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Abstract: This paper deals with the existence of weak solutions for semilinear elliptic equation with
nonlinearity on the boundary. We establish the existence of a maximal and a minimal weak solution
between an ordered pair of sub- and supersolution for both monotone and nonmonotone nonlinearities.
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1. Introduction

We consider an elliptic equation with nonlinear boundary condition of the form

-Au+u = 0 in Q:
{ o= fxw on 9Q, (1.1)

where Q ¢ RV(N > 2) is a bounded domain with C>® (0 < @ < 1) boundary dQ, and 8/dn := n(x) - V
denotes the outer normal derivative on the boundary 0€Q2. Here f : 0Q X R — R is a Carathéodory
function, that is, f(-, ) is measurable for each u and f(x, -) is continuous for a.e. x € 9Q2.

In this paper, we investigate the existence of maximal and minimal weak solutions (to be clarified
later) between an ordered pair of sub- and supersolution of (1.1) for both monotone and nonmonotone
nonlinearities. We use monotone iteration procedure when the nonlinearity is monotone. The non-
monotone case required a careful use of the surjectivity of a bounded, pseudomonotone and coercive
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operator, Zorn’s lemma and a version of Kato’s inequality up to the boundary. This proof, for the
nonmonotone case, is motivated by the works in [1] and [2].

Elliptic equations with nonlinear boundary conditions have attracted a lot of attention over the last
decades, see for instance [3-9] and references therein. Motivation to study equations with nonlin-
ear boundary conditions stems from the fact that, when the reaction near the boundary depends on
the density itself, linear boundary conditions (Dirichlet, Neumann, or Robin) are often inadequate to
study chemical, biological, or ecological processes, see [10—13] and references therein, for specific
applications.

The existence of a solution between an ordered pair of sub- and supersolution of elliptic boundary
value problems has been studied extensively. For the linear boundary conditions, the sub—supersolution
method for classical solutions were developed in [14—16] to study the solvability of quasi-linear and
semi-linear equations using monotone iteration method. This method also yields the existence of a
maximal and a minimal solution. These iterative methods can be thought as a generalization of the
Perron arguments on sub- and superharmonic functions for existence of solutions of the boundary
value problem. For relatively recent results on the existence of maximal and minimal solutions, for the
linear boundary conditions, we refer readers to [2, 17, 18] for the Laplacian case, and [1, 19] for the
p-Laplacian case.

For the nonlinear boundary case, see [20] and [13, Ch. 4] where the existence of maximal and
minimal classical solutions was established for the monotone case. To the best of our knowledge, our
results concerning the existence of maximal and minimal weak solutions are new for both monotone
and nonmonotone cases.

We begin with the definitions of weak solution and weak sub- and supersolution. For this, we make
use of the real Lebesgue space L"(0Q) and the Sobolev space H'(Q).

Definition 1.1. We say that a function u € H'(Q) is a weak solution to (1.1) whenever:

@ f(,u()) e Lw(aﬂ) ifN>2 and f(.,u(.)) € L'(0Q) forr > 1 if N =2, and
(ii) f (VuVy + wy) = f f(x, u)y forall y € H(Q).
Q Fle}
Definition 1.2. We say that a function u € H'(Q) is a weak supersolution to (1.1) whenever:
) f(,u()) e if N>2 and f(.,u(.)) € L'(0Q) forr > 1 if N =2, and

(i) f (VaVy + ) > f f, oy forall0 <y e H'(Q).
Q 1219}

A weak subsolution u is defined by reversing the inequality in (ii) above.

Remark 1.3. Let ' : H'(Q) — L"(0Q) be the trace operator given by I'u = ulsq. It is known that, see
e.g. [21], [22, Thm 2.79], and [23, Chapter 6], I" is continuous (compact) if

1<r<2-D (1<r<2(N 1)) itN>2
(12)
r>1 (er)lfN—2.

Therefore, the integrals on the right hand side of (ii) of Definition 1.1 and Definition 1.2 make sense
since (i) holds, and w is the conjugate of 2(15/v_—21) when N > 2.
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We state and prove our results for the case N > 2, since the case N = 2 follows clearly using (1.2).
We state our first result concerning maximal and minimal solutions for the monotone case.

Theorem 1.4. Suppose there exists a pair of weak sub- and supersolution u and u, respectively, satis-
fying u < uin Q. Assume that

(H1) there exists k > 0 such that the map s — f(x, s) + ks is nondecreasing for all u < s < u, and for
all x € 0Q.

Then, there exist a minimal weak solution u, and a maximal weak solution u* to (1.1), in the sense that
if u is any weak solution to (1.1) such that u < u < u, then u, < u < u*.

Next, we note that if f is locally Lipschitz with respect to the second variable u, and the interval
[u, u] is bounded, then f satisfies the hypothesis (H1). For functions f that do not satisfy the mono-
tonicity condition given in (H1), we have the following existence result.

Theorem 1.5. Suppose there exists a pair of weak sub- and supersolution u and u, respectively, satis-
fying u < u in Q. Assume that

(H2) there exists a K € L'(0Q), r > 2(1\1’\,_ D such that |f(x,$) < K(x) a.e. x € 0Q, for all s satisfying
u(x) < s < u(x).

Then (1.1) has at least one weak solution u such that u < u < u.

Finally, we state a result that guarantees the existence of a maximal and a minimal weak solution
without assuming monotonicity condition (H1) on the nonlinearity f.

Theorem 1.6. Assume hypotheses of Theorem 1.5 hold. Then, there exist a minimal weak solution u.
and a maximal weak solution u* to (1.1), in the sense that if u is any weak solution to (1.1) such that
u<u<u thenu, <u<u.

In [24], Hess proved the existence of a solution, assuming that

f sup  |f(x, )| < oo, (1.3)
0Q  u(x)<s<u(x)
for g = 2. Our result, Theorem 1.4, is sharper, needing only that condition (1.3) hold for g = % =

2-2 <2,

III;J Section 2, we collect some known results that will be helpful in the sequel. We also state and
prove a version of Kato’s inequality for our setting, see Theorem 2.4 and Corollary 2.5. In Section 3,
we prove Theorem 1.4 using monotone iteration method. In Section 4, we prove Theorem 1.5 by
showing that an appropriately defined operator is surjective. We also prove Theorem 1.6 in Section 4
by utilizing Theorem 1.5, Zorn’s Lemma and Theorem 2.4. In Section 5, we discuss applications of
our results.

2. Preliminaries and auxiliary results

Here we collect some results that we use in the sequel. First, we recall an existence and uniqueness
result for a linear problem.
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Proposition 2.1. ( [4,8]) Let h € L1(0Q) for g > 1. Then, the linear problem

-Av+v = 0 in Q;
g—; = h on 0Q

has a unique solution v € W'™(Q) and
IVllwiny < CllhllLaog)s where 1 <m < Ng/(N-1).

In particular, if g = 2572, then u € H'(Q).

Next, let X be a reflexive Banach space and A : X — X*. We say that the operator A is coercive if

A®),
COD) |, oo as Il - oo.
(4154
We say that A is pseudomonotone, whenever
vV, =V m X and limsup(A(v,),v, —v) <0 imply
liminf(A(v,), v, —¢¥) = (A(v),v — ) forany ¢ e X. (2.1)

We will utilize the following surjectivity result in the proof of Theorem 1.5.

Proposition 2.2. ( [25, Thm. II. 2.8], [22, Thm. 2.99]) Let X be a reflexive Banach space. IfA : X — X*
is a bounded, pseudomonotone and coercive operator, then for each b € X*, Au = b has a solution.

Finally, we say that a subset Y of a partially ordered set (X, <) is a chain if x < y or y < x for every
x,y € Y. Then, to prove Theorem 1.6, we use the following version of Zorn’s lemma (see [22]):

Proposition 2.3 (Zorn’s lemma). Ifin a partially ordered set (X, <), every chain Y has an upper bound,
then X possesses a maximal element.

2.1. A version of Kato’s inequality

In [26], authors established Kato’s inequality up to the boundary for a function u € W'!(Q). Here,
we state and prove a version of Kato’s inequality up to the boundary, that is necessary in the proof of
Theorem 1.6. This result can be rephrased as the maximum of two weak subsolutions is also a weak
subsolution. In particular, the maximum of two weak solutions is a weak subsolution.

Theorem 2.4. Let u; and u, be functions in H'(Q) such that there exist f; and f, in L"(0Q), for

2N-1) o
r > =5, satisfying

f(VuiVLp + u) < f N4 forall 0 <y e H(Q), (2.2)
Q o0

fori=1,2. Then, u := max{u;, u,} satisfies
f(Vule+uz//)§f fu forall 0 <y e H(Q),
Q o0

Si(x) if ui(x) > us(x)
fa(x) if u(x) < up(x),

a.e. x € 0Q.

where f(x) := {
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Proof. Define
Q:={xeQ:u(x)>uyx)}and Q, := Q\ Q

and
I ={xe 0Q : u1(x) > ur(x)} and I, := 0Q \I.

Fix 0 <y € H'(Q). Then,

I = fVth// + f wy
Q Q
= f (letlvw + Mllﬁ) +f (VMQVI,D + MQI,[/) .
Ql QZ

I I

Consider a sequence &, € C'(R) such that

0 1 ift>1/n
" o ifr<o,

and &, > 0 on (0, 1/n). Then, define the sequence of functions
ra(x) 1= &) —up)(x))  forx € Q.
Observe that r, € H'(Q) and r, converges pointwise to Xa,ur,» Wwhere the characteristic function is

1 ifxeQ Ul
defined as yq,ur,(x) :=

] ) Moreover, ||7,llz~@ni~@e) < 1 and supp(Vr,) C D,,
0 if otherwise.

where D, ;= {x € Q : 0 < uy1(x) — up(x) < %}. Then, using Lebesgue Dominated Convergence

Theorem, we have that
I, = lim [f rnVu1V1//+frnu1¢].
n—-oo Q Q

Since r, € H'(Q) N L¥(Q) N L*(0Q), it follows that r,yr € H'(Q) for any test function ¢ € H'(Q) N
L= (Q). Recalling that Vr,, = 0 on Q \ D,, and that u; satisfies (2.2), we can write

f”nVM1Vlﬁ+rnM1lﬁ=fvulv(rnlﬁ)‘i'ul(”nlﬁ)—f YVu Vr,
Q Q ;

D

Sf f]r,l;[/—f YyVu,Vr, . (2.3)
o) D

Taking the limit as n — oo in the first term of the right-hand side of (2.3), using the Lebesgue Domi-

nated Convergence Theorem, we get
limf fli’nlﬁ:ffllﬂ-
=0 Jo I

L, = lim [f(l —r)Vu, Vi + f(l - I"n)l/tzl//] ,
nmelda Q

Electronic Research Archive Volume 30, Issue 6, 2121-2137.

Likewise, for I, we have



2126

and

f(l —rn)Vusz+f(l —"n)bt2'//
Q Q

= fVuzv[(l — )] + up(1 —rn)lﬁ+f YVur Vr,
Q

n

Sl =r)y + f YVu,Vr,. (2.4)
aQ Dy

Taking the limit as n — oo in the first term of the right-hand side of (2.4) and using the Lebesgue
Dominated Convergence Theorem, we get

lim f B0 = = f h.
n—co Jao0 I,

Using the fact that Vr, = & (u; — u2)V(u; — u,), the sum of the second terms of the right-hand side of
(2.3) and (2.4) yields

—f ¢Vu1Vr,,+f tpVMQVrn:—f YV(uy —up)Vr,
D, D, D,

—f WE(uy — un)|V(uy — up)l* <0, (2.5)
Dy,

since ¢ > 0 and &, > 0. Adding (2.3) and (2.4), taking the limit, and using (2.5), we get

1:11+Izsff11//+ff2¢’=ffl//-
Iy I 0Q

Thus, u := max{u;, u,} satisfies

f (VuVy +wp) < | fy  forall 0 <y e H(Q),
Q 0Q

completing the proof of Theorem 2.4. m|

Likewise, we have a result for the minimum of two supersolutions.

Corollary 2.5. Let u; and u, be functions in H'(Q) such that there exist f; and f» in L'(0Q), for

r> Z(N D satisfying

f Vu,Vy + upp) > f,-w forall 0 <y € HY(Q),

fori=1,2. Then, u := min{u,, u,} satisfies

f (VuVy + wp) > f fy,  forall 0 <y e H(Q),

where
] <
f(x) = Ji(x) l.ful(x) u(x) ae x€d0
Sa(x) if uy(x) = ux(x),
Proof. Using the fact that min{u, u,} = max{—u,, —u,}, the proof follows from Theorem 2.4. O
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3. Proof of Theorem 1.4

We will construct a monotone operator, and show that the iterative scheme starting with a weak
subsolution (supersolution) will converge to a minimal (maximal) weak solution.

Let J := {u € H(Q) : u < u < u}. Define the linear map T : J — H'(Q) by T(u) = v, where v
satisfies

0 in Q;

—Av+v
f(x,u) + ku on 0Q.

v
o+ kv

Step 1. T is well-defined and maps J into itself.
For every u € J, we have u < u < u. Then using (H1) and the fact that 4 and u are sub and supersolu-
tions, we get

SO u) +ku < f(x,u) + ku < f(x,u) + ku,

and
0 < [ul < max{|ul, [ul} < |ul + [ul.

Taking into account the definitions of u and u, we have that f(., u(.)), f(.,u(.)) are in L5 (0€). Since
u, u € H'(Q), then by the continuity of the trace operator (1.2) and the embedding of L%(ag) into

2(N=1)

L™ ¥ (0Q)), for every u € J, we have

x,u) + ku -
1o ) + kull 2oz

S NfGew) + k] ancn LG + k] 2ocn < C (3.1

2N-1)

Therefore, f(.,u(.)) + ku(.) € L™~ (0Q). Then, Proposition 2.1 implies that v = T(u) € H'(Q) is
unique. Thus, the map 7 is well-defined.

Further, if u,w € J with u < w, then by the weak maximum principle and the fact that f satisfies
(H1), T(u) < T(w), that is, the map T is nondecreasing. Moreover, repeating the argument and using
Definition 1.2(ii), it follows that

us<Tw) <T@ <u. (3.2)
Hence, T maps J to J.

Step 2. There exist weakly convergent monotone sequences in H'(Q).
Let’s construct monotone sequences {u,} and {w,} successively from the (linear) iteration process

u, = T(u,—y) withup = uand w, = T(w,_) with wy = u.
Using (3.2) and the monotonicity of 7', we get
Z:MOS"'Sl/ln<"'SWn<"'SW0:ﬁ- (3.3)

We show that {u,} is convergent. The proof for {w,} is analogous. We see that u, = T (u,_) satisfies

f (Vu, Vi + u) + kf u = f (f(x, tyr) + k) s,
Q a0 o0
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for all y € H'(Q). Letting u,, = T (u,_) as a test function, we get

f(|vun|2+uﬁ)+kf uﬁ:f (F (X, ) + Kty )ity (3.4)
Q 0Q 0Q

Since u,_1, u, € J, using Holder’s inequality in (3.4), and the bound (3.1), we have

< Nl 1 + Klltall;

2
||un||H1(Q) HI(Q) L2(6Q)

< X, U + ku u
LG t) + ] 2l 2y

< C(nﬁn ey 4 llul )
LN (9Q) L (00

Hence, there exists a uniform constant C’ > 0, depending on Q, f, k, u and u, such that
p g u
lletnll 1y < C”. (3.5)

By the reflexivity of H'(Q), (3.5), there is a subsequence (relabeled) u,, which converges weakly to u,
in H/(Q).

Step 3. f(x,u,) + ku, converges weakly to f(x,u,) + ku. in Lw(ﬁﬂ).
Since the sequence u,, in Step 2 is nondecreasing and bounded (see (3.3)), it converges pointwise to
u,, that is,
u.(x) = 31_{{)10 u,(x) € J. 3.6)

Using the fact that f is continuous in the second variable u for a.e x € 9Q and (3.6), we have that

fx,u(x)) + ku, = lim f(x, u,(x)) + ku,(x).

By (3.1), f(x, u,) + ku, is bounded in
yields

ICFCr 1) + haty) = (F (e, ) + k)| 20cn 0= 0 asn — oo.

Therefore, f(x, un) + ku,, converges strongly (hence weakly) to f(x, u.) + ku, i
all y € H(Q) c LF="(9Q), we have

im | (f(xun) + kuy = | (FCx, ) + ku )y (3.7
oQ aQ

n—oo

Step 4. u, is a weak solution to (1. 1)
First, since u, € H'

2 N 1
u, €L ( )(69). Therefore, for some positive constant C”, we have

. - X, u,) + ku, — ku,
F G ull 2o o= 116 1) + Kitw = Kuael 2000

@9,
< Ifxu) + ku*lle%—w@QL + kel 2050

< C/l

(0Q),
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Second, from the monotone iteration, we know that u,, = T'(u,_,) satisfies

f(Vuth//+ u) +kf U = f (fCx, up1) + kit .
Q oQ oQ

Observe that u, converges weakly to u, in H'(Q), strongly in L?*(0Q) (see Step 2) and f(x,u,) +
2(N-1
ku, converges weakly to f(x,u.)+ ku, in L N )(89) (see Step 3). Then taking the limit as n — oo
and using (3.7), we get for any ¥ € H'(Q)

f(Vu*ng + u) + f ku. = lim (f Vu, Vi + u, ) + f kunw)
Q aQ e \Jda aQ

= lim( (f(x, uy—r) + kun—l)lﬁ)
oQ

n—oo

= (f(x, u) + ku )y .
0

Hence,
f Vu.Vy +uy) = | fxu)y  forall y e H(Q).
Q 0Q

Moreover, we also have f(x, u.) € L5 (0€). Thus u. is a weak solution to (1.1).

Step 5. u. is the minimal weak solution in the interval [u, u].
Let v be a weak solution to (1.1) with u < v < u. Then v is a weak supersolution, and u < v. Repeating
the above iteration procedure with uy = u, we get u < u, < v. Thus u, 1s a weak minimal solution.

Similarly, we can construct the maximal weak solution #* from the sequence {w,} with wy = u. This
completes the proof of Theorem 1.4. O

4. Proofs of Theorem 1.5 and Theorem 1.6

We prove Theorem 1.5 by applying Proposition 2.2 to an appropriate operator related to our problem
(1.1). Then, Theorem 1.6 is proved by using Zorn’s lemma and Theorem 2.4. Theorem 1.5 guarantees
that the set defined for the Zorn’s lemma in the proof of Theorem 1.6 is nonempty.

4.1. Proof of Theorem 1.5
Let us consider a modified problem

—Au+u 0 in Q;
z—f] = glx,u on 0Q,

4.1)

where

J(x, u(x)), s < u(x),
g(x,s) = f(x,8), u(x) < s <u(x), “4.2)
J(x, u(x)), s > u(x)
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is the truncated function. We observe that g is a Carathéodory function, since f is a Carathéodory
function. We note that a weak solution u of (4.1) is a weak solution of (1.1) whenever u < u < u.

Our plan is to establish the existence of a weak solution u of (4.1), and verify that u < u < u. For
the existence part, we use Proposition 2.2. For this, we define the map B: H'(Q) — (H'(Q))" given by

(BO). ) = f (VVVY + ) — f o5 V. 43)
Q oQ

for all y € H'(Q).

First, we show that B is well-defined and bounded. The first integral of (4.3) is well-defined since
v,y € H'(Q). By the Holder’s inequality combined with the continuity of trace operator (1.2) and
hypothesis (H2), we get

f |f(x, viy| < ||K||L"(6Q)||¢||Lr’(ag), 4.4)
{u<v<u}

2(N-1)
N-2

where 1’ <
(4.4) yield

is the conjugate of r. Then, the definition of g given in (4.2), Definition 1.2(i), and

f glx, vy
oQ

where the last inequalities of (4.5) follow by (4.4) and (1.2), and the constant C, depends only on K
and Q.

< f{ 1wl + f{ el f{ 1w
< Glllg o) » 4.5)

Second, we show that B is pseudomonotone, see definition (2.1). For this, we set B = L — G, where
L,G: H(Q) — (H'(Q))" are defined by

(L), ) = f(Vva+vw) and (G(v), ) I=fa g, vy,
Q Q

for all ¥ € H'(Q). Then we show that B is pseudomonotone in the following steps. Let v, — v in
HY(Q).

Step 1: Lv, — Lv in (H'(Q))".

Since v, — v, (L(v,) — L(v), ) — 0 as n — oo for all y € H'(Q). Hence,

ILV) = Ll = sup KL(va) = L(v), )| = Oasn — oo,

Il 1 0y <1

as desired.

Step 2: G(v,) = G(v) in (H'(Q))*.
Suppose that v, — v in H(Q) but G(v,) / G(v) in (H'(Q))*. Then there exists &, > 0 and a
subsequence {v,,} such that

||G(Vn]-) - G(V)“(H‘(Q))* 2 &o. (4.6)
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Using the fact that {v, } is bounded in H 1(Q) and the compactness of the trace operator (1.2), there

exists a subsequence {v;,j} such that v;j — vin L”(0Q), where 1’ < % By [27, Theorem 4.9], there

exists a subsequence {v;l’/,} such that

v;;j(x) — v(x) a.e. x € 0Q.

Since g(x,.) is continuous for a.e. x € 9€, then g(x, v,’,l’j (x)) — g(x,v(x)) a.e. x € 0Q and g(x, v;l’_],(x)) is

bounded in L"(0€2) by (H2). Using the Lebesgue Dominated Convergence Theorem, we get
gCs vy () = 8C, v(Dllzroe) — O asn — co.
By the Holder’s inequality, for all € H'(Q), we get
(GO) = GW),P) = Oas j— .
Therefore, IIG(V;,’J,) — Gl @)y = sup |<G(v;l’j )—G),¥) — 0as j — oo. Hence, G(vy) = G(v)

W1 <1
in (H'(Q))* as j — oo, a contradiction to (4.6).

Step 3: B is pseudomonotone.
Let v, — vin H'(Q). Using Step 1-Step 2, we get that

B(v,) —» B(v) in (H(Q)".

Therefore, (B(v,), ¥) — (B(v),¥) as n — oo for all y € H'(Q). Furthermore, by [27, Proposition 3.5
iv)], (B(vn), vu) = (B(v),v) as n — oco. Hence,

(B(vi),va =¥y = (B(v),v —¢)asn — oo,
establishing that B is pseudomonotone.

Finally, we show that B is coercive, i.e., (BW),y)/l¥|lm@q — oo as ||yl — oo. For any
W € H'(Q), using (4.5) in the definition of the operator B, we have

1
(BW).YY 2 Wil g, = Callvllinay = 511, = Cs.

Hence B is coercive. Thus B satisfies the hypotheses of Proposition 2.2 with X = H'(Q). Therefore,
for b = 0 € (H'(Q))*, there exists u € H'(Q) such that

(Bu),y)=0 Yy e H(Q).

Moreover, g(x,.) is bounded in L%(GQ) by (H2), and therefore in Lw(éQ) by continuous embed-
ding of L%((?Q) into L% (0Q2). Hence u is a weak solution of (4.1). It remains to prove that u is a
weak solution of (1.1). For this, we will show that u < u < % in Q, so that g = f in (4.1).

Clearly, (u — u), := max{0,u — u} € H'(Q) and (u — u), := max{0,u — u} € H'(Q). Then, using the
weak formulation of (4.1) with the test function  := (u — %), > 0 in H'(Q), and the facts that u is a
supersolution of (1.1) and (u# — u); = 0 in {u < u}, we have

f (VuV(u—w), + u(u —u),) = f gCx, u)(u — u)4 4.7
Q 0Q
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= SO u)(u —u),

{u>u}

= | fOow(u—u).
00

SfVﬁV(u—ﬁ)++fﬁ(u—ﬁ)+.
Q Q
OSfIV(u—ﬁ)+|2+fl(u—ﬁ)+|2

Q Q

f Vu—-u)Vu —u), + f(u —u)(u—u),
Q Q
0,

Then, (4.7) yields

IA

which implies that [|(x — u). || = 0. Thatis, u < u a.e. in Q. Using the the continuity of the trace

operator (1.2), we get that ||(u — ﬁ)+”L2(NN:21)(69) = 0. Hence, u < 7 a.e. in Q.

Analogously, taking the test function ¢ := (u — u), > 0 and using the fact that u is a subsolution of

(1.1), we obtain that
osfww—mﬁ+jkwwm2
Q Q
= fV(z —w)V(u—u), + f(z— u)u—u), <0,
Q Q

Therefore, u < u a.e. in 5, and hence u < u < u ae. in Q. Thus, u is a weak solution of (1.1),

completing the proof of Theorem 1.5. O

4.2. Proof of Theorem 1.6

We will use Zorn’s Lemma and Proposition 2.3, to prove our result. Consider the set

A= f{ue H(Q): u(x) < u(x) < u(x)ae. in Q

and u is a weak solution of (1.1)},

and we note that A is nonempty by Theorem 1.5. Let {u;};c; € A be a family of chain. Since u; is a
weak solution of (1.1), taking u; as the test function and using (4.4), we get

2 2
nmmwnzijm|+m)= flxuu < C,
Q 0Q

where C depends on u, #, K, Q but independent of i € 1. By the separability and reflexivity of H'(Q),
there exists an increasing sequence u, such that

U, — u:=supu; in H'(Q).
iel
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Clearly, u is an upper bound of the chain {u;};;. It suffices to show that u € A. Since {u,} is nonde-
creasing and u < Uy < u, we have that u,(x) — u(x), and u,(x) < u(x) for all n, and u(x) < u(x) < u(x)
pointwise a.e. in Q. Furthermore, since f is Carathéodory, we have that

f(x, up(x)) = f(x,u(x)) asn — oo.

This, in conjunction with (H2), and the Lebesgue Dominated Convergence Theorem yields || f(x, u,) —
fx, Wl — 0 as n — oco. Therefore, using Holder’s inequality, we deduce that

f JOou )y — | fOow| < | 1fCeun) — fOxu)l [
00 00 0

< 1f (e un) = O wllroo) W] a0) = 0,

which yields

n—oo

lim f f(x, u ) = f f(x,uyy forally € H'(Q).
0Q 0Q

Taking the limit as n — oo, we get for any € H'(Q)

f(Vqu + uy) = lim f Vu,Vr + u, )
Q = Jao

= lim f o u = f .
n—e Js0 o0

Hence, u is a weak solution of (1.1), thus concluding that u € ‘A.

By Zorn’s Lemma, there exists a maximal element u* € A. It remains to show that »* is maximal
in the sense that if # is any other weak solution of (1.1) between u and u, then & < u*. So, let & be
a weak solution of (1.1) between u and u, and u” is the maximal element of A. By Proposition 2.4,
u = max{it, u"} is a subsolution of (1.1). Then, by Theorem 1.5, there exists a weak solution u, of (1.1)
satisfying

ususuy<u.
Thus, uy € A. On the other hand, u* < max{i, u*} = u < uy. But u* is maximal element of A, so
necessarily #* = uy. Therefore, we readily see that it < u < uy = u*, and hence

u<ia<u <u,
as desired. The existence of a minimal element u, of A is proved analogously. This completes the
proof of Theorem 1.6. O

5. Examples

In this section, we apply our existence results, Theorem 1.4 and Theorem 1.5, to problems involving
sublinear nonlinearities. In particular, in each case we construct an ordered pair of weak sub- and
supersolution. We apply Theorem 1.4 to establish Theorem 5.1 and Theorem 1.5 in Remark 5.2 below.

Theorem 5.1. Consider

-Au+u = 0 in Q; 51
D= Jfw on 0Q, .1y

where A > 0 parameter and f : [0, c0) — [0, 00) is locally Lipschitz continuous function satisfying
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(i) £(0) = 0 with f'(0) > 0, and
(ii) lim £2 = 0.

M

Then (5.1) has a positive weak solution for A > where p; > 0 is the first eigenvalue of the Steklov

170)’
eigenvalue problem
-Ap1+¢; = 0 in Q;
é 5.2
{ % = g1 on 0Q, (5-2)

and 0 < ¢, € H'(Q) is the corresponding eigenfunction.

Proof. Let A > J% be fixed. Using hypothesis (i), we verify that u := g, is a subsolution of (5.1)

for € ~ 0. Indeed, we observe that since A > % is fixed, &(s) := uys — Af(s) satisfies £(0) = 0 and

£'(0) < 0, then &(s) < 0 for s ~ 0. Therefore, for all 0 < y € H'(Q), the following holds for € ~ 0

fVZVlﬁ"‘fZW:le(G%)WS/lf f(f(ﬁl)lﬁ:/lf Sy .
Q Q 00 00 00

Next, using hypothesis (i1), we show that there exists M, > 0 such that u := Me is a weak superso-
lution of (5.1) for all M > M,, where e is the unique positive solution of

—-Ae+e = 0 in Q;
% =1 on 0Q.
n
We observe that while £ is not assumed to be nondecreasing, f(r) := m[%x] f(s) is nondecreasing, and
s€|0,¢

f() < f(¢) for all + > 0. Moreover, due to hypothesis (ii), f satisfies the sublinear condition at infinity

lim @:

t—>+00

Therefore, there exists M, > 0 such that for all M > M,

S(Mllell=0)) < 1
Mllellz=pa) — Allellz=oa)

0.

or equivalently Af(M]lell ~0e) <M.

Then u = Me € H'(Q) satisfies

[vavos [m=m [
Q Q aQ

> A ?(M||€||L°°(aﬂ))¢
oQ

> | f(Meyw
oQ

>4 f(M€)¢=/lf fwyy
0Q 0Q

for all 0 < ¢ € H'(Q). Therefore, u is a weak supersolution of (1.1) for each 1 > %. Clearly
u=Me> el =uae. in Q. We remark that since f 1s locally Lipschitz and [u, u] 1s bounded, f
satisfies hypothesis (H1) (E Theorem 1.4. Hence, there exists a positive weak solution u of (5.1) such
that ep; < u < Me a.e. in Q for any 4 > %. This completes the proof. O
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Remark 5.2. On the other hand, if f is continuous (not necessarily Lipschitz), satisfies hypothesis (i1)
of Theorem 5.1 and f(s) > O for s > 0, the problem (5.1) has a positive weak solution for each 4 > 0.
Indeed, it is easy to see that u = 0 is a strict weak subsolution and for each A > 0, there exists M, > 0
such that u = Me is a weak supersolution for all M > M,, as in the proof of Theorem 5.1. Then, the
result follows by Theorem 1.5.
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