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ABSTRACT. We study invariants, called shifting numbers, that
measure the asymptotic amount by which an autoequivalence of
a triangulated category translates inside the category. The in-
variants are analogous to Poincaré translation numbers that are
widely used in dynamical systems. We additionally establish that
in some examples the shifting numbers provide a quasimorphism
on the group of autoequivalences. Additionally, the shifting num-
bers are related to the entropy function introduced by Dimitrov,
Haiden, Katzarkov, and Kontsevich, as well as the phase functions
of Bridgeland stability conditions.
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1. Introduction

This paper is concerned with categorical dynamical systems, namely
endofunctors F': D — D on a triangulated category D. We study
invariants, the shifting numbers, that measure the asymptotic amount
by which F' translates inside the triangulated category.

Translation and shifting numbers

The concept is analogous to the Poincaré translation number, and our
starting point is the central extension

0 — Z — Aut(D) — Aut(D)/[1] — 1

where [1] denotes the shift functor of the (Z-graded) triangulated cate-
gory D.
Poincaré translation and rotation numbers. Let us recall some
background on translation numbers that were introduced by Poincaré
[Poi85] and have been used extensively in dynamics since then. We
refer to [Ghy01] for a general introduction to the theory.

Take R/Z as the model of the circle and R as its universal cover to
obtain a central extension of groups

0 — Z — Homeo, (R) — Homeo™ (R/Z) — 1

where Homeo'(R/Z) denotes the orientation-preserving homeomor-
phisms of the circle and Homeo, (R) denotes the orientation-preserving
homeomorphisms of the real line commuting with translation by Z. The
Poincaré translation number of an element f € Homeo, (R) is defined

by
) = i T

n—o0 n

for some choice of basepoint o € R (it is a standard result that the
limit always exists and is independent of the choice of z). Here are
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some standard properties of the translation number:
p(foTy)=p(f)+k for the translation Ty (x) =z + k
P (gfg_l) =p(f) conjugacy invariance
F(f")=n-5(f)  homogeneity
The rotation number is defined for elements f € Homeo® (R/Z) by
p(f) = p(f) mod Z € R/Z for any lift f of f.
Shifting numbers of autoequivalences. In order to extend the
above notions to the categorical setting, we need to first introduce
some further concepts. Instead of the basepoint 2o € R we will use a
split generator G € D, see Definition 2.1.1. A number of categorical
“distance functions” are available, see §2.1. For definiteness, we will
use the upper and lower Ext-distance functions denoted by ™ and €™,

see Definition 2.1.2, introduced in the study of Serre dimensions of
triangulated categories in [EL19, KOT19]. These are defined by

¢"(E1, By) == max{k € Z: Hom(E,, E»[—k]) # 0}
and
€ (E1, By) = min{k € Z: Hom(E,, Ey[—k]) # 0}.

Theorem 1.1 (Shifting numbers and their properties). Let F': D — D
be an endofunctor of a triangulated category D and let G be a split
generator of D. The following limits exist and are finite real numbers:

+ n _ "
7-+(F> — hm w and Ti(F) = hm M

n—o0 n n—oo n !

and furthermore are independent of the choice of split generator G.
Each of 7 and 7~ also satisfies the following properties:

(i) For any k € Z we have
TH(Fo[k]) = 75(F) + k.
(ii) For any two endofunctors Fy, Fy we have
75 F) = 75(FR).
In particular, if Fy is an autoequivalence of D then 75 (FyF1Fy ') =
TE(F).
(iii) For any n € N we have
TH(F") =n-75(F)
If F' is an autoequivalence and D admits a Serre functor, then

Ti(F_l) =—77(F).



4 YU-WEI FAN AND SIMION FILIP

(iv) Define 7(F) == 5 (*(F) + 7 (F)). If F is an autoequivalence

and D admits a Serre functor, then

T(F") =n-71(F) for any n € Z.

We will call 77(F') resp. 7 (F') the upper resp. lower shifting numbers
of F,and 7(F) = L (t7(F) + 77 (F)) the shifting number of F. For the
proofs, see Section 2.

Bridgeland stability conditions. An alternative definition of shifting
numbers is possible using the notion of stability conditions, introduced
by Bridgeland [Bri07]. It is also closer in spirit to the classical defini-
tion of the Poincaré translation number, but requires the existence of

Bridgeland stability conditions.

Theorem 1.2 (Shifting numbers from phases of stability conditions).
Assume that D admits a Serre functor and a Bridgeland stability
condition o. Let $=: Ob(D) — R be the phase functions with respect
to o (see Definition 2.2.2).

Then the following limits exist, are independent of the choice of split
generator G, and coincide with the upper/lower shifting numbers:

1 GEFG) — 62(G)

n—o0 n

= 7E(F).

For the proof, see Theorem 2.2.6.

Categorical entropy. One can also connect the notion of shifting num-
bers with the categorical entropy function h; introduced by Dimitrov,
Haiden, Katzarkov, and Kontsevich [DHKK14].

Theorem 1.3. Let F': D — D be an endofunctor of a triangulated
category D with a split generator G, and let hy(F') be the categorical
entropy function of F', see Definition 2.1.4.

Then hy(F) is a real-valued convex function that satisfies:

t-7HE) < hy(F) < ho(F)+t-77(F) fort >0,
t-7(F) < h(F)<ho(F)+t-7(F) fort <0.

In particular, we have lim;_, 4 htiF) =7%F) e R.

For the proofs, see Theorem 2.1.6 and Theorem 2.1.7. We note that
parts of the statements in Theorem 1.1 and 1.3 also appeared in the
work of Elagin and Lunts [EL19, §6], under the name of “ F-dimensions”.
We were led to these results independently of Elagin and Lunts and
were made aware of their work by Genki Ouchi only after a first version
of this text was posted on the arXiv. The mass growth function h, (F)
also satisfies similar inequalities, see Theorem 2.2.6. In §2.4 we develop
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hi(F)
slope 71 (F)

FIGURE 1. Bounds of the categorical entropy function h;(F)

the observation that the shifting numbers determine the domain of
definition of the Legendre-transformed entropy function.
Quasimorphisms. An important property of the Poincaré translation
number is that it gives a nontrivial quasimorphism on Homeo, (R),
namely there exists a constant C' > 0 such that

6(f9) = p(f) = plg)l < C

for any f, g € Homeo, (R). It is therefore natural to pose:

Question 1.4. In what situations does the shifting number
7: Aut(D) - R

define a quasimorphism on the group of autoequivalences of a trian-
gulated category D? More generally, is there a quasimorphism ¢ on
Aut(D) whose values satisfy ¢(F) € [t (F), 7" (F)]?

In the examples that we computed and are described below, occasionally
we find that 77 (F) = 77 (F) but this is special. For instance, the
spherical twist Ts with respect to an N-spherical object S has shifting
numbers 77 (Ts) =0 > 1— N =7 (Ts) if N > 2 (see §3.2). In the
case of the Ay quiver and its N-Calabi—Yau category the average 7(F)
of the upper and lower shifting numbers does give a quasimorphism.
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Examples

We compute several examples in this text, where we establish in partic-
ular that Question 1.4 has an affirmative answer. See Theorem 3.1.2,
Theorem 4.1.1, and Theorem 4.2.1 for the proof of the next result.

Theorem 1.5. Let D = D°Coh(X) be the bounded derived category of
coherent sheaves on a smooth projective variety X, where X

e is an elliptic curve, or
e is an abelian surface, or
e has ample or anti-ample canonical bundle K x.

Then 7(F) = 75(F) for any F € Aut(D), and
7: Aut(D) —» R

is a quasimorphism. Moreover,

e when X 1is an elliptic curve, T can be decomposed into

Aut(D) % GL, (R) % Homeo? (R) 5 R,

where s,t are homomorphisms, and p is the quasimorphism
given by the Poincaré rotation number;

e when X has ample or anti-ample canonical bundle, we have that
Aut(D) = (Aut(X) x Pic(X)) x Z[1], and 7 can be decomposed
mto

Aut(D) & Z 5 R,

where 7 is the projection to the Z[1]-factor, and v is the natural
inclusion of integers into real numbers.

In general, computing the shifting number of an autoequivalence can
be challenging, especially in situations arising from the composition of
spherical twists that do not commute. We prove that Question 1.4 also
has an affirmative answer for a group generated by two spherical twists
with the simplest possible coupling, see Theorem 4.3.4.

Theorem 1.6. Let N > 3 be an integer and let Dy be the N-Calabi-
Yau category associated to the Ay quiver. Consider the subgroup
Aut,(Dy) C Aut(Dy) generated by the spherical twists Ty, Ty, and
the shift [1] (see §4.3). Then

7: Aut,(Dy) = R

is a quasimorphism. More precisely, we have

T:w—é<¢oa)
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where w: Aut,(Dy) — Q and a: Aut,(Dy) — PSL(2,Z) are group
homomorphisms, and ¢ is the (homogenization of the) Rademacher
function on PSL(2,7Z).

Some recollections on the Rademacher function are provided in Appen-
dix A, see also [BG92].

Quasimorphisms on central extensions of Lie groups. It is a clas-
sical fact that Lie groups of hermitian type admit central Z-extensions
(because the maximal compact has a nontrivial map to the circle). The
notion of Poincaré translation number generalizes to this setting, see
for instance [BIW10]. In Section 5 we connect this construction with
quasimorphisms on autoequivalences of abelian and K3 surfaces. Recall
that the Mukai lattice A/ of such a surface has signature (2, p) and the
Lie group SO(MNg) is thus of Hermitian type, and its universal cover has
a quasimorphism. Theorem 5.2.2 shows that in the case of abelian sur-
faces, the induced quasimorphism on AutD coincides with the shifting
number.

Further remarks

Categorical dynamics. The study of categorical dynamical systems
(D, F), i.e. pairs consist of a triangulated category D and an endofunctor
F: D — D, was initiated in a paper of Dimitrov, Haiden, Katzarkov,
and Kontsevich [DHKK14]. It has been an active area of research
since then, see for instance [DHKK14, Fan18a, Fan18b, Tkel6, FFH'19,
FFO20, Kik17, KOT19, KST20, KT19, Ouc20).

The notion of categorical entropy ho(F), introduced in [DHKK14],

captures the mass growth of objects under large iterates of F'. The
shifting numbers 75 (F) complement the entropy by measuring the
phase growth of objects under large iterates of F'.
Mirror symmetry and symplectic geometry. All examples ana-
lyzed in this text are essentially algebro-geometric. On the other hand,
a wealth of quasimorphisms are available in symplectic geometry, see
for instance Ruelle [Rue85] for the origin of many constructions, and
Entov—Polterovich [EP03] for more recent constructions based on Floer
theory. It would be interesting to investigate what kind of quasimor-
phisms one obtains by the methods of the present text in the case of
Fukaya categories. It would be additionally interesting to understand
if the construction of Bestvina—Fujiwara [BF02] of quasimorphisms can
be extended to the symplectic case, or to the case of K3 surfaces us-
ing Bridgeland’s conjecture [Bri08]. The reader can find many further
stimulating questions in Smith’s survey [Smil8§].
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Some applications of quasimorphisms. Let us note that the ex-
istence of nontrivial quasimorphisms on a group has purely algebraic
consequences for the structure of the group, see for instance [Kot04].
For instance, when a group is perfect it carries a stable commutator
length function, which is nontrivial if and only if there exists a nontriv-
ial quasimorphism by Bavard’s theorem [Bav91]. For more on stable
commutator length, see Calegari’s monograph [Cal09]. It is therefore
interesting to ask also the following:

Question 1.7 (Perfectness of autoequivalence groups). For which tri-
angulated categories D is the group Aut(D)/[1] a perfect group? Re-
call that a perfect group is one where every element is a finite product
of commutators.

Let us also note that it would be interesting to understand the relation
between the constructions in this paper and quasimorphisms on the
universal cover of the group of contact diffeomorphisms of a contact
manifold constructed by Givental [Giv90] and Eliashberg—Polterovich
[EP00]. We are grateful to Leonid Polterovich for bringing these results
to our attention.

Analogies. We end with a comparison between the motivating con-
cepts in dynamical systems and their categorical counterparts.

Translation numbers Shifting numbers
f € Homeo, (R) F:D—D
basepoint xg € R split generator G € D
amount of translation phase of stability condition
[ (o) — o ¢y (F"G) — 65 (G)
translation number p upper /lower shifting numbers 7+

Conventions. Let k be a base field. Throughout this article, all tri-
angulated categories are assumed to be k-linear, Z-graded, saturated,
and of finite type (i.e. the k-vector space @;Homp(F, F[i]) is finite-
dimensional for any pair of objects E, F' in the category). Functors
between triangulated categories are assumed to be k-linear, triangu-
lated, and not virtually zero (i.e. any power is not the zero functor).

Acknowledgments. We are grateful to Leonid Polterovich and Ivan
Smith for insightful comments on a preliminary version of the manu-
script. We are grateful to Genki Ouchi for pointing out the reference
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[EL19] after the first version of the present article was posted on the
arXiv.

YF would like to thank Emanuele Macri for helpful discussions during
the early stages of the project. This research was partially conducted
during the period SF served as a Clay Research Fellow. SF gratefully
acknowledges support from the Institute for Advanced Study. This
material is based upon work supported by the National Science Foun-
dation under Grant No. DMS-2005470. This material is based upon
work supported by the National Science Foundation under Grant No.
DMS-1638352, DMS-1107452, 1107263, 1107367 “RNMS: Geometric
Structures and Representation Varieties” (the GEAR Network). This
material is based upon work supported by the National Science Foun-
dation under Grant No. DMS-1440140 while SF was in residence at
the Mathematical Sciences Research Institute in Berkeley, California,
during the Fall 2019 semester.

2. Construction and properties of shifting
numbers

Outline of section. Inspired by the classical construction of the trans-
lation and rotation numbers, we study the notion of shifting number
of an endofunctor of a triangulated category and some of its basic
properties.

2.1. The definition
+

The translation number of an element f € Homeoy (R) measures the
average displacement of points in an orbit {f"(z¢)}. To study its
categorical analogue, one needs a notion of “distance” between pairs
of objects in a triangulated category. We first recall the complexity
function introduced in [DHKK14].

2.1.1. Definition (Complexity function [DHKK14, Definition 2.1}).
Let Ei, Es be objects in a triangulated category D. The complexity
function of Ey relative to Fj is the function §;(E7, E2): R — [0, o]
given by

0¢(F1, Ey) = inf {Z et
k=1

Define 6,(E, Eq) = 0 if Ey = 0, and define §;(E;, Es) = oo if Ey does
not lie in the thick triangulated subcategory generated by E.

where Cone(Ap_1—Ag)2E1[ng] for all k

0=Ap—A1——An=FEs®F for some FGOb(D),}
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An object G is called a split generator if for any E € D we have that
5t(G, E) < +00.

The notion of complexity function was introduced in [DHKK14] in
order to define the categorical entropy function of an endofunctor. An-
other important distance function, called the Ext-distance function in
[FFO20], is obtained by computing the dimensions of morphism spaces.

2.1.2. Definition (Ext-distance function and upper/lower Ext-dis-
tance). Let Ej, Ey be objects in a triangulated category D.

e The Euxt-distance function from F; to Ej is the function of the
t-variable €(FEy, Ey): R — R given by

e(Er, By) =Y dimy Hom(E;, Ey[—k])e™.

kEZ

e The upper and lower Ext-distances from FE; to Ey are defined
to be

e (Ey, Ey) .= max{k € Z: Hom(Ey, Es[—k]) # 0},
and

¢ (Ey, Ey) = min{k € Z: Hom(E, F2[—k]) # 0}.

2.1.3. Remark. The upper and lower Ext-distances e*(E), Fy) were
used in the study of Serre dimensions of triangulated categories [EL19,
KOT19]. They are not defined if Hom®(E}, Ey) = 0. We will only use
them for £y = G and Fy = F"G, where G is a split generator of D and
F is an endofunctor of D (which is not virtually zero). By the proof
of [DHKK14, Theorem 2.7] we have that Hom*(G, F"G) # 0 and so
(G, F"G) is well-defined.

2.1.4. Definition (Categorical entropy function [DHKK14, Defini-
tion 2.5]). Let F': D — D be an endofunctor of a triangulated category

D with a split generator GG. The categorical entropy function of F is
the function h(F): R — [—00,00) in variable ¢ given by

he(F) = lim log (G, F G>.

n—o0 n

The following result summarizes [DHKK14, Lemma 2.6, Theorem 2.7].

2.1.5. Theorem. Let F': D — D be an endofunctor of a triangulated
category D with a split generator G. Then the limit in Definition 2.1.}
defining the categorical entropy function hy(F') is independent of the
choice of generator. Moreover, it can be computed alternatively via
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the Ext-distance function:
1 G, F"G
h(F) = lim 284G F"G)
n—oo n
Before introducing the definition of shifting numbers, we first prove

that the value —oo can be excluded for the categorical entropy function.

2.1.6. Theorem (Convexity and finiteness of categorical entropy func-
tion). The categorical entropy function hy(F') is a real-valued convex
function in t.

Proof. Consider the functions

1 G, F"G
hin(F) = 08 (n’ ) appearing in Theorem 2.1.5.

Note that each function h,,(F') is convex in ¢, as can be verified by
differentiating twice any function of the form log (Z aieki't> with a; > 0
and applying Cauchy—Schwarz. Since hy(F') is a pointwise limit of
convex functions, it is itself convex.

Next, we do know that ho(F) > 0 from Definition 2.1.4, since the
defining functions always satisfy that. Additionally, we also know that
hi(F) < +oo for all ¢ since the existence of the limit established in
[DHKK14] is via Fekete’s lemma, in particular it equals the infimum
of the sequence %log 0:(G, F"G), and for n = 1 this is already finite.
Together with convexity, this excludes the possibility that h,(F) = —o0
for some t # 0, since convexity would force h_;(F) = 400 which is a
contradiction. O

2.1.7. Theorem (Shifting numbers via entropy, see also [EL19]). Let
F:D — D be an endofunctor of a triangulated category D with a
split generator G. Then the following limits exist (in R)

+ I - "
7H(F) := lim (G, I"G) and 7 (F) = lim (G FG) G),

n—o0 n n—oo n

and are independent of the choice of split generator G. Moreover, the
he(F)
t

also exist, and we have

lim ht(F)

t—+oo t

limats limy_, 4 oo

= 7%(F).
Additionally, the following inequalities for the entropy function hold:

t-7H(F) < h(F) < ho(F)+t-77(F) fort >0,
t-7 (F) < h(F) < ho(F)+t-17 (F) fort <0.
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2.1.8. Definition (Upper and lower shifting numbers). For an end-
ofunctor F': D — D, the quantities 77 (F) and 77 (F') are called the
upper, resp. lower, shifting numbers of F.

Proof of Theorem 2.1.7. The proof is essentially given in [EL19, Propo-
sition 6.13], except for the precise upper bound on hy(F'). We are grate-
ful to Genki Ouchi, who indicated to us the paper of Elagin and Lunts
after a first version of this text appeared on the arXiv.

Suppose first that ¢ > 0. Then we have

e GFO < (G F"G) < <Zdimk Hom(G, F"G[—kz])) LS (GFG)E
k

By applying log(—)/n and taking n — 0o, one obtains

+ Fm 1 o
t - lim sup M < lim sup og (G, "G
n— o0 n n—o0 n
1 Fm
n—o0 n
= lim inf log (G, F"'G)
n—oo /rL
log <zk dimy Hom (G, F”G[—k:])) +eH (G, POt
< lim inf
n—oo n
+ Fn
— ho(F) + - liminf & E"G)
n—oo n
Hence
(2.1.9)
+ En + Fr
¢ - limsup <G, F7G) < h(F) < ho(F) +t- liminfw.
n—00 n n—oo n

Note that ho(F') is a non-negative real number (we always assume that
the functors are not virtually zero). Dividing by ¢ and sending it to
400, it follows that the two limits exist and coincide:
hi(F G, F'G
(F) (G, FG)

lim =
t——+o00 t n—o0 n

Knowing that the limits exist and equal to 7+ (F) and returning to
Eqn. (2.1.9), the inequality

t-7H(F) < hy(F)<hg+t-77(F) follows for ¢t > 0.

Similarly to the above reasoning, for ¢ < 0 we have

T CF O < (G FRG) < < 3 dimy Hom (G, F”G[k;])) GG
k
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Hence

- e - Fr
t-liminfM < hy(F) < ho(F) + ¢t - limsup G(G’nG),

n—00 n n—00
and therefore
- " hi(F ho(F - Ja
lim inf (G, F"G) > o F) o(F) + lim sup M
n

n—00 n t t n—00

By letting t — —o0o, we prove the following two limits both exist and
coincide:
hi(F' (G, F"G

(F) (G FG)

t——o0 t n—r00 n

and the claimed inequality for ¢ < 0 and h(F') follows as before.
Finally, we note that 75(F) € R follows from the above inequalities
and the finiteness of h;(F") (Theorem 2.1.6). O

2.1.10. Remark.

(i) If ho(F') = 0 then from Theorem 2.1.7 it follows that there exist
constants 75(F) € R such that h(F) = 75(F) - t for t > 0,
resp. t < 0.

(ii) In general, the upper and lower shifting numbers of an endo-
functor do not have to coincide, cf. examples of spherical twists

in §3.2.
In Section 3, we will see that in some situations the upper and lower
shifting numbers agree, and give a quasimorphism, and sometimes they

don’t agree. When they don’t agree, such as the example of the A,
quiver in §4.3, it is useful to introduce the average of the two quantities:

2.1.11. Definition. Let F': D — D be an endofunctor of a triangu-
lated category D with a split generator G. Define the shifting number
of F' to be the average

T+(F)—{—7'_(F).

T(F) = 5

2.2. Shifting numbers via stability conditions

2.2.1. Setup. In this section, we show that if a triangulated category D
admits a Bridgeland stability condition o, then the upper/lower shifting
numbers of F' coincide with the average displacements of {¢=(F"G)} C
R, where ¢=: Ob(D) — R are the phase functions with respect to . We
first recall the notion of Bridgeland stability conditions on triangulated
categories.
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2.2.2. Definition (Bridgeland [Bri07]). Let D be a triangulated cat-
egory and let cl: Ko(D) — I' be a group homomorphism from the
Grothendieck group of D to a finite rank free abelian group I'. A
Bridgeland stability condition o = (Z,, P,) on D consists of a group
homomorphism Z,: I' — C (central charge), and a collection of full
additive subcategories P, = {P,(¢)}ser of D (o-semistable objects of
phase ¢), such that:

(i) ZU(E) = Z,(cl([E])) € Rsg - €™ for any 0 # E € P,(¢),

(i) Po(¢+1) = Po(d)[1] for any ¢ € R,

(iii) Hom(Ey, Ey) = 0 if E; € P,(¢;) and ¢1 > oo,

(iv) for any E € D, there exist exact triangles E; | — E; — A; —
for 1 < i < mn, such that Ey = 0, E,, = E, A; € P,(¢;), and
G > > On,

(v) (support property [KKS08]) there exist a constant C' > 0 and a
norm ||-|| on I' ®z R such that ||cl([E])|| < C|Z,(E)| for any

0% E € UserPy (0).

The collection of exact triangles in (iv) is called the Harder—Narasimhan
filtration of E and the objects A; are called the o-semistable factors.
The maximal and minimal phases in the filtration are denoted by
OF(F) = ¢ and ¢, (E) = ¢, and define real-valued functions:

¢E: Ob(D) — R.

Note that when E is a o-semistable object, ¢,(F) = ¢F(F) = ¢, (E)
is nothing but the rotation angle of its central charge Z,(FE) € C.

Next we recall the definitions of mass function and mass growth
function with respect to a Bridgeland stability condition.

2.2.3. Definition (Mass functions with respect to stability conditions
[DHKK14, §4.5],[Ikel6]). Let E be a non-zero object in a triangulated
category D and let ¢ be a Bridgeland stability condition on D. The
mass function of E with respect to ¢ is the function of the t-variable
me(E): R — Ry given by

m

mo’t Z Ak‘ |e¢d Ak

where A4, ..., A,, are the o-semistable factors of E.

2.2.4. Definition (Mass growth function [DHKK14, §4.5],[Tke16]). Let
F': D — D be an endofunctor of a triangulated category D. The mass
growth function of F' with respect to a Bridgeland stability condition o
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on D is the function h,,(F): R — [—00,00) in variable ¢ given by

1 ot(F"E
ho(F) == sup { lim sup ogmt()}

EeD n—o00 n

The relationship between h;(F') and h,+(F') was suggested in [DHKK14,
§4.5] and later proved by Ikeda [Ikel6].

2.2.5. Theorem ([Ikel6, Theorem 1.1]). With notation as above, as-
sume that D has a split generator G. Then
1 ot (F"G
hot(F) = limsup %.

n—00 n
Moreover,
hot(F) < hy(F) < 00
for any stability condition o, and hy(F) = he 4(F) if 0 and o’ lie
in the same connected component of the space of Bridgeland stability
conditions on D.

In general, it is not known whether the categorical entropy h.(F') al-
ways coincides with the mass growth h,(F'). Nevertheless, we prove
in the following theorem that their linear growth rates at infinity co-
incide for any Bridgeland stability condition o. Moreover, the average
displacements of {¢Z(F"G)} C R also give the same numbers.

2.2.6. Theorem (Shifting numbers via stability conditions). Let F': D —
D be an endofunctor of a triangulated category D with a split gener-
ator G, and let o be a Bridgeland stability condition on D. Then the
following limits exist and coincide with the upper shifting number:

+ n
lim 9, (F"G) (F"G) = lim LW(F)
n—o00 n t—00 t

=7H(F).

Moreover, if D admits a Serre functor, then the following limits exist
and coincide with the lower shifting number:

lim 7(;5;(}7"(;) = lim ha’tt(F) =71 (F).

n—00 n t——o0

Additionally, the following inequalities for the mass growth function

hold:
t-7H(F) < hot(F) < hoo(F)+t-7H(F) fort >0,
t- 7 (F) < hg(F) < hgo(F)+t-7 (F) fort <0.

Proof. The proof follows the same idea as in [KOT19, Proposition 3.10,
Lemma 3.12]. Let o be any Bridgeland stability condition on D. By the
support property (Definition 2.2.2(v)), there exists a constant C” > 0
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such that |Z,(E)| > C’ holds for any o-semistable object E. Suppose
that t > 0. Then

o . e¢j(FnG)t < mmt(FnG) < mo,O(FnG) ) equ;(FnG)t.

log()

By applying === and taking n — 0o, one has
o (F"G L(F"G
@27) ttimsup 2EC) < b (F) < b o(F) 44 Tim sup 22 E).
n— 00 n n— 00 n

Note that 0 < h,o(F) < ho(F) < oo is a real number. By dividing ¢
and letting t — oo, one obtains
¢g (F"'G)

het(F
lim ot(F) = lim sup —=.
n

t—o0 t n—00

On the other hand, recall that
e (G, F"G) = max{k € Z: Hom(G, F"G[—k]) # 0}.

Hence
¢y (F"G) — ¢, (G) = €' (G, F"G).
Thus
+ n + n F
liminfﬁ > lim G G =77(F) = lim ulF)
n—00 n n—00 n t—o0 t

by Theorem 2.1.7. Combining these inequalities together with Theo-
rem 2.2.5 gives

T(F™ F
lim inf M M = lim sup

n—00 n t—o0 t t—o0 t n—00

> 7H(F) = lim halF) > lim ¢ (F"G)

This proves the first part of the statement, namely that the limits exist

and:

¢g (F"G) hot(F)

lim = lim =77(F).
n—00 n t—00 t
Plug this into Eqn. (2.2.7) one obtains
t- T (F) < hgy(F) < hgo(F) +t-77(F) for t > 0.

Now we prove the second part of the statement. Assume that t < 0,
so we have now instead:

O . P MO < Mot (F"G) < myo(F"G) - ebe (FMGE.

log(-)

n

and lim,_,, (and remembering ¢ < 0 now):

o, (F"G)t
n

Again by taking
¢ (F"G)

t- llm lnf g = hm sup S hU,t(F>
oo n n—00
—(F"GHt —(F"Q
< hyo(F') + limsup $o (F"G) = hyo(F) +t - lim inf M

n—o00 n n—oo n



ASYMPTOTIC SHIFTING NUMBERS IN TRIANGULATED CATEGORIES 17

It follows that

lim hg’t(F = lim infw.

t——o00 t n—00 n

Recall that
¢ (G, F"G) = min{k € Z: Hom(G, F"G[—k]) # 0}.
We assumed that D admits a Serre functor S so we have
Hom(F"G[—€¢ (G, F"G)],SG) # 0.
Hence
¢+ (SG) — ¢, (F"G) > —e (G, F"G), or equivalently
¢ (G, F"G) > ¢, (F"G) — ¢5(SG).
Combined with Theorem 2.1.7 this gives
h(F) e (G, F'Q)

lim ——= =7 (F) = lim > lim sup
l——o0 t n—oo n n—00

Together with the bound h,(F) < hi(F) from Theorem 2.2.5 (and
recalling ¢ < 0 now) we find

¢o (F"G)

—(F™ ot(F a (F"G
liminfM = lim hoi(F) > lim hu(F) =7 (F)> limsupm.
n—oo n t——o00 t t——o0 t n—00 n
This concludes the proof. 0

2.3. Further properties of shifting numbers

We show that the basic properties of Poincaré translation numbers
listed in the introduction are also satisfied by the shifting numbers of
endofunctors.

2.3.1. Proposition. Let F,G: D — D be endofunctors of a triangu-
lated category D. Then we have:
(i) 72(Folk]) = 7=(F) +k for any k € Z. In particular, T([k]) =
TE([k]) = k.
(i) 7E(F™) = nt=(F) for any positive integer n.
(iii) If F is an autoequivalence and D admits a Serre functor, then
TEH(FY) = —77(F).
(iv) 75(FG) = 75(GF). In particular, if G is an autoequivalence
of D, then T(GFG™') = 7%(F).
Proof. These statements all follow straightforwardly from
hy(F
(F) = lim hu(F)

t—+o0 t
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established in Theorem 2.1.7, and some basic properties of the categor-
ical entropy function h.(F).
Parts (i) and (ii) follow from the formulas

he(F o [k]) = he(F) + kt and hy(F"™) = nhy(F') for any n > 1

established in [DHKK14, §2] or [KT19, Lemma 3.7]. If D admits a
Serre functor, then h(F~') = h_4(F) by [FFO20, Lemma 2.11] and
this proves part (iii). Part (iv) follows from h,(FG) = h(GF), see e.g.
[Kik17, Lemma 2.8]. O

We will use the following lemma in the next section.

2.3.2. Lemma. Let F': D — D be an endofunctor of a triangulated
category D. Suppose there is a split generator G of D and an integer
M >0 such that

Hom(G, F"G[k]) =0 for any |k| > M and n > 0,

(for instance, when F preserves a bounded t-structure of finite coho-
mological dimension). Then 7(F) = 75(F) = 0.

Proof. Under the vanishing assumption, h:(F') is a constant function
in ¢t [DHKK14, Lemma 2.11]. Thus 7(F) = 7%(F) = 0 by Theo-
rem 2.1.7. O

2.4. Legendre transform of entropy functions

Recall from Theorem 2.1.6 that the categorical entropy function h.(F)
of any endofunctor F' of a triangulated category is a real-valued convex
function in the variable t. It is then natural to consider its Legendre
transform

R*(F): I" = R,
where the domain is

I = {t* € R: sup (t*t — ht(F)) < oo},

teR

and the value at t* € I*, denoted by h}.(F'), is defined to be

hy.(F) = sup (t*t - ht(F)).

teR
2.4.1. Proposition. Let F' be an endofunctor of a triangulated cat-
egory, and let h*(F) be the Legendre transform of the associated
categorical entropy function hy(F). Then

(i) The domain of definition of h*(F) is [t~ (F), 7 (F)].
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(ii) The minimum of h*(F') is given by the categorical entropy:
min{h}.(F): t* € [t (F), 7" (F)]} = —ho(F).

(iii) Applying a shift to the functor we have that the Legendre trans-
form is also shifted:

hi- (F o [k]) = Dy, (F)

Proof. Part (i) follows straightforwardly from Theorem 2.1.7 and the
definition of Legendre transform. To prove (ii), first observe that for
any t* € [t~ (F), 7" (F)], we have

e (F) > -0 — ho(F) = —ho(F).

On the other hand, since h;(F') is convex, it has a left and right deriva-
tive at 0 because the function
hy(F) — ho(F)
t

is increasing for ¢ € R\{0}. Hence for any ¢* € R satisfying

i M) = (F) _ o () = o)

t—0~ t t—07T t
we have that hji (F') = —ho(F') so the value is achieved.

Finally (iii) follows from the property hi(F o [k]) = h(F) + kt es-

tablished in [DHKK14] and standard properties of the Legendre trans-
form. O

3. Examples of shifting numbers

Outline of section. In this section, we compute the shifting numbers
of the standard autoequivalences of D*Coh(X), spherical twists, P-
twists, pseudo-Anosov autoequivalences in the sense of [DHKK14], and
an autoequivalence of a Calabi—Yau category that is pseudo-Anosov in
a more general sense proposed in [FFH*19].

3.1. Standard autoequivalences

3.1.1. Setup. Let X be a smooth projective variety over the base field
k and D = D°Coh(X) be the bounded derived category of coherent
sheaves on X. The group of standard autoequivalences of D is the
subgroup of Aut(D) defined by:

Autgq(D) = (Aut(X) x Pic(X)) x Z[1] C Aut(D).
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3.1.2. Theorem. We have an agreement of upper and lower shifting
numbers T7(F) = 75(F) € R for any F € Autyq(D). Moreover,
the map 7: Autgq(D) — R given by the shifting number is a group
homomorphism and can be factored as

Autgq(D) 5 Z 4 R,

where m is the projection to the Z[1]-factor, and ¢ is the natural
inclusion of integers into real numbers.

Proof. Let ' = Lf*(— ® L)[n| € Autya(D), where f € Aut(X), L €
Pic(X), and n € Z. Since Fo[—n| = Lf*(—® L) preserves the standard
t-structure on D, we have 75(F o [-n]) = 0 by Lemma 2.3.2. Hence
7%(F) = n by Proposition 2.3.1(i). O

3.1.3. Corollary. Let X be a smooth projective variety such that Kx
is ample or anti-ample. Then the shifting numbers give a homomor-
phism

7: Aut(D’Coh(X)) — R.

Proof. By [BOO01, Theorem 3.1] we have the equality Aut(D’Coh(X)) =
Autgq(DPCoh (X)) if K x is ample or anti-ample. The result then follows
from Theorem 3.1.2. U

3.2. Spherical twists and P-twists

3.2.1. Setup. Let D be a triangulated category which admits a Serre
functor S and let N be a positive integer. Recall that an object E in
D is called N-spherical if S(E) = E[N] and Hom®*(E, F) = k & k[—N].
Examples of spherical objects include line bundles in the bounded
derived categories of N-dimensional Calabi-Yau manifolds, and La-
grangian spheres in certain derived Fukaya categories [ST01]. Seidel
and Thomas [STO01] introduce an autoequivalence of D associated to
each spherical object F, which is called the spherical twist Tg. It is
defined by

Tg(F) = Cone(Hom*(E, F)® E = F),
and is the categorical analogue of Dehn twists along Lagrangian spheres.

3.2.2. Theorem (Spherical twist calculation). Let E be an N -spherical
object in D and suppose that E+ := {F € D: Hom*(E, F) =0} # 0.
Then

7 (Tg) =0 and 7 (Tg)=1- N.

Hence 7(Tg) = S~
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Proof. This follows directly from Theorem 2.1.7 and [Ouc20, Theo-
rem 3.1] which states that

(1—N)t, ift<o;

hy(Ty) =
(Ts) {o, if t > 0.

4

3.2.3. Remark. In general, it is difficult to compute the categorical
entropy function, and therefore the shifting numbers, of a composi-
tion of several spherical twists Tg,, ..., Tx, with non-trivial couplings
(i.e. Hom*(E;, Ej) # 0). We work out the details in §4.3 of the case of
autoequivalences of Calabi—Yau category associated to the A, quiver.
This is the simplest example which contains non-trivial couplings of
spherical twists.

3.2.4. P-twists. Huybrechts and Thomas [HT06] introduced the cate-
gorical analogue of a Dehn twist along a Lagrangian complex projective
plane. Recall that an object E is called a PN -object if S(E) = E[2N]
and Hom*(E, F) & H*(PN,Z) ® k as k-algebras. Examples of PV-
objects include line bundles and the structure sheaf of an embedded
PV in the bounded derived categories of a 2 N-dimensional holomorphic
symplectic manifold. One can also define an autoequivalence, called
the P-twist Pg, associated to an PV-object E. We refer to [HT06] for
the precise definition.

3.2.5. Proposition. Let E be a PV object in D and suppose that
Et ={F e€D: Hom*(E,F) =0} # (. Then
™ (Pg) =0 and 7 (Pg) = —2N.
Hence 7(Pg) = —N.

Proof. This follows directly from Theorem 2.1.7 and [Fan18b, Theo-
rem 3.1] which states that

—2Nt, ift<O0;

0, if t > 0.

3.3. Pseudo-Anosov autoequivalences

The notion of pseudo-Anosov autoequivalences of triangulated categories
was introduced in [DHKK14] as a categorical generalization of pseudo-
Anosov maps on Riemann surfaces. To formulate the definition, recall
that the space of Bridgeland stability conditions Stab(D) carries natural
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group actions, by Aut(D) on the left and by GTJ; (R) on the right, see
[Bri07, Lemma 8.2].
To define the action, for an autoequivalence F' € Aut(D) set

oc=(Z,P)~F-0c:=(ZoF ' P),

where P'(¢) := F(P(¢)). To define the action of éi;r R) on Stab(D),

recall that (}TJ;(R) is isomorphic to the group of pairs (T, f), where T' €
GL; (R) and f: R — R is an increasing map with f(¢+ 1) = f(¢) + 1,
such that their induced maps on S' = (R*\{(0,0)})/Rso = R/2Z

coincide. For g = (T, f) € GEJ(R) define
c=(Z,P)r0o-g:= (T oZ P"),
where P"(¢) := P(f(¢)). It can be checked that the actions of Aut(D)

and (A}Ij;r (R) commute.

3.3.1. Rotation number for f}\f,; (R). We have the following dia-
gram:

0 Z GL,(R) —» GL{(R) —— id
0 Z Homeo, (R) — Homeo'(R/Z) —— id
| J’ﬁ |
Z R R/Z

The first two rows are exact sequences (and central extensions) and the
maps from the middle to the last row are given by the Poincaré trans-
lation and rotation numbers respectively. This observation provides a
connection between the Poincaré translation number and the shifting
numbers of autoequivalences in certain examples, see Proposition 3.3.4
and §4.1.

Now we recall the definition of pseudo-Anosov autoequivalences from
[DHKK14].

3.3.2. Definition ([DHKKI14, Definition 4.1]). An autoequivalence
F € Aut(D) is said to be pseudo-Anosov if there exists a Bridgeland

stability condition o € Stab(D) and an element g = (7}, f) € @i; (R)
such that

(1) F'U:U'gv

-1
(ii)) T = (g r(_)1> or (T S) for some A\ == |r| > 1.
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3.3.3. Remark (On pseudo-Anosov autoequivalences).

(i) One obtains an equivalent definition if only requiring 7" to be
conjugate to a diagonal matrix, instead of being equal. Indeed,
if Fro=0-cgctthen F-(0c-c)=(0-¢)-g.

(ii) The stability condition ¢ is analogous to a pair of measured foli-
ations on a Riemann surface, and condition (i) and (ii) describe
the expansion/contraction of the foliations by a pseudo-Anosov
map.

(iii) Examples of pseudo-Anosov autoequivalences include the Serre
functor of the derived category of representations of Kronecker
quiver with at least three arrows [DHKK14, §4.2], and autoe-
quivalences on the bounded derived category of an elliptic curve
such that their induced actions on the numerical Grothendieck
group are hyperbolic [Kik19, Proposition 4.14]. Note that there
is a more general definition of pseudo-Anosov autoequivalences
introduced in [FFH"19], where examples of pseudo-Anosov au-
toequivalences of certain 3-Calabi—Yau categories (with respect
to the more general definition) are provided.

3.3.4. Proposition. Let D be a triangulated category with a split gen-
erator G, and let F' be a pseudo-Anosov autoequivalence of D in the
sense of Definition 3.3.2. Then the upper and lower shifting numbers
agree and satisfy

T(F) = 5(F) = p(f) = f(0) € Z,
where p(f) is the Poincaré translation number of f € Homeos (R)

defined in the introduction.

Proof. Since F'- o = o - g, we have F(P,(¢)) = P,(f(¢)) for any phase
¢ € R. Let Aq,..., A, be the o-Harder-Narasimhan semistable factors
of a split generator G with phases ¢,(A1) > -+ > ¢,(A,). Then

F(A;) € F(P,(0(4))) = P, (f(6(A)))).

Hence F(Ay),..., F(A,) are the o-Harder—Narasimhan factors of F(G)
with phases f(¢(A1)) > -+ > f(¢(A,)). Therefore, we have

05 (F*G) = fP(6(A1)) and ¢, (F*G) = fM(6(An))

for any k£ > 1. Hence

T(F) = m5(F) = p(f)
by Theorem 2.2.6 and the definition of Poincaré translation number.
By condition (ii) in Definition 3.3.2, the z-axis and y-axis are pre-
served under the linear map 7. Since T" and f are compatible under
the identification S* = (R?\{(0,0)})/Rs¢ = R/2Z, we have f(0) € Z.
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Thus f*)(0) = kf(0) since f is compatible with integral shifts. There-
fore p(f) = f(0) € Z. O

3.4. An example for Calabi-Yau manifolds

We include also a computation of shifting numbers for pseudo-Anosov
autoequivalences associated to Calabi—Yau manifolds.

3.4.1. Theorem. Let X be a projective Calabi—Yau manifold of di-
mension N > 3. Consider the autoequivalence of D*Coh(X) given
by the composition

Fi=To, o(—®Ox(-1)).

Then
7 (F)=0 and 7 (F)=1-N.

Proof. By [Fanl8a, Theorem 1.1], the value of the categorical entropy
function h,(F') at ¢t € R is the unique positive real number satisfying

eht(F)-k

Z x(O(k)) c(N-1)t
k>1
Note that x(O(k)) is a polynomial of degree N in k by Riemann—Roch.

Recall also that for ¢ € Z>, and x > 1, there is an integral polynomial
P, of degree ¢ such that
1 P,
> =Live(1) = _Blo)
zk T (33 — 1)£+1

k>1

Hence we have

(Nt = 3 X(O(k)) Qn (e ™)

(3.4.2) ehe(F)k " (ehi(F) — 1)N+1

k>1

for a polynomial @)y of degree V.

To compute the shifting numbers of F', we need to study the asymp-
totic behavior of hy(F') as t — +o0. First, let us consider ¢ — +o00. By
Theorem 2.1.7 and the fact that h(F) > 0 for any ¢ [Fanl8a, Theo-
rem 1.1] (for this particular autoequivalence F'), the limit lim;_, , o hy(F)
is either zero or +00. Observe that the case lim;_, ;o hy(F) = +00 can
be excluded by Eqn. (3.4.2). Therefore we have lim;_, ., h(F) = 0,
hence 7% (F) = 0 by Theorem 2.1.7.

Now we let t — —oo. By the same argument as above, the limit
limg , o hy(F) is either zero or +oo. In this case limy , o h(F) =0
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is excluded by Eqn. (3.4.2), so we have lim;, - h(F) = +oo. By
multiplying e"*(*) on both sides of Eqn. (3.4.2), we get

he(F)+(N-1)t _ eht(F)QN<eht(F))
(ehe(F) — [)N+1 "

e

Since limy_, o hy(F) = 400, the limit lim; , ., of the right hand side
of the above equality is a finite number. Therefore 7= (F) =1 — N by
Theorem 2.1.7. U

Below is a sketch comparing the graphs of the entropy functions
hi(To,) and h(To, o (— @ Ox(—1))).

hi(F
ht(TOx) ( )

K !

3.4.3. Remark. The autoequivalence F' = T, o (— ® Ox(—1)), at
least in the case of quintic Calabi—Yau threefolds, is a pseudo-Anosov
autoequivalence in the sense of [FFH'19]. It was used in [Fanl8a] to
construct a counterexample to the categorical Gromov—Yomdin conjec-
ture.

4. Quasimorphisms and shifting numbers

Outline. We establish in this section that in some cases of interest, the
shifting number yields a quasimorphism on the corresponding group of
autoequivalences. Specifically, §4.1 deals with the case of elliptic curves
and §4.2 deals with the case of an abelian surface. In §4.3 the case
of the N-Calabi—Yau category of the Ay quiver is analyzed. This last
example is an instance where the upper and lower shifting numbers do
not agree, but their average does give a quasimorphism. The case of
abelian surfaces is revisited in Section 5, where the same quasimorphism
is obtained from a construction associated to the central extension of
the Lie group SO, ,(R).



26 YU-WEI FAN AND SIMION FILIP

4.1. The derived category of an elliptic curve

The case of autoequivalences for a curve of genus ¢ > 2 or g = 0 is
handled by Corollary 3.1.3, and in Theorem 4.1.1 below we handle
the case of an elliptic curve. Together, these results show that Ques-
tion 1.4 has an affirmative answer if D is the bounded derived category
of coherent sheaves on a curve.

4.1.1. Theorem. Let D be the bounded derived category of coherent
sheaves on an elliptic curve. Then 77 (F) = 77 (F) € R, and the
shifting numbers

T =717 Aut(D) - R

give a quasimorphism. Moreover, T can be factored as

Aut(D) % GL, (R) 5 Homeo (R) % R,

where s,t are homomorphisms, and p is the quasimorphism given by
the Poincaré translation number (see §3.3.1).

Proof. First, we define the group homomorphism s. By [Bri07, Theo-

rem 9.1], the E}i; (R)-action on Stab(D) is free and transitive. Fix a
stability condition o € Stab(D), and define

®,,: GL, (R)—=Stab(D), g oy - g.
Using this identification, one defines a map
s: Aut(D) — GL, (R), F s &, (F - 0p).

Since the Aut(D)-actions and (/}TJ;(]R)—actions on Stab(D) commute
with each other, the map s is a group homomorphism.

Next, we define the second group homomorphism ¢. Recall that
elements in @VL;(R) can be represented by pairs (7, f), where T €
GL*(2,R) and f € Homeoz(R) satisfy certain compatibility conditions.
The group homomorphism ¢ is defined to be the map given by the
second component

t: GL, (R) — Homeot (R), (T, f) — f.

Now we compute the shifting numbers of an autoequivalence F' €
Aut(D). Choose a split generator G = O @ O(1), where O(1) is an
ample line bundle on the elliptic curve. By Theorem 2.2.6, we have

+ ( FnG)

TH(F) = lim —%——~.
n—0o0 n
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Recall that both O and O(1) are stable with respect to any stability
condition on D. Denote ¢g = ¢,,(O) and ¢1 = ¢y, (O(1)). Then

P0 = P00 (F(O)) = boy.s) (F(O)).

Hence F(O) is og-stable and of phase ((t o s)(F))(¢9). Denote the
image of F' under t o s by

F = (t o s)(F) € Homeoj (R).
Then we have

Goo(F"(0)) = F™(y), and similarly ¢y, (F"(O(1))) = F™ ().
Therefore

2 (F"G) = F™(max{¢y, 1 }) and ¢, (F"G) = F™ (min{¢o, é1}).

This proves

T(F) = 75(F) = p(F) = (potos)(F).

by Theorem 2.2.6. Since the composition of a group homomorphism
and a quasimorphism is a quasimorphism, this concludes the proof. [J

4.2. The derived category of an abelian surface

4.2.1. Theorem. Let D = D*Coh(X) be the bounded derived category
of coherent sheaves on an abelian surface X. Then 77(F) = 77 (F)
and the shifting numbers

=715 Aut(D) = R

give a quasimorphism.
Furthermore, the shifting numbers agree with the homogenization of
the quasimorphism

7: Aut(D) - R
T(F) = ¢g, (F(k(2)))
where oq is a fized (geometric) stability condition and ¢,, denotes

the phase with respect to oo, while x € X(C) is a point and k(x) is
the skyscraper sheaf at x.
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4.2.2. Distinguished component and slice. We first recall the de-
scription of a distinguished connected component Stab'(D) C Stab(D)
of the space of stability conditions on D. The main reference is [Bri08].
For each complexified ample class 5 + iw, i.e. f,w € NS(X)® R and w
ample, there is an associated stability condition og,, € StabT(D). The
central charge of og,, is given by

Zgu(E) = (exp(f +iw),v(E)),

where (—, —) and v(—) denote the Mukai pairing and Mukai vector,
respectively. Furthermore, skyscraper sheaves are oz -stable and of
phase 1, a fact particular to abelian surfaces. This collection of stability

conditions associated to complexified ample classes on X defines a
submanifold V(D) C Stab'(D).

4.2.3. Theorem (Bridgeland [Bri08, §15]). Let D be the bounded de-
rived category of coherent sheaves on an abelian surface, and consider

V(D) C Stab'(D) as above.

(i) The set V(D) defines a slice for the @E;(R)-actz’on, i.e. for
any o € Stab'(D), there exists a unique element g € GVL;F(R)
such that o - g € V(D).

(ii) Autoequivalences preserve the distinguished connected compo-
nent Stab'(D), i.e. for any o € Stab'(D) and F € Aut(D),
F -0 € Stab'(D),

Now we prove Theorem 4.2.1.

Proof of Theorem 4.2.1. By [AM16] line bundles are stable with respect
to stability conditions in V(D) and therefore stable with respect to
stability conditions in Stab'(D) by Theorem 4.2.3(i) since V(D) is a
slice for the @i; (R)-action. By Theorem 4.2.3(ii) the images of line
bundles or skyscraper sheaves under autoequivalences are also stable
with respect to any stability condition in StabT(D).

Fix now a stability condition og € V(D) and a split generator G =
O @ O(1) ® O(2). We would like to compute the shifting numbers via
Theorem 2.2.6: .

7(F) = lim M
n—00 n

For any line bundle L and skyscraper sheaf k(z) on X, one has
Hom(L, k(z)) = Hom(k(z), L[2])" # 0.
Therefore

¢00(Fnk<x)) —2< ¢00(FRL) < gon(Fnk(x))



ASYMPTOTIC SHIFTING NUMBERS IN TRIANGULATED CATEGORIES 29

for any autoequivalence F' and any n € Z. Hence

Goo (F"k(x)) =2 < 05, (F"G) < 65, (F"G) < o (F"k(2)).
By dividing n and taking n — oo, one obtains

oo (Fk oo (Fk
lim sup Goo (FH(2)) <7 (F)<7H(F) < liminfM.

n—00 n n—oo n
Thus the limit lim,, ., (quO(F”k(x)) / n) exists and we have agreement
of upper and lower shifting numbers:

7(F) = 75(F) = lim M

n—oo n

Observe that 7 is the homogenization of
7: Aut(D) = R, F — ¢y (F(k(z))).

Therefore, to prove the theorem, it suffices to show that 7 is a quasimor-
phism, i.e. there exists a constant C' such that for any F,G € Aut(D),

IT(FG) —7(F) —7(G)| < C.
One can assume that
0 < oo (F(k(2))) <1 and 0 < ¢o,(G(k(x))) < 1

by composing F' and G with appropriate powers of the shift functor
[1] € Aut(D). It remains to find an uniform bound of ¢,,(FG(k(z)))
under these conditions.

Let g= (T, f) € é\fJ;(R) be the unique element such that F~toyg €
V(D). Then
f(1) = dp-15(k(2)) = ¢oy (F(k(2))) € (0, 1]

by our assumption. The quantity we would like to bound is

Poo (FG(E(2))) = 0p-16,(G(K(2))) = [(@r-1009(C(K(2))))-

There exists an integer n such that G(k(z))[n] is a coherent sheaf on
X, since any Fourier-Mukai transform between derived categories of
abelian surfaces is a sheaf transform [BMO01, Corollary 2.10]. Then by
[Bri08, Lemma 10.1(c)],

—1 < oo (G(k(2))[n]) < L.

Since we assumed that 0 < ¢,,(G(k(x))) < 1 it follows that —1 <n <
0.
Since F~loyg € V(D), again by [Bri08, Lemma 10.1(c)] we have

—1 < dp10yg(G(K(2))[n]) < 1.



30 YU-WEI FAN AND SIMION FILIP

Hence

—2< (bF—laog(G(k(x))) <L
Since f is an increasing map and compatible with integral shifts, using
f(1) € (0,1] we obtain

—3 < f(=2) < 9oy (FG(K(2))) = [(dr-1509(G(k(2)))) < f(1) < 1.
This concludes the proof. O

4.3. The Calabi—-Yau categories of the A; quiver

4.3.1. Setup. Fix for this section a positive integer N > 3 and con-
sider the bounded derived category Dy = Dy(A,) of the N-Calabi-Yau
Ginzburg dg-algebra associated to the Ay quiver (e — o). It is one of
the simplest triangulated categories admitting spherical objects with
non-trivial intersections. We refer to [Gin06, Kell1] for the precise defi-
nition. The triangulated category Dy is characterized by the following
properties:

(i) It is an N-Calabi-Yau category, i.e. we have isomorphism
Hom*(E, F) = Hom*(F, E[N])" for any E, F € Dy.
(ii) It is generated by two N-spherical objects S; and S satisfying
Hom*(S;, S2) = C[—1].

The space of Bridgeland stability conditions of Dy is studied in [BQS20].
There is a distinguished connected component Stab,(Dy) C Stab(Dy)
containing stability conditions whose heart P(0, 1] coincides with the
canonical heart Hy = (51, 52),,, (see [BQS20, §2 and §4]).

Consider the subgroup Aut.(Dy) C Aut(Dy) generated by the shift
functor [1] and the spherical twists 77,75 associated to the spherical
objects Sp,S5. By [BQS20, Proposition 2.7], the subgroup can be
described using generators and relations as

Aut,(Dy) = <T1,T2, 1]

LTy = LW T, (T\T3)* = [4 — 3N], T;[1] = [1m> .

4.3.2. Central extension and braid group. The presentation of
Aut,(Dy) above allows us to write it as a central extension of PSLy(Z):
1 — Z — Aut,(Dy) < PSLy(Z) — 1.

The map Z — Aut,(Dy) sends 1 to the shift [1] and « is given by

11 1 0 1 0) .
Tlr—><0 1>,Tgr—><_1 1>,and [1]r—><0 1) in PSLy(Z).

As a preliminary to the main result of this section, we need:
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4.3.3. Definition. The group homomorphism w: Aut,(Dy) — R is
defined by setting

4 —-3N

w(Ty) = w(Ty) = and w([1]) = 1.

4.3.4. Theorem. The map given by the shifting number
7: Aut,(Dy) — R
s a quasimorphism. More precisely,
T=w-—g(poa),
where ¢ is the (homogenization of the) Rademacher function on
PSLy(Z), see Appendiz A.

Recall the following shorthand notation used in [FFHT19].

4.3.5. Definition. Let E, A;,..., A, be objects in a triangulated cat-
egory D. We write

Ee{A,.... A}
if there exists a sequence of exact triangles B;_; — B; — A; T for
1 < i < mn, such that By = 0 and B, = E. Note that the (ordered)

elements Ai,..., A, are not required to be the Harder—Narasimhan
factors of E with respect to a stability condition.

We will make use of the following computations of T;(.S;) for i,j €
{1,2}, which can be established from the definition of the spherical
twists, cf. [BQS20, §2].

4.3.6. Lemma. Let N > 3 be an integer. In Dy = Dy(Asy), we have
Tl(Sl) = Sl[l — N] and Tl(SQ) < {52,81},
Tz_l(Sz) = SQ[N — 1] and T2_1(Sl) € {52,51}.
The next result computes the upper and lower shifting numbers,
assuming a specific presentation of an autoequivalence.

4.3.7. Proposition. Tuke F = TOTy " ... T Ty % € Aut,(Dy) for
some a;,b; > 0. Then

THF) = (N=1)Y b and 7 (F)=—(N-1)Y

i=1 =1

Hence 7(F) = 55(2(a; — by)).

Proof. Choose a split generator G := S1@® Sy € Dy. Let o € Stab,(Dy)
be a stability condition such that S;, S; and their shifts are the
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only indecomposable o-semistable objects, and their phases satisfy
0 < ¢s(51) < ¢5(S2) < 1. By Lemma 4.3.6, we have

F'"G € {S7™[(N = Dnal, ..., S5 [(N = L)ng]}

for some iy, ..., 1 € {1,2}, my,...,my >0, and ny,...,ny € Z. As an
intermediate claim, we assert that
° gb:(FnG) = maxlgggk{gbg(si[) + (N - 1)71[}, and
o O (F"G) = mini<o<i{do(Si,) + (N — 1)ne}.
To establish the assertion, consider first the case when the phases of
these objects are strictly decreasing, i.e.

G (Siy) + (N = Dny > -+ > 65(S;,) + (N — L)y,

Then {SP™ [(N=1)n4], ..., S;™ [(N—1)ny]} is the Harder-Narasimhan
filtration of F"(G, and the assertion follows.
Next, if there are two consecutive terms with the same phase

0o (Si,) + (N = Dne = ¢6(Si,,,) + (N = D)ngp

then iy = ip41 and ny = nyyq. Since Hom(S;, S;[1]) = 0 for i = 1,2, one
can merge these two terms and obtain
F"G e {ST™[(N — )ny), ..., S5 (N — 1)ng,

Y (7

ST (N — 1)ngys], ..., SE™[(N — 1)ng]}.

L0+2 7 g

Therefore if the phases of these objects are nonincreasing
G0 (Siy) + (N =1y 2 -+ = ¢ (S;,) + (N — L)ny,

then one can merge the terms with the same phases and obtain the
Harder—Narasimhan filtration of F"G, which proves the assertion.
Finally, suppose there exists some ¢ such that

(bo(Sie) + (N - 1)”'5 < (bcr(SizH) + (N - 1)n€+1-

Then the pair of objects {S;.™[(N — 1)n], Sfjﬁ“l [((N — 1)ngyq]} is of
one of the following types:

o {ST™M[(N =1)ng, Sy [(N —1)(ng+m)]} for some i € {1,2}

and m > 0,

o {SY™[(N — 1)ng], Sy™ (N — 1)(ng + m)]} for some m > 0,

o {SPM[(N = 1)ng], Sy ™ [(N — 1)(ng + m)]} for some m > 0.
Using the fact that Hom*(S;, S;) = C & C[—N|, Hom*(S;, S2) = C[-1],
Hom*®(S53, 51) = C[1 — N], and the assumption that N > 3, it follows
that there are no nontrivial extensions, i.e.

Hom (83,7 [(N = Dnesa], 5™ (N = Dngl[1]) = 0,

2+1
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between the relevant objects. Therefore one can swap the order of
{SEMUN = D)ng], SE™ (N = 1)ngs]} and still have
F"G € (ST (N = D), ..., ST [(N = D],

RS

SEM(N = D)ngl, ..., SE™[(N — L)}

» Mg

Hence one can reorder the sequence {SZ™[(N — 1)n4], ..., So™[(N —
1)ng]} and assume that they are of decreasing phases. The claim then
follows from the previous argument.

Now we can compute ¢E(F"G) where G = S; & Sy and F =
THTy - THTy % e Aut,(Dy) for some a;,b; > 0. Using Lem-
ma 4.3.6 we compute that

¢y (F"G) = max {¢o(S,) + (N = D)} = ¢o(S2) +n(N = 1) > b

1<<k P

and
k

07 (F"G) = min {6,(5,) + (N = D} = 6,(S1) = n(N ~ 1) Y s

1<t<k

By Theorem 2.2.6, we have

(F) = lim (¢“(52) F(N- 1>ibi) —-DYh

n—o0 n

and

as claimed. O

4.3.8. Proof of Theorem 4.3.4. Let F' € Aut,(Dy) be an autoequiv-
alence. First consider the case when a(F') € PSLy(Z) is of finite order.
Then «(F') is conjugate to either

ATV TST) = (_01 é) (TyT)) = (_11 é) ((TT)?) = (_01 _11> or T,

Hence F' can be written as
F =gFg'[n]

for some F € {T\T,Ty, T,Ty, (TyT))?,idp, }, g € Aut,(Dy), and n €
Z. Observe that there exists a power k > 1 such that F* = [{] for
some ¢ € Z, since (TyTy)> = [4 — 3N]. Hence the shifting numbers
satisfy 7(F) = 75(F) = w(F) by Proposition 2.3.1(i)(ii). Note that
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¢(a(F)) = 0 in this case since the quasimorphism ¢ vanishes on finite
order elements in PSLy(Z).
Next consider the case when a(F) € PSLy(Z) is of infinite order.
Then «(F') is conjugate to a positive word in
10
1 1)

F = gToT b Ty g~ p)

o(Ty) = (é 1) and (T

Hence F' can be written as

for some ay, by, ..., ar, bxy > 0 (not all zero), g € Aut,(D), and n € Z.
Using Proposition 4.3.7 and Proposition 2.3.1(i)(iv) we find

1—N

T(F) = <Z ) + n.

Recall that

w(F) = A _63N (Zk:(ai — bl)> +n

and

This proves that the shifting number can be expressed as 7 = w—¢(¢oa).
Since w and « are group homomorphisms and ¢ is a quasimorphism, it
follows that 7 is a quasimorphism. O

4.3.9. Remark. The maps 7*: Aut(Dy) — R given by the upper or
lower shifting numbers are not quasimorphisms. For instance,

[TH(TY) 4+ (T = 7 ()] = n(N - 1)

for any n > 0 by Theorem 3.2.2 and Proposition 2.3.1(ii)(iii).

5. Quasimorphisms on Lie groups

Outline. We describe the central Z-extension of a Lie group of Her-
mitian type and its associated quasimorphism in §5.1. In §5.2 we
then apply this construction to the group of autoequivalences of an
abelian surface and connect this quasimorphism to the shifting number
constructed earlier in Theorem 4.2.1.
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5.1. SO(2,p)

We describe a classical quasimorphism on the universal cover of the
orthogonal group of signature (2, p). A reference for the analogous case
of Sp,, is Barge-Ghys [BG92], and for a reference covering all groups
of hermitian type see Burger—lTozzi-Wienhard [BIW10, §7].

5.1.1. Setup. Let Nr be a real vector space equipped with a non-
degenerate inner product of signature (2,p), with p > 1. The inner
product of two vectors v, w is denoted by (v, w). The complexification
is denoted by N¢ := Mg ®r C.

Inside P (N¢) we have the quadric of null-lines Q(N¢), i.e. [v] such
that ([v],[v]) = 0. Inside Q(Nc) we have the hermitian symmetric
space D defined by

D:={[v] e PWNe) : (]} =0 (v,7) >0}

Over D we have a variation of weight 2 polarized Hodge structure, of
K3 type. The Hodge decomposition H*? @ HY' @& H%? over a point
[v] € D is given by:

H =[] H°?:=[n] H"' == (H@H?)"

where the last orthogonal complement is for the indefinite inner product
(and it is also an orthogonal complement for the positive-definite inner
product induced by the Hodge structure). Define also

(5.1.2) P = (H** @ H**)\ {v: (v,7) =0}

We view P naturally as a subset of N and observe that it has two
connected components. Denote by P* the one that contains H*?. The
most direct way to see the structure of P is to quotient by the free C*-
action and obtain a bundle over D, with fibers P (H?° @ H*?) < P!(C)
with equators, corresponding to real vectors, removed.

In particular, observe that the inclusion H2 < P+ induces a homo-
topy equivalence, where H 20 denotes the bundle with the zero section
removed.

5.1.3. Remark (On the GLy(R)-action). The group GL2(R) naturally
acts on Ng := Mg ®@r C = N ® R? via its action on R?. The subset
P C Ng is invariant under this action and the quotient is identified
with D. If we restrict to GLJ (R) then the quotient is two copies of D,
corresponding to the two components of P.

Note also that the map P+ — I is not holomorphic, even though
restricted to the subset H2° C P it is.
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5.1.4. The associated groups. Denote by G := SO°(Ng) the con-
nected component of the identity of the group of real isometries of the
indefinite pairing on Ng. Then G acts transitively on ID, with stabilizer
of a point [vg] equal to a maximal compact subgroup K of G. Fur-
thermore, the variation of Hodge structure and other spaces above also
admit G-actions and the maps between spaces are G-equivariant.

The group K is isomorphic to SO3(R) x SO,(R), where the SOy (RR)
factor corresponds to real isometries of H*? @& H*? and SO,(R) corre-
sponds to real isometries of H'!. Furthermore, the SOy (R)-factor is
naturally identified with the unitary rotations U(1) of H*° (over the
basepoint [vg)).

5.1.5. Z-covers of groups and spaces. Observe that K is not simply
connected and we denote by K the Z-cover of K corresponding to the
cover of SOy(R) by R. We ignore the additional cover that might come
from the case p = 2. Recall also that G is homotopy-equivalent to K,
so we also have a Z-cover G — G. Both maps give central Z-extensions
of the groups G and K respectively.

Similarly, observe that the space P* is also not simply connected.
Indeed if we take the quotient of P* by the free C*-action, we get
a disk bundle over ID. The total space of the disk bundle is simply
connected, even contractible, so PT has fundamental group Z. Recall
also that the disk bundle has a reference point, given by H??. Fix now
a lift vg € H*([vg]) = [vg] of the basepoint [vy] € D and define the
associated universal covers P+ — P and H. 20 5 g2,

We have natural actions of the groups: of G on P* preserving H 20

and of G on Pt preserving H2.

5.1.6. Quasimorphism on G. We follow [BG92, Part C, Prop. 1.2]
in the setting of our group G isomorphic to SO, ,(R), with some reinter-
pretations. Note that the construction of the quasimorphism involves
only the bundle H2" and its universal cover.

Fix a real isotropic vector, i.e. wy € Ng\{0} such that (wo,wo) = 0.
It follows that for any v € N such that [v] € D we have that (v, wg) # 0,
since relative to the Hodge decomposition determined by [v], the vector
wo must have nontrivial (2,0) and (0, 2)-components. Define for g € G
the function

{(gv), wo)

€ C* which only depends on [v], not v.
<U’ ’LU0>

Jwl(9) ==
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We have the basic calculation
(9192v,w0)  {(g2v, W)
(g2v, wo) ' {v.wp)
= Jgalo] (91) “ Il (92)
Define next the function ¢p(g) := arg jp)(9) € R/Z and its lift to the
universal cover GG of G:

(5.1.7) (g1 - go) =

(I)[;} (9) = éf/g}[;] (9)
which is the unique continuous extension to R of the pullback ¢p(g)

from g, viewed as a map to R/Z.

Note for future reference that @ (g+1) = dx (9) + 1 where 1

in the first expression denote adding 1 in the center of G. Similarly
D, (9) = o (g) where [ is in the center of G again.

5.1.8. Theorem (Quasimorphism on orthogonal group). For a fized
[Uo] the map P G — Rois a quasimorphism.

Proof. The basic cocycle relation in Eqn. (5.1.7) generalizes straightfor-
wardly to ® to give

O51(9192) = 5151 (91) + Py (92)
so it suffices to check that
(5.1.9) ’(I)gE[%] (91) — <I>[%](§v1)’ < (C for C independent of g7, go.

Observe next that adding elements of the center of G to gi does not
change the expression, so above we can replace g; by its projection
g1 € G. Similarly shifting the basepoint [vy] by an element of the center
does not affect the expression, and analogously for g;. So the expression
to be estimated depends only on the projections of the parameters to
D and G.

With these simplifications, the quantity in Eqn. (5.1.9) is bounded,
up to within 1, by the following geometric number. Connect [vg] and
g2[vo] by a path v; staying in D, and count (with sign) the total number
of times arg j,,(g1) crosses the origin.

In order to perform this computation, select representatives vy and
vy for [vo] and go[vg] such that vo.wy = 1 = v.wy. The function jp,(g)
is independent of the choice of representative v, but when v.wqg = 1 the
function is polynomial in the entries of g. Taking v, = tvg + (1 — t)vy
makes the function j,,(¢1) a polynomial in the entries of gy, of degree
bounded by p + 2. It follows that this function crosses the real axis at
most p + 2 times, so the defect in Eqn. (5.1.9) is at most p + 3. O
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5.1.10. Remark (Sections of the canonical bundle). The reader will
recognize that the above constructions use implicitly a trivialization
of the canonical bundle of the hermitian domain DD, using the vector
wp fixed initially. Incidentally, the same construction that gives a
nonvanishing holomorphic section of H'? (for weight 1 variations of
Hodge structure) and H*° (for weight 2 variations of Hodge structure
of K3 type) is used in [Kon97] and [Fill8] respectively to compute
Lyapunov exponents of the corresponding local systems.

5.2. Autoequivalences and Lie groups

5.2.1. Setup.

5.2.2. Theorem (Quasimorphisms for abelian surfaces). Suppose that
X is an abelian surface of Picard rank p, D is its derived category,
and Nz, is its Mukai lattice, of signature (2, p).

(i) Let Aut®D denote the finite index subgroup of AutD that maps
to SO° (Ng) under the natural map AutD — O(NR). Then

there exists a lift
Aut°D — SO°(Nz) — SO°(NR)

to the central extension of SO°(Nz) coming from the central
extension of the corresponding Lie group constructed in §5.1.5.
The double shift functor [2] maps to the generator of the center.

(ii) The homogenization of the quasimorphism in Theorem 5.1.8
agrees with twice the shifting number quasimorphism from The-
orem 4.2.1, when restricted to Aut®D.

Proof. The existence of the lift and its properties follow from [Bri08,
Thm. 15.2].

The agreement of the homogeneous quasimorphisms, one coming from
the Lie group and the other from the shifting number, follows from the
agreement of their pre-homogenized versions 7 in Theorem 4.2.1 and
® ;) in Theorem 5.1.8. Indeed 7(F) = ¢, (F(k(z))), so we can take

[0o] = 0o under Bridgeland’s identification of Stab’(X) and P+ (loc.
cit.). We also take wg in the construction of @iz to be the Mukai
vector of k(x). O

5.2.3. Remark (The case of K3 surfaces). In the case of K3 surfaces,
we cannot expect an agreement of the two quasimorphisms. According
to Theorem 3.2.2 spherical twists have non-trivial shifting numbers
when N = 2, but their second powers generate a group that’s (at least
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conjecturally for p > 2) “disjoint” from the relevant central extension,
see [BB17, Thm. 14].

Nonetheless, let us note that the construction of Theorem 5.2.2(i)
works for K3 surfaces and yields a quasimorphism there. We do not
know if the shifting number 7 also gives a quasimorphism on AutD in
this case.

Appendix A. An explicit quasimorphism on
PSLy(Z)

Outline of section. In this section, we define an explicit quasimor-
phism ¢: PSLy(Z) — R that is used in §4.3. More information and
further details appear in [BG92].

We start by recalling a fact about constructing quasimorphisms on
free products of groups. For a group G define CP44(G, R) to be the
set of bounded functions f: G — R such that f(g) = —f(¢g~ ') for any
g €.

Let {Gs}ses be a collection of groups and let G = x4,5G, be the
associated free product group. Then any element x € G\ 1 can be
uniquely written as x = x123 - - - z,, such that x; € G, is nontrivial and
S; # s;41 for each i.

A.0.1. Proposition ([Rol09, Prop. 4.1]). Let { fs}ses be a collection of
functions such that fs € CP4(Gs,R) and sup,eg || fsll,, < oo. Then
the function g: G — R defined by

o(z) = ﬁ;fsi(xi)

s a quasimorphism.

A.0.2. Presentation and elements of PSLy(Z). Recall that we have
the following presentation:

PSLy(Z) = (Z/27,) * (L/32) = (S,U: $* = U* = 1)

with matrices
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Any element in PSLy (Z) can be uniquely written as
(A.0.3) SOy SUes ... SUm S
for some d1,d, € {0,1} and €y, ..., €6, € {—1,1}.
A.0.4. Definition. Define ¢y: PSLy(Z) — R by

Po(A) = Z €

if A= S%UaSU=S .- SUS% for some 1,0, € {0,1} and ey, ..., €, €
{—1,1}. This is also called the Rademacher function in [BG92, §B-4]

This defines a quasimorphism on PSLy(Z) by Proposition A.0.1.
A.0.5. Definition. Define ¢: PSLy(Z) — R to be the homogenization
of ¢, i.e.

$(A) = lim $o(4")

n—oo n

It is a standard fact that the homogenization of a quasimorphism
is again a quasimorphism. Moreover, it is homogeneous in the sense
that ¢(A™) = ng(A), and is constant on conjugacy classes. There is an
alternative description of ¢ which we use in §4.3.

A.0.6. Lemma. Let A be an element in PSLy(Z).

(i) If A is of finite order, then ¢(A) = 0.

(ii) If A is of infinite order, then it is conjugate to a positive
word in L and R, i.e. A = BLYR" ... L%R% B~ for some
ay, by, ... ag, by >0 not all zero, and B € PSLy(Z). Moreover,
we have

Proof. Part (i) follows from the fact that ¢ is homogeneous. Now
suppose A € PSLy(Z) is of infinite order. Let us see that A can be
conjugated to a positive word in L = SU and R = SU~!. Using the
presentation in Eqn. (A.0.3), observe that by one conjugation by S we
can ensure that the last letter is not S. If the first letter is S then we
are done, otherwise we conjugate by U=, If ¢,, + €; # 0 then we are
done, otherwise we apply an S-conjugation again to remove the S at
the end and repeat this argument. Either the process of conjugation
stops, and the claim follows, or we are left at the end with S or U,
which are finite order (a contradiction since A was assumed of infinite
order and conjugacy does not change this fact).

Observe from the definition of ¢y that if W is a positive word in L
and R, then ¢o(W") = ne¢(W) for any n € N, hence ¢p(W) = ¢o(W).
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Since ¢ is constant on conjugacy classes, we have

P(A) = ¢(L™R" - - - L R™)
¢O(La1Rb1 . Lakak)

which is the required claim. 0
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