model-inference and inference
frameworks have been successfully used to estimate critical epidemio-
logical parameters and generate real time forecasts for human influenza
(Dukic et al., 2012; Ong et al., 2010; Shaman et al., 2013a), Ebola
(Shaman et al., 2014), West Nile virus (DeFelice et al., 2017) and
Dengue (van Panhuis et al., 2014), but notably have not been applied to
diarrheal disease.

Here, we present the diarrhea model-inference system, syndromic
parameter estimates, and retrospective seasonal forecasts generated for
Chobe District, Botswana during 2007-2017. Our results have im-
plications for outbreak preparedness in low resource environments
where diarrheal disease continues to present a critical public health
threat.

2. Methods
2.1. Study site

Botswana is a semi-arid, landlocked country in southern Africa. The
country has a subtropical climate with annual wet (November-March)
and dry (April-October) seasons. Intra- and inter-annual precipitation
variability are high, resulting in frequent droughts and flooding
(Tsheko, 2003). This study focuses on the Chobe District, located in
northeastern Botswana. Most of the population obtains piped water
through direct reticulation or public taps (Alexander et al., 2013).
While health services are provided by the Government of Botswana at a
nominal charge, the district only contains one primary hospital, three
clinics, and 12 health posts (Alexander et al., 2013) to serve about
25,000 people (Central Statistics Office of Botswana, 2011). Kasane
Primary Hospital, the largest healthcare provider in the district, has just
29 beds (Statistics Botswana and Ministry of Health, 2009). Further-
more, there is very limited staffing within district hospitals, clinics, and
health posts (Alexander et al., 2013).

2.2. Weekly diarrhea observations

Weekly under-5 diarrhea case reports were obtained for 10 health
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facilities (the Kasane primary hospital and 9 health posts) in Chobe
District from the Botswana Integrated Disease Surveillance and
Response Program (IDSR, 2007-2017), which collates weekly numbers
of children under five presenting to district health facilities with diar-
rhea. A diarrhea case was defined as the occurrence of at least three
loose stools in a 24 hour period within the four days preceding the
healthcare facility visit. Case data represent summary clinical diagnoses
of attending physicians or nurses in Government medical facilities in
the District.

2.2.1. Correcting for missing under-5 diarrhea data

In the IDSR record, missing data exist for each of the 10 reporting
clinics and hospitals. Weeks with no reports (i.e., all 10 health facilities
not reporting) were not included in the analysis (13 of 551 weeks). For
remaining weeks (i.e., data from 1 to 10 health facilities), we used the
total number of cases reported in a given week and divided this by the
number of health facilities reporting that week. This provides a weekly
estimate of total under-5 diarrhea cases per health facility reporting,
but does not account for differences in average patient volume between
reporting locations.

2.2.2. Smoothing under-5 diarrhea observations

To decrease the level of noise in the diarrhea observations, we
generated a three week moving average of the observations (using the
current and two previous observations). In addition, to isolate the
outbreak signal, we subtracted a baseline signal from all outbreaks. In
the dry season, we subtracted 25 cases from 2007 to 2012, and 10 cases
from 2013-2016. The baseline lowered in 2013 following the in-
troduction of a rotavirus vaccine in July 2012 (Enane et al., 2016). In
the wet season, we subtracted 15 cases in all yearly outbreaks. Rota-
virus is specific to the dry season, so no changes were made to the wet
season baseline after 2012. These baseline levels were chosen based on
visually inspecting the diarrhea outbreak data. We varied them as
sensitivity tests and found similar results irrespective of the baseline
chosen. Raw under-5 diarrhea counts and smoothed counts with base-
lines subtracted are shown in Fig. 1.

2.3. Model-inference system

We developed and evaluated a model-inference system for fore-
casting under-5 diarrhea in Chobe District. Broadly, we used the
Ensemble Adjusted Kalman Filter (EAKF) (Anderson, 2001) in con-
junction with observations of under-5 diarrhea rates to iteratively up-
date estimates of the state variables and parameters of an SIRS model.
Similar assimilation, or filtering, methods have previously been used for
system optimization and forecasting of diseases such as human influ-
enza (Dukic et al.,, 2012; Ong et al., 2010; Shaman et al., 2013b;
Shaman and Karspeck, 2012), Ebola (Shaman et al., 2014), West Nile
virus (DeFelice et al., 2017) and Dengue (van Panhuis et al., 2014). This
system uses real-time observations to iteratively update the dynamic
model state variables and parameters to better match the ongoing
outbreak dynamics (Fig. 1C). This inference of critical epidemiological
parameters and model states enables generation of more accurate en-
semble forecasts of future diarrheal incidence.

There are three main components of this system: 1) a dynamic state-
space model describing the propagation of diarrhea through the local
population; 2) scaled observations of under-5 diarrhea (described
above); and 3) a data assimilation, or Bayesian inference, method. The
form and function of each system component is further described
below.

2.3.1. Dynamic state-space model for diarrhea transmission

Under-5 diarrhea dynamics were simulated using a compartmental
susceptible-infected-recovered-susceptible (SIRS) mathematical model.
The movement of the population between each disease stage is de-
termined by parameters defining transition rates between
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Fig. 1. Data smoothing and model system structure. (A) Weekly cases of under-5 diarrhea (after correction for missing data) in the dry seasons (weeks 20-51) in

2007-2016 are shown as grey points. Blue lines show under-5 diarrhea data after smoothing and subtraction of a baseline (see text for more details). (B) as for (A) but in
the wet seasons (weeks 50-20) from 2007-2008 to 2016-2017. (C) Diagram of the model-system structure and outcomes. We use an SIRS model structure and weekly
syndromic observations of under-5 diarrhea. The data assimilation system combines syndromic observations with SIRS model states and parameters to (1) infer
syndromic epidemiological parameters, and (2) generate updated SIRS model states and parameters. The updated SIRS model states and parameters are then used to
either (1) propagate the SIRS model forward one week, after which the assimilation process is repeated, or (2) generate forecasts by propagating the SIRS model
forward until the end of the season. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

compartments. The model has the form:

ds _ _ BSI
— = + JOR
dt N @8]
_BSI
74
dt N 7 2
R=N-S-1 3)

where S is the number of susceptible people in the population, I is the
number of infected people, f is the rate of transmission, y is the rate of
recovery, J is the rate of waning immunity, and N is the population size,
which is held constant at 25,000. Simulations consisted of a 300-
member ensemble integrated using the data assimilation methods de-
scribed below. For each ensemble member, initial values for the para-
meters and state variables were randomly selected from prescribed
ranges using Latin Hypercube sampling. Prescribed ranges were de-
termined based on preliminary model fitting and estimates of duration
of infection, incubation period, and waning immunity from the Center
for Disease Control and Prevention (Table S1).

2.3.2. Observations of under-5 diarrhea

To use the diarrhea observations to train the EAKF model-inference
system, we mapped the observations to weekly incidence and assigned
an error structure to the observations. Specifically, weekly under-5
observed case counts of diarrhea were assimilated into a pseudo model
state variable representing the number of new infections each week. To
accomplish this, we defined a scaling factor, a, that maps diarrhea
observations to new weekly diarrhea cases across the population. Given
Bayes’ rule:

p(m)* p(diarrhea| m)
p(m| diarrhea) “4)

p(diarrhea) =

Here, p(diarrhea) represents the probability of new under-5 diarrhea
infections, p(m) represents the probability a child seeks medical care
for any reason, p(m | diarrhea) is the probability a child seeks medical
care given he or she has diarrhea, and p (diarrhea | m) is the probability
a child has diarrhea given he or she seeks medical care. Our under-5
diarrhea observations are weekly diarrhea case reports from all health
facilities in Chobe District, which can be represented as
p(m)* p(diarrhea| m). We define the scaling factor a as
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1/p(m | diarrhea), which allows us to estimate p(diarrhea), or the
diarrhea incidence across the entire population. This parameter is then
used to adjust a pseudo state variable in the SIRS model representing
the weekly number of new diarrhea cases. We tried many different
values for a, and ultimately chose o= 60 in the wet season and a = 40
in the dry season, which produced diarrhea forecasts with the lowest
root mean square error (RMSE) between predicted and observed diar-
rhea cases.

Observational error variance (OEV) is another input for the EAKF
data assimilation algorithm, and represents the error associated with
the observations. Here we use the OEV structure presented by Shaman
and Karspeck (2012), where OEV for observations at week k is re-
presented as:

C iy diarrhea; 2 C
Tpxqese 30
OEV, = 5 \
0 10 0
0 O
0 0 )

The OEV increases in this structure in proportion to the sum of the
prior three weeks of observations. We tested different OEV levels by
changing the denominator to 1,10, and 100. Calibration analyses (de-
scribed below) showed that the model was best calibrated when the
denominator was set to 10.

2.3.3. Ensemble Adjusted Kalman Filter (EAKF)

The EAKF uses the scaled under-5 diarrhea observations to itera-
tively update estimates of the SIRS model state variables and para-
meters. First, 300 ensemble members were initialized using randomly
selected parameters and state variables. These ensemble members were
then parallelly integrated forward in time, using the SIRS compart-
mental model equations, until the first diarrhea observation of the
season. The model integration was then halted and the estimates of the
observed and unobserved states (S, I, R) and parameters (beta, gamma,
delta) at this time point were deemed the prior and treated as state
variables in the EAKF procedure. The EAKF then updated the prior
estimates using the under-5 diarrhea observation and OEV for that time
point, generating a posterior distribution of observed and unobserved
parameters and state variables. The updated SIRS model was then in-
tegrated forward to the next observation, and the assimilation process
was repeated. This iterative updating ‘trained’ the model to not only
better estimate observed conditions but also infer the unobserved state
variables and epidemiologically significant parameters. That is, by
training the model to replicate observations as thus far observed, the
ensemble of simulations converged to variable and parameter estimates
that better matched the evolving dynamics of the current outbreak.
Integration of the optimized ensemble of simulations into the future
without further updating was then used to generate forecasts.

2.4. Syndromic parameter inference

Results from synthetic testing, in which the model-inference systems
is applied to known, model-generated outbreaks, indicated that our
model system can accurately infer important outbreak parameter va-
lues, including J (the rate of waning immunity) and the basic re-
production number Ry, which is defined as f/y (see supplement for
details, Fig. S1). Our model is representing diarrhea as a syndrome
instead of a pathogen specific disease, so Ry can be thought of as the
force of transmission for one or more pathogens and 1/J could describe
the typical period between individual infections rather than waning
immunity. The SIRS-EAKF system was fit to under-5 diarrhea ob-
servations for each year in the wet and the dry season 10 times (to
account for stochasticity during model initialization). Mean posterior
estimates of J and Ry, were extracted at the peak of each seasonal
outbreak for 2007-2016.
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2.5. Retrospective forecasts and model calibration

We produced retrospective weekly forecasts for the wet and dry
seasons of 2007-2016. Each week, following EAKF updating of the
ensemble of simulations, forecasts were generated using the most recent
posterior estimates by simply integrating the SIRS model through time
until the end of the season without further updating. This process was
repeated every week, and each successive forecast assimilated one ad-
ditional week of data. In the dry season, forecasts began at week 18 and
were made consecutively until week 52. Wet season forecasts began at
week 50 and continued to week 20. Diarrheal cases did not rise above
the subtracted baseline during the 2014-2015 wet season or the 2008,
2014, and 2015 dry seasons, so no forecasts were generated for these
seasons.

Forecast accuracy was determined by comparing the mean en-
semble trajectories with observed under-5 diarrhea cases. Specifically,
we focused on three epidemiologically important parameters: peak
timing, peak intensity, and overall attack rate. Peak timing is defined as
the week with the highest incidence of diarrhea cases, peak intensity is
the total number of cases at the peak, and the attack rate is the total
number of cases during the outbreak. Forecasts were deemed accurate if
they (1) peaked within+ 1 week of the observed peak, (2) projected
peak intensity within+25% of the observed peak intensity, and (3)
projected a total attack rate within+ 25% of the observed attack rate.
Forecast accuracy was compared based on predicted lead week, i.e. how
many weeks before or after the predicted peak the forecast was gen-
erated.

Forecasts generated by the SIRS-EAKF model were compared to
forecasts based only on historical data. Historical predictions for a
season were made using the median of observed peak timing, peak
intensity, and attack rate from all other years in the dataset. In other
words, the median observation across all years except year, was taken
to be the prediction for year,. Accuracy was evaluated as for the SIRS-
EAKF forecasts.

Lastly, we evaluated the calibration of the SIRS-EAKF forecasts. The
assimilation approach is based on the assumption that both the model
and observations represent the true state of the population with error.
While we validate our forecasts using observations, we also need to
verify that the model is not overfit to the data. To assess this, we cal-
culated the percentage of observations falling within the forecast en-
semble spread. For example, a 95% ensemble prediction interval for
diarrhea incidence should include diarrhea observations 95% of the
time, across all years and seasons.

3. Results
3.1. Retrospective simulations and syndromic parameter inference

The SIRS-EAKF model system was able to simulate under-5 diarrhea
outbreak dynamics across all years in the wet and dry seasons (Figs. S2
and S3). The average RMSE and correlation between the observations
and simulations across all wet season outbreaks was 0.79 and 0.99,
respectively. Similarly, average RMSE and correlation across dry season
outbreaks were 1.33 and 0.99, respectively.

Estimates of the duration of immunity (1/6) were very similar be-
tween the wet season (mean=74.1 days) and the dry season
(mean= 76.4 days) (Fig. 2). However, there was a range of duration of
immunity (1/0) estimates across years in both seasons (Fig. 3). In the
dry season, mean duration of immunity estimates ranged from 22.2 in
2013 to 185.2 days in 2009. The range of mean duration of immunity
estimates in the wet season was slightly smaller; the lowest estimate
was 28.6 days in 2011-2012 and the highest was 113.8 days in 2009-
2010.

The mean estimated basic reproduction number R, was higher in
the wet season (1.94) than the dry season (1.67) (Fig. 2). Similar to the ¢
estimates, R, estimates ranged across years. Dry season estimates
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Fig. 2. Parameter estimates across seasons.
Estimates in both the wet season and dry
season are shown in (A) for duration of im-
munity (1/ §) and (B) for the basic reproduc-
tion number R,. The boxplots show variation in
estimates from 10 simulations run each year.
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Fig. 3. Estimates of the duration of immunity (1/ ¢) in days across years and seasons. Estimates for duration of immunity (1/ ¢) are shown for the dry season (A) and wet
season (B) across years. Here we are modeling diarrheal disease as a syndrome caused by multiple pathogens, so 1/ can be interpreted as the typical period between
infections rather than waning immunity. Boxplots show variability in estimates across the 10 simulations run each year.
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mostly ranged from 1.5 to 2 except for estimates from 2009, which
ranged from 2.5 to 4.5 (Fig. 4). In the wet season, R, estimates re-
mained between 1.5 and 2.5 across all years.

3.2. Retrospective forecasts

Fig. 5 shows retrospective forecast accuracies across seasons for
peak week timing, peak intensity, and overall attack rate. Accuracy
metrics are shown based on the predicted lead week (i.e. the number of
weeks before or after the predicted peak week the forecasts were gen-
erated) and compared with predictions derived from historical dis-
tributions. Predictions for peak intensity reached very high accuracy for
both the wet (98%) and dry (84%) seasons when they were initiated
one week after the predicted peak week. Historical peak intensity ac-
curacies were similar for the wet season (38%) and dry season (33%).
Accuracy of dry season forecasts did not markedly exceed historical
accuracy until one week after the peak, whereas wet season forecast
accuracy exceeded historical accuracy beginning one week before the
predicted peak.

Dry season peak week timing forecast accuracy exceeded historical
accuracy at all lead weeks, and reached over 50% accuracy two weeks
before the predicted peak. Historical prediction accuracy for peak week
was higher in the wet season, indicating greater regularity in the timing
of these outbreaks; retrospective forecasts during the wet season only
improved on historical accuracy when initiated after the predicted
peak.

Lastly, retrospective forecasts poorly predicted overall attack rate
within = 25% of the observed attack rates. Dry season forecasts never
exceeded 50% accuracy, and wet season predictions never exceeded
75% accuracy. However, our model-inference system predictions out-
performed historical predictions beginning six and three weeks before
the predicted peak for the dry and wet seasons, respectively.

3.3. Calibration

Forecasts were generally well calibrated but were better calibrated
in the dry season than the wet season (Fig. 6). Forecasts of attack rate
made prior to the predicted peak were well calibrated in the dry season,
but underdispersed in the wet season. Model prediction intervals for dry
season peak week timing and peak intensity were well calibrated when
made 0—4 weeks before the predicted peak, but slightly overdispersed
when made more than 4 weeks in advance. In contrast, wet season
forecasts made 2—-6 weeks before the predicted peak were well cali-
brated, but forecasts made 0—1 weeks before the peak were under-
dispersed and those made 6 or more weeks before the peak were
overdispersed.

4. Discussion

In this paper we estimated epidemiologically important syndromic
parameters for under-5 diarrhea outbreaks in Botswana and demon-
strated that a compartmental model coupled with data assimilation can
be used to generate accurate forecasts of diarrheal disease.
Compartmental epidemiological models are commonly used to model
the propagation of a single pathogen through a population, but here we
employ this model form to simulate a syndrome. Similar applications of
compartmental models have been used for influenza-like illness, which
represents multiple, non-specified respiratory pathogens that vary from
year-to-year (Shaman and Karspeck, 2012, Biggerstaff et al., 2016).

Utilizing a compartmental model to represent a syndrome implies
that parameter estimates must be interpreted carefully. In an SIRS
model representing the dynamics of one pathogen, R, represents the
number of secondary infections resulting from one infected individual
in a completely susceptible population, and J represents the rate of
waning immunity to that pathogen (Dickmann and Heesterbeek, 2000).
Here, R, describes the force of transmission for one or more pathogens
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that vary through time and J describes the typical period between in-
fections rather than waning immunity, per se. Our findings showed that
R, estimates were higher on average in the wet season (1.94) than the
dry season (1.67) but varied largely across years. These R, estimates
generally fall within established R, ranges for specific diarrhea-causing
pathogens (Table 1). Our average estimates for 0 were similar between
seasons, but also differed greatly among years.

These differences in estimated Ry and ¢ among years and seasons
support the notion that the dominant diarrhea causing pathogens vary
over time; however, we cannot infer which particular pathogens are
prevalent in a given season or year. Further, the limited number of
systematic etiologic studies in Botswana prevents determination of the
pathogens responsible for diarrhea outbreaks across seasons and years;
however, there is an expectance that dry and wet season pathogens
differ. For instance, studies have shown that rotavirus prevalence in
Botswanan children is highest during the dry season (June-October).

The model-inference system developed here was also able to accu-
rately simulate and predict under-5 diarrhea outbreaks. Forecasts of
under-5 diarrhea with higher accuracy than historical predictions (i.e.,
predictions based on historical distributions) were generated up to six
weeks before the predicted peak of the outbreak, and accuracy in-
creased over the progression of the outbreak. Most notably, forecast
accuracies for dry season peak week timing and total attack rate, as well
as wet season total attack rate, were higher than historical prediction
accuracies prior to the predicted peak. In addition, forecasts generated
after the predicted peak for all metrics and seasons were more accurate
than historical predictions. Forecasts after the peak remain important
for affirming that cases will not rise higher in the future and for
quantifying overall attack rates.

Such accurate predictions of under-5 diarrhea outbreaks, if gener-
ated in real time, could help officials anticipate, respond to, and miti-
gate childhood diarrhea outbreaks. The majority of diarrhea-related
deaths and cases of extreme dehydration can be prevented with a cheap
and simple mixture of clean water, sugar, and salt called oral rehy-
dration salts (ORS) (Desforges et al., 1990). Predictions of peak timing
and peak intensity at several week lead times could help inform vaccine
distribution, hospital and clinic staffing, and the management of
healthcare supplies (e.g. ORS) and beds in anticipation of patient
surges. Public health warnings and intervention recommendations are
being distributed in Botswana by the Government through different
media including SMS messages to owners of cell phones. This forecast
system could inform the timing of public health messaging for at risk
populations. Predictions may also increase household health behaviors.
For example, parents may focus more effort on securing safer sources of
water that might be purchased, filtered or boiled; increasing hand
washing; and making sure their children avoid close contact with other
children while sick. Predictions could also influence health-seeking
behaviors. Heightened awareness of the impending peak of diarrheal
disease cases may sensitize parents to the threat and encourage greater
communication and response to diarrheal disease in the household.

While these forecast models have potential to improve children’s
health, the real-time surveillance data they require are rarely available.
Here, we have demonstrated forecast accuracy using retrospective data.
To generate operational, real-time forecasts, under-5 diarrhea incidence
would need to be surveilled and made available to modelers quickly
and regularly. The Botswana Integrated Disease Surveillance and
Response Program (IDSR) was developed to provide healthcare pro-
fessionals with information about ongoing disease outbreaks in
Botswana. This data is not, however, available to the public. Even if
data were accessible, long lag times between patient presentation and
public release of data greatly reduce the utility of predictive models
such as the one we present here. Hence, researchers, healthcare pro-
viders, and public health workers in Botswana and around the world
must promote and support the collection of high quality real time
diarrhea surveillance that can be accessed quickly and used to inform
public health responses.
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Table 1
R, estimates for diarrhea-causing pathogens.
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