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Abstract

Query-to-communication lifting theorems, which connect the query complexity of a
Boolean function to the communication complexity of an associated ‘lifted’ function obtained
by composing the function with many copies of another function known as a gadget, have
been instrumental in resolving many open questions in computational complexity. A number
of important complexity questions could be resolved if we could make substantial improve-
ments in the input size required for lifting with the Index function, which is a universal gadget
for lifting, from its current near-linear size down to polylogarithmic in the number of inputs
N of the original function or, ideally, constant. The near-linear size bound was recently shown
by Lovett, Meka, Mertz, Pitassi and Zhang [20] using a recent breakthrough improvement on
the Sunflower Lemma to show that a certain graph associated with an Index function of that
size is a disperser. They also stated a conjecture about the Index function that is essential for
further improvements in the size required for lifting with Index using current techniques. In
this paper we prove the following;

• The conjecture of Lovett et al. is false when the size of the Index gadget is less than loga-
rithmic in N.

• The same limitation applies to the Inner-Product function. More precisely, the Inner-
Product function, which is known to satisfy the disperser property at size O(log N), also
does not have this property when its size is less than log N.

• Notwithstanding the above, we prove a lifting theorem that applies to Index gadgets
of any size at least 4 and yields lower bounds for a restricted class of communication
protocols in which one of the players is limited to sending parities of its inputs.

• Using a modification of the same idea with improved lifting parameters we derive a
strong lifting theorem from decision tree size to parity decision tree size. We use this,
in turn, to derive a general lifting theorem in proof complexity from tree-resolution size
to tree-like Res(⊕) refutation size, which yields many new exponential lower bounds on
such proofs.
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1 Introduction

In recent years, a substantial number of long-standing problems [8, 9, 19, 11, 23] have been re-

solved using the method of lifting. Lifting results take a gadget function g and show that any

function f : {0, 1}N → {0, 1} that is hard to compute by decision trees can be modified to a new

function F = f ◦ gN that is hard for a more powerful computational model, typically that of 2-

party communication complexity, in which case g : X × Y → {0, 1} and the inputs for F for the

two players are partitioned into x ∈ XN and y ∈ YN .

A particularly natural and important choice of gadget g is the Index gadget INDm : [m]×{0, 1}m

given by INDm(x, y) = yx. The Index gadget is universal for all gadgets g : X ×Y → {0, 1} where

|X| = |Y| = m via the simple reduction where y is replaced by the string (g(x, y))x∈X. Since INDm

has a 2-party protocol of cost log2 m + 1, the communication complexity of f ◦ INDN
m is at most

O(Cdt( f ) log m), where Cdt( f ) is the decision tree complexity of f . Another important gadget g is

the Inner-Product function IPb : {0, 1}b × {0, 1}b → {0, 1} given by IPb(x, y) = x · y mod 2.

An important limitation on the quality of lower bounds that can be proven by lifting with a

gadget g : X × Y → {0, 1} comes from the fact that the input size for F grows by a factor of

log2 |X|+ log2 |Y| bits from that of f . This limits the lower bounds on the lifted function F com-

pared to the input size of F. The original lifting theorems of [21] and [12] used Index gadgets

with m a large polynomial in N. Subsequently, [5, 25] proved a lifting theorem for Inner-Product

gadgets with b = c log2 N for some constant c > 5. Later, [5] improved c to almost 2. The first

lifting theorem for randomized computation was proved by [13] again for Index but for m an even

larger polynomial in N and later again, by [4], for Inner-Product for b a larger constant multiple

of log2 N than for deterministic lifting.

A key question asked in a precursor paper to these lifting theorems [10] is whether lifting is pos-

sible with a sub-logarithmic or even constant-size Inner-Product gadget. Smaller gadgets imply

sharper lifting results and more general classes of functions for which lifting may be used to prove

lower bounds. Proving such lifting theorems would imply breakthrough results in other areas.

For example, proving lifting theorems with constant-size gadgets would give us a near-complete

understanding of communication complexity of lifted search problems and would imply break-

through results in associated areas like proof complexity and circuit complexity1. Even improving

the gadget size for Index to poly-logarithmic in N would improve the best known monotone cir-

cuit size lower bounds [14] from 2Ω̃(n1/3) to 2Ω̃(n). In the dream range of constant size, by the

universality of Index, if there is any lifting theorem for any constant-size gadget, there would be

one for constant-size Index gadgets.

Recent work by Lovett, Meka, Mertz, Pitassi and Zhang [20] used a new bound for the Sun-

flower Lemma [1] to improve the size of the Index gadget that can be used in deterministic lifting

results to O(N log N). They also identified a conjecture regarding entropy deficiency and the dis-

perser property of the Index gadget that is essential for further reductions in gadget size using

1In this paper we focus on the setting of query-to-communication lifting where the query complexity of f is lifted to

the communication complexity of F using the gadget g. There are other lifting theorems (see [24]) which lift analytical

parameters of the function f to the communication complexity of F. In these settings, lifting theorems with constant-

size gadgets are known [24] but for many interesting applications of lifting, there is a significant gap between analytical

parameters of f like approximate-degree (used in [24]) and the query complexity of f . Thus, such lifting theorems with

constant-size gadgets are not enough to give the results alluded to above.
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current techniques.

Before stating the conjecture of Lovett, Meka, Mertz, Pitassi and Zhang [20] we give an outline of

the meta-technique for proving query to communication lifting theorems, known as the simulation

theorem framework.

The lifting paradigm

The general paradigm for proving a query-to-communication lifting theorem is a step-by-step

simulation argument that begins with a communication protocol Π for f ◦ gN on inputs in XN ×

YN and derives a decision tree T computing f on inputs z ∈ {0, 1}N .

Beginning at the root of Π and with T a single root node, the simulation proceeds to follow a

path in Π maintaining sets of inputs X ⊆ XN and Y ⊆ YN consistent with the current node u in

protocol Π. (The exact procedure for choosing the path and the sets X and Y varies.)

At any point in time when X × Y has revealed too much about the value of zi = g(xi, yi) for

some i, the simulation at the current leaf node v of T queries zi and adds the children v′ and v′′ to

T, one for each outcome. The simulation then splits into cases depending on whether the 0 or 1

out-edge from v is being followed. There may be multiple i for which this may need to be done at

the same time.

The simulations maintain several invariants at each corresponding pair of nodes u in Π and v

in T that occur in this simulation. In particular, if X and Y are associated with this pair of nodes

and I ⊆ [N] is the set of input indices queried on the path in T to v and zI is the assignment that

takes T to the node v then we require

gI(X ,Y) = zI (Consistency)

g[N]\I(X ,Y) = {0, 1}[N]\I . (Disperser/Extensibility)

The consistency property is obviously required for correctness. The disperser property is required

because the simulation cannot predict what query indices will be needed for T in the future. Over-

all, in order to yield a good complexity bound, the argument also has to bound the length of the

path to v in T, which is the size of the set I, as a function of the length of the path from the root to

u in Π.

In order to maintain these properties, the simulations also maintain some “nice” structure on

the sets X and Y . The most common notions of nice structure are small entropy deficiency of the in-

duced distributions on the unqueried coordinates [N] \ I or high min-entropy rate (equivalently the

block min-entropy)2. The min-entropy rate is the minimum ratio of the min-entropy of the induced

distributions on any subset of unqueried blocks compared to the maximum possible entropy on

those blocks.

There are other ”nice” properties that were used in the past. For example, one of the first lifting

theorems by Raz and McKenzie [21] used a combinatorial notion of niceness defined as average-

degrees in a layered graph corresponding to X . This property was also used in the later reproving

of the result by [12], and the result on extending deterministic lifting theorems to a larger class of

2Many existing results for the Index gadget use bounds on the min-entropy rate on the XN side and entropy defi-

ciency on the YN side.
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gadgets including Inner Product by [25, 5]3. All of the results using this combinatorial property

crucially depend on a transformation in layered graphs from average degree to minimum degree

known as the “thickness lemma” to prove the disperser property of the gadget. It is a folklore

result that such average-degree to min-degree transformations do not work for Index gadgets of

linear size. Thus, using ”average-degree” as the nice property cannot yield lifting theorems with

sublinear-size Index gadgets using existing techniques.

The LMMPZ conjecture on entropy deficiency and disperser properties of IND

The conjecture of Lovett et al. [20] is a necessary condition for small entropy deficiency to be

sufficient for lifting with the Index function. To motivate the parameters of the conjecture we first

note how entropy deficiency relates to the numbers of bits of communication sent in the protocol

Π:

In the course of following a path in Π to a node u, each bit communicated may split the set

of consistent inputs in either XN or YN by a factor of 2, which increases the entropy deficiency

by 1. If good min-entropy rate is also required, additional pruning must be done, which further

increases the entropy deficiency. Therefore, the best one can do in terms of maintaining small

entropy deficiency is to maintain a bound Δ on entropy deficiency for X and Y that is proportional

to the number of bits sent in Π. Bounding the length of the path in the decision in terms of the

number of bits sent means that |I| should not be too large as a function of Δ. This led Lovett et al.

to formulate the following conjecture on the disperser properties of Index as a first step towards

obtaining lifting theorems for small gadget sizes:

Conjecture 1.1 ([20, Conjecture 11]). There exists c, such that for all large enough m the following holds:

Let X ,Y be distributions on [m]N, ({0, 1}m)
N

, respectively, each with entropy deficiency at most Δ. Then

INDN
m(X ,Y) contains a sub-cube of co-dimension at most cΔ. That is, there exists I ⊆ [N], |I| ≤ cΔ, and

γ ∈ {0, 1}I such that for all z ∈ {0, 1}N with zI = γ we have

Pr
x∼X , y∼Y

[INDN
m(x, y) = z] > 0. (1)

Remark: Note that the condition Equation (1) is somewhat weaker than the combination of the

consistency and disperser conditions in the above lifting paradigm. The lifting paradigm would

correspond to additionally requiring that the (x, y) pair in Equation (1) come from some X ′ ⊆ X

and Y′ ⊆ Y such that INDI
m(X

′,Y′) = γ. Here, one could satisfy Equation (1) using pairs (x, y)

and (x′, y′) with INDI
m(x, y) = INDI

m(x′, y′) = γ but INDI
m(x, y′) �= γ.

The results in [20] prove the conjecture for m = O(N log N), in fact the stronger version with

separate consistency and disperser properties required for lifting; previously it was only known

when m � N2. Based on a related statement about p-biased (X ,Y) proved in the Robust Sun-

flower Theorem from [1], the authors [20] also suggest that it is hopeful to prove the conjecture

when m = poly(log N) using techniques from their work and [1].

3[5] uses it slightly differently from the application of the property for the Index gadget.
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Our results

We disprove the LMMPZ conjecture when m is log2 N − ω(1), even when X and Y are also as-

sumed to have extremely high min-entropy rate. In our counterexample the distribution for X is

uniform on [m]N and so has full entropy and maximum possible min-entropy rate. The distribu-

tion on Y is also uniform so we view both X and Y as subsets of [m]N and ({0, 1}m)N respectively.

Though the parameter Δ governing the entropy deficiency in the conjecture is universally quan-

tified, the failure of the conjecture occurs over a very wide range of values of Δ. In fact, when

m ≤ (1− α) log2 N, we prove a much larger gap and show that |I| must be Ω(Nα) independent of

Δ for Equation (1) to hold.

Theorem 1.2. For any Δ ≥ 1 and m with 2m ≤ N/(KΔ) for K ≥ 1 there is a set Y ⊆ ({0, 1}m)N

of entropy deficiency at most Δ and min-entropy rate at least 1 − 1/m such that for every I ⊆ [N] with

|I| ≤ (K − 1)Δ, the set IND
N\I
m ([m]N ,Y) does not contain the all-0 string.

Since X = [m]N has no deficiency (and min-entropy rate 1) we immediately derive the follow-

ing:

Corollary 1.3. Conjecture 1.1 is false when m ≤ log2(N/Δ) − ω(1). Moreover, for all Δ, when m ≤

(1 − α) log2 N, for any set I, |I| must be Ω(Nα) for Equation (1) to hold.

Furthermore, an analogous property applies to the Inner-Product function:

Theorem 1.4. For b ≤ log2(N/(KΔ)) for K ≥ 1, there is a set Y ⊂ ({0, 1}b)N of entropy deficiency

at most Δ and min-entropy rate more than 1 − 1/b for every I ⊆ [N] with |I| ≤ (K − 1)Δ, the set

IP
N\I
b (({0, 1}b)N ,Y) does not contain the all-1 string.

Therefore, though lifting theorems, both deterministic and randomized, have already been

proven for Inner-Product gadgets on c log2 n bits using only properties of small entropy-deficiency

and high min-entropy rate [4], using these properties we can at best reduce the Inner-Product gad-

get size in such lifting theorems by at most a constant factor since lifting for Inner-Product gadgets

with significantly fewer than log2 n bits are impossible using those properties.

The proof idea for these theorems is quite simple and relies on the fact that for such small values

of m, it is likely that a uniformly random string y will have many blocks i where yi = 0m and hence

cannot have 1 output values in any of those coordinates.

Despite this setback, the dream of lifting theorems for constant-size gadgets remains. Our sec-

ond main result is that, though we can rule out the disperser properties of Conjecture 1.1 for INDm

with sub-logarithmic m, there is an interesting class of protocols, one in which Bob’s messages are

constrained to be parity functions of his input string y, in which we can prove a deterministic

lifting theorem using INDm gadget for constant size m.

Since Alice is unrestricted and Bob is restricted, we call such protocols semi-structured pro-

tocols. We obtain a lifting theorem for semi-structured protocols showing that the decision tree

height is asymptotically at most a 1/ log m fraction of the complexity of the communication pro-

tocol for the lifted function with INDN
m . As is typical for deterministic lifting theorems, this works

both for functions and for search problems. For protocols in which both Alice and Bob only send
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parities of their inputs, we obtain an even stronger simulation that applies to the size of the deci-

sion tree produced in terms of the number of leaves (size) of the communication protocol for the

lifted function.

In particular a modification of this idea gives us a generic theorem that lifts decision tree lower

bounds of height t or size s for any explicit function f on n inputs to a corresponding lower bound

for parity decision trees of height Ω(t) or size Ω(s) for an explicit function f ′ on O(n) inputs.

The latter also yields new lower bounds for tree-like proofs in the Res(⊕) proof system in-

troduced by Itsykson and Sokolov [16, 17] who proved tight exponential lower bounds for the

pigeonhole principle as well as exponential lower bounds for a very restricted kind of lifted for-

mula based on Tseitin formulas from [2]. (This system is also known as ResLin2 because of its

relationship to the ResLin proof system of Raz and Tzameret [22].) Huynh and Nordström [15]

gave lifting theorems for a variety of other proof systems using constant-size Index gadgets (in-

deed with m = 3) but these only yield good bounds for a restricted class of formulas whose search

problems have high “critical block sensitivity”. Here we obtain exponential lower bounds for a

substantially broader class of formulas. In particular, for any of the vast class of k-CNF formu-

las ϕ for which exponential tree-resolution lower bounds are known, we obtain lifted O(k)-CNF

formulas ϕ′ with a constant factor increase in number of variables (and a constant factor increase

in number of clauses if k is constant) requiring tree-like Res(⊕) refutations of exponential size

(indeed at least the tree-like resolution refutation size for ϕ).

Related Work Independently of our work, Chattopadhyay, Mande, Sanyal, and Sherif [6] have

obtained closely related lifting results for parity decision tree size and the size of tree-like Res(⊕)

proofs. Their lifting theorem works not only for lifting with Index gadgets but, more generally,

for lifting with a class of gadgets that includes Inner-Product and other simple gadgets. Their

methods and ours have considerable similarity, particularly in the use of row-reduction as a key

component.

2 Preliminaries

Notation: For a set of vectors (or a distribution X ) on UN and I ⊆ [N], we use XI to denote the

projection of X onto the coordinates in I. For a function h on U, we let hI(X ) denote the set of all

possible vectors of outputs of hI on XI ; if this set is a singleton w we abuse notation and simply

define the value to be w.

Information theory: We use several definitions for forms of entropy:

Definition 2.1. The entropy deficiency (sometimes simply deficiency) of a distribution X on a uni-

verse U, D∞(X ), is log2 |U| − H2(X ). For a subset V ⊆ U, the deficiency of V is that of the uniform

distribution on V . In particular, for example, the deficiency of a set of inputs Y ⊆ ({0, 1}m)N of Bob

satisfies

2−D∞(Y) =
|Y|

2m·N
.
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Definition 2.2. The min-entropy of a distribution X on U, H∞(X ), is

min
x∈U

log2(1/ Pr
X
(x)).

For a distribution X on a set UN, the min-entropy rate of X is the maximum τ such that for every

J ⊆ [N], H∞(XJ) ≥ τ|J| log2 |U| or, equivalently, such that for all αJ ∈ UJ,

Pr
x∼X

[xJ = αJ ] ≤ |U|−τ·|J|.

We use the following fundamental fact about the effect of conditioning on the min-entropy of a

random variable.

Fact 2.3. Let X be a random variable and let E be an event. Then H∞(X | E) ≥ H∞(X )− log2(1/ Pr[E]).

Probability: We will use the following nice bound on the median of any binomial distribution.

Proposition 2.4 ([18]). The median of a binomial distribution B(n, p) lies between �np� and �np�.

Linear algebra: We use row-reduced form to represent matrices in our simulation theorems.

Definition 2.5 (Row-reduced matrices). A matrix M with r rows is said to be row reduced if it contains

an r × r identity submatrix.

Parity decision trees and Res(⊕) refutations: A parity decision tree over a set of Boolean variables

Z defining a space {0, 1}Z of Boolean vectors is a rooted binary tree in which each internal node

is labeled by a parity of variables from Z with out-edges labeled 0 and 1 respectively. Each leaf is

labeled by an output value. Such a decision tree computes a function on {0, 1}Z.

For a function or relation f on Boolean inputs, let Cdt( f ) and sizedt( f ) be the minimal height

and size, respectively of any decision tree computing f and let C⊕dt( f ) and size⊕(dt)( f ) be the

corresponding measures for parity decision trees.

Before defining the proof system Res(⊕) and its relationship to parity decision trees, we first

review the resolution proof system and its relationship to ordinary decision trees.

A resolution (Res) refutation of an unsatisfiable CNF formula ϕ on variables Z is a sequence of

clauses ending in the empty clause ⊥ in which each clause is either a clause of ϕ, or follows from

two prior clauses using the inference rule

A ∨ zi, B ∨ zi

A ∨ B

for some variable zi ∈ Z; we say that this step resolves on variable zi.

This sequence yields a directed acyclic graph (dag) of in-degree 2 each of whose nodes is labeled

by a clause on the variables in Z, with sources labeled by clauses of ϕ and sink labeled by ⊥. The

resolution refutation is tree-like if this associated dag is a tree and the associated refutation is called

a tree-resolution refutation of ϕ. For an unsatisfiable CNF formula ϕ, let treeRes(ϕ) be the minimum

size of any tree-resolution refutation of ϕ. Further, let widthRes(ϕ) denote the minimum over

all resolution refutations of ϕ of the length of the longest clause in the refutation. We have the

following result of Ben-Sasson and Wigderson [3].
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Proposition 2.6. For any CNF formula ϕ with clause-size at most k, treeRes(ϕ) ≥ 2widthRes(ϕ)−k.

Every unsatisfiable CNF formula ϕ yields an associated total search problem Searchϕ which

takes as input an assignment z ∈ {0, 1}Z and produces the name of a clause that is falsified by z.

Proposition 2.7. Given any unsatisfiable formula ϕ, minimal tree-resolution refutations of ϕ and decision

trees solving Searchϕ are isomorphic. This isomorphism identifies nodes that resolve on a variable zi with

those that branch on variable zi.

Each node in a decision tree naturally corresponds to the sub-cube of the input set {0, 1}Z given

by the constraints on the path to the node from the root. Similarly, any clause C can be identified

with a sub-cube of {0, 1}Z consisting of the set of all inputs falsified by C. We say that a clause C is

a weakening of a clause A iff there is some clause B such that C = A ∨ B; alternatively this is equiv-

alent to saying that the sub-cube corresponding to C is contained in the sub-cube corresponding

A. With this correspondence, the isomorphism in the above proposition means that the sub-cube

for each node in the decision tree corresponds to a weakening of the clause at the isomorphic node

in the tree-resolution refutation.

A Res(⊕) refutation of an unsatisfiable CNF formula ϕ in variables Z is a sequence of affine

subspaces of FZ
2 ending in the subspace F

Z
2 such that each subspace in the list is either the sub-

cube corresponding to a clause of ϕ or follows from two prior subspaces A and B via the inference

rule:
A, B

C
if C ⊆ A ∪ B.

(Alternatively, one can replace each subspace by an expression for its dual, namely a disjunction

of parity equations over F2, each of which is the negation of one of a set of linear equations defining

the affine subspace. Therefore, each line is a clause over parities and the subspace is the set of

inputs that falsifies it. In this way, the single inference rule generalizes the weakening rule of

resolution and generalizes resolving on a single literal to resolving on a parity of variables; it is

not hard to see that the subspace C must be contained entirely in A or in B unless there is a unique

linear constraint defining A whose negation is a defining equation for B. This representation is not

unique since there may be many different choices of defining equations for an affine subspace, but

we assume that the proof is representation independent. As noted by Isykson and Sokolov [16, 17],

the semantic view of Res(⊕) refutations we have presented is a standard proof system in the sense

of Cook and Reckhow [7] since inference is explicitly verifiable in polynomial time.)

As with resolution refutations, we can define the dag of indegree (at most) 2 associated with a

Res(⊕) refutation and let tree-Res(⊕) be the proof system consisting of Res(⊕) refutations whose

associated dag is a tree. For an unsatisfiable CNF formula ϕ, let treeRes(⊕)(ϕ) be the minimum

size of any tree-Res(⊕) refutation of ϕ. Using the analogous ideas to the isomorphism between

decision trees and minimal tree-resolution proofs, Itsykson and Sokolov proved the following

correspondence:

Proposition 2.8. [16, 17] Given any unsatisfiable formula ϕ, minimal tree-Res(⊕) refutations of ϕ and

parity decision trees solving Searchϕ are isomorphic. This isomorphism identifies nodes that resolve on a

parity function ⊕S(z) with those that branch on ⊕S(z).
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Lifting CNF formulas with INDm: There are a few options for how to do this. Since we will use

this when m = 2� is a constant, we choose a simple option that has N� Boolean variables xi,j′ for

j′ ∈ {0, . . . , �− 1} and i ∈ [N] and Nm Boolean variables yi,j for j ∈ {0, . . . , m − 1} and i ∈ [N].

As usual, the interpretation we have for INDN
m is that zi = yi,xi,�−1...xi,0

.

Given a k-CNF formula ϕ in N variables Z = {z1, . . . , zN}, we define an (�+ 1)k-CNF formula

ϕ ◦ INDN
m on the xi,j and yi,k variables as follows: Each clause (zb1

i1
∨ · · · zbk

ik
) of ϕ is replaced by

mk clauses of length (� + 1)k, one for each tuple (j(1), . . . , j(k)), which expresses the statement

that if the � bits xi1,∗ encode value j1, those of xi2,∗ encode j2, ... and those of xik ,∗ encode jk, then

yb1
i1,j1

∨ · · · ybk
ik ,jk

must be true. With this definition, each clause of ϕ ◦ INDN
m corresponds to a unique

clause of ϕ. Moreover, a falsified clause of ϕ ◦ INDN
m on one of its input vectors yields a falsifying

assignment to the corresponding clause of ϕ under the vector of z values given by INDN
m .

3 On the insufficiency of low deficiency and high min-entropy rate

In this section we prove Theorems 1.2 and 1.4.

Let K be any function of N with K ≥ 1 for all N and assume that 2m ≤ N/(KΔ). We will

construct a specific distribution Y , with deficiency bounded by Δ and min-entropy rate at least

1 − 1/m, such that for any I ⊆ [N] with |I| ≤ (K − 1)Δ, IND
[N]\I
m ([m]N ,Y) does not contain the

all-1 string.

We establish this simply by showing that for all (x, y) ∈ [m]N × Y , INDN
m(x, y) has Hamming

weight more than (K − 1)Δ. Thus any projection of IND(X ,Y) onto N − |I| ≥ N − (K − 1)Δ

coordinates will contain at least one 1, and would therefore miss the all-0 string.

To this end, we will construct Y as the uniform distribution on a subset S ⊆ ({0, 1}m)N with the

following properties :

1. Every y ∈ S has at least k > (K − 1)Δ blocks that are equal to 1m.

2. |S| ≥ 2mN−Δ

3. The min-entropy on any subset of b ≤ N blocks is at least (m − 1)b.

The second property ensures that the deficiency of Y is at most Δ and the first property guarantees

that every output has at least k 1-bits no matter what the input x is. The third property is simply

that the min-entropy rate is at least (1 − 1/m).

The essence of the proof idea applies in the case that Δ = 1; the general case is a simple extension

of that special case:

Counterexample when Δ = 1: We derive a counterexample in this case by choosing k = �K� >

K − 1 and setting S to be the set of all inputs in ({0, 1}m)N that have at least k blocks of the form

1m; i.e., all-1 blocks.

The key observation that makes this work is the following:

Observation 3.1. For y chosen uniformly at random from ({0, 1}m)N, the number of all-1 blocks in y is

distributed according to the binomial distribution B(N, 1/2m).
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In particular, since Δ = 1 this means that the expected number of all-1 blocks in y chosen

uniformly from ({0, 1}m)N is N/2m ≥ K. By applying a bound on the median of binomial distri-

butions, we obtain the following:

Lemma 3.2. For 2m ≤ N/K, at least 1/2 of all strings in ({0, 1}m)N have more than K − 1 all-1 blocks.

Proof. By Observation 3.1, the number of all-1 blocks is given by the binomial distribution

B(N, 1/2m). By Proposition 2.4, the median of this distribution is at least �N/2m� ≥ �K� > K − 1.

The claim follows since the binomial is integer-valued.

Lemma 3.2 shows that Y is a uniform distribution with deficiency at most 1, which means that

the projection on any b blocks has min-entropy at least mb − 1 and hence Y has min-entropy rate

at least 1 − 1/m.

Counterexample for Δ > 1 but o(N): For this we assume without loss of generality that Δ is an

integer and N = N′
Δ for some integer N′ since rounding can add only Δ − 1 extra coordinates.

Since 2m ≤ N/(KΔ), we have 2m ≤ N′/K. This means that we can use the counterexample

distribution Y′ for the case Δ = 1 on N′ coordinates. We define Y to the direct product of Δ

independent copies of the distribution Y′ on disjoint coordinates.

By construction, Y has deficiency at most Δ; it also has min-entropy rate at least that of each

Y′ which is 1 − 1/m since it is a product over disjoint coordinates. Also by construction, every

y in the support of Y has more than (K − 1)Δ all-1 blocks which means that no set I of at most

(K − 1)Δ coordinates cannot cover all of the all-1 blocks of y, which would be necessary to have

the all-0 string in IND
[N]\|I|
m ([m]N ,Y).

Extending the counterexamples to other gadgets We note that the above result also disproves

a similar conjecture for any 2-party gadget g : X × Y → {0, 1} whose communication matrix

has a row or column that has a constant value. For example, the Inner-Product gadget on IPb :

{0, 1}b × {0, 1}b has this property for the row or column of its communication matrix indexed by

0b. That is, 〈x, 0b〉 = 0 for all x ∈ {0, 1}b. It is easy to see that the above analysis works to disprove

the analogous conjecture for Inner-Product under the same conditions, though in this case, the

output vector that would be missed is the all-1 vector.

4 Lifting theorem for semi-structured protocols

Since Conjecture 1.1 is false for m = (1 − o(1)) log N, without modification, existing techniques

cannot reduce the gadget size below this threshold. However, this does not rule out other ap-

proaches to proving lifting theorems with very small gadgets, even for constant-size ones. Are

such theorems with constant-sized gadgets possible at all?

As a first step towards answering this question, in this section we prove a (deterministic) lifting

theorem with constant-size Index gadgets for a restricted family of communication protocols.

The restricted family that we consider are deterministic communication protocols in which Alice

is unrestricted, but Bob is only allowed to communicate parities of his input bits. Since Alice is

unrestricted and Bob is restricted, we call such protocols semi-structured or (∗,⊕)-protocols.
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For a Boolean function F : X×Y → {0, 1}, we use C∗,⊕(F) to denote the deterministic communi-

cation complexity of F by such protocols. Similarly, for a relation (search problem) R ⊆ X ×Y ×W

we use C∗,⊕(R) to denote the deterministic communication complexity of such protocols solving

R, that is, when Alice receives x ∈ X and Bob receives y ∈ Z, the protocol outputs some w ∈ W

with (x, y, w) ∈ R or outputs ⊥ if no such w exists.

Theorem 4.1 (Lifting theorem for semi-structured protocols). Let m ≥ 4 be an integer. For every

f : {0, 1}N → {0, 1},

C∗,⊕( f ◦ INDN
m) ≥

1

2
Cdt( f ) log2 m.

Furthermore for every R ⊆ ZN × W,

C∗,⊕(R ◦ INDN
m) ≥

1

2
Cdt(R) log2 m.

Let Π be a (∗,⊕)-protocol for R ◦ INDN
m of complexity C∗,⊕(R). Without loss of generality we

can assume that C∗,⊕(R) ≤ N(log2 m + 1). Following the lifting theorem paradigm we prove

Theorem 4.1 by showing how to produce a decision tree T for R of height at most that of Π by

simulating Π.

4.1 High level overview and invariants

Since Bob is only allowed to communicate parity equations, we will follow the lifting paradigm

and maintain the set Y as an affine subspace over F
[N]×[m]
2 . We will also maintain the property that

the codimension d of Y is at most the total number of bits communicated during the protocol.

At every point in our simulation we will maintain a set DY ⊆ [N]× [m] of dependent coordinates.

All other coordinates in [N] × [m] will be free. We maintain Y of codimension d as the set of a

solutions of a system E of d affine equations over F2 in row-reduced form

M · y = b,

such that M (up to permutation of rows) is a d × d identity submatrix on the columns DY that

we have designated as dependent coordinates. It is immediate from this set-up that we have the

properties:

(A) |DY | = codim(Y).

(B) For every total assignment to the free coordinates, there is a unique assignment to DY that

extends it to an element of Y .

Bob’s communication of some parity function ⊕(i,j)∈S yi,j of his input can add at most one new

affine equation to E , depending on whether or not the value of that parity function is already fixed

on Y . There is no change to E if and only if the parity is in span(E), the F2 span of the parities

defining E .

As in the general lifting paradigm, we maintain a set I ⊆ [N] of fixed indices4 on which there

is a single fixed output for INDI
m(X ,Y). In addition to the above, we also maintain the following

invariants.
4As in the discussion so far, to keep notions separate we will use the term “indices” to refer to elements of [N] and

“coordinates” to refer to elements of [N]× [m].
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(C) For all indices that are not fixed, elements of X only point to free coordinates; that is, for every

i ∈ [N] \ I, and every x ∈ X we have (i, xi) /∈ DY .

(D) X has min-entropy rate at least τ = 1/2 on [N] \ I.

Maintaining (C) is quite easy: Whenever we identify a new dependent coordinate (i, j) ∈ [N]×

[m] in Y , we simply update X by removing all x ∈ X with xi = j.

We maintain (D) using the methods of Göös, Pitassi, and Watson (GPW) to restore the min-

entropy rate whenever it falls too low. Since the affine structure of Y allows for a precise definition

of dependent coordinates, our lifting theorem differs from the GPW-style lifting theorems in its

parameters and philosophy5. These differences allow us to overcome the dependence between m

and N in such theorems.

4.2 The Simulation Algorithm

As we discussed in our high-level overview, we maintain Y as an affine subspace of ({0, 1}m)N

defined by a set of linearly independent equations E in a row-reduced form that contain an identity

matrix on the set DY of dependent coordinates. We need to be able to update this as new affine

equations are added, either because of communication by Bob or because we have added some i

to the set I of fixed indices.

For this, we define a helper function row-reduce(E , DY , e) that takes as input

• a set of row-reduced equations E ,

• a set DY of coordinates for its dependent variables, and

• a new affine equation e linearly independent of E ,

and uses Gaussian elimination to return a pair (E ′, (i, j)) where E ′ is equivalent to E ∪ {e}, (i, j) /∈

DY and E ′ is row-reduced, as witnessed by the columns of DY ∪ {(i, j)}. We note that when a new

equation is introduced while adding i to the set of fixed indices, the new equation e will be of a

particularly simple form, namely yi,j = b where (i, j) /∈ DY by our maintenance of invariant (C),

in which case the new dependent coordinate returned will be (i, j).

We follow a variant of the simulation algorithm of GPW[12], with a few modifications to identify

and exclude dependent coordinates in Y . The algorithm uses a sub-routine RestoreMinEntropy-

RateAndQuery (see Algorithm 2). This is essentially density restoration from GPW and makes

sure that X has min-entropy rate at least τ = 1/2 by adding fixed indices to I, adding queries to

the decision tree and fixing some coordinate yi,αi
to the query answer for zu. Note that GPW style

lifting only uses this procedure to restore min-entropy rate at a node where Alice speaks, but we

also may need this when Bob speaks because we reduce X by removing pointers to dependent

coordinates. Another difference in our version of density-restoration is that we only chose the

first part in the partition (as we are doing deterministic lifting opposed to the randomized lifting

in [13]).

5GPW never makes queries based on Bob’s communication, but we do!
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1 Algorithm: Query
Π
(z)

Data: z ∈ {0, 1}N , X = [m]N , Y = ({0, 1})N , E = ∅, DY = ∅, I = ∅, ρ = ∗n, protocol Π for

R ◦ INDN
m , v=root of Π.

Result: element of R(z).

2 while v is not a leaf do

3 Let v0, v1 be the children of v following communication 0 and 1 respectively

4 if Bob speaks at v then

5 Let the parity function at v be ⊕(i,j)∈S yi,j

6 if ⊕(i,j)∈Syi,j ∈ span(E) then

7 v← vb for the unique b such that ⊕(i,j)∈S yi,j = b for all y ∈ Y

8 else

// Half of Y goes to v0, half to v1; we choose the smaller subtree.

9 Choose b ∈ {0, 1} with subtree rooted at vb no larger than one rooted at v1−b.

10 Y ←
{

y ∈ Y | ⊕(i,j)∈S yi,j = b
}

11 ( E , (i∗, j∗) )← row-reduce( E , DY , ⊕(i,j)∈S yi,j = b )

12 add (i∗, j∗) to DY
13 X ← X |xi∗ 6=j∗ // Note: if i∗ ∈ I then xi∗ 6= j∗ already.

14 v← vb

15 end

16 end

17 if Alice speaks at v and partitions X into X 0 ∪ X 1 then

18 Let b ∈ {0, 1} be such that
∣

∣X b
∣

∣ ≥ 1
2 · |X |

19 X ← X b

20 v← vb

21 end

22 if min-entropy-rate(X ) < τ = 1/2 then

23 RestoreMinEntropyRateAndQuery(X , z)

24 end

25 end

26 return label of v
Algorithm 1: Simulation algorithm
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1 Algorithm: RestoreMinEntropyRateAndQuery(X , z)

Data: X ⊆ [m]N , z ∈ {0, 1}N .

Result: Updates X to restore min-entropy rate to τ = 1/2 by fixing coordinates via queries

to z.

2 Let I ′ ⊆ [N] \ I be a maximal set on on which X has min-entropy rate < τ = 1/2

3 Let αI′ ∈ [m]I
′

be such that Prx∈X [xI′ = αI′ ] > m−τ|I′ |

4 X ← {x ∈ X | xI′ = αI′ }
5 Query all coordinates in I ′ and let zI′ be the query answers

6 Y ←
{

y ∈ Y | y(I′,αI′ )
= zI′

}

7 foreach i ∈ I ′ do

8 ρ(i) ← zi

9 ( E , (i∗, j∗) ) ← row-reduce( E , DY , yi,αi
= ρ(i) ) // Note: i∗ = i, j∗ = αi

10 add (i, αi) to DY

11 end

12 I ← I ∪ I ′

Algorithm 2: Procedure RestoreMinEntropyRateAndQuery

4.3 Analysis of the simulation algorithm

We first argue that X and Y are never empty during the run of our simulation algorithm. Thus,

when the algorithm reaches a leaf node of Π we can output a correct answer. To do so we observe

the following invariants on our simulation algorithm (algorithm 1).

Lemma 4.2 (Invariants of the Simulation Algorithm (algorithm 1)). At the beginning of every itera-

tion of the while loop in Algorithm 1, the following properties hold:

a. ρ defines the path in the decision tree T that is the outcome of the queries and fixed(ρ) = I.

b. Y is the set of inputs satisfying E which is row-reduced on DY .

c. For any x ∈ X , and any i /∈ I, (i, xi) is a free coordinate of Y ; that is (i, xi) /∈ DY .

d. For every total assignment to the free coordinates ([N]× [m]) \ DY , there is a unique assignment to

DY that extends it to an element of Y .

e. X has min-entropy rate at least τ on [N] \ I

Proof. All but the last of the conditions of Lemma 4.2 easily can be seen to hold by inspection of

Algorithms 1 and 2. The last follows by the argument of GPW and follows from the maximality

of the set I ′ in Algorithm 2. It is easy to see that if X has non-zero min-entropy rate, then X is

non-empty. Moreover, since every element of X points only to free coordinates in blocks outside

of I and the min-entropy on each block is large, Y must have many free coordinates outside of

I.

We bound the number of queries |I| by using a potential function equal to the deficiency of

X[N]\I . Let A be the number of bits spoken by Alice, and B be the number of bits spoken by Bob

in Π. We analyze the change in D∞(X[N]\I) due to updates of X and I:
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• line 13 in Algorithm 1: removing xi∗ = j∗ from X for newly dependent (i∗, j∗):

By Lemma 4.2(e), we know that X has min-entropy rate at least τ = 1/2. Thus, Prx∼X [xi∗ =

j∗] ≤ 1/mτ ≤ 1/2 since m ≥ 4 and τ = 1/2. Consequently, Prx∼X [xi∗ �= j∗] ≥ 1/2. So, by

Fact 2.3, H∞(X |xi∗ �=j∗) ≥ H∞(X )− 1. Therefore, the change in D∞(X[N]\I) is at most 1. This

step is executed at most B times. (Note: For larger m we could maintain sharper bounds, but

it seems that we don’t need to do so.)

• line 19 in Algorithm 1: choosing the more frequent bit of Alice to send:

This increases D∞(X[N]\I) by at most 1. This step is executed A times.

• line 4 and line 10 in Algorithm 2: querying and fixing coordinates I ′ maximal for min-

entropy loss:

First, line 4 increases D∞(X[N]\I) by at most τ · |I ′| · log2 m as shown the proof of Lemma 3.5

in [13]. Second, line 10 decreases D∞(X[N]\I) by precisely |I ′| · log2 m since it adds |I ′| blocks

to I. The net total of these changes is that D∞(X[N]\I) decreases by at least (1− τ) · |I ′| · log2 m

in this case.

Putting these together yields:

D∞(X[N]\I) ≤ A + B − (1 − τ) · |I| · log2 m.

Since D∞(X[N]\I) ≥ 0 we must have

|I| ≤
A + B

(1 − τ) log2 m
.

Since τ = 1/2, A + B ≥ 0.5|I| log2 m and hence C∗,⊕(R ◦ INDN
m) ≥ A + B ≥ 0.5 Cdt(R) log2 m.

We can strengthen the above in the case that each of Alice’s bits, like Bob’s bits, either is irrel-

evant or splits X exactly in half. Then, as with our simulation of Bob’s bits, we choose to follow

the side with the smaller protocol subtree. We see that the paths followed in the protocol Π are of

total length (in bits that matter to the simulation) at most the logarithm of the size of Π.

In particular, this applies if m is a power of 2 so that each xi is represented by a series of bits,

Alice’s bits are also parities, and we replace line 13 by constraining one bit of xi∗ that isn’t already

constrained to be different from the corresponding bit of j∗. We write L⊕,⊕(R) for the number of

leaves (i.e., the size) of a protocol Π for R in which both Alice and Bob only send parities, which

we call parity communication. Using this obtain the following:

Theorem 4.3. Cdt(R) is O(logm(L⊕,⊕(R ◦ INDN
m)))

4.4 Parity decision trees and Res(⊕) proofs

We can use the same ideas with small modifications to give a generic method for producing lower

bounds for parity decision trees from those for ordinary decision trees.

Theorem 4.4. For any sufficiently large m that is a power of 2 and any function f : {0, 1}N → {0, 1},

Cdt
⊕ ( f ◦ INDN

m) ≥ Cdt( f ) and sizedt
⊕( f ◦ INDN

m) ≥ 2Cdt( f ) ≥ sizedt( f ).
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Proof. We follow the ideas of the proof of Theorem 4.3 with a small modification that combines

the steps for Bob and for Alice as follows: We maintain X as an affine subspace as before and we

maintain a set DY ⊂ [N] × [m] of coordinates as before (though Y itself is not maintained), but

now the equations that we maintain involving these coordinates depend on the bits of the xi also.

At each parity that is not already implied, we row-reduce to remove the variables in DY .

If a coordinate (i∗, j∗) in Y remains, we choose it as the new dependent coordinate and complete

the row-reduction. We then apply the portion of the simulation designated as Bob’s simulation in

order to ensure that xi∗ does not point to j∗. If no such coordinate remains, then this becomes a

constraint on X and we apply the portion associated with Alice.

In either case, we add one defining equation for X for each bit that is sent that is not already

implied, so the deficiency of X is precisely this number. The same analysis shows that Cdt( f )

is O(logm(sizedt
⊕( f ◦ INDN

m))) and hence O(Cdt
⊕ ( f ◦ INDN

m)/ log m). By choosing m a sufficiently

large constant, we obtain that Cdt( f ) ≤ log2(sizedt
⊕( f ◦ INDN

m)) and hence sizedt( f ) ≤ 2Cdt( f ) ≤

sizedt
⊕( f ◦ INDN

m) and Cdt( f ) ≤ Cdt
⊕ ( f ◦ INDN

m).

We can use this (in the form for relations, which we could easily have stated above) to show that

we can convert each k-CNF ϕ to an O(k)-CNF ϕ ◦ INDN
m that requires tree-like Res(⊕) refutations

for ϕ ◦ INDN
m that are at least linear in the size of tree-like resolution refutations for ϕ.

Corollary 4.5. For any sufficiently large integer �, m = 2�, and any unsatisfiable k-CNF formula with

M clauses on N Boolean variables, ϕ ◦ INDN
m is a k(� + 1)-CNF formula with M′ = mk M clauses on

N′ = N(�+ m) variables that requires treeRes(⊕)(ϕ ◦ INDN
m) ≥ treeRes(ϕ) ≥ 2widthRes(ϕ)−k.

Proof. By Proposition 2.8, for any minimal tree-Res(⊕) refutation of ϕ ◦ INDN
m there is an isomor-

phic parity decision tree solving the search problem Search
ϕ◦INDN

m
. Using the form of Theorem 4.4

for relations we can convert a parity communication protocol for Search
ϕ◦INDN

m
into one of at most

the same size that solves the search problem Searchϕ, since each correct output of Search
ϕ◦INDN

m

yields the name of a violated clause of ϕ ◦ INDN
m that corresponds to a unique clause of ϕ and can

be output by the ordinary decision tree. The final result follows using the equivalence of decision

trees for Searchϕ and tree-resolution refutations of ϕ from Proposition 2.7 and the tree-size/width

relationship from Proposition 2.6.

We note that Itsykson and Kojevnikov [16, 17] previously used a much more specialized lifting

theorem from [2] for the specific case of Tseitin formulas to give tree-like Res(⊕) lower bounds.

Our new simple method is much more general and yields a large class of hard formulas. We also

note that Huynh and Nordström [15] gave lifting theorems for a variety of other proof systems

using constant-size index gadgets (indeed with m = 3) but these only yield good bounds for a

restricted class of formulas whose search problems have high “critical block sensitivity”.

5 Summary and future directions

Our results show that the Index (or Inner-Product) gadget is not a good disperser for low min-

entropy deficiency rectangles X × Y when m is much smaller than log N. Thus to reduce the

gadget size beyond logarithmic using current techniques we need to consider other properties

on the rectangle X × Y maintained during the simulation that can ensure that Index is a good
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disperser. Our counterexample to the conjecture of Lovett et al. [20] suggests the following natural

property for X , Y in addition to having low entropy deficiency:

• Except for a small subset of blocks J of size O(Δ), every block of every y in Y is “almost”

balanced in terms of the number of zeroes and ones. That is, for any i ∈ [N] \ J and for any

y ∈ Y , |yi|1 ≈ m − |yi|1, where |yi|1 denotes the number of ones in the i-th block of y.

Note that our counterexample is avoided by Y satisfying this property; indeed this property is

violated in the extreme by our counterexample as every y in the set Y we construct has ω(Δ)

blocks that are maximally unbalanced.

The standard simulation paradigm allows considerable flexibility in choosing which subset to

focus on in the rectangle of inputs associated with each node of the communication protocol.

Maintaining something like the property above is easy to do and it is plausible that this or related

properties will indeed be sufficient to yield general lifting theorems with very small Index gadgets.

Although our counterexample ruled out improving the gadget size to constant for Index in

deterministic lifting theorems using current techniques, we were able to prove a lifting theorem

with constant-sized gadgets for the restricted class of protocols where Bob is restricted to sending

parities. A natural extension of this direction is to consider semi-structured protocols where Bob

is restricted to sending other interesting functions of his input bits. A natural class of restricted

functions are threshold functions. The ideas used in our lifting theorem do not work in this case.

As illustrated by the application of our semi-structured lifting theorem to Res(⊕) lower bounds,

such restricted lifting theorems may have immediate applications in proof complexity. They may

also be a natural avenue for developing new tools and techniques that could potentially help in

proving general lifting theorems with constant sized gadgets.
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