
ParMOO: A Python library for parallel multiobjective
simulation optimization
Tyler H. Chang 1¶ and Stefan M. Wild 2,1,3

1 Mathematics and Computer Science Division, Argonne National Laboratory, USA 2 Applied
Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, USA 3
NAISE, Northwestern University, USA ¶ Corresponding author

DOI: 10.21105/joss.04468
Software

• Review
• Repository
• Archive

Editor: Kelly Rowland
Reviewers:

• @Viech
• @JianqiaoMao

Submitted: 13 May 2022
Published: 03 February 2023
License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
A multiobjective optimization problem (MOOP) is an optimization problem in which multiple
objectives are optimized simultaneously. The goal of a MOOP is to find solutions that describe
the tradeoff between these (potentially conflicting) objectives. Such a tradeoff surface is called
the Pareto front. Real-world MOOPs may also involve constraints – additional hard rules
that every solution must adhere to. In a multiobjective simulation optimization problem, the
objectives are derived from the outputs of one or more computationally expensive simulations.
Such problems are ubiquitous in science and engineering.
ParMOO is a Python framework and library of solver components for building and deploying
highly customized multiobjective simulation optimization solvers. ParMOO is designed to help
engineers, practitioners, and optimization experts exploit available structures in how simulation
outputs are used to formulate the objectives for a MOOP. We elaborate on these structures
and provide two examples in future sections.
Additionally, ParMOO is:

• an open-source project on GitHub,
• pip-installable via PyPI or conda-installable via conda-forge, and
• fully documented.

Multiobjective Simulation Optimization Software
Existing open source, actively maintained Python packages for solving multiobjective simulation
optimization problems include pymoo (Blank & Deb, 2020), pymoso (Cooper & Hunter, 2020),
Dragonfly (Kandasamy et al., 2020), Playtpus (Hadka, 2015), jMetalPy (Benítez-Hidalgo et
al., 2019), and pygmo (Biscani & Izzo, 2020). Non-multiobjective-optimization-specific Python
packages that are often used for implementing multiobjective optimization solvers include
BoTorch (Balandat et al., 2020) and DEAP (Fortin et al., 2012). Other non-Python packages
include the Fortran solvers MODIR (Campana et al., 2018) and VTMOP (Chang et al., 2022), and
the Matlab toolboxes PlatEMO (Tian et al., 2017) and BoostDFO (Tavares et al., 2022).
The above-listed software packages:

a) are not restricted to a particular MOOP application,
b) have source code publicly available for download,
c) are suitable for or contain sub-modules for solving a general form of the multiobjective

simulation optimization problem, and
d) provide sufficient documentation for a new user to get started without requiring counsel

from the authors.

Chang, & Wild. (2023). ParMOO: A Python library for parallel multiobjective simulation optimization. Journal of Open Source Software, 8(82),
4468. https://doi.org/10.21105/joss.04468.

1

https://orcid.org/0000-0001-9541-7041
https://orcid.org/0000-0002-6099-2772
https://doi.org/10.21105/joss.04468
https://github.com/openjournals/joss-reviews/issues/4468
https://github.com/parmoo/parmoo
https://doi.org/10.5281/zenodo.7600559
https://orcid.org/0000-0001-5147-0051
https://github.com/Viech
https://github.com/JianqiaoMao
https://creativecommons.org/licenses/by/4.0/
https://github.com/parmoo/parmoo
https://pypi.org/project/parmoo
https://anaconda.org/conda-forge/parmoo
https://parmoo.readthedocs.io
https://doi.org/10.21105/joss.04468

Statement of Need
All of the previously mentioned software packages are high-quality and/or feature-complete in
some sense. However, ParMOO is distinct for the following reasons:

1) ParMOO is designed to be flexible enough to support diverse scientific workflows and
solve a wide variety of real-world problem types.

2) ParMOO provides interfaces and solver techniques that are suitable for both introductory
and expert users.

3) ParMOO provides bells and whistles that are required in production-quality solvers, such
as checkpointing and logging.

4) By layering on top of libEnsemble (Hudson et al., 2022), ParMOO provides an easy-to-
use interface for distributing expensive simulation calculations over high performance
computing (HPC) resources.

5) ParMOO provides complete documentation, including instructions for potential contribu-
tors.

6) ParMOO is designed around extensibility and continuous integration, with the intention
of adding support for new features, solvers, techniques, and problem types, some of
which may be beyond what we originally envisioned.

7) In situations where there is an exploitable structure in how the simulation outputs are
used to define the objectives and/or constraints, ParMOO can exploit this structure by
modeling simulation outputs independently.

While many existing solvers provide one or more of properties 1-5, at this time, no other solver
has all of these properties at once. Additionally, to our knowledge, properties 6 and 7 are
unique to ParMOO.
The target audience for ParMOO includes scientists, engineers, optimizers, and other practi-
tioners, who are looking to build or use custom solvers for simulation- or experimentation-based
MOOPs.

Our Methodology
In our statement of need, we outlined the properties that make ParMOO unique. In this
section, we outline our strategy for achieving these goals. In particular, properties 1, 6, and 7
are nontrivial.
First, in order to achieve flexibility and customizability without sacrificing ease of use, we have
focused on implementing a multiobjective response surface methodology (RSM) framework,
which encompasses a wide range of existing techniques. Using the RSM framework, we
decompose multiobjective simulation optimization problems into four central components:
i) an initial search/design of experiments, used to generate the initial data set; ii) multiple
surrogates, used to model the simulation outputs based on existing data; iii) one or more
families of acquisition functions, used to scalarize the problem and guide the optimization
solver to multiple distinct solutions; and iv) a single-objective optimization solver, used to solve
the scalarized surrogate problems, in order to produce batches of candidate solution points.
In order to achieve property 1, we provide a customizable embedding layer, which can be used
to embed categorical, integer, mixed-variable, and other input types into a continuous latent
space, where the above components can be easily applied. We also support nonlinear relaxable
constraints, by using a multiobjective progressive barrier method.
In order to achieve property 6, we use an object-oriented design, where our MOOP class references
abstract base classes (ABCs) for each of the above components i–iv, in order to solve a MOOP
via RSM. This allows us to quickly customize solver components in a modular fashion, by
extending their existing interface. In unforeseen circumstances, we can even extend the

Chang, & Wild. (2023). ParMOO: A Python library for parallel multiobjective simulation optimization. Journal of Open Source Software, 8(82),
4468. https://doi.org/10.21105/joss.04468.

2

https://doi.org/10.21105/joss.04468

MOOP class itself in order to achieve a completely new behavior or customize our method for
distributing simulation evaluations based on a novel scientific workflow.
Finally, for property 7, we are the first RSM solver to model simulation outputs separately
from objective and constraint functions. This is useful in situations where the objectives are
structured algebraic functions of the simulation outputs (e.g., a sum-of-squared outputs), or
where one or more objectives does not depend on the simulations at all. In these situations,
the additional structure that is available in exactly how the simulation outputs are being used
to formulate the problem is made available to ParMOO’s solvers, and can be exploited to
improve approximation bounds and convergence rates, and to reduce the need for expensive
simulation evaluations.

Example Problems
To demonstrate the utility of ParMOO and the importance of property 7, we describe two
current applications.
First, ParMOO is currently being used to calibrate energy density functional (EDF) models, by
minimizing the error between expensive simulation outputs and experimental data. Let 𝑅1, …,𝑅𝑚 denote the 𝑚 deviations between 𝑚-dimensional experimental data 𝐷 and 𝑚-dimensional
outputs of an EDF model 𝑆. Then, we want to calibrate 𝑆 by solving the multiobjective
problem

min𝑥∈[0,1]𝑛 (∑𝑖∈𝐶1 𝑅2𝑖 , ∑𝑗∈𝐶2 𝑅2𝑗 , ∑𝑘∈𝐶3 𝑅2𝑘)
where 𝐶1, 𝐶2, and 𝐶3 are a partitioning of the indices 1, …, 𝑚 into three observable classes,
each with different observation and measurement errors; and where 𝑥 is a set of 𝑛 unknown
modeling parameters for 𝑆, normalized to lie in the unit hypercube. In this context, the
simulation-based structure comes from the known sum-of-squares equation of the empirical
loss function. By modeling, the 𝑚 simulation outputs in 𝑆 separately from the three objectives,
ParMOO is able to exploit this sum-of-squares structure, similarly as in the single-objective
software POUNDERS (Wild, 2017). This example also illustrates ParMOO’s ability to utilize
parallel resources (property 4), since the expensive EDF simulations are being distributed over
HPC resources using libEnsemble.
Second, ParMOO is being used to automate material design and manufacturing in a wet
lab-based environment, where each “simulation evaluation” corresponds to the experimental
synthesis and characterization of a particular material. In this example, the goal is to maximize
the yield and minimize the byproduct of an experimental chemical synthesis, which is carried out
in a continuous-flow reactor and characterized using nuclear magnetic resonance spectroscopy,
while also maximizing the reaction temperature, which is a directly controllable variable. The
simulation-based structure in this problem comes from the known dependence between the
directly controllable objective (the reaction temperature), while still accounting for the two
experimental “blackbox” objectives (the total material yield and byproduct). This example also
demonstrates how ParMOO is able to easily integrate with the material scientists’ tools and
workflow (property 1), which had to be facilitated using third-party libraries since the interface
to the physical experiment could not be wrapped in a simple callable Python function.

Acknowledgements
We would like to thank Jeffrey Larson, Stephen Hudson, and John-Luke Navarro for their
advice on documentation, automated testing, and package setup.
This work was supported in part by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing
(SciDAC) program through the FASTMath Institute under Contract No. DE-AC02-06CH11357.

Chang, & Wild. (2023). ParMOO: A Python library for parallel multiobjective simulation optimization. Journal of Open Source Software, 8(82),
4468. https://doi.org/10.21105/joss.04468.

3

https://doi.org/10.21105/joss.04468

This work was supported by the National Science Foundation CSSI program under award
number OAC-2004601 (BAND Collaboration).

References
Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., & Bakshy, E.

(2020). BoTorch: A framework for efficient Monte-Carlo Bayesian optimization. In H.
Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in Neural
Information Processing Systems (Vol. 33, pp. 21524–21538). Curran Associates, Inc. https:
//proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf

Benítez-Hidalgo, A., Nebro, A. J., García-Nieto, J., Oregi, I., & Del Ser, J. (2019). jMetalPy:
A Python framework for multi-objective optimization with metaheuristics. Swarm and
Evolutionary Computation, 51, 100598. https://doi.org/10.1016/j.swevo.2019.100598

Biscani, F., & Izzo, D. (2020). A parallel global multiobjective framework for optimization:
pagmo. Journal of Open Source Software, 5(53), 2338. https://doi.org/10.21105/joss.
02338

Blank, J., & Deb, K. (2020). pymoo: Multi-objective optimization in Python. IEEE Access, 8,
89497–89509. https://doi.org/10.1109/ACCESS.2020.2990567

Campana, E. F., Diez, M., Liuzzi, G., Lucidi, S., Pellegrini, R., Piccialli, V., Rinaldi, F., & Serani,
A. (2018). A multi-objective DIRECT algorithm for ship hull optimization. Computational
Optimization and Applications, 71(1), 53–72. https://doi.org/10.1007/s10589-017-9955-0

Chang, T. H., Watson, L. T., Larson, J., Neveu, N., Thacker, W. I., Deshpande, S., &
Lux, T. C. H. (2022). Algorithm 1028: VTMOP: Solver for blackbox multiobjective
optimization problems. ACM Transactions on Mathematical Software, 48(3), 36:1--34.
https://doi.org/10.1145/3529258

Cooper, K., & Hunter, S. R. (2020). PyMOSO: Software for multi-objective simulation
optimization with R-PERLE and R-MinRLE. INFORMS Journal on Computing, 32(4),
1101–1108. https://doi.org/10.1287/ijoc.2019.0902

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., & Gagné, C. (2012).
DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research, 13(1),
2171–2175. https://www.jmlr.org/papers/v13/fortin12a.html

Hadka, D. (2015). Platypus - multiobjective optimization in Python (Version 1.0.4). GitHub.
https://platypus.readthedocs.io/en/latest

Hudson, S., Larson, J., Navarro, J.-L., & Wild, S. (2022). libEnsemble: A library to coordinate
the concurrent evaluation of dynamic ensembles of calculations. IEEE Transactions on
Parallel and Distributed Systems, 33(4), 977–988. https://doi.org/10.1109/tpds.2021.
3082815

Kandasamy, K., Vysyaraju, K. R., Neiswanger, W., Paria, B., Collins, C. R., Schneider, J.,
Poczos, B., & Xing, E. P. (2020). Tuning hyperparameters without grad students: Scalable
and robust Bayesian optimisation with Dragonfly. Journal of Machine Learning Research,
21(81), 1–27. http://jmlr.org/papers/v21/18-223.html

Tavares, S., Brás, C. P., Custódio, A. L., Duarte, V., & Medeiros, P. (2022). Parallel
strategies for direct multisearch. In Numerical Algorithms: Vols. Online first. https:
//doi.org/10.1007/s11075-022-01364-1

Tian, Y., Cheng, R., Zhang, X., & Jin, Y. (2017). PlatEMO: A MATLAB platform for evolu-
tionary multi-objective optimization [educational forum]. IEEE Computational Intelligence
Magazine, 12(4), 73–87. https://doi.org/10.1109/MCI.2017.2742868

Chang, & Wild. (2023). ParMOO: A Python library for parallel multiobjective simulation optimization. Journal of Open Source Software, 8(82),
4468. https://doi.org/10.21105/joss.04468.

4

https://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://doi.org/10.1016/j.swevo.2019.100598
https://doi.org/10.21105/joss.02338
https://doi.org/10.21105/joss.02338
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1007/s10589-017-9955-0
https://doi.org/10.1145/3529258
https://doi.org/10.1287/ijoc.2019.0902
https://www.jmlr.org/papers/v13/fortin12a.html
https://platypus.readthedocs.io/en/latest
https://doi.org/10.1109/tpds.2021.3082815
https://doi.org/10.1109/tpds.2021.3082815
http://jmlr.org/papers/v21/18-223.html
https://doi.org/10.1007/s11075-022-01364-1
https://doi.org/10.1007/s11075-022-01364-1
https://doi.org/10.1109/MCI.2017.2742868
https://doi.org/10.21105/joss.04468

Wild, S. M. (2017). Solving derivative-free nonlinear least squares problems with POUNDERS.
In T. Terlaky, M. F. Anjos, & S. Ahmed (Eds.), Advances and Trends in Optimization with
Engineering Applications (pp. 529–540). SIAM. https://doi.org/10.1137/1.9781611974683.
ch40

Chang, & Wild. (2023). ParMOO: A Python library for parallel multiobjective simulation optimization. Journal of Open Source Software, 8(82),
4468. https://doi.org/10.21105/joss.04468.

5

https://doi.org/10.1137/1.9781611974683.ch40
https://doi.org/10.1137/1.9781611974683.ch40
https://doi.org/10.21105/joss.04468

	Summary
	Multiobjective Simulation Optimization Software
	Statement of Need
	Our Methodology
	Example Problems
	Acknowledgements
	References

