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Learning from monitoring
networks: Few-large vs.
many-small plots and multi-scale
analysis

Becky Tang'*', Renata P. Kamakura?, David T. Barnett® and
James S. Clark?!

!Department of Mathematics and Statistics, Middlebury College, Middlebury, VT, United States, *Nicholas
School of the Environment, Duke University, Durham, NC, United States, *Battelle, National Ecological
Observatory Network, Boulder, CO, United States

In order to learn about broad scale ecological patterns, data from large-scale
surveys must allow us to either estimate the correlations between the environment
and an outcome and/or accurately predict ecological patterns. An important part
of data collection is the sampling effort used to collect observations, which we
decompose into two quantities: the number of observations or plots (n) and
the per-observation/plot effort (E; e.g., area per plot). If we want to understand
the relationships between predictors and a response variable, then lower model
parameter uncertainty is desirable. If the goalis to predict a response variable, then
lower prediction error is preferable. We aim to learn if and when aggregating data
can help attain these goals. We find that a small sample size coupled with large
observation effort coupled (few large) can yield better predictions when compared
to a large number of observations with low observation effort (many small). We
also show that the combination of the two values (n and E), rather than one alone,
has an impact on parameter uncertainty. In an application to Forest Inventory
and Analysis (FIA) data, we model the tree density of selected species at various
amounts of aggregation using linear regression in order to compare the findings
from simulated data to real data. The application supports the theoretical findings
that increasing observational effort through aggregation can lead to improved
predictions, conditional on the thoughtful aggregation of the observational plots.
In particular, aggregations over extremely large and variable covariate space may
lead to poor prediction and high parameter uncertainty. Analyses of large-range
data can improve with aggregation, with implications for both model evaluation
and sampling design: testing model prediction accuracy without an underlying
knowledge of the datasets and the scale at which predictor variables operate can
obscure meaningful results.

KEYWORDS

aggregation, clustering, Forest Inventory and Analysis (FIA), parameter uncertainty,
prediction performance, sample design, sampling effort

1. Introduction

In order to understand and predict ecological processes, researchers often draw on data
from regional sampling networks. However, when using these data, it is common to combine
data sets or ask questions different from those for which the sampling was originally designed
(Tinkham etal., 2018); thus, the analysis may need to adjust for differences in scale and focus
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between the sampling design and analysis goals. Similarly,
investigators and institutions confront several design decisions
with implications for further data analysis when creating regional
sampling networks (Gregoire and Valentine, 2007). including and
especially the size and number of plots to use to sufficiently sample
the underlying variation relevant to ecological or bio-geographic
patterns of interest (Zeide, 1980; Wang et al., 2001, 2008).

As part of effectively designing new studies or asking new
questions of existing datasets, we must better understand the
impact of a critical component of the process: the total sampling
effort used to collect observations. In particular, we seek to learn
how exploratory and predictive modeling goals are affected by
the total sampling effort used to collect the data. To this end, we
decompose the sampling effort of a given study into two quantities:
the number of observations () and the effort per observation (E).
We demonstrate that, when looking at broad ecological patterns,
analyses and potentially sampling design need to balance the trade-
offs of using/collecting data from few, intensely-sampled locations
vs. a larger number of locations sampled with less intensity.
Throughout this paper, we refer to this trade-off of few, large
observation efforts vs. many, small observation efforts as FLvMS.

FLVMS decisions broadly depend upon the geographic scale
of the processes and patterns that the network aims to monitor
or understand. When we consider scale, we mean questions of
geographic focus, for example, the size of a geographic region
being sampled or the area over which the variation driven by
an ecological process operates. Large observation plots (e.g.,
ForestGeo Anderson-Teixeira et al., 2015) can provide detailed
information about habitats and communities, such as increasing
probability of capturing rare events (e.g., Barnett and Stohlgren,
2003). This benefit comes with the cost of observing only a limited
set of potential sites or habitats. Alternatively, numerous small
plots can extend the range of observed ecological variation, but
with limited information per plot. Current monitoring designs
do attempt to balance information at local and regional scales
under the inevitable constraint of resources. While ideas related to
FLVMS are mentioned in recent efforts to guide prediction from
monitoring networks (Zeide, 1980; Wang et al., 2001, 2008; Wintle
etal., 2010; Yim et al., 2015; McRoberts et al., 2018), there is limited
work looking specifically at the impacts of FLvMS for statistical
regression modeling, as we elaborate below (Dictze et al., 2018).

We find that FLvMS can have practical implications for the
quality of ecological insights gained from data. When fitting
models, studies tend to focus on the following aspects of the model:
its explanatory ability and its utility for prediction. Explanatory
modeling focuses on understanding how a set of predictor variables
are associated with or affect a response variable, often through an
assumed parametric relationship (e.g., regression models). In this
context, low uncertainty for the parameters estimates is desirable in
order to obtain statistical conclusions for hypotheses and theory.
The goal of predictive modeling is to obtain precise predictions
for new or future observations, which can be important for
decision-making and policy recommendations (Iwamura et al,
2020; Malik et al, 2021). Predictive power is typically assessed
using metrics (e.g., root mean squared error) computed from a
held-out validation set, where improved metrics imply improved
prediction accuracy on that validation set. A model that makes
poor predictions might still advance understanding of why or how
ecological phenomena occur if it provides parameter estimates
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with low uncertainty. Conversely, parameter estimates with low
uncertainty do not necessarily make for good predictions, especially
in complex systems (Lo et al, 2015). The distinction between
the two goals has practical implications for sampling design
in networks focused on broad-scale ecological and biophysical
patterns (Shmueli, 2010). In this work, we explore how design
decisions involving FLVMS can affect parameter estimates and
predictions in different ways. We do not claim to address all
relevant factors related to FLvMS for design (with the notable
omission of sampling costs and crew time/costs), but instead
address a gap in statistical evaluation often seen in discussions
around FLvMS.

FLVMS is also a consideration beyond the design stage;
when using previously collected data, analyses can benefit from
combining or aggregating observations in order to reduce noise
depending on the spatial distribution pattern of the process(es)
of interest. Observations may be aggregated in space (Iverson
and Prasad, 1998), time (Crewe et al.,, 2016), or environmental
conditions (Andelman and Willig, 2004; Zhu et al., 2014; Schliep
et al., 2016). Compositing multiple observations taken at several
microsites or sub-plots within a single site is a type of aggregation
that can also reduce noise, depending on the design of subplots
(e.g., soil samples, Singh et al., 2020). Here, we describe the original
plot/observation as the original sampling unit. When observations
are aggregated together, we refer to these modified observations as
having different units of analysis for modeling (e.g., 10 observations
aggregated into a single quantity has a unit of analysis of 10;
Neuendorf, 2021). However, the potential benefits of increased
effort per observation, aggregated/composited unit of analysis, may
be offset by the undesirable effect of masking processes operating
at fine spatio-temporal scales (Rossi et al, 1992; Jelinski and
Wu, 1996; Liebhold and Gurevitch, 2002; Maas-Hebner et al.,
2015). Thus, the FLVMS trade-off should be a ubiquitous design
consideration for both observational studies and resulting analyses.

We provide a framework for network design and data
aggregation that integrates FLVMS to demonstrate several insights,
(i) low uncertainty for predictions depends on large effort per
observation (E), whereas low uncertainty for parameter estimates
depends on large total sample effort (effort per observation x
number of observations, or S = #E), (ii) prediction accuracy
usually improves with data aggregation, whereas parameter
uncertainty does not, (iii) poor predictions that come from designs
based on small plots may be rehabilitated by aggregating the
predictions, and (iv) models can have high predictive accuracy
yet non-informative parameter estimates. We start with theory
and simulations, followed by an application to Forest Inventory
and Analysis (FIA) data that further explores the impacts of
aggregation. Material provided in the Supplement are referred to
with an “S.”

2. Theory and analytical findings
2.1. FLvMS as a distribution of effort

Understanding the divergent effects of FLvMS for parameters
and predictions requires the concepts of observation effort and
sample effort. A sample consists of n observations. The fundamental
FLVMS trade-off concerns the distribution of effort over the n
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observations. Consider a response y; at location i observed with an
associated observation effort E;. Total sampling effort is the summed
observation effort,

(1)

Terms related to FLvMS are defined in Table 1. For fixed S, a design
based on many small plots involves large n and low E;. Where
observation effort is constant (E; = E) we see this trade-off directly:
S =nkE.

In networks where plots are not clustered, aggregating
observations within the existing network reduces the effective
sample size (| 1), while increasing the effective observation effort
(1 E), but we demonstrate that it does not change the sample
effort, S. We use the symbol * to denote quantities associated
10,000 plots, each with effort
E = 1m?, could be aggregated to groups of ] = 10 plots with

with aggregation: a sample of n =
aggregate sample size n* = 1,000 and aggregate effort E* = 10 m?.
For (discrete) count data, an aggregate observation j has response
Vi=2ie A Vi and aggregate effort Ef = Dic 4 Eis where A; holds
the indices of the original observations associated with aggregate
j. Summing over n* yields S. A simple graphic of this aggregation
design is shown in Figure 1. Where observation effort is constant
(ignoring any fixed costs associated with each plot, e.g., travel), the
total sample effort S is unchanged by aggregation, i.e., S = nE =
n*E*. For heterogeneous effort,

2)

n n*
S=Y Ei=) Ef
i=1 j=1

In this paper, we view the concept of effort applied to
continuous responses involves averages rather than sums. We
imagine the practice of averaging water or soil samples to reduce
the noise and obtain more precise measurements of concentrations
or mineralization rates. We note that averaging is not appropriate
for aggregating count data, as the average of discrete counts might

1
7 ZieAj y; where

no longer be discrete. So for continuous y, y;-‘
Jj = |Ajl.

Observations can be aggregated within or between plots. For
example, multiple soil and water measurements from the same
plot are composited to reduce noise (e.g., Singh et al., 2020). The
increase in effort, represented by the composite measurement,
reduces the composite variance, as we demonstrate in Section 2.2.

Because observation and sample effort are not often discussed
in the context of trade offs between goals of prediction and
parameter estimation, the majority of this section (Sections 2.2,
2.3) comprises analytical solutions that provide general principles
based on how sample effort S is distributed between sample size n
and observations effort E. We focus on the effects of n, E, and S
on parameter estimation (Section 2.2) and prediction uncertainty
(Section 2.3) in the context of discrete and continuous data. This
section finishes with details concerning simulations (Section 3.1)
and an application to the FIA monitoring network (Section 3.2).
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2.2. Parameter estimates

2.2.1. Count data: Original sampling unit

In models for count data y;, the quantity of interest is often
counts per effort CPE; = y;/E;. For non-moving organisms (e.g.,
plants), effort is represented by plot area. For point counts, camera
traps, and pitfall traps (e.g., vertebrates and insects), effort is
observation time, and CPE is counts per unit time. In fisheries,
effort may be the number of trawls and CPE is catch per trawl.
As an example, consider the semi-structured, global citizen science
eBird (2017) dedicated to avifauna observation. Observers report
the number of bird species detected on a bird outing, where the
observation duration can vary from 1 min to several hours. A
statistical model for the bird counts needs to adjust for the duration
of each observation, as one bird observed in 1 min is different from
one bird observed over the course of 2 h. Thus, the duration of each
bird outing can be viewed as observation effort (Tang et al., 2021),
and CPE could be the number of birds observed in a 30 min time
frame. In these cases, observation effort E; is a known quantity that
is not estimated.

Poisson regression models are often used for modeling counts
yi. Observation effort E; typically enters a Poisson model as follows:
yi ~ Pois(E;A). In a generalized linear model, E; is known as an
offset for y;, as E; is fixed and known in advance. This specification
changes the parameter estimate A from an intensity to a rate (per
area, per time, and so forth). For simplicity, let effort be constant, so
E; = E. Then the estimate that maximizes the Poisson likelihood,
or MLE, is A = j/E, where j is the observed sample mean. A has
asymptotic variance Var(h) = A /(mE) = A/S. Re-writing in the
scale of interest CPE; = y;/E, the MLE and its uncertainty are

) = CPE (3)

(4)

>
%) %

Var():) =

where CPE = % ?:1 CPE; = y/E. In other words, the estimate
A has units determined by observation effort E, but the uncertainty
depends on sample effort S, regardless of how it is allocated between
nvs. E.

2.2.2. Count data: Aggregated unit of analysis
Aggregation does not change this result, yielding

~

i* = CPE* = CPE (5)

~ CPE* CPE

1) = = — 6
var(A¥) & S (6)

Thus, FLVMS by itself does not affect parameter uncertainty,
which depends instead on total sample effort. However, spatial
patterns may change this result (see Section 4.1, 4.2).

2.2.3. Continuous data: Original sampling unit
As for discrete counts, increasing effort has minimal impact
on parameter uncertainty for a continuous response. The linear

regression model with predictors held in #n x p matrix X is y;
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TABLE 1 Terms and definitions related to few-large vs. many-small and aggregation concepts.

n Sample size on original scale (ex. number of plots)

E; Observation effort associated with observation i on original sampling unit (ex. plot area).

May be constant E; = E.

S Total sampling effort, where S = " | E;.

S = nE for constant observation effort.

" Aggregate sample size

Ef Observation effort associated with aggregate j.
May be constant Ef' = E*.

Ji Number of observations aggregated together into aggregate observation j.
May be constant J; = J.

M; Number of observations composited at site j.
May be be constant M; = M.

o? Local, within-site error variance for Gaussian data.

Between-site error variance for Gaussian composite data.

Original scale
n=12,E=1

Aggregated unit of analysis
n*=4,E*=3

Aggregation based on habitat

FIGURE 1

Example graphic of aggregating count data. (A) Observed counts y1, ..., Y12 at single plots (E = 1) within a spatial region. Background color denotes
the spatial distribution of an environmental predictor such as habitat. (B) Possible aggregation of the original data based on habitat. (C) Data
aggregated to a new unit of analysis, where y; = y1 +y> + y3, and similarly for the other three aggregated observations. On this unit of analysis, there
are n* = 4 observations, each obtained with aggregated observation effort E* = 3. In both (A, C), total sampling effortis S = 12.

from o2 to 0% /M, where o2 is the residual variance from the linear
2

x;B + €;, with Gaussian noise e; ~ N(0, o?). Here, x; is p-vector of

predictors and intercept. The estimated parameters and associated ~ regression model. In the sense that effort reduces error, 0~ can be

covariance are likened to error with minimal effort (M = 1). Defining observation
effort E = 1/0% allows observation effort to enter the model in the
R , Lo continuous case, as Equation 8 becomes

B =xX)"'XY @)

2 R 1 B B B
Cov(B) = Z-v;! (®) Cov(p) = V. =57V ©)

2

where V, is the covariance in predictors.

In this continuous case, it can be useful to think about
residual variation as an inverse of effort. For example, consider the
effect of compositing M measurements within a given site, where
compositing yields one single sample from the site. Assuming
independence, the variance for the composited sample reduces

Frontiersin Ecology and Evolution

Note that in the linear regression setting, the residual variances o
are assumed equal across observations 7, so observation effort E is
similarly assumed constant across i.

Where the predictors are replaced with an overall mean pu,
Equation 9 simplifies to Var(i) = S~!. Where predictors are
not only centered, but also standardized, they too have variance
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Var(B) = S°L, k = 1,..
parameter uncertainty depends on total effort, not »n alone or E

.,p. Thus, as in the discrete case, the

alone.

2.2.4. Continuous data: Aggregated unit of
analysis

Unlike discrete data where aggregated counts are sums,
aggregating continuous data is done by averaging across J;
observations. In this framework, we imagine each location 7 has a
single observation, and aggregation averages the responses across
Jj unique sampling locations. Taking constant J; = J, aggregation
leads to reduced sample size n* = n/], increased effort E* = EJ,
and, if we assume for the moment independent observations,
reduced variance sz = &%/]. Letting Y; be the vector holding the
aggregated responses yj, the estimated parameters and associated
covariance on the aggregated unit of analysis are

B = (XX)"'XY,
2

~ o _ _ _
Cov(B) = -5V =gyt (10)

where V7 is the covariance in the aggregated predictors Xj. If the
covariance in predictors is unaffected by aggregation (i.e., V, =
V)), then as in the discrete case, the uncertainty in 8 depends on
total sampling effort S and not # or E alone.

2.2.5. Continuous data: Composite scale

In some cases, variance in the continuous response may have
two components: variance between repeated measurements at a
given location i (0'2), and variance between locations (2). The
residual variance combines within- and between- site variances:
Vi ~ N(xiB,02 + t2). In the geostatistical literature, o? is the
“nugget”. When compositing M measurements within each site i,
the composite response is y¥ ~ N(xB,0%/M + 12). Composited
effort increases with the number of measurements: E* = ME =
M/ o2, In this setting, the covariance of the coefficients is

A 2 2 2
Cov(B) = (:—M + %) vil= <§ + %) vl

where Sy; = nE* = nM /o2, If local variance is large (62 >> 12),
then uncertainty scales with 1/Sys, not M alone and not (unless it is
small) 7 alone. Conversely, if local variance is small (r> dominates),
then Cov(B) ~ 2/ nV;!, and increasing sample size n does more
to reduce parameter uncertainty than compositing M.

These analytical solutions illustrate the important point
that networks based on large sample effort produce the most
informative parameter estimates. In both discrete and continuous
cases, parameter uncertainty shows the same decline with total
effort S, regardless of how it is allocated between n and E.
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2.3. Prediction

Paradoxically, the importance of total effort S for parameter
estimation, regardless of its allocation to # vs. E, does not hold for
prediction. In fact, observation effort E assumes the dominant role
in prediction, with » (and thus, S) only becoming important when
n is small [though this can depend upon the context and underlying
spatial heterogeneity, e.g., Nyyssonen and Vuokila (1963)]. We
show this with simulation for the Poisson case in Section 4.1, and
demonstrate the analytic results for the continuous Gaussian case
here.

2.3.1. Continuous data: Original scale

Interest lies in the uncertainty around a prediction y; for given
predictors x;. For observation i, the linear regression model with
intercept « and p predictors held in x; is

yi=a+xpB+e (12)
once again with Gaussian noise €; ~ N(0,52). Let the predictors

X; be centered across the observations. With observation effort
E=1/ o2, this model has predictive variance.

Var(3;) = Var(a) + Var(x;B) + Var(e;)

o? [% (1+ xéV;lxi) + 1:|

1+xVilx 1
= = 4 — 13
S z (13)
where V, is the variance in the predictors. Unless # is small, the
second term dominates, because S = n x E. By contrast with
parameter uncertainty, observation effort E is dominant here.

2.3.2. Continuous data: Composited unit of
analysis

For composite measurements, the residual variance associated
with each composite response is 02/M + 72, assuming the same
number of measurements at each location. The observation effort
E* = ME and sample effort S = nME both scale with the number
of replicates M. Prediction uncertainty is still dominated by E, not
S.

2.3.3. Continuous data: Aggregated unit of
analysis
On the aggregated scale, the predictive variance for

Equation 12 is

Var(9) = o? [% (1 n xjfv,‘lxj) + 1] (14)

where x; is the p-vector of predictors associated with aggregate
observation y;. Once again, the full effect depends on how variances
are affected by aggregation. If the residual variance and the
aggregate covariance in predictors are unaffected by aggregation
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(V; =V, 012 = 02/]) then the aggregate predictive variance in
Equation 14 can be re-written as

1+xXVvilx
~ jrx 7
Var(j) = —2— + — 15
(70 S ] (15)
Considering aggregated continuous data, here we assume that
residual variance o> and the covariance in predictors V, are
unaffected by aggregation. If we further assume constant J; = ]
for simplicity and independent observations, then the uncertainty
in the prediction for the aggregated response jj is

1+xVilx
Var(3;) = ff"’ 5 (16)
The second term will dominate if # is not small (n > ] = S>>
EJ). Thus all else being equal, predictive variance declines with
aggregation, and it still depends primarily on observation effort E,
not sample effort S.

Taken together, with this definition of E = 1/ o2, predictions
are controlled by observation effort, while parameter estimates are
controlled by total sample effort, regardless of how it is allocated
between FLVMS. However, these analytical results omit the impact
of unmeasured variables, a characteristic of real data not found
in simulated data. As discussed in Supplementary material 1, the
residual variance can also depend on how aggregation affects not
only the measured variables but also the unmeasured variables. In
the following section, analytical results are extended in simulation
and the FIA monitoring network.

3. Methods

3.1. Methods for simulations

Simulation allowed us to evaluate FLvMS under relaxed
assumptions. Comparisons of model fitting on the original (n, E, y)
and aggregate (n*, E*, y*) scales start with randomly generated data,
including random regression parameters in the length-p vector f.
Xip—1))>
where xj; ~ N(0,1), and length-n response vectory = (y1 ... y,) .

There is a n x p design matrix X, with x; = (1 x;1 ...

The observations in X were then aggregated to (n*, E*, y*) based on
covariate similarity in the X (Figure 1B).

In the first set of simulations, the predictors X were
uncorrelated. In the second set of simulations we generated
collinear data, where the randomly generated predictors took the
form x; = (1, x1, x1, Xi2), where xj;, xp were sampled
independently, and x;3 ~ N(0.3 X xj;,1). Aggregation between
observations based on covariate similarity in X increases the
correlation between x; and x3 from 0.25 at the original effort
E = 1 scale to (0.65,0.89,0.95,0.98) for corresponding aggregated
effort E* = (10,60, 125,200). Each row in the aggregated n* x p
design matrix X* holds average predictors from J rows in X. The
length-n*-vector of aggregate y* = (y},...,y%) was obtained
by summation (discrete counts) or averaging (continuous). For
discrete data, aggregation gave effort E* = JE and sample size
n* = n/], simulated as y; ~ Pois(Ex;) with log(%;) = xB.
These simulated data were fit using a Poisson regression model.
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For composited continuous data, y;, = x/B + w; + €, for m =
1,..., M, where w; ~ N(0,7%) and €, ~ N(0,02), yielding
composite observation y¥ ~ N(xB, Ef + 2). These data were fit
using a linear regression model.

For out-of-sample prediction, additional test data {Xyes, ¥;p5 ) Of
size nysr were generated and subsequently aggregated to obtain the

ny,q % p design matrix Xj,, and response yj,,. For models fitted

to aggregate train data, predictions yif‘::fd)

aggregated unit of analysis. To evaluate the effects of aggregation

were obtained at the

post-fitting, predictions were first obtained at the original sampling
unit (E =
based on covariate similarity in X

1), and then subsequently aggregated to effort E*

*
test*

predicted and true values using root mean square predictive error,

esi (pred) . .
RMSPE = \/ ntlm st (yreﬁf: — Vo) Simulation and analyses

were conducted with R [Version 3.6.1; R Core Team (2013)].

In all cases, we compared

3.2. Methods for FIA application

To demonstrate aggregation effects in a real-world example, we
modeled basal area (continuous) on FIA phase-2 plots that were
sampled after 1995 in the eastern US (Gray et al., 2012). Following
Qiu et al. (2021), we used all four sub-plots for each FIA plot
site. However, we note that an application can also be restricted
to only the central sub-plot, which has been shown to have a
limited impact on residual variation as compared to compositing
all four subplots (Gray et al.,, 2012; McRoberts et al., 2018). We
excluded non-response plots but included mixed condition plots,
which skews our sample away from private property and potentially
includes plots that are particularly noisy due to intra-site condition
variation. Following Qiu et al. (2021), covariates included percent
clay and cation exchange capacity (CEC) in the upper 30 cm of soil
(Hengl et al., 2017), mean annual temperature (°C), and moisture
deficit (mm; Abatzoglou et al. (2018)), and stand age (Burrill et al.,
2021). Spatial correlation persists over a large spatial range for
temperature and moisture deficit, but not for soil variables and
stand age (Supplementary Figure 2A).

A linear regression model was fitted at seven levels of
127,640 observed plots (] =
1), aggregate plots based on covariates and proximity at | =

aggregation, including the n =

10, 60, 125,200 (the group sizes examined in Brown and Westfall,
2012), and ecoregions (histograms in Supplementary Figure 2B).
Aggregation was performed using k-means clustering (here, k
= J) on a combination of habitat and proximity. Specifically,
plots were clustered together based on standardized longitude,
latitude, and stand age, as well as the categorical moisture type
of the climate (mesic, xeric, or hydric). This k-means clustering
was modified to only allow plot clusters approximately equal
to the target aggregate size but not much larger or smaller (so
for ] = 10,60,125,200, the ranges were 10-15, 60-65, 125-
135, and 200-210, respectively). Following Qiu et al. (2021),
this was achieved by first using a typical k-means clustering
algorithm, retaining all the clusters within the initial cluster
size tolerance, and then re-running the clustering with the
remaining plots until they matched the required cluster size
tolerance. Because of the tolerance, the resulting sizes of each
aggregated cluster j may slightly differ (i.e., J; not necessarily
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FIGURE 2

Uncertainty in slope estimates from simulated Poisson data. (A) Posterior mean parameter estimates diverge from the value used to simulate data
(vertical dashed line) due to stochasticity, but parameter uncertainty (68% boxes and 95% whisker widths) are fixed for a given total sampling effort S,
regardless of how it is partitioned by sample size n vs. observation effort E. (B) Where there is a correlated predictor (left panel), uncertainty in
parameter estimates increases with aggregated effort E*, despite the same total effort S, but not for the uncorrelated predictor (right).
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FIGURE 3

Out-of-sample true and predicted counts with corresponding root mean square prediction error for simulated data when aggregating before (A) and
after (B) model fitting. (A) Increasing observation effort £ improves predictions with reduced uncertainty, while increasing sample size n does not.
The combination (n = 100, E = 1) plotted in dark red can be used as reference. (B) Predictions from a model fitted with £ = 1 are dominated by
noise, but can be rehabilitated by aggregation to £* = 10 or 1,000.

equal to J. However, we continue to refer to the different For ecoregions, the numbers of plots depend on ecoregion size
aggregation sizes as ] = 10,60,... for simplicity. Aggregation  (Supplementary Table 1A).

to the U.S. Environmental Protection Agency (EPA) level III To understand how aggregation affects parameter estimation,
and level IV ecoregions is based on EPAs biotic, abiotic, and  we fit linear regression models to the full set of data at each level
land use criteria (Omernik, 1987). (Supplementary Figure 2E).  of aggregation. The models were fit within a Bayesian framework,
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and we obtained posterior credible intervals for the regression
coefficients. We used independent, weakly informative N (0, 100)
priors for the regression coefficients in 8 and an Inverse Gamma
(1,10) prior for the variance o2, To understand how prediction
performance is affected by aggregation, data were then randomly
split into 70% training and 30% test sets for each aggregation. For
each of the seven training sets, we obtained predictions for the
respective test sets. We averaged the RMSPE for out-of-sample
predictions across 50 repetitions.

4. Results

4.1. Simulations

Simulations described in Section 3.1 extend the theoretical
results from Section 2 to multiple parameters, additional models,
and correlation in predictors. As for the continuous model
(Equation 10), aggregation with discrete counts and fixed sample
effort S does not affect confidence-interval width, regardless
of the how sample effort is partitioned between »n and E.
Confidence intervals instead narrow from increasing S (Figure 2A
and Supplementary Figure 1A). Also as in analytical results,
shifting effort from many-small to few-large, either by design
or aggregation, dramatically improves prediction, regardless of
whether it is done before or after model fitting (Figures 3A, B). The
fact that aggregation improves prediction offers the opportunity for
multi-scale analysis within an existing design, depending on the
scales most closely aligned with the processes included in a model.

In the continuous case with within- and between-site
variance (Equation 11), compositing measurements (increasing M)
improves prediction when within-site (local) variance dominates
(02 > 12). Conversely, when between-site variance dominates
(% > %) compositing has little effect (Figure 4).

Simulations also examined parameter uncertainty in the
scenario of correlated predictors. Parameter uncertainty increased
with aggregation because predictor collinearity increased with
the degree of aggregation E*, despite fixed sample effort S
(Figure 2B). Unlike results with uncorrelated predictors, the
parameter uncertainty with correlated predictors continues to
increase with increasing aggregation.

4.2. Application to FIA monitoring network

The application to the FIA network described in Section 3.2
extends insights from analytics and simulation to a large network
that responds to predictors on multiple scales. Our application
is designed to explore how aggregation affects both parameter
estimation and predictive performance in this complex network.
We begin by discussing the affects on parameter estimation.
Estimates for the effects of climate variables, soils, and stand age
on basal area differ in their responses to the degree (J) and the
method (covariate clustering vs. EPA ecoregions) of aggregation
(Figure 5A). Uncertainty in parameter estimates decreases when
moving from ] = 1 to ] = 10, but then increases slightly with
increasing aggregation up to J] = 200. This may be tied to a small
increase in collinearity in predictors with large aggregated plot
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FIGURE 4

Average root mean square prediction error (RMSPE) for simulated
composite Gaussian data under varying M (number of composited
observations), within-site variance o and between-site variance 2.
Colors denote the ratio az/rz, and Agmspe denotes the difference
RMSPEp—1 — RMSPEpm-10. Prediction performance improves with
increasing M, but the amount of improvement depends on the
relative magnitudes of o2 and 2. The more o2 dominates 7? (i.e.,
large o2 /7?), the larger the improvement in predictive performance
with increasing m (from Agumspe = 0.165 in red to Agmspe = 1.623,
purple).

clusters (aggregated units of analysis) J (Figure 5B). The reduced
uncertainty from J = 1 to ] = 10 is unexpected due to the induced
collinearity, but it comes with a large reduction in estimated
residual variance (Figure 5C).

wide
defined
on the basis of covariates selected for their importance

Ecoregion  aggregation  generates  especially

confidence intervals because ecoregions are not
for trees (Supplementary Table 1B). Most coefficients from
the EPA III aggregation have 95% credible intervals that
include zero, and they diverge from estimates that come

from aggregation based on covariate similarity, none of

which have posterior 95% intervals that include zero
(Figure 5A).  Additionally, the collinearity in predictors
at ecoregion aggregations is much larger than the

collinearity for aggregations based on covariate similarity
(Figure 5B).

The parameter estimates showing the largest increase in
interval width with aggregation are those with regional-scale
spatial correlation, including annual deficit, temperature, and clay.
Stand age, which is not spatially correlated at scales that can
be resolved at the FIA sampling density, does not show this
increase in interval width with aggregation. However, the role of
stand age is obliterated when aggregated to the ecoregion scale
(Figure 5A).

For predictions on held-out data, prediction performance
improves with aggregation by covariate similarity and distance
up to at least ] = 125, with the lowest RMSPE for ] = 200.
Prediction for level IV ecoregions is worse than for level III, despite
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FIGURE 5
(A) Posterior mean estimates, with 68 and 95% credible intervals for coefficients in the Gaussian model for basal area with aggregation of FIA plots.
Credible interval width shows modest increase with aggregation level from aggregations of J = 10 up to J = 200 plots, and large uncertainty at
ecoregions (EPA IlI, IV). (B) Ratio change from J = 1 in magnitude of pairwise correlations between predictors in X increase slightly with aggregation
by distance and covariate similarity (J =1, ..., 200) and then increase more dramatically at the ecoregion level (side panel). Colors in (B) denote the
second variable that is pairwise correlated with each panel. (C) Estimated residual variance of each model decreases with J, with a large decrease
fromJ=1toJ=10.

level IV showing narrower confidence on parameter estimates
(Figure 5A). If there is an optimal aggregation at which both
parameter estimates are predictions are useful, it is in the range
of 10 < J < 200.

5. Discussion

Through analytical examples and an application to FIA
data, we illustrate how data can be used to both understand
ecological relationships and predict outcomes from statistical
models is informed by the idea of few-large vs. many-small
(FLVMS). Building up from analytical calculations, we establish a
direct and quantifiable link between sample size and effort per
observation (together, the total sampling effort) to uncertainty in
parameter estimates and prediction. These relationships remain
under simulation (Figures 2, 3), which, combined with a case study,
extends results to spatially correlated predictors (Figure 5B). While
the fact that correlation between covariates degrades information
content has long been known (e.g., Dormann et al., 2013), our
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results place these relationships in the context of the FLvMS
trade-off.

Our results demonstrate differing implications of FLvMS design
for the goals of parameter estimation and prediction (Equations
9, 13). Parameter uncertainty depends on total sample effort
S and not on how it is distributed across FLvMS (Figure 2A),
though this relationship can be degraded by correlated predictors
(Figure 2B). The extent to which this effort-dependence becomes
important can change with the spatial scale of correlation, which
can differ for each covariate (Figure 5B), or with changes in residual
variance (Figure 5C). The application to FIA data illustrates that the
underlying spatial patterns in the data (including omitted variables
and spatial correlation between plots) might impact how much
extra information is gained from larger plots vs. more plots [E vs. n;
e.g., Nyyssonen and Vuokila (1963)]. For example, especially poor
predictions for Level IV ecoregions in our application (Figure 6) are
likely due to the incorporation of land use at Level IV that may not
be relevant for forest biomass at this scale (Omernik and Griffith,
2014; Roman et al., 2018). Improved prediction with more plot
aggregation in FIA reflects the dominant role of broad-scale climate
for the distribution of forest abundance, just as prediction skill for
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precipitation can improve with an expanded spatial scale (Chardon
etal., 2016). These results are especially focused on predicting basal
area for trees in similar growing conditions, as is used for analyses
within groupings like land use or habitat type (Carter et al., 2013;
Thompson et al., 2017) but results may vary when predicting back
out onto spatially contiguous groups of plots across habitat types.
There are also likely unmeasured variables, conditions, or plots that
skew results, which are especially important for accurate prediction
at fine spatial scales.

The option to aggregate many small plots helps to achieve
goals of both parameter estimation and prediction within the same
network. Whereas a large plot averages away the role of fine-
scale influences, small plots capture these local differences, while
offering the option to aggregate. The hybrid design used by the
National Ecological Observation Network (NEON) embeds many-
small within regional sites, intended to capture multiple variables
at multiple scales. If the many-small design seems optimal, it is
important to appreciate how meaningful signal can degenerate into
noise when effort is too low.

To be clear, we do not posit that one should always
aggregate data during analysis. For example, if a sample
consists of observations from each of a few very different
ecoregions, aggregation would most likely lead to poorer inference.
Additionally, not all data are suitable for aggregation. Two
examples include: instances of the ecological fallacy - the
assumption that what holds true for the group also holds true
for an individual (Plantadosi et al., 1988), and relationships that
shift based on the timescale examined [especially for seasonal
responses, e.g., food webs (Jorddn and Osvih, 2009)]. The authors
also note that aggregation is most straightforward with data that
can be averaged or summed into totals. As we demonstrate in
our application to FIA data, the method of aggregation can
greatly influence how much information can be extracted from the
data.
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Our results also point to the importance of knowing one’s
dataset and not relying on statistical tools alone to determine
the relevance of environmental predictors. It can be tempting to
use large datasets to search for the environmental covariates that
produce the "best" predictions for a given response of interest.
However, models that obtain the "best" predictions might not
reveal meaningful ecological relationships. For example, using
temperature and precipitation gradients is common practice to
define species distribution models, and can be used successfully at
global and regional scales (Elith and Leathwick, 2009). But those
two metrics alone will not be as meaningful at the meter scale
for many species, and modeling at that scale would have so much
noise as to obscure the signal in the data. The conclusion, however,
should not necessarily be that temperature and precipitation are
irrelevant but perhaps that climatic impacts operate at larger scales
than 1 m (Beaumont et al., 2005; Elith and Leathwick, 2009; Austin
and Van Niel, 2010).

Focusing on the effects of FLvMS, post data collection, we
intentionally omit fixed costs that can be associated with an
observation, regardless of size [e.g., travel; Scott (1993); Henttonen
and Kangas (2015)]. There are many factors that impact the
cost of travel, including the road network, terrain, fuel costs,
personnel costs, equipment portability, weather, and more [e.g.,
Morant et al. (2020); Lister and Leites (2022)] that would require
economic modeling beyond the scope of this paper in order
to be broadly applicable. Heavily-instrumented networks like
NEON involving costly analytical techniques (e.g., soil and foliar
biogeochemistry analytes) and heterogeneous responses (e.g., plant
phenology as well as abundance and diversity) introduce additional
considerations that are not included here.

The benefits and costs for parameter estimation and prediction
from FLvMS designs take on new importance with large
investments in sampling networks like FIA, NEON (Schimel, 2011),
and the South African Ecological Observatory Network (SAEON;
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Van Jaarsveld et al., 2007). For example, from 2006 to 2016, the
FIA program invested more than $20M annually to monitor tens of
thousands of plots (Vogt and Smith, 2016, Table 3). Through 2024,
annual operation costs for NEON are estimated to exceed $60M to
make repeated observations of ecosystems that include vegetation
plots of a similar size ((NSF, 2019), p. 16). These sampling networks
can be invaluable for monitoring and also for understanding
ecological processes and predicting future outcomes if the data are
analyzed thoughtfully and the design facilitates these analysis goals.
By extracting the contribution of FLvMS for parameter estimation
and prediction, this analysis facilitates its consideration as one
of many important components of data analysis and monitoring
network design.
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