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The US National Ecological Observatory Network’s (NEON’s) standardized monitoring program provides an unprecedented
opportunity for comparing the predictability of ecosystems. To harness the power of NEON data for examining environmental
predictability, we scaled a near-term, iterative, water temperature forecasting system to all six NEON lakes in the conterminous
US. We generated 1-day-ahead to 35-days-ahead forecasts using a process-based hydrodynamic model that was updated with
observations as they became available. Among lakes, forecasts were more accurate than a null model up to 35-days-ahead, with an
aggregated 1-day-ahead root-mean square error (RMSE) of 0.61°C and a 35-days-ahead RMSE of 2.17°C. Water temperature fore-
cast accuracy was positively associated with lake depth and water clarity, and negatively associated with fetch and catchment size.
The results of our analysis suggest that lake characteristics interact with weather to control the predictability of thermal structure.
Our work provides some of the first probabilistic forecasts of NEON sites and a framework for examining continental-scale
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primary goal of the US National Ecological Observatory

Network (NEON) is to “understand and forecast
continental-scale environmental change” (NRC 2004). With
standardized data available across multiple sites, NEON is
uniquely positioned to advance the emerging discipline of
near-term, iterative, environmental forecasting (that is, predic-
tions of future environmental conditions and their uncertainty
that are updated as additional observations become available)
(Dietze et al. 2018). However, NEON data have yet to be
broadly used for forecasting, a major gap in realizing the
potential of the network.

In particular, forecasting the same environmental variables
across sites has the potential to reveal gradients of predictabil-
ity at multiple temporal and spatial scales, a fundamental eco-
logical challenge (Petchey et al. 2015; Houlahan et al. 2017).
Although it has been previously established that forecast accu-
racy (ie realized predictability) declines with horizon (ie time
into the future), how far into the future different ecological
variables can be predicted, and how predictability varies
among different sites, remain uncertain (Adler et al. 2020;
Lewis et al. 2022). Both site-level (eg lake depth) and
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regional-scale (eg weather) characteristics likely affect forecast
accuracy at different horizons, but the drivers and gradients of
predictability are unknown and may differ among environ-
mental variables.

Lake water temperature is a promising first variable for ful-
filling NEON’s mission of forecasting environmental change.
NEON currently has high-frequency water temperature sen-
sors deployed in six lake sites in the conterminous US, provid-
ing a range of water temperature dynamics to forecast. Water
temperature is a fundamental property of lakes that governs
water chemistry, habitat for biota, and other ecological interac-
tions, yet varies substantially throughout a year as a function
of lake morphometry, hydrology, ecology, and weather
(Wetzel 2001), making it an ideal forecasting case study.
Moreover, forecasts of lake water temperature have practical
benefits, as they could help managers choose which depths to
extract water for treatment or preemptively apply interven-
tions to mitigate water-quality impairment (Carey et al. 2022).

Here, we developed the first known standardized, network-
wide forecasts of NEON sites across the US. We applied an
open-source forecasting system that uses forecasted weather
data and a process-based hydrodynamic model to generate
future predictions of lake water temperature for 1-day-ahead
to 35-days-ahead. These iterative forecasts were updated with
NEON data when they became available. We analyzed the
forecasts to address two research questions: (1) how accurately
can we predict lake water temperature 1-35 days into the
future, and (2) how does forecast accuracy vary among lakes
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with different site-level characteristics and regional-scale
weather?

@ Methods

Forecasting framework

We developed water temperature forecasts for all six NEON
lake sites in the conterminous US, which are paired within
three NEON-defined ecoclimatic domains (Figure 1). The
lakes consisted of two paired lakes in the Great Lakes domain
(Crampton Lake, NEON site ID: CRAM; Little Rock Lake,
NEON site ID: LIRO), two paired lakes in the Northern
Plains domain (Prairie Lake, NEON site ID: PRLA; Prairie
Pothole, NEON site ID: PRPO), and two paired lakes in the
Southeastern domain (Barco Lake, NEON site ID: BARC;
Suggs Lake, NEON site ID: SUGG). The lakes vary in mul-
tiple characteristics, including morphometry (depth, volume,
surface area, fetch), hydrology (residence time, catchment size),
ecology (water clarity), and weather (air temperature, precip-
itation) (Figure 1; see WebTable 1 for lake metadata). Forecasts
were developed for each lake using standardized configurations
of Forecasting Lake And Reservoir Ecosystems (FLARE), an
open-source forecasting system (Thomas et al. 2020;
Daneshmand et al. 2021). While we previously deployed
FLARE on a reservoir in Virginia (Thomas et al. 2020) that
has similar sensor infrastructure to a NEON site, FLARE
had not been deployed on other lakes — until this study.
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FLARE forecasts water temperature at multiple depths in the
water column using the General Lake Model, an open-source
lake hydrodynamic model (Hipsey et al. 2019).

FLARE’s iterative forecasting cycle can be summarized as
follows: (1) each day, the output from the previous day’s
ensemble forecast (ie a set of equally likely simulations of
potential future conditions) is used to initialize an ensemble
forecast of the current day’s water temperature; (2) FLARE
updates the current day’s ensemble forecast and key model
parameters to be consistent with the current day’s observa-
tions using data assimilation; and (3) after updating the fore-
cast, a 1 to 35-days-ahead ensemble forecast of the future is
generated, for which no observations are yet available for
assimilation. We forecasted water temperature at every 0.25—
0.5-m depth interval in each of the six lakes, which encom-
passed all depths with sensors as well as depths without
sensors. The forecasts into the future are driven by 1 to
35-days-ahead meteorological forecasts from the National
Oceanic and Atmospheric Administration’s (NOAA’s) Global
Ensemble Forecasting System (GEFS) (Hamill et al. 2022). We
used NEON’s water temperature data (Hensley 2022;
NEON 2022b,c) for data assimilation and forecast evaluation
(WebPanel 1).

An ensemble Kalman filter (EnKF) was employed for data
assimilation (Evensen 2009). The EnKF updates model states
and parameters based on differences between the ensemble
forecast and observations from lake temperature sensors
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Figure 1. Map showing the locations of the six National Ecological Observatory Network (NEON) lakes forecasted in this study. The inset figures show 1
year of water temperature depth profiles, as measured by automated sensors deployed from a buoy (Hensley 2022; NEON 2022b,c) and monthly handheld
probe data collection at each lake (NEON 2022a). The automated sensor data were used in the data assimilation and forecast analysis at depths provided
in WebTable 1; the handheld probe data were only used in this figure to better characterize the full water temperature profile. The inset table provides
each lake’s name, NEON site ID, and NEON ecoclimatic domain. Summary statistics of each lake’s morphometry, hydrology, ecology, and weather charac-
teristics are available in WebTable 1. Credit for background map: © OpenStreetMap contributors.
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(following Thomas et al. 2020). We used this data assimila-
tion approach, rather than directly initiating the forecast
with observations, for several reasons. First, data assimila-
tion provided initial conditions for forecasting water tem-
peratures at depths without sensor observations. Second,
data assimilation provided initial conditions on days when
observations were not available. Third, data assimilation
generated initial conditions that combined model predic-
tions and observations based on the relative magnitudes of
sensor observation and model error. Finally, data assimila-
tion allowed us to dynamically calibrate the model by updat-
ing key model parameters.

Altogether, the ensemble forecasts from FLARE repre-
sented uncertainty in initial water temperatures when the
forecast was initiated (whereby each ensemble member had a
different starting temperature profile set by data assimilation),
future meteorology (by associating each ensemble member
with a different future weather trajectory from NOAA GEFS),
a select set of lake model parameters (whereby each ensemble
member was associated with different parameter values set by
data assimilation), and lake model equations (whereby nor-
mally distributed error representing model process uncer-
tainty was added to each ensemble member at each time-step)
(Thomas et al. 2020).

Application of FLARE to each lake was initiated on 18
April 2021, the first date when all six lakes had consistent data
availability after ice-off. Water temperature data were assimi-
lated but no forecasts were generated from 18 April to 18 May
2021, a spin-up period for initial parameter tuning. Beginning
on 18 May 2021, 1 to 35-days-ahead forecasts were produced
every day for each lake through 22 October 2021, when data
availability ended at the Northern Plains lakes for the year.
During the May-October period, data were assimilated and
the forecast initial conditions and parameters were updated
each day with observations. Other than defining the physical
shape of each lake, we performed no lake-specific model cali-
bration, with all lakes sharing the same initial parameters at
the beginning of the spin-up period. Data assimilation
resulted in a temporally dynamic calibration of the model for
each lake. This iterative forecasting cycle resulted in 159
unique 35-day forecasts, each with 200 ensemble members,
for each of the six lakes. The results presented below focus on
the top 1 m (hereafter, surface).

Evaluation of forecasts

We evaluated forecast performance for each day in the
1-35-day horizon using root-mean square error (RMSE) of
the forecasted mean water temperature across ensemble
members at each depth and for each horizon (eg the
5-days-ahead RMSE included the 5th day of all forecasts
at 1-m depth). Furthermore, we quantified (1) forecast
accuracy (defined as RMSE for the first day of the forecast)
and (2) accuracy degradation (defined as the difference in
maximum and minimum RMSE across the 35-day forecast

RQ Thomas et al.

horizon). We used Spearman rank correlations to quantify
the relationships between lake characteristics (morphometry,
hydrology, ecology, and weather) and mean forecast accuracy
and accuracy degradation for each lake. We used Spearman
rank correlations because the sample size was low (n = 6
lakes) and many of the variables were non-normally dis-
tributed. To ease interpretation of the correlation coefficient,
we negated RMSE so that positive correlations were asso-
ciated with higher accuracy. Our RMSE calculations only
included dates for a given lake when forecasts were available
at all 1-35-day horizons.

In addition, forecasts generated by FLARE were also com-
pared to null model forecasts that assumed the forecasted
mean water temperature for a date and depth was equal to the
mean water temperature observed historically on that day-of-
year (DOY). The DOY null model evaluated whether FLARE
had higher forecast accuracy than a simple historical mean and
was based on all historical NEON data available for a lake
(WebTable 1).

@ Results

Overall, when aggregated across the forecasting period, the
forecasts were able to accurately predict surface water tem-
perature within 2.60°C RMSE 1 to 35-days-ahead for all six
lakes (Figure 2a; see WebFigure 1 for two example forecasts).
The forecasts performed better than a DOY null model at
least 35-days-ahead for the Northern Plains domain lakes; at
least 30-days-ahead for the Great Lakes domain lakes; and
at least 5-days-ahead for the Southeast domain lakes
(Figure 2b). The forecasts for surface water temperature in
each lake had similar accuracy when aggregating forecasts
across all depths with observations (WebFigure 2).
Among all lakes, forecast accuracy decreased as the forecast
horizon increased (Figure 2a). At 1-day-ahead, the mean RMSE
of all lakes’ forecasts was 0.61°C (range across lakes:
0.41-0.90°C); at 7-days-ahead, the mean RMSE of all lakes’
forecasts was 1.21°C (range: 0.68-1.55°C); at 21-days-ahead, the
mean RMSE of all lakes forecasts was 2.03°C (range:
1.20-2.45°C); and at 35-days-ahead, the mean RMSE of all
lakes’ forecasts was 2.17°C (range: 1.14-2.60°C). The decrease
in forecast accuracy as the forecast horizon increased was much
lower for BARC than the other lakes (Figure 2a). The Southeast
and Northern Plains domain lakes exhibited near-linear
decreases in forecast accuracy until ~15 to 20-days-ahead,
when the declines in accuracy saturated (Figure 2a). In compar-
ison, the Great Lakes domain lakes exhibited a more constant
decrease in accuracy throughout the 35-day horizon.
Differences in water temperature forecast accuracy and
accuracy degradation among lakes were associated with multi-
ple lake morphometric, hydrological, ecological, and weather
characteristics. Although our inference space was extremely
limited (with only six lakes), we observed that forecast accu-
racy was positively correlated with maximum depth and water
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Figure 2. (a) Surface-water temperature (top 1 m) forecast accuracy, defined by the root-
mean square error (RMSE, in °C), for 1 to 35-days-ahead (horizon) forecasts at the six NEON
lakes. (b) A skill score of the RMSE (in °C) of the null day-of-year model versus forecasts gen-
erated by the Forecasting Lake And Reservoir Ecosystems (FLARE) system for each lake.
Positive values indicate that FLARE forecasts outperformed the null at a given horizon, zero
indicates that the forecasts and null performed similarly, and negative values indicate that the
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data as model inputs. Our forecast accuracy
compares favorably to other multi-lake modeling
studies that used observed meteorology as inputs.
For instance, Kreakie et al. (2021) predicted
upper water column temperatures with an RMSE
of 1.48°C for lakes across the US with a random
forest model. Similarly, Read et al. (2014) pre-
dicted upper water column temperatures with an
RMSE of 1.74°C for Wisconsin lakes with a prior
version of the same lake model. By comparing
our forecasts to these studies and a DOY null,
FLARE’s use of automated sensors, data assimila-
tion, and iterative forecasting adds substantial
predictive power, especially for the northern
lakes, where the forecasts all beat the null model
>27-days-ahead.

Environmental drivers of predictability

The correlation analysis suggests potential
relationships between forecast accuracy and
environmental drivers that inform future
research expanding beyond these six NEON
lakes (Figure 3). Lake maximum depth, catch-

null outperformed the forecasts.

ment size, fetch, and water clarity exhibited
relationships with forecast accuracy. Deeper

clarity, and negatively correlated with fetch and catchment size
(Figure 3; WebTable 2; WebFigure 3). In contrast, accuracy
degradation was positively correlated with volume and water
clarity, and negatively correlated with mean annual air temper-
ature (Figure 3; WebTable 2; WebFigure 4).

@ Conclusions

Here, we present the first continental-scale forecasts of lakes
uniquely enabled by NEON. We applied the same forecasting
framework to six NEON lakes (that is, the hydrodynamic
model was configured identically among lakes, all lakes had
the same initial model parameters, and each lake received
similar amounts of data for assimilation), thereby creating
a standardized analysis that can shed light on differences
in realized predictability (ie forecast accuracy) among sites.
Overall, our forecasts had high accuracy among lakes, with
consistent patterns in degradation of forecast accuracy with
horizon. Below, we explore gradients in accuracy observed
among lakes, as well as how our study provides a framework
for future NEON forecasting efforts.

Among lakes, water temperature forecast accuracy was high
overall, with a mean 1-day-ahead RMSE of 0.61°C and a mean
35-days-ahead RMSE of 2.17°C. Data assimilation resulted in high
accuracy at shorter horizons, with decreased forecast accuracy at
longer horizons likely due to degradation in weather forecast accu-
racy. Regardless of horizon, we witnessed an overall high level of
accuracy despite using forecasted, not observed, meteorological

lakes have more pronounced thermal strati-
fication and greater resistance to wind-driven mixing (Gorham
and Boyce 1989), thereby stabilizing their temperatures and
increasing their predictability. In contrast, lakes with larger
catchments experience greater inflow volumes (Messager
et al. 2016) and lakes with longer fetch have increased wind-
driven mixing (Rueda and Schladow 2009), both potentially
resulting in more variable water temperatures and conse-
quently lower predictability. We observed a positive rela-
tionship between forecast accuracy and water clarity, as
highlighted in the contrast between the two Southeast lakes,
with BARC having approximately 10x higher water clarity
than SUGG, and much higher forecast accuracy (Figure 2a;
WebTable 1). Deeper penetration of solar radiation results
in more uniform heating of surface waters, thereby increasing
deep-water temperatures and decreasing vertical temperature
gradients (Kirillin and Shatwell 2016). Altogether, the higher
predictability of water temperature in BARC than SUGG
may be due to the interacting drivers of greater depth, smaller
fetch, and greater clarity, as well as other factors.

Forecast accuracy degradation was negatively related to
mean annual temperature and positively related to water clar-
ity and volume. The colder northern lakes (Northern Plains
and Great Lakes domains) exhibited much greater degradation
than one of the warmer Southeast lakes (BARC) (Figure 2a),
potentially driving the relationship between air temperature
and forecast degradation. While the two lakes with the highest
water clarity (CRAM and LIRO in the Great Lakes domain)
experienced a greater decline in forecast accuracy over the
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et al. 2020) to six lakes across the US and
increases its maximum forecast horizon from
16 days in the prior application to 35 days.
FLARE forecasts of water temperature in the
Virginia reservoir had similar accuracy to the
forecast accuracy for the lakes in this study
(RMSE of 0.52°C at 1-day-ahead and RMSE
of 1.62°C at 16-days-ahead, at 1-m depth),
and similar degradation of water temperature

Figure 3. Spearman correlations between two metrics defining predictability at the six lakes:
forecast accuracy (red circles), defined as RMSE at 1-day-ahead, and forecast accuracy degrada-
tion (blue circles), defined as the difference in maximum and minimum RMSE across the
35-day forecast horizon. For water clarity, note that the symbol of the forecast accuracy metric is
obscured by the symbol of the forecast accuracy degradation metric, as the rho values for each
metric were identical (0.6). To ease interpretation of the correlation coefficient, we negated RMSE
so that positive correlations are associated with higher accuracy. Given the extremely limited
sample size of lakes (n = 6), which is too small for reliable P values for rho, we focused our inter-
pretation on Spearman rho correlations [>| 0.5 (above the dashed horizontal line). The relation-
ships are shown as scatterplots in WebFigures 3 and 4.

forecast accuracy with horizon (Thomas
et al. 2020). Our study also provides further
evidence that FLARE can be used to generate
accurate forecasts rapidly, with only 1 month of spin-up fol-
lowing spring sensor deployment at the NEON lakes and ini-
tiating the spin-up with default model parameters. Notably, we
found that water temperature forecast degradation may saturate
at longer horizons for some lakes (Figure 2a), which was only
made possible by the recently extended duration of the NOAA
meteorological forecasts as FLARE inputs.

We note caveats of this work. First, forecast accuracy/deg-
radation is related to the ability of the lake model to simulate
water temperature, and as a consequence using a different
model may influence the relationships we observed between
lake characteristics and accuracy/degradation (Figure 3).
Second, our DOY null model was limited to <4 years of data,
depending on site (WebTable 1). As additional data become
available, this null model will potentially become more accu-
rate, and may outcompete the forecasts at additional horizons.

Third, we only forecasted 1 year of water temperature due to
the recent deployment of NEON infrastructure in the study
lakes, and our findings may change as we forecast water tem-
perature in future years due to interannual variability. As
NEON continues monitoring these lakes into the future
(NRC 2004), the hypotheses generated in this initial analysis
can be tested. Fourth, the correlation analyses were con-
strained by small sample size, low variability in characteristics
within an ecoclimatic domain (eg the Northern Plains lakes
are similar along many axes of potential variation), and collin-
ear variation across domains (eg the deep lakes are only in the
Great Lakes domain) (WebTable 1), an inherent limitation of
the NEON sampling design. Supplementing future NEON
cross-lake forecast comparisons with other lakes (eg those in
the Global Lake Ecological Observatory Network) (Weathers
et al. 2013) would extend key environmental gradients and
allow evaluation of whether our observed patterns are
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supported by a larger sample of forecasts. This extension is
important given that the six conterminous NEON lakes are
not representative of the full range of lakes across the US, and
the addition of larger and deeper lakes with surface inflows
would greatly benefit our analysis.

Power and limitations of NEON for cross-lake forecasting

Similar to weather forecasting — in which increased data avail-
ability from sensors and satellites, improved models, and advanced
data assimilation techniques enabled a great increase in the
number of forecasts and their prediction accuracy (Bauer
et al. 2015) - we envision that NEON could catalyze a leap in
continental-scale environmental forecasting. NEON’s standardized
measurements, well-documented metadata, and rigorous data
quality assurance/quality control provide a critical foundation
for forecasting. However, we note that data latency currently
limits the ability to generate real-time forecasts. An automated
near-term, iterative forecasting system benefits from near-real-
time data availability. Given the 2-week to 1.5-month lag in data
availability in NEON’s current pipeline, our analysis here was
based on hindcasts (ie generating forecasts using forecasted drivers
to the perspective of the model but for a past date) (Jolliffe and
Stephenson 2012). Unless NEON’s data latency decreases, forecast
analyses such as ours are limited to predicting the past.

Our study provides a framework that can be adapted for
additional lakes — as well as terrestrial NEON sites — for fore-
casting a range of environmental variables and exploring the
drivers of predictability. Next steps for this work include fore-
casting water temperature in future years for the NEON lakes,
as well as incorporating forecasts for additional water-quality
variables that NEON monitors, such as dissolved oxygen and
chlorophyll-a. Forecasting additional water-quality variables
would greatly expand the utility of the FLARE workflow for
informing management, as well as the use of NEON lakes as a
multi-region test-bed for developing forecasting methods
that can be applied to other waterbodies. Following Dietze
and Lynch (2019), the future is bright for forecasting in ecol-
ogy, in large part due to observatory networks like NEON.
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