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A R T I C L E I N F O

Keywords:
Semi-inclusive DIS
Transverse momentum dependent distribution
and fragmentation functions
Detector physics impact studies

A B S T R A C T

We performed feasibility studies for various measurements that are related to unpolarized TMD distribution
and fragmentation functions for the ECCE detector proposal. The processes studied include semi-inclusive Deep
inelastic scattering (SIDIS) where single hadrons (pions and kaons) were detected in addition to the scattered
DIS lepton. The single hadron cross sections and multiplicities were extracted as a function of the DIS variables
𝑥 and 𝑄2, as well as the semi-inclusive variables 𝑧, which corresponds to the momentum fraction the detected
hadron carries relative to the struck parton and 𝑃𝑇 , which corresponds to the transverse momentum of the
detected hadron relative to the virtual photon. The expected statistical precision of such measurements is
extrapolated to accumulated luminosities of 10 fb−1 and potential systematic uncertainties are approximated
given the deviations between true and reconstructed yields. The expected uncertainties are then used to obtain
the expected impact on the related TMD distribution and fragmentation functions. We find that the ECCE
detector proposal fulfills the physics requirements on these channels as detailed in the EIC Yellow Report.
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1. Introduction

The study of transverse momentum dependent distribution and
fragmentation functions originated with the first nonzero single trans-
verse spin asymmetries that were discovered by the E704 experiment
in fixed-target proton–proton collisions [1]. Both of the most famous
effects that were initially suggested to describe these asymmetries,
the Sivers [2] effect and the Collins [3] effect, require an intrinsic
transverse momentum dependence of the parton distribution functions
(PDFs) and fragmentation functions (FFs). While those two effects
are also explicitly spin dependent, unpolarized transverse momentum
dependent, TMD, functions are furthermore of importance in many
3

processes. They play a role in low-𝑥 processes where the transverse
momentum dependence of the gluon distribution function may affect
potential saturation effects. Similarly, the transverse momentum depen-
dence of PDFs does affect the actual transverse momentum dependent
cross sections of Higgs or heavy boson production at the LHC.

For the most part the current information on explicitly transverse
momentum dependent distribution functions originates from Drell–Yan,
DY, and heavy boson production measurements, predominantly at the
Tevatron and the LHC, as well as fixed target DY. However, due to
the nature of these processes, only a very limited knowledge on the
flavor structure of TMDs can be obtained this way. On the other hand,
in semi-inclusive deep inelastic scattering, SIDIS, measurements, one
mostly obtains cross sections that are convolutions of TMD distribution
and fragmentation functions. The fragmentation functions provide an
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additional flavor sensitivity that is neither available in the Drell–Yan
type measurements nor in any jet type DIS measurements.

At the moment the information on the transverse momentum de-
pendent fragmentation functions is also rather limited, with essentially
only one pure measurement from 𝑒+𝑒− annihilation [4] available and
a few SIDIS measurements from fixed target experiments [5,6].

Some combinations of this data have been used in global fits that try
to extract the flavor and transverse momentum dependent distribution
and fragmentation functions simultaneously. The most recent of those
are Refs. [7–10], but none have so far extracted the TMDs from all of
this data simultaneously.

Closely related are various theoretical questions that are not en-
tirely answered, such as which regions in phase space can actually be
interpreted within the TMD framework and how that may limit the
amount of data available for TMD fits. For example, in publication [11],
the authors identify regions where TMD factorization should be ap-
plicable in their approach and regions where other treatments may
be relevant, such as collinear factorization. One finds, that at lower
parton momentum fractions 𝑥 and hard scattering scales 𝑄2, only very
small transverse momenta can be interpreted that way while higher
transverse momenta likely involve higher order collinear processes. At
higher scales and 𝑥 more of the phase space appears to be applicable
or TMD interpretations. The question which regions are applicable in
arious factorization frameworks is currently under active discussion
mong theorists, where the EIC data can help cover a much larger phase
pace than so far. However, not only the TMD region is relevant, but
lso the collinear region and the transition between those are of great
nterest. There are calculations that show how those can be related [12,
3]. This relation is commonly used when taking into account the TMD
volution of TMD related cross sections and asymmetries. However,
ome aspects of the scale evolution of TMDs are non-perturbative in
tself and two fits mentioned above, despite having used the same data,
ome to rather different evolution effects of even the unpolarized TMD
DFs.
The EIC in general and the ECCE detector in particular can help

nswer most of these questions as a very large range in phase space is
overed from the low scales of most fixed target DIS experiments to the
igh scales of the DY measurements. Even scales close to some heavy
oson production measurements at hadron colliders can be reached.
he particle identification capabilities of ECCE furthermore may al-
ow the flavor decomposition of TMDs and may answer the question
hether valence and sea quark intrinsic transverse momenta in the
ucleon are distributed differently. Also the regions of applicability of
MDs and collinear PDFs/FFs can be explored in detail.
Naturally, any unpolarized TMDs are also the baseline for any

olarized TMDs such the as the Sivers and Collins functions and the
elated Tensor charge of the nucleon. So, improving the knowledge and
recision on the unpolarized TMDs in turn will improve the precision
f these polarized functions as well.

. Simulations, data sets and selection criteria

.1. Data sample

The simulated data was obtained using the pythiaeRHIC [14] im-
lementation of pythia6 [15] with the same settings and events that
were also used in the SIDIS studies of the EIC Yellow report [16].1
The generated data, in its eic-smear [17] file format was then run
through a geant4 simulation of the ECCE detector that contains all the
relevant tracking detectors and calorimeters, as well as some of the
support material, magnet yoke, the PID detectors, etc. The truth and
reconstructed data were then analyzed to obtain the unpolarized TMD
cross sections. In the reconstructed data the geant output included the

1 The generated data, as well as the steering files are available under
gpfs02/eic/DATA/YR_SIDIS/ at RCF as well as shared via the BNL Box service.
 c

4

simulated detector response but for the most part not yet actual digiti-
zation in readout electronics. More details on these simulations can be
found in [18]. The PID information in these simulations came from a
parametrization based on the rapidity and momentum dependent PID
resolutions that can be expected for the various PID subsystems.

The data was obtained at the energy combinations that are sum-
marized in Table 1 where the simulations for low and high 𝑄2 were
reated separately in order to obtain sufficient statistics at higher 𝑄2.
ll collision energies are analyzed separately and the pseudo-data is
tored separately for each particle type and energy combination. Unlike
n the Yellow report, no dedicated e+3He simulations were run and
nstead the yellow report uncertainties were re-scaled based on the
CCE e+p simulations. As can be seen from the luminosities in the
able, especially at low 𝑄2, the accumulated data is still far below the
evel of statistics to be expected from the EIC of about 10 fb−1 per year
nd energy combination.2 Nevertheless the statistics are large enough
o evaluate the statistical uncertainties that can be expected except at
he borders of phase space (particularly at high-𝑧 and high 𝑃𝑇 ). At
he higher 𝑄2 > 100 GeV2 range the luminosities are generally larger
hich in turn compensates for the lower cross sections and event rates
xpected there.

.2. Event and hadron selection

In the semi-inclusive process, 𝑒 + 𝑝 → 𝑒′ℎ𝑋, one requires the
etection of at least one final state hadron in addition to the scattered
IS lepton. Any combination of hadrons within an event that fulfill the
inematic requirements mentioned below is considered. For this study
nly neutral current DIS events are considered where the scattered
epton can be nominally within a rapidity range of |𝜂| < 3.5 that
ould be covered by the ECCE detector. The reconstructed kinematics
f scattered lepton and detected final-state hadrons and their derived
ariables were only obtained from the ECCE tracking information in
his study. Eventually the electromagnetic calorimeter information of
he scattered lepton will provide a higher precision, particularly for
mall to moderate momentum transfers. Hadrons are also considered
n the same rapidity range as electrons.
For the true as well as reconstructed events, typical DIS selection

riteria were applied as the following:
2 = −𝑞𝜇𝑞𝜇 = −(𝑘 − 𝑘′)2 > 1GeV2 (1)

0.01 < 𝑦 =
𝑞 ⋅ 𝑝
𝑘 ⋅ 𝑝

< 0.95 (2)

𝑊 2 = 𝑚2 + (1 − 𝑥)𝑄2∕𝑥 > 10GeV2 , (3)

where 𝑘 and 𝑘′ are the incoming and scattered lepton four-momenta,
p is the incoming nucleon momentum and 𝑥 = −𝑞2

2𝑝⋅𝑞 is the momentum
fraction the struck parton carries. The momentum transfer 𝑄2 needs to
be large enough to allow a perturbative QCD description of the hard
process. The invariant mass of the hadronic final state 𝑊 2 removes
contributions from nucleon resonances from the measurements. The
selection criteria on the inelasticity 𝑦 limit the ranges of large radiative
contributions as well as regions where the reconstruction of the DIS
kinematics via the scattered lepton creates large uncertainties. Particu-
larly at low 𝑄2 and 𝑊 2 values the smearing that happens when using
the reconstructed variables will move events outside of the accepted
kinematic range and thus introduced some inefficiency. At higher scales
that effect is less pronounced although the smearing can be still size-
able. Both true and reconstructed kinematics are considered and will
be compared to obtain a rough measure of systematic uncertainties.

For the SIDIS events, no explicit selection criteria in 𝑧 or 𝑃𝑇 were
introduced, which means that particularly at low 𝑧 contributions from

2 Note that these values were those assumed in the Yellow report and are
hus also used in our projections. The actual luminosities will depend on the
ollision energies.
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Table 1
MC statistics and luminosities used for the Single spin asymmetry simulations. Part of the lower 𝑄2

range data was obtained from simulations without upper 𝑄2 cut.
𝑒− and proton beam energies 𝑄2 range Generated events Luminosity (fb−1)

18 GeV × 275 GeV 1–100 (GeV)2 38.71 M 0.044
> 100 (GeV)2 3.81 M 1.232

18 GeV × 100 GeV 1–100 (GeV)2 14.92 M 0.022
> 100 (GeV)2 3.72 M 2.147

10 GeV × 100 GeV 1–100 (GeV)2 39.02 M 0.067
>100 (GeV)2 1.89 M 1.631

5 GeV × 41 GeV 1–100 (GeV)2 39.18 M 0.123
>100 (GeV)2 0.96 M 5.944
m
S
n

𝑀

t

Table 2
Kinematic bin boundaries in the main 4-dimensional binning used for the unpolarized
TMD evaluations.
Kinematic
variable

Bin boundaries

𝑥 1.0 × 10−5, 1.59 × 10−5, 2.51 × 10−5, 3.98 × 10−5, 6.31 × 10−5,
1.0 × 10−4, 1.59 × 10−4, 2.51 × 10−4, 3.98 × 10−4, 6.31 × 10−4,
1.0 × 10−3, 1.59 × 10−3, 2.51 × 10−3, 3.98 × 10−3, 6.31 × 10−3,
1.0 × 10−2, 1.59 × 10−2, 2.51 × 10−2, 3.98 × 10−2, 6.31 × 10−2,
1.0 × 10−1, 1.59 × 10−1, 2.51 × 10−1, 3.98 × 10−1, 6.31 × 10−1,
1.0

𝑄2 ((GeV)2) 1.0 × 100, 1.78 × 100, 3.16 × 100, 5.62 × 100,
1.0 × 101, 1.78 × 101, 3.16 × 101, 5.62 × 101,
1.0 × 102, 1.78 × 102, 3.16 × 102, 5.62 × 102,
1.0 × 103, 1.0 × 104

𝑧 0., 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

𝑃𝑇 (GeV/c) 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 4.0

target fragmentation may be present as well. The momentum fraction
𝑧 is defined as:

𝑧 =
𝑝 ⋅ 𝑃ℎ
𝑝 ⋅ 𝑞

, (4)

here 𝑝 is the four-momentum of the incoming nucleon, 𝑃ℎ that of the
etected hadron and 𝑞 is the momentum transfer. 𝑃𝑇 is the transverse
omentum of the final-state hadron relative to the virtual photon
irection in the frame where the incoming nucleon is at rest.
At present charged pions, kaons and protons are analyzed where

he true particle information has been used, assuming that the anyway
nly moderate particle mis-identification will be unfolded in the actual
CCE data.

.2.1. Binning
Similar to many SIDIS related studies in the Yellow report two

ypes of binnings have been used in these studies. For the unpolarized
MD measurements where no additional binning in azimuthal angles
s required a slightly finer binning in 𝑥 and 𝑄2 was selected. In 𝑥 5
ogarithmically equidistant bins per decade were selected, namely [0.1,
.158489, 0.251189, 0.398107, 0.630957, 1.0] and similarly for the
ecades down to 10−5, resulting in 25 bins in total. For 𝑄2, the binning
onsists of 4 bins per decade, namely [1, 1.77828, 3.16228, 5.62341,
0.] and similarly up to 1000 GeV2. Above 1000 GeV2 only one bin was
ssigned as only the highest collision energies can reach it and cross
ections are very low already. The bin boundaries are also summarized
n Table 2. Additionally, in each kinematic 𝑥,𝑄2 bin, the events are put
nto bins of the fractional energy 𝑧 and the transverse momentum of the
etected hadron relative to the virtual photon direction in the proton
enter-of-mass system.

. Transverse momentum dependent multiplicities

Given that the cross sections vary quite drastically with both 𝑥 and
2
, it is often useful not to display the actual cross sections for SIDIS

5

easurements but rather multiplicities. In multiplicities the number of
IDIS hadrons in a particular 𝑥, 𝑄2, 𝑧 and 𝑃𝑇 bin is normalized by the
umber of DIS events in the same 𝑥 and 𝑄2 bin:

(𝑧, 𝑃𝑇 ) =
𝑁ℎ(𝑥,𝑄2, 𝑧, 𝑃𝑇 )
𝑁𝐷𝐼𝑆 (𝑥,𝑄2)

. (5)

Effectively, this normalizes the SIDIS cross sections with their
matching DIS cross section and rather highlights the fragmentation
aspects of the measurements (although the transverse momentum is
of course still a convolution of the participating intrinsic transverse
momenta from distribution and fragmentation functions while in the
TMD factorization regime). For the full theoretical extractions of TMD
distribution and fragmentation functions, however, cross section mea-
surements differential in all 4 kinematic variables are necessary which
are described further below.

The multiplicities can be seen in Fig. 1 extracted as a function of the
transverse momentum for pions, kaons and protons in three example
𝑥 and 𝑄2 bins to highlight their behavior. The differences between
true and reconstructed multiplicities are assigned as a systematic un-
certainties which are displayed as uncertainty boxes. This procedure
highlights the amount of smearing in the kinematic variables and
clearly overestimates the actual uncertainties as smearing and particle
mis-identification would in reality be unfolded. However, the regions
where large smearing occurs will eventually also show increased un-
certainties due to the unfolding while not necessarily being as large as
shown in this crude estimation. One can see peaking and then rapidly
falling multiplicities that resemble the Gaussian behavior generally
seen in fixed target SIDIS measurements at relatively small transverse
momenta. In this example figure, therefore a simple double-Gaussian
is fitted to the multiplicities (taking only the statistical uncertainties
into account) and shows a reasonable description of the pseudo-data.
It is interesting to note that pions have the narrowest distribution in
all three sample bins while both kaons and protons appear to be wider.
Such a feature has been seen also in the Belle data [4] and is in part
described by pythia, but the ordering is different, since in the 𝑒+𝑒− case
(in data and simulation) the differences were most pronounced between
mesons and baryons. With the EIC also the transition into the higher
transverse momenta, where collinear factorization is needed can be
studied in detail.

In Fig. 2 the pion, kaon and proton multiplicities are shown for all
𝑥,𝑄2 kinematic bins as a function of 𝑃𝑇 . As can be seen, the scale of
the multiplicities is very similar for all 𝑥 and 𝑄2 bins, highlighting the
normalization of the rapidly changing cross sections in these variables.
A change in the shapes is also visible where generally lower 𝑥 and 𝑄2

bins show narrower distributions than the at higher 𝑥,𝑄2 bins where
the distributions appear to be wider. This figure also highlights the
large range that can be covered at the EIC.

As the multiplicities highlight the fragmentation aspects of the TMD
cross sections, it is also very interesting to study the 𝑧 dependence
ogether with the 𝑃𝑇 dependence. This is shown for pions in Fig. 3
in a few 𝑧 bins and for three example 𝑥,𝑄2 bins. As the transverse
momentum that is available in the fragmentation strongly depends on
𝑧, one should see that the shapes are different in different 𝑧 bins,
appearing narrower at low and high 𝑧 with a wider distribution at
intermediate 𝑧. In reality this is relatively hard to infer directly from
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Fig. 1. Pion (black), kaon (blue) and proton (green) multiplicities as a function of transverse momentum, in three example bins of 𝑥 and 𝑄2 with 18 × 275 GeV e+p collisions.
For better visibility all 𝑧 bins were combined. The uncertainty boxes represent the differences between true and smeared multiplicities and serve as a crude estimate of the size
of potential systematic uncertainties due to detector smearing and particle mis-identification. The corresponding lines represent fits of double-Gaussians to the multiplicities.
Fig. 2. Pion, kaon and proton multiplicities as a function of transverse momentum, in bins of 𝑥 and 𝑄2 with 18 × 275 GeV ep collisions. For better visibility all 𝑧 bins were
combined.
d
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this figure as the scale for the various 𝑧 bins is vastly different due
to the rapidly changing fragmentation functions. As such also double
Gaussians are fitted to these sample bins. The widths of the narrower
Gaussian, that most likely represents the TMD part of the distribution,
indeed shows an increase with 𝑧 as has been found both in fixed
target SIDIS experiments as well as by Belle as is displayed in Fig. 4
for all three hadron types. One also sees within these MC studies
that the supposedly larger widths from kaons and protons really only
appear at low 𝑧 where especially for protons contributions from target
fragmentation may cause these differences.

The whole range for of the covered phase space is shown for pions in
various 𝑧 bins in Fig. 5 where again it can be seen that the multiplicities
can extracted in all four kinematic variables with high precision.

4. Transverse momentum dependent cross sections and projec-
tions

4.1. Cross sections

The cross sections for select ranges in 𝑧 and select 𝑄2 bins are shown
in Figs. 6 and 7 for the highest collision energies 18 GeV on 275 GeV.
One can see that over a very large range in 𝑥 the cross sections as
a function of 𝑃𝑇 can be obtained not only in the range where the
transverse momenta are non-perturbative, but also to higher transverse
6

momenta. Already from the simulations one can see some shifts in the
shapes of the distributions for low and high fractional energies 𝑧.

The systematic uncertainty boxes in these figures represent the
ifferences between true and reconstructed yields and therefore provide
rough measure of how large detector smearing in all the relevant
inematic variables is. It also provides an indication of the maximal
ize of systematic uncertainties due to these effects. As discussed in the
ote about SIDIS kinematic resolutions, one also notices here that these
ncertainties tend to be larger at the higher 𝑥 end of the phase space for
given 𝑄2 bin which corresponds to the lower 𝑦 region where the DIS

kinematic reconstruction via the scattered lepton is less precise. Also
at higher 𝑧 and 𝑃𝑇 this behavior sets in earlier than at lower values
of these variables which relates to generally slightly larger smearing at
higher values.

From these example figures one can see that already within one
beam energy one can reach a reasonable range in 𝑄2 for the same 𝑥 bin
which will significantly improve the understanding of the TMD evolu-
tion. Note that these cross sections are coming from a MC simulation
and the actual magnitude may be rather different. Nevertheless, even in
the very limited luminosities that were simulated, the statistical preci-
sion up to high 𝑥 and 𝑄2 is sufficient that even in the case of decreased
cross sections due to evolution or radiative effects these questions can
be addressed. Additionally, using different collision energies, one can
further augment this sensitivity as the lower collision energies allow to
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Fig. 3. Pion multiplicities as a function of transverse momentum are displayed in three example bins of 𝑥 and 𝑄2 for 18 × 275 GeV e+p collisions. Several 𝑧 bins are shown
here to study how the shapes change with 𝑧. The uncertainty boxes represent the differences between true and smeared multiplicities and serve as a crude estimate of the size of
potential systematic uncertainties due to detector smearing and particle mis-identification. The corresponding lines represent fits of double-Gaussians to the multiplicities.

Fig. 4. Gaussian widths for pions (black), kaon (blue) and proton (green) as a function of momentum fraction 𝑧, in example bins of 𝑥 and 𝑄2 with 18 × 275 GeV e+p collisions.

Fig. 5. Pion multiplicities as a function of transverse momentum, in bins of 𝑥 and 𝑄2 with 18 × 275 GeV ep collisions. Several 𝑧 bins are shown here to study how the shapes
change with 𝑧.

7
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Fig. 6. Pion cross sections as a function of 𝑃𝑇 in bins of 𝑥 and for selected bins of 𝑄2. For visibility 𝑧 bins were combined into the ranges 0 < 𝑧 < 0.4 (full symbols) and
0.4 < 𝑧 < 1.0 (open symbols). The uncertainty boxes are based on the differences between true and reconstructed yields and give an indication of the maximal size of uncertainties
due to kinematic resolutions.
reach higher 𝑥 at lower scales than at the high collision energies. This
is illustrated in Fig. 8 where select 𝑄2 bins are shown for pions from
different collision energies. One can see that at intermediate 𝑥 and 𝑄2

all overlap while at the more extreme regions either the highest or the
lowest collision energies still have coverage.

4.2. Projections

Similar to the Yellow report, the expected cross sections in the
described four-dimensional binning in 𝑥, 𝑄2, 𝑧 and 𝑃𝑇 , with statistical
uncertainties scaled to 10 fb−1 for each collision energy were then pro-
vided to one of the authors of [7]. The theorists then performed impact
studies on the unpolarized TMD distribution and fragmentation func-
tions, as well as the non-perturbative parts of the TMD evolution. The
systematic uncertainties ECCE provided are again estimated by taking
the differences between the true and reconstructed yields and therefore
can be considered an upper limit on the systematics due to detector
effects. They are generally expected to be the dominating uncertainties
even after unfolding and likely smaller than the uncertainties due to
luminosity and acceptance evaluation.

The theoretical group then used the pseudo-data to evaluate the
impact that data can have on the uncertainties of their global fits of
existing data in comparison to the current level presented in [7]. They
generally cannot perform actual new fits of the pseudo-data since the
precision and number of the projected ECCE data points far exceeds
the existing data. Also the actual length new fits would take make
this not feasible for these impact studies. Instead, they generally re-
evaluate their existing fits by re-weighting their sets of samples or
replicas including the uncertainties of pseudo-data, cf. [19,20] and a
discussion of these methods in [21]. It should be noted that this means
8

that they can only estimate the improvement in precision within their
own parametrization while they are not sensitive to changes in central
values the actual measurements might produce. The ranges of phase
space that are most sensitive are, for example estimated by the Pavia
group [8] for the EIC Yellow report. They identify the relevance of
the EIC unpolarized TMD data on the different parts of the TMDs such
as valence and sea PDFs, FFs or TMD evolution. They also found that
the nonperturbative contributions to the TMD evolution get addressed
over a wide range of the phase space, highlighting the required lever
arm in 𝑄2 to study evolution. Naturally, the low-𝑥 parts of TMDs
were so far hardly accessible, so their knowledge also gets substantially
improved by the EIC. Also the fragmentation related quantities receive
significant improvements. One aspect that cannot be addressed using
the re-weighting is how the increase in data-points and the related
increase in sensitivity will affect aspects that are not covered in the
current parametrizations. Given the limitations of the existing data, so
far only are very limited dependence on flavors is included in the fits
while the expectation is that the EIC data can actually determine at
least light quark valence and sea flavors in the TMD PDFs and FFs.

5. Impact studies

Once the pseudo-data is analyzed one can obtain the relevant
improvements on the TMD PDFs and FFs within the framework of
the existing global fits, as discussed in the previous section. As an
example the current and expected uncertainties following the unpolar-
ized extraction of Ref. [7] are shown in Fig. 9 based on the expected
ECCE uncertainties. These show for selected 𝑥 and 𝑧 slices the ex-
pected impact on the intrinsic transverse momentum dependence of
the distribution (𝑓 (𝑥, 𝑘 )) and fragmentation functions 𝐷 (𝑧, 𝑘 ) when
1 𝑇 1 𝑇
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Fig. 7. Pion, kaon and proton cross sections as a function of 𝑃𝑇 in bins of 𝑥 and for selected bins of 𝑄2. For visibility all 𝑧 bins were combined. The uncertainty boxes are based
on the differences between true and reconstructed yields and give an indication of the maximal size of uncertainties due to kinematic resolutions.

Fig. 8. Pion cross sections as a function of 𝑃𝑇 in bins of 𝑥 and for selected bins of 𝑄2 for three different collision energies. For visibility all 𝑧 bins were combined. The uncertainty
boxes are based on the differences between true and reconstructed yields and give an indication of the maximal size of uncertainties due to kinematic resolutions.
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Fig. 9. Expected uncertainties (relative to the central values) of the unpolarized TMD PDFs (top) and FFs (bottom) as a function of the intrinsic transverse momentum for certain
𝑥 and 𝑧 slices (dark areas) in comparison to the existing uncertainties (orange areas) at a scale of 2 GeV. These uncertainties are based on the projected ECCE measurements
presented in this publication.
including the ECCE pseudo-data. One can see that the impact is quite
substantial. It also shows some of the limitations of the re-weighting
approach as in the distribution functions a node-like feature is visible
that originates from the functional form and the overall normalization
of this particular global fit. Nevertheless, it highlights the impact the
EIC data will have on the TMDs and their theoretical understanding, in-
cluding the scale evolution of TMDs, eventually their flavor dependence
and finally the three-dimensional momentum picture of the nucleon for
various parton flavors.

In conclusion, the unpolarized transverse momentum dependent
hadron multiplicities as well as cross sections can be extracted over
a large range in the DIS kinematic variables 𝑥 and 𝑄2 and the semi-
inclusive variables 𝑧 and 𝑃𝑇 . The ECCE detector configuration is well
suited to obtain a comparable precision as the reference detector
parametrization used in the studies of the Yellow Report. From these
measurements the precision on the transverse momentum dependent
distribution and fragmentation functions can be greatly increased,
likely allowing for a detailed, flavor dependent extraction of these
TMDs. The lever arm of these measurements will definitely remove
the uncertainties that currently exist on the TMD evolution. Also,
further theoretical insights into the regions of applicability of TMD
factorization, collinear factorization, etc can be explored in a large area
of phase space.
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