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BIFURCATION FROM INFINITY WITH OSCILLATORY
NONLINEARITY FOR NEUMANN PROBLEMS

MAYA CHHETRI, NSOKI MAVINGA, ROSA PARDO

Honoring the memory of Alan Lazer

ABSTRACT. We consider a sublinear perturbation of an elliptic eigenvalue
problem with Neumann boundary condition. We give sufficient conditions
on the nonlinear perturbation which guarantee that the unbounded contin-
uum, bifurcating from infinity at the first eigenvalue, contains an unbounded
sequence of turning points as well as an unbounded sequence of resonant solu-
tions. We prove our result by using bifurcation theory combined with a careful
analysis of the oscillatory behavior of the continuum near the bifurcation point.

1. INTRODUCTION

We consider the nonlinear elliptic equation with Neumann boundary condition
—Au=u+ f(A\z,u), in
0 1.1
== 0, on 09, (1)
on
where Q C R¥ is a smooth bounded domain with N > 2, 9/0n := n(z) - V denotes
the outer normal derivative on 0f2, and A € R is the bifurcation parameter. Here
the nonlinear perturbation f: R x Q x R — R is a Carathéodory function, that is,
f = f(A x,s) is measurable in z € , and continuous with respect to (A, s) € RxR.
Observe that problem (1.1) is a perturbation of the eigenvalue problem

—Ap=Ap, inQ

Op

on

It is well-known that the eigenvalue problem (1.2) has a sequence of eigenvalues

{Ai}$2; with the property that 0 = Ay < Ay < -+ < A, -+ = +00 as n — oo. Each

eigenvalue is of finite multiplicity whose corresponding eigenfunctions {¢;}$2, are

orthogonal in L?(Q2). The first eigenvalue A\; = 0 is simple and its corresponding
eigenfunction ¢; = const. in 2 and can be normalized so that p; = 1.

The behavior of a nonlinear perturbation f near zero and/or at infinity greatly

influences the existence/multiplicity results for (1.1) with respect to the parameter

1.2
0, on0f. (12)
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A. In this paper, we are focused on solutions bifurcating from infinity. Therefore,
we assume that f satisfies the following assumptions for large arguments.

(H1) There exist h € L"(Q) with r > N/2 and continuous functions A : R — R
and U : R — R* satisfying
lf(N 2,8)| < ANR(z)U(s), V(A z,s) eRx QxR

with limyy e 28 = 0.
(H2) There exist a function B € L"(Q) with r > N/2, @ < 1 and so > 0 such
that for s > sg, A = 0, and z € Q, we have

[f(A z,8)|

s

< B(z).
(H3) f(A,z,s) is differentiable in s, and %(/\, ) € C(Q xR) and
y8)|[Le) =+ 0 as A—=0and M — +o0. (1.3)

(H4) For z € Q,

sup |f(>\,(E,S) _af(07xa8)|
|s|>M ||

—0 as A—0and M — +c0.

Note that (H1) implies that f is sublinear at infinity in the variable s, that is,
g O 9)

|s]—o0 |S|

=0.

After the pioneering work of Rabinowitz [12], bifurcation from infinity for the sub-
linear perturbation of the linear eigenvalue problem is widely studied. The sub-
linearity assumption guarantees the existence of unbounded branches of solutions
when A approaches one of the eigenvalues of odd multiplicity. These branches bi-
furcate from infinity in the sense of Rabinowitz, see [11, 12]. For the existence of
unbounded branches of solutions of Dirichlet and nonlinear boundary conditions,
see [1, 3, 4, 10] and references therein.

The focus of this article is to study the weak solutions of (1.1) bifurcating from
infinity. By a weak solution of (1.1), we mean a pair (\,u) € R x H!(Q) such that

/Vuvw+/u¢ )\/uw—l—/f)\xu for all 1» € H'(Q).

Note that by (H1), weak solutions of (1.1) lie in the space W27 (Q), r > N/2,
continuously embedded in C(€2). Therefore, we consider R x C'(Q) as our underlying
space.

The branch bifurcating from infinity at A; = 0 forms a continuum (closed con-
nected set) consisting of elements from the set

{(\u) € Rx C(Q) : (A, u) is a weak solution of (1.1)}.

The set of solutions bifurcating from infinity at A\; = 0 contains large positive
solutions or large negative solutions (or both) of (1.1). Let 2+ C R x C(f)
(resp. 2~ C Rx C(2)) denote the continuum of positive, (resp. negative) solutions
bifurcating at A\; = 0. Tt is known (see e.g. [12]) that the solutions in 2% can be
expressed as

u=t+w, wherew=o(|t])as |t| > oc0. (1.4)
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Our main focus is on the analysis of unbounded continuum 27T bifurcating at
A1 = 0. In particular, we give sufficient conditions on f which guarantees that 2+
is neither subcritical (A < 0) nor supercritical (A > 0). This leads to the existence
of unbounded sequences of turning points and unbounded sequence of resonant
solutions at A = 0 on the continuum 2*. We say that (\*,u*) € 2% is a turning
point if there is a neighborhood of (A\*,u*) in R x C() such that there are no
solutions (A, uy) close to (A*,u*) for A > \* or for A < \*.

We note that problem (1.1) is a perturbed eigenvalue problem. Therefore, to
investigate the subcritical or supercritical nature of the continuum 27 bifurcating
from infinity at A = 0, one must analyze the lower order terms of f(\, z,s) as A — 0
and s — co. To do this, one defines

A - _ A -
F, ::/ tming 08 F, ::/ imsup 08
a (A\s)=(0,400) 5] Q (As)—(0,400) S|

It is known that if F, > 0, then 27 is subcritical, while if F < 0, then 27 is

supercritical, see [7, Thm. 2.1] and [10, Thm. 4.3]. Moreover, if all the unbounded

branches are either subcritical or supercritical then, the resonant problem, that is

when A = 0, has at least one solution, see [7, Cor. 3.5] and [10, Thm. 5.1].
Therefore, in this article we consider nonlinearities satisfying

F, <0<F;. (1.6)

This condition means that the bifurcating continuum 271 is neither subcritical
nor supercritical, and hence Landesman-Lazer type conditions do not hold. The
main purpose of this article is to establish the existence of infinitely many resonant
solutions at A = 0 in the absence of Landesman-Lazer type conditions. We note that
the condition (1.6) reflects the oscillatory behavior of 2T near infinity around the
bifurcation point A = 0, yielding infinitely many resonant solutions. In particular,
we prove the following result.

Theorem 1.1. Let (H1)-(H4) hold. Suppose there exist two increasing sequences
{tn} and {t,,} that tend to +oo and satisfy
f(oa B t;z)

—o< lim [ ¢ 20< lim tM

w8 Jo I e <0< B Jo B e o

Then, the following assertions hold.

(I) There exist two sequences {(An,un)} and {(\,,ul)} in PT approaching
(0,00) as n — 0o, with Ay, < 0 (subcritical), and N, > 0 (supercritical).
(II) There is a sequence of turning points {(\5,ux)} € DT such that

An =0 and ugllo@) — 00, asn—oo.

Furthermore, one can choose two subsequences of turning points, one of
them subcritical, A3, 1 <0, and the other supercritical, A3, > 0.

(III) There is a sequence of resonant solutions, that is, there are infinite solutions
{(0,4,)} € 7 with |[in || o) — 00 as n — oo.

The case for 2~ can be established in a similar fashion.
We briefly describe how each of the hypotheses (H1)—(H4) and (1.7) play crucial
role in proving Theorem 1.1.

e As discussed earlier, (H1) guarantees that 2% bifurcates from infinity at
A =0 and for each (\,u) € 2T, u is given by (1.4).
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e Assumption (H2) helps establishing the estimates |[\| = O(t*~1) and |w| =
O(t*) as t — oo in Proposition 2.3.

e Assumption (H3) ensures that the sign of F and F, can be determined
in terms of integrals involving only the parameter ¢ instead of the solution
variable v in Lemma 2.5.

e The technical assumption (H4) helps in the determination of the location
of A relative to A; = 0. See the end of the proof of part (I).

e The assumption (1.7) determines the oscillatory behavior of the continuum
2% across the hyperplane A = 0.

Results such as Theorem 1.1 have been studied in [2, 5] in the case of nonlin-
ear boundary conditions, for bifurcation from infinity or from zero respectively. In
[6] one can find a similar result on the existence of unbounded sequences of stable
solutions, unstable solutions, and turning points, even in the absence of resonant so-
lutions, also for nonlinear boundary conditions. To the best of our knowledge, such
results are not known in the case of Neumann boundary conditions. In [3, 4, 7, 10],
the existence of resonant solutions was established when the nonlinearity satis-
fies some type of Landesman-Lazer conditions. We note that the now ubiquitous
Landesman-Lazer condition that guarantees the existence of a resonant solution
first appeared in a paper by Landesman and Lazer in [9]. We are indebted to their
pioneering work and feel privileged to honor Professor Lazer in this paper.

A motivating example concerning Theorem 1.1 is the oscillatory nonlinearity
function

f(s) == |s|%[sin(|s|®) + C] with 8 # 0 and a < 1.

If € Rand C' > 1, orif 3 <0 and C > 0, then from definition of F ,, see (1.5),
F, > 0 and the bifurcation from infinity is subcritical. On the other hand if 8 € R
and C < —1, or if 5 < 0 and C < 0, then F < 0 and the bifurcation from infinity
is supercritical.

Therefore, we consider here the range 5 > 0 and —1 < C' < 1 and note that
Theorem 1.1 applies if

8>0 «a+pB<1l, and —-1<C<I1.

Therefore, in this range of parameters, there exist unbounded sequences of sub-
critical and supercritical solutions, subcritical and supercritical turning points and
infinite resonant solutions.

The restriction a4/ < 1 on the size of 3 is needed in order to satisfy the condition
(1.3). This restriction means that the “oscillating” nonlinearities f cannot oscillate
very fast.

In Section 2, we discuss some preliminaries, functional framework and prove
technical results associated with assumptions (H1)-(H3) that will be used in the
proof of Theorem 1.1. In Section 3, we prove Theorem 1.1 using bifurcation theory
combined with technical results of Section 2. We also state and prove a corollary
that characterizes the A-intervals from the bifurcation point to the turning points.

2. PRELIMINARIES AND AUXILIARY RESULTS

In this section, we discuss the functional framework and establish few auxiliary
results needed in the proof of Theorem 1.1. Let us start by analyzing the behavior
of a sequence of solutions when we know explicitly that the solutions blow up.
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Proposition 2.1. Let (H1) hold. Let {(An,un)} C D97 where A\, — Ao, uy > 0,
and Huan(ﬁ) — 00, then A\, — 0, and there exists a subsequence, again denoted by
Uy, Such that

lim Un

o Huan(ﬁ)
Proof. Let vy = un/|[unll - Since u, € W27(Q) (see [8, p. 162]) with r > N/2,
by the compact embedding theorem, we obtain u, € C7(Q) for some v € (0,1).
Then, since (H1) holds, we obtain that ||vn [l (g, < C. Using the compact embed-

=1, inCH(Q) for some p € (0,1).

ding C7(Q) — C7'(Q) for 0 < 4/ < v, we deduce that there exists a convergent
subsequence (again denoted by v,,) such that v, — ¢ in o (). Since v, > 0 and
[vnllo@) =1, it is easy to see that 0 < ¢ # 0. Moreover, v, satisfies

A n
A, = Ay, 4 AT g
P _ 0, on 89.
o
Passing to the limit in the weak formulation of (2.1) and using that % -0
in L"(Q), we obtain
—Ap = Agp, inQ
0
g8 _ 0, on 01,
I
with 0 < ¢ # 0. Then necessarily ¢ = 1 and Ay = 0. O

Next, we will prove that under hypothesis (H2), if u = ¢ + w is a solution as
given in (1.4), then w satisfies
w=0(|t]*) as|t| = o0.
We analyze first the linear problem. Let A € (—o0, A2) and g(A,:) € L"(Q) with
r > N/2, and consider the linear problem
—Au=Au+g(\z), inQ
2.2
% =0, on09Q. (2:2)
on
Then, (2.2) has a unique solution u € W27 (Q) (see [8, p. 162)) if A # 0. More-
over, since r > N/2, by the compact embedding Theorem u € C(£2). We observe
that (2.2) is a linear perturbation of the eigenvalue problem. Therefore, to take
advantage of this structure, we decompose

L" () = span[p;] & spanfp1]* = span[l] & {¢ € L"(Q) : /Qd) =0}. (2.3)

Then for g(A,-) € L™(2), with r > N/2 and g(}, -) # const., there exists a unique
decomposition

g()‘a ) = al()\) + gl(>\a ')’
where aq () (the projection onto span[l]), and g1 (A, ) (orthogonal to span[l]) are
given by

1
ar(A) = o] /Qg()\, ) and /le()\, ) =0. (2.4)
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By the Fredholm Alternative, the linear problem (2.2) has a unique solution if
A # 0 (recall Ay = 0) and does not have solution if A = 0 and a;(0) # 0. Hence, for
A # 0 the solution u = u(\) of (2.2) belongs to W27 (Q), (see [8, p. 162]) and hence
to L" (). Therefore, the solution u has a unique decomposition in L"(2) given by

we 0 With/w:O. (2.5)
A Q

Moreover, w = w(\) solves the problem
—Aw =X w+g1(A\,x), in
2.6
a—w =0, ondf, (26)
on
where g; is as defined by (2.4).

On the other hand, if A = 0, by the Fredholm Alternative and by (2.4), there
exists a function v € W27 (Q) such that v + ¢ solves (2.6) for any ¢ € R. Let us
choose ¢y € R such that fQ v+ ¢o = 0 and define w(0) = v + ¢y. This implies that
w(A) € span[1]* is well defined for any A € (—oo, Ag).

The lemma below estimates the C'(Q) norm of the solution of (2.6) if g € L"(€2).

Lemma 2.2. For each compact set K C (—o0,\2) C R, there exists a constant
C = C(K), independent of A € K, such that

lwMlle@) < Cllgr(A,-)]
where w satisfies [, w =0 and (2.6), and g1 satisfies (2.4).

Proof. We observe that w = w(\) satisfying (2.5)-(2.6) is well defined for any A € K
by the discussion above.

We first show that w()) is uniformly bounded for any A in a neighborhood of A\; =
0. Assume to the contrary that there is a sequence A, — 0 with [[w(An)]| @) — oo

Then it follows from [7, 10, 11, 12] that
An -
& — ¢1 = 1 uniformly (up to a subsequence) in .
lw(An) @)

This contradicts that [, w(A,) = 0. Therefore, there exist § > 0 and ¢ > 0 such
that [|w(A)[|c @) < ¢ independent of A for any [A| < 4.

Second, let A € K \ (—4,6). By the Fredholm Alternative, w()\) € W27 (Q) is
the unique solution of (2.6). Using the L™-estimate and the embedding of W27 (£2)

into C(Q), we obtain
Hw(A)HC(ﬁ) < CllwN)lwzr@) < Cllgi(A,)llLr@) < oo
To conclude, let A € K and

TA) : {g1 € L"(Q) : /le =0} - C(Q)

be a family of operators defined by T'(A\)g; := w(A), where w(\) is the solution of
(2.6). Then, T'(A) is continuous for every A € K. Moreover, supye [|T'(M)g1lc@) <
oo from the previous two paragraphs. Therefore, by the Uniform Boundedness
Principle, there exists a constant C' = C(K) such that

[wMlc@ < CE)g1llrr@) for any X € K,

as desired. O

L™ () »
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Proposition 2.3. Let (H1) and (H2) hold. Then, there exists a neighborhood of
(0,00) CR x C(Q) given by
O :={(\u) €RxC(Q): |\ < o, u(z) >0, Hu||c(§) > My},
for some small 6y and large My, such that the following hold:
(i) There exist positive constants C1,Cy (independent of A) such that if (A\,u) €
2T N0 and (A u) # (0,00), then

u=t+w wheret>0,/w=0, (2.7)
Q

lwlle@) < CillBllr@t*  ast — oo, (2.8)

N < Cot* b ast— 00 (2.9)

(i) There exists to > 0 such that for all t > to there exists (\,u) € 2T NO
satisfying v =t +w with [,w = 0.

Proof. Let O be as defined above for §g > 0 and My > 0. Then, since 2™ bifurcates
from infinity at A = 0, there exist dg > 0 and My > 0 such that 27 N O # 0.

(i) Let (A\,u) € 27 N O. Because of (2.3), u can be written as u = t + w with
Jow = 0, hence (2.7) holds. Integrating by parts (1.1) and using the divergence

theorem, we obtain
—)\/u:/f()\,x,u).
Q Q

Since u =t +w and [, w = 0, we obtain

—)\t|Q|=/Qf()\,x,t+w). (2.10)

Now, using (H1) and that w = o(|t]) as |t| — oo,
[t] [t + w| t

Therefore, by the Lebesgue dominated convergence theorem and (2.10), we obtain
A — 0 as t — oo. We note that (H2) yields
[fO\ z,t + w)| w w
— 7 |14+ —|*<|t|*B 1+ —|*. 2.11

e e < B+ T @)
Therefore, it follows from (2.10) that

= o [ (B F1) < ClBli@ld
Q

This shows (2.9).
By (H1) f(X,.,u(.)) € L™(€2), and hence there exists a unique decomposition
f()\,x,s) = fl()\,.T,S) +/ f(Aaan)a
Q
where [, f(A 2, s) is the projection onto span[1] and f; is orthogonal to span[1],
that is, [i, fi(A,2,s) = 0. By Lemma 2.2, we have

[wllze) < Cllfiller@) < Clfllzr @) -
Hence, from (2.11) and that w = o(|t|), we obtain the estimate (2.8),

[f(X 2, t 4+ w)| = [¢*

||’wHLoo(Q) S C||B||LT(Q)|t|a ast — 00.
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This completes part (i).

(ii) Since 27 bifurcates from infinity at A = 0, one has that 2T NQ, although not
necessarily connected, contains an unbounded connected component .. Therefore,
if (\,u) €. C 27 N O, we necessarily have

u=t+w with /
Q

w:()andt:/u. (2.12)
Q
Using the continuity of the projection ¢t = fQ u, we infer that the set

{t € R: (1.1) has a solution satisfying (2.12)}

contains an unbounded connected set. Therefore, part (ii) holds. O

As an immediate consequence of the estimate for w given by (2.8) in Proposi-
tion 2.3, we have the following corollary:

Corollary 2.4. Assume (H1) and (H2) hold. Let {(\n,un)} C 27 N O be such
that A, = 0 and uy, = t, +wy, with [ow, =0 and t,, = [ u, — 0o, then

lim Un 4 uniformly in Q,
nreo ||un||c(§)
lim & =1 uniformly in Q,
n—oo t,
[[n | —
li rlo@ _ 1, uniformly in Q.
n—oo

We note that, with minor modification in the proof, the results of Corollary 2.4
remain valid when only (H1) is satisfied.

To guarantee that (1.7) is enough to conclude the existence of subcritical (A < 0)
and supercritical (A > 0) solutions in the unbounded continuum 2%, we will use
the following result.

Lemma 2.5. Let [ satisfy (H3). Suppose there exist « < 1 and a function By €
LY(Q) such that for x € Q, and for all (A, s) close to the bifurcation point (0, +00),
we have

f(\z,s)

5]

< By(x). (2.13)

Let Ay = 0, t, 1 00 and wy, € L>(Q), such that ||wy| L~ ) = O(|ta]*) as n — occ.
Then

tn n An,'ytn n . ty Ana'atn
liminf/ (bn + wn) /( +Wn) > hmlnf/ M, (2.14)
n—+0 Jo [tn + wy |t notoo Jo o [ttt

and

tn n )‘n;';tn n . ty Anv'vtn
limsup/ (bn + wn) S T + Wn) < hrnsup/ M (2.15)
n—+4oo JQ |tn+wn‘ +a n—+oo JQ ‘tn| ta
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Proof. For any w € L*°(2) and ¢t > 0 such that |w| < t/2, using the Mean Value
Theorem, we have (with a constant C' that may change from line to line)

/|f 77t+w ()\’7t)|d(1)
L of
< Cllwl| e () |a—()\,-,t+7w)|d7dx (2.16)
QJo $
of
< Cllwllei@) s {1500+ 70)]lom

Then, whenever |wl| o) = O(|t|*), using (2.16) and (H3), we obtain

/ |f aat+w f(Aaat)|dx
]

2.17
||w||L°°(Q) ( )

< C sup ;5 S HLM(Q) e

|>MH8 -0

as A — 0 and M — oo.
Now, let A\, — 0, t, T oo and w,, € L*°(Q), such that |[w,| L~@) = O(|t.|*) as
n — oco. Then, (2.17) yields

1iminf/ tn f()‘na'atn“‘wn)
n—+oo [o |t |1+a
: tnf( 7at +U)n)—tnf( 5y n) P ’nf( 7177 )
> nJ AT v )
> ngﬁi(l)oo/g £, [ e + lﬁgli&f) TR e (2.18)
= liminf tnfAns s tn) .

n—+oo Jo ‘tan"o‘

To establish (2.14), we estimate the left hand side of (2.18) from below. For this,
we note that

tnf()‘na tn + wn) _ (tn + wn)fo\na tn + wn)
|tn‘1+a |tn + wn|1+a

Then, using that 1 4wy /t, — 1 in L*(2) and (2.18), we obtain
limjnf/ tnf ns 1 tn) < liminf/ tn £y o tn 4+ w5)
@ Q

wn|a

|1+ 7

n—+oo ‘tn‘1+ n—+4o00 |tn|1+a
=liminf/ (tn+wn)f()‘n7'7tn+wn)‘1+&|a
n—+o0o o [t + wy |t tn

< liminf
n—-4o0o

/ (tn + wn)f(/\vu ity + wn)
Q

|tn + wn|l+a

The integral on the right-hand side above is well defined by (2.13), hence (2.14)
holds. Similar arguments will establish (2.15). Thus the proof is complete. 0

3. PROOF OF THEOREM 1.1

Roughly speaking, if there exist an unbounded sequence of subcritical solutions
and another unbounded sequence of supercritical solutions in the continuum of
solutions, then the connectedness of the continuum guarantees that there are infinite
turning points and hence infinite resonant solutions.
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Proof of Theorem 1.1. (I) We observe that conclusions (i)—(iii) of Proposition 2.3
hold for some neighborhood O of the bifurcation point (0,+o00) € R x C(Q). Let
(An, un) = (0,400) and (N, ul)) — (0,+00) in 2T N O be two sequences. Then,
using (2.12), we have

Up =tp +w, and u, =t +w,

/ I ! /
/wn=0:/wn, tn.—/un, tn.—/un.
Q Q Q Q

Integrating by parts (1.1) for (A, u) = (An,uy) and thanks to the divergence Theo-
rem we obtain

with

_>\ntn = / f()‘na'raun) .
Q

Dividing by t,||lu,||% =, and using Corollary 2.4 yields

C(Q)
liminf —— " — limjns [ L0mTUn)
nooe lunlig C(Q) n=oo Jo ||Un||cc“(§)
Moreover,
f Ans Ty Up,) f( )\n,x Up) Un, a
” "”C(Q) / ”un”c(g)>

/f)\n,x ,Un) ( U, /f/\n,x ,Un)
Huan(Q) .

Furthermore, by Corollary 2.4,

/’f&JWM[Qmwam JIEY RS hm%m>a_q‘%a

as n — 0o, consequently

)\ )\n; TL
lim inf — > hmmf/ f T, U
n—00 ||Un| Q n—00
()
Then, utilizing u,, = t,, + w,, we obtain
lim inf M
nreo ||u7l||C(Q)
tn n )\n7 Yy tn n
> liminf (tn + wn)f( T + wn)
n—oo Jq [t + wy, |11
> lim inf/ tnf (Ans s tn) (by Lemma 2.5)
~ n—+4oo Q |tn‘1+0‘
tn )\na'atn - 7’7tn 7'7tn
B LA RS (A RS ()
n—+oo Jo ‘tn|1+a
tn )\na'atn - 07'7tn . . tn 0,-,tn
> liminf L/ )1+ i ) + lim inf f(il_‘_)
n—+oo Jo |t | o n—+oo o |tn| o

L tnf (0, tn)
:1n133£0f/Q 0 ‘1+ >0 (by (H4) and (1.7)),

yielding A, < 0 for n sufficiently large. Analogously, we obtain A/, > 0 for n
sufficiently large. This completes part (I).
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(IT) Let {t,} and {t/,} be two sequences of positive real numbers such that
tn,t,, — +00 as n — oo. Then, up to a subsequence, t,, < t), < t,41 for alln > 1
and t,, t, > to, where tg is as defined in Proposition 2.3 (iii). Then, for t,, t/, > to,
Proposition 2.3 (iii) guarantees (A, uy), (A, ul,) € 2T N O such that

Uy, = tp, + w, with /

wn, =0 and ugzt;+w;with/w;:0.
Q

Q

We note that A, < 0 (subcritical) and A/, > 0 (supercritical) for n sufficiently large,
by part (I).

It follows from Proposition 2.3 (i)-(ii) that if (\,u) € 2T NO and [u=1t> 1o
then for ¢, sufficiently large, we obtain

lullog) = It + wleg < 1+ CilBllL-@lto|* )t < 2t. (3.1)
Let
K, = {(A,u)€@+ﬁ(’):/u:t, and t, <t <tnpy1}. (3.2)
Q

We claim that, for each n € N, K,, is a compact set in R x C(Q2). For this, let
(uk,vi) be a sequence in K,. Obviously ¢, < fQ v < tpqq for all k, hence (3.1)
implies that [|vg||og) < 2tn+1 for all k. Moreover, by Proposition 2.3 (i) we have
that || < C1t*~1 < C1t§~". Then, by [10, Thm. 2.4], there exists a constant C,
independent of k, such that

vkl gaqmy < C1(1+ lvillo@) < C-

Using the compact embedding C®(Q2) — C#(1) for some 3 € (0, ), we infer that
there exists u* € C#(Q) such that v, — u* in C#(Q), up to a subsequence. Since
(ux, i) satisfies

—Avg = ppog + f(pk, ¢, 0), in Q
— =0, on o0

and f is Carathéodory, f(pk,,vg) — f(u*,-,u*) pointwise. Then, (H1) and the
Lebesgue dominated convergence theorem imply f(ug, -, vr) — f(p*, -, u*) in L™(2)
as k — oo. Further, passing to the limit in the weak formulation of the above
equation, we see that u* is a weak solution of

—Au* = prut 4+ f(\ z,u”), in Q

ou*
=0, onJdf.
an
The convergence of (ug,vr) € Ky, and the continuity of the projection P implies
to <t, <t'= fQ u* < t,41. Hence, (u*,u*) € K, establishing the compactness of
K,.
Since t,, < t, < ty41, there exists (A}, ul,) € K, with u}, = t/, 4w}, with [, w] =
0 and A}, > 0 by part (I). Define

Ar i=sup{A: (\u) € K,}. (3.3)

Then A% > X/ > 0. By repeating the limiting argument above combined with the
compactness of K, we deduce that there exists u’ such that (A, uk) € K.

Using that A > 0 (supercritical) and ¢,, and t,,41 are associated with A, < 0 and
An+1 < 0, respectively, we have that ¢,, < fQ uy < tp+1. We can deduce that there
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is no solution (A, u) nearby (A%, ) with A > A%. Otherwise, by the continuity of
the projection, we have t, < fQ u < tpy1. This means (A, u) € K,,, contradicting
the definition of A in (3.3). Hence (A}, w}) is a supercritical turning point.

Similarly, letting
K/ = {(A,u)e@+m(9:/u=t’ and t, <t' <t .}, (3.4)
Q

A i=Inf{A: (\,u) € K} (3.5)

we can show the existence of u,, such that (A, u.n) € K] is a subcritical
turning point, that is, A, , < 0. Finally, combining the sequences {\. ,} and {\}}
and relabeling, one can choose two subsequences of turning points, one of them
subcritical, A3,,; < 0, and the other supercritical, A5, > 0. This completes the
proof of part (II).

(ITI) Here we prove the existence of a sequence of resonant solutions, that is
solutions u corresponding to A = 0. It suffices to show that there exists ng € N
large enough such that for each n > ng, both sets K,, and K|, contain resonant
solutions, that is, solutions of the form (0, u).

We give the proof for the sets K,. Suppose to the contrary that there exists
a sequence of integers numbers n; — +oo such that K, does not contain any
resonant solutions. In that case, the compact sets K, := {(\,u) € Ky, : A > 0}
can be written as K, := (27 N O) N {(\,u) e Rx C(Q) : A > 0,t,;, < [qu <
tnj+1}. Therefore K,'fj contains at least one connected component of 2+. This
connected component is nonempty since there exists at least one solution (N, u')
with fQ u' =t with t € (t,;,t,;11) and therefore A’ > 0. By construction, since
(tn,stn;+1) N (tn,yy s tn,+2) = 0, we have that K,'fj N KTZH = for 5 € N. We
recall that a continuum (a closed connected set) cannot contain two nonempty
disjoint connected components. Therefore, the fact that we constructed a sequence
of nonempty, pairwise disjoint connected components of 2 contradicts that 2+
is a continuum in R x C(£2). Hence, there exists a sequence of resonant solutions,
that is a solution u corresponding to A = 0.

A similar argument applied to the sets K, also results in a sequence of resonant
solutions. This completes the proof of (III), and hence of Theorem 1.1. O

Let Ky, K, A% and A, ,, be as defined in (3.2), (3.4), (3.3) and (3.5), respectively.
Define the sets

M, :={X: X >0 and Ju with (\,u) € K.},
M, :={\: X <0 and Ju' with (\,u') € K, }.
Then one can prove the following result.
Corollary 3.1. For n sufficiently large, we have
M, =[0,X], (3.6)
M, = [Ain,0].
Proof. First, we establish (3.6). By the definition of K, and A\, one has
M, C[0,A].

Now, suppose to the contrary that [0, A%] C M, is not true for n sufficiently large.
Then there exists a sequence n; — +oo such that [0, )\:‘LJ] & M,,;. So, there exists
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An; € [0,A7 ] but An; & M,,. Therefore, there is no function u,; € C(Q) with
(An;»Un;) € Ky,;. From the proof of part (II) of Theorem 1.1 above, we know that
(A%, ur,) € Ky, and so A}, € M,;. Hence necessarily 0 < A,; <A, .

Let K, = {(A\u) € Kn,,A > An,}. Then K, # 0 since (X} ,ul; ) € Ky,

.
Now, proceeding as in the proof of part (III) of Theorem 1.1 above, WeJcan show
that f(nj contains at least one nonempty connected component of 2. As in part
(III) above, we can construct a sequence of nonempty, pairwise disjoint connected
components of 21 for n; large, a contradiction to the fact that 27 is a continuum.
Hence (3.6) holds.

A similar argument establishes (3.7), completing the proof. O

Acknowledgements. R. Pardo was supported by grants PID2019-103860GB-100
from MICINN Spain, and GR58/08, Grupo 920894 from UCM-BSCH Spain. All
authors acknowledge help from MSRI in bringing this group together for collabo-
ration.

REFERENCES

[1] David Arcoya, José L. Gadmez; Bifurcation theory and related problems: anti-mazimum prin-
ciple and resonance, Comm. Partial Differential Equations, 26 (2001), no. 9-10, 1879-1911.
MR 1865948

[2] J. M. Arrieta, R. Pardo, A. Rodriguez-Bernal; Infinite resonant solutions and turning points
in a problem with unbounded bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20
(2010), no. 9, 2885-2896. MR 2738741

[3] José M. Arrieta, Rosa Pardo, Anibal Rodriguez-Bernal; Bifurcation and stability of equilibria
with asymptotically linear boundary conditions at infinity, Proc. Roy. Soc. Edinburgh Sect.
A, 137 (2007), no. 2, 225-252. MR 2360769

[4] José M. Arrieta, Rosa Pardo, Anibal Rodriguez-Bernal; Equilibria and global dynamics of
a problem with bifurcation from infinity, J. Differential Equations, 246 (2009), no. 5, 2055—
2080. MR 2494699

[5] Alfonso Castro, Rosa Pardo; Resonant solutions and turning points in an elliptic problem
with oscillatory boundary conditions, Pacific J. Math., 257 (2012), no. 1, 75-90. MR 2948459

[6] Alfonso Castro, Rosa Pardo; Infinitely many stability switches in a problem with sublinear
oscillatory boundary conditions, J. Dynam. Differential Equations, 29 (2017), no. 2, 485-499.
MR 3651598

[7] José L. Gamez, Juan F. Ruiz; Bifurcation of solutions of elliptic problems: local and global
behaviour, Topol. Methods Nonlinear Anal., 23 (2004), no. 2, 203-212. MR 2078190

[8] Olga A. Ladyzhenskaya, Nina N. Ural'tseva; Linear and quasilinear elliptic equations, Aca-
demic Press, New York-London, 1968, Translated from the Russian by Scripta Technica, Inc,
Translation editor: Leon Ehrenpreis. MR 0244627

[9] E. M. Landesman, A. C. Lazer; Nonlinear perturbations of linear elliptic boundary value
problems at resonance, J. Math. Mech., 19 (1969/1970), 609-623. MR 0267269

[10] Nsoki Mavinga, Rosa Pardo; Bifurcation from infinity for reaction-diffusion equations under
nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), no. 3, 649-
671. MR 3656708

[11] P. H. Rabinowitz; Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7
(1971), 487-513 .

[12] Paul H. Rabinowitz; On bifurcation from infinity, J. Differential Equations, 14 (1973), 462—
475. MR 328705

MAyA CHHETRI
UNC GREENSBORO, GREENSBORO, NC, USA
Email address: m_chhetr@uncg.edu



292 M. CHHETRI, N. MAVINGA, R. PARDO

NSOKI MAVINGA
SWARTHMORE COLLEGE, SWARTHMORE, PA, USA
Email address: nmavingl@swarthmore.edu

RosA PARDO
UNIVERSIDAD COMPLUTENSE DE MADRID, MADRID, SPAIN
Email address: rpardoQucm.es

EJDE/SI/01



	1. Introduction
	2. Preliminaries and auxiliary results
	3. Proof of Theorem ??
	Acknowledgements

	References

