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Abstract. We study invariants, called shifting numbers, that
measure the asymptotic amount by which an autoequivalence of
a triangulated category translates inside the category. The in-
variants are analogous to Poincaré translation numbers that are
widely used in dynamical systems. We additionally establish that
in some examples the shifting numbers provide a quasimorphism
on the group of autoequivalences. Additionally, the shifting num-
bers are related to the entropy function introduced by Dimitrov,
Haiden, Katzarkov, and Kontsevich, as well as the phase functions
of Bridgeland stability conditions.
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1. Introduction
This paper is concerned with categorical dynamical systems, namely
endofunctors F : D æ D on a triangulated category D. We study
invariants, the shifting numbers, that measure the asymptotic amount
by which F translates inside the triangulated category.

Translation and shifting numbers
The concept is analogous to the Poincaré translation number, and our
starting point is the central extension

0 æ Z æ Aut(D) æ Aut(D)/[1] æ 1

where [1] denotes the shift functor of the (Z-graded) triangulated cate-
gory D.
Poincaré translation and rotation numbers. Let us recall some
background on translation numbers that were introduced by Poincaré
[Poi85] and have been used extensively in dynamics since then. We
refer to [Ghy01] for a general introduction to the theory.

Take R/Z as the model of the circle and R as its universal cover to
obtain a central extension of groups

0 æ Z æ Homeo+

Z (R) æ Homeo+(R/Z) æ 1

where Homeo+(R/Z) denotes the orientation-preserving homeomor-
phisms of the circle and Homeo+

Z (R) denotes the orientation-preserving
homeomorphisms of the real line commuting with translation by Z. The
Poincaré translation number of an element f œ Homeo+

Z (R) is defined
by

Âfl(f) := lim
næŒ

f
n(x0) ≠ x0

n

for some choice of basepoint x0 œ R (it is a standard result that the
limit always exists and is independent of the choice of x0). Here are
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some standard properties of the translation number:
Âfl (f ¶ Tk) = Âfl (f) + k for the translation Tk(x) = x + k

Âfl
1
gfg

≠1
2

= Âfl (f) conjugacy invariance
Âfl (fn) = n · Âfl (f) homogeneity

The rotation number is defined for elements f œ Homeo+(R/Z) by
fl(f) := Âfl( Âf) mod Z œ R/Z for any lift Âf of f .
Shifting numbers of autoequivalences. In order to extend the
above notions to the categorical setting, we need to first introduce
some further concepts. Instead of the basepoint x0 œ R we will use a
split generator G œ D, see Definition 2.1.1. A number of categorical
“distance functions” are available, see §2.1. For definiteness, we will
use the upper and lower Ext-distance functions denoted by ‘

+ and ‘
≠,

see Definition 2.1.2, introduced in the study of Serre dimensions of
triangulated categories in [EL19, KOT19]. These are defined by

‘
+(E1, E2) := max{k œ Z : Hom(E1, E2[≠k]) ”= 0}

and
‘

≠(E1, E2) := min{k œ Z : Hom(E1, E2[≠k]) ”= 0}.

Theorem 1.1 (Shifting numbers and their properties). Let F : D æ D
be an endofunctor of a triangulated category D and let G be a split

generator of D. The following limits exist and are finite real numbers:

·
+(F ) := lim

næŒ

‘
+(G, F

n
G)

n
and ·

≠(F ) := lim
næŒ

‘
≠(G, F

n
G)

n
,

and furthermore are independent of the choice of split generator G.

Each of ·
+

and ·
≠

also satisfies the following properties:

(i) For any k œ Z we have

·
±(F ¶ [k]) = ·

±(F ) + k.

(ii) For any two endofunctors F1, F2 we have

·
±(F1F2) = ·

±(F2F1).

In particular, if F2 is an autoequivalence of D then ·
±(F2F1F

≠1

2 ) =
·

±(F1).
(iii) For any n œ N we have

·
±(F n) = n · ·

±(F )

If F is an autoequivalence and D admits a Serre functor, then

·
±(F ≠1) = ≠·

û(F ).
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(iv) Define ·(F ) := 1

2
(·+(F ) + ·

≠(F )). If F is an autoequivalence

and D admits a Serre functor, then

·(F n) = n · ·(F ) for any n œ Z.

We will call ·
+(F ) resp. ·

≠(F ) the upper resp. lower shifting numbers

of F , and ·(F ) = 1

2
(·+(F ) + ·

≠(F )) the shifting number of F . For the
proofs, see Section 2.
Bridgeland stability conditions. An alternative definition of shifting
numbers is possible using the notion of stability conditions, introduced
by Bridgeland [Bri07]. It is also closer in spirit to the classical defini-
tion of the Poincaré translation number, but requires the existence of
Bridgeland stability conditions.
Theorem 1.2 (Shifting numbers from phases of stability conditions).

Assume that D admits a Serre functor and a Bridgeland stability

condition ‡. Let „
±

‡ : Ob(D) æ R be the phase functions with respect

to ‡ (see Definition 2.2.2).

Then the following limits exist, are independent of the choice of split

generator G, and coincide with the upper/lower shifting numbers:

lim
næŒ

„
±

‡ (F n
G) ≠ „

±

‡ (G)
n

= ·
±(F ).

For the proof, see Theorem 2.2.6.
Categorical entropy. One can also connect the notion of shifting num-
bers with the categorical entropy function ht introduced by Dimitrov,
Haiden, Katzarkov, and Kontsevich [DHKK14].
Theorem 1.3. Let F : D æ D be an endofunctor of a triangulated

category D with a split generator G, and let ht(F ) be the categorical

entropy function of F , see Definition 2.1.4.

Then ht(F ) is a real-valued convex function that satisfies:

t · ·
+(F ) Æ ht(F ) Æ h0(F ) + t · ·

+(F ) for t Ø 0,

t · ·
≠(F ) Æ ht(F ) Æ h0(F ) + t · ·

≠(F ) for t Æ 0.

In particular, we have limtæ±Œ

ht(F )

t = ·
±(F ) œ R.

For the proofs, see Theorem 2.1.6 and Theorem 2.1.7. We note that
parts of the statements in Theorem 1.1 and 1.3 also appeared in the
work of Elagin and Lunts [EL19, §6], under the name of “F -dimensions”.
We were led to these results independently of Elagin and Lunts and
were made aware of their work by Genki Ouchi only after a first version
of this text was posted on the arXiv. The mass growth function h‡,t(F )
also satisfies similar inequalities, see Theorem 2.2.6. In §2.4 we develop
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t

slope ·+(F )

slope ·≠(F )
h0(F )

•

ht(F )

Figure 1. Bounds of the categorical entropy function ht(F )

the observation that the shifting numbers determine the domain of
definition of the Legendre-transformed entropy function.
Quasimorphisms. An important property of the Poincaré translation
number is that it gives a nontrivial quasimorphism on Homeo+

Z (R),
namely there exists a constant C > 0 such that

|Âfl(fg) ≠ Âfl(f) ≠ Âfl(g)| Æ C

for any f, g œ Homeo+

Z (R). It is therefore natural to pose:
Question 1.4. In what situations does the shifting number

· : Aut(D) æ R

define a quasimorphism on the group of autoequivalences of a trian-

gulated category D? More generally, is there a quasimorphism „ on

Aut(D) whose values satisfy „(F ) œ [·≠(F ), ·
+(F )]?

In the examples that we computed and are described below, occasionally
we find that ·

+(F ) = ·
≠(F ) but this is special. For instance, the

spherical twist TS with respect to an N -spherical object S has shifting
numbers ·

+(TS) = 0 > 1 ≠ N = ·
≠(TS) if N Ø 2 (see §3.2). In the

case of the A2 quiver and its N -Calabi–Yau category the average ·(F )
of the upper and lower shifting numbers does give a quasimorphism.
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Examples
We compute several examples in this text, where we establish in partic-
ular that Question 1.4 has an a�rmative answer. See Theorem 3.1.2,
Theorem 4.1.1, and Theorem 4.2.1 for the proof of the next result.
Theorem 1.5. Let D = DbCoh(X) be the bounded derived category of

coherent sheaves on a smooth projective variety X, where X

• is an elliptic curve, or

• is an abelian surface, or

• has ample or anti-ample canonical bundle KX .

Then ·(F ) = ·
±(F ) for any F œ Aut(D), and

· : Aut(D) æ R

is a quasimorphism. Moreover,

• when X is an elliptic curve, · can be decomposed into

Aut(D) s≠æ ÁGL
+

2
(R) t≠æ Homeo+

Z (R) Âfl≠æ R,

where s, t are homomorphisms, and Âfl is the quasimorphism

given by the Poincaré rotation number;

• when X has ample or anti-ample canonical bundle, we have that

Aut(D) = (Aut(X)nPic(X)) ◊Z[1], and · can be decomposed

into

Aut(D) fi≠æ Z ÿ≠æ R,

where fi is the projection to the Z[1]-factor, and ÿ is the natural

inclusion of integers into real numbers.

In general, computing the shifting number of an autoequivalence can
be challenging, especially in situations arising from the composition of
spherical twists that do not commute. We prove that Question 1.4 also
has an a�rmative answer for a group generated by two spherical twists
with the simplest possible coupling, see Theorem 4.3.4.
Theorem 1.6. Let N Ø 3 be an integer and let DN be the N-Calabi–

Yau category associated to the A2 quiver. Consider the subgroup

Autú(DN) ™ Aut(DN) generated by the spherical twists T1, T2, and

the shift [1] (see §4.3). Then

· : Autú(DN) æ R

is a quasimorphism. More precisely, we have

· = w ≠ 1
6

1
„ ¶ –

2
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where w : Autú(DN) æ Q and – : Autú(DN) æ PSL(2,Z) are group

homomorphisms, and „ is the (homogenization of the) Rademacher

function on PSL(2,Z).
Some recollections on the Rademacher function are provided in Appen-
dix A, see also [BG92].
Quasimorphisms on central extensions of Lie groups. It is a clas-
sical fact that Lie groups of hermitian type admit central Z-extensions
(because the maximal compact has a nontrivial map to the circle). The
notion of Poincaré translation number generalizes to this setting, see
for instance [BIW10]. In Section 5 we connect this construction with
quasimorphisms on autoequivalences of abelian and K3 surfaces. Recall
that the Mukai lattice N of such a surface has signature (2, fl) and the
Lie group SO(NR) is thus of Hermitian type, and its universal cover has
a quasimorphism. Theorem 5.2.2 shows that in the case of abelian sur-
faces, the induced quasimorphism on AutD coincides with the shifting
number.

Further remarks
Categorical dynamics. The study of categorical dynamical systems

(D, F ), i.e. pairs consist of a triangulated category D and an endofunctor
F : D æ D, was initiated in a paper of Dimitrov, Haiden, Katzarkov,
and Kontsevich [DHKK14]. It has been an active area of research
since then, see for instance [DHKK14, Fan18a, Fan18b, Ike16, FFH+19,
FFO20, Kik17, KOT19, KST20, KT19, Ouc20].

The notion of categorical entropy h0(F ), introduced in [DHKK14],
captures the mass growth of objects under large iterates of F . The
shifting numbers ·

±(F ) complement the entropy by measuring the
phase growth of objects under large iterates of F .
Mirror symmetry and symplectic geometry. All examples ana-
lyzed in this text are essentially algebro-geometric. On the other hand,
a wealth of quasimorphisms are available in symplectic geometry, see
for instance Ruelle [Rue85] for the origin of many constructions, and
Entov–Polterovich [EP03] for more recent constructions based on Floer
theory. It would be interesting to investigate what kind of quasimor-
phisms one obtains by the methods of the present text in the case of
Fukaya categories. It would be additionally interesting to understand
if the construction of Bestvina–Fujiwara [BF02] of quasimorphisms can
be extended to the symplectic case, or to the case of K3 surfaces us-
ing Bridgeland’s conjecture [Bri08]. The reader can find many further
stimulating questions in Smith’s survey [Smi18].
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Some applications of quasimorphisms. Let us note that the ex-
istence of nontrivial quasimorphisms on a group has purely algebraic
consequences for the structure of the group, see for instance [Kot04].
For instance, when a group is perfect it carries a stable commutator
length function, which is nontrivial if and only if there exists a nontriv-
ial quasimorphism by Bavard’s theorem [Bav91]. For more on stable
commutator length, see Calegari’s monograph [Cal09]. It is therefore
interesting to ask also the following:
Question 1.7 (Perfectness of autoequivalence groups). For which tri-

angulated categories D is the group Aut(D)/[1] a perfect group? Re-

call that a perfect group is one where every element is a finite product

of commutators.

Let us also note that it would be interesting to understand the relation
between the constructions in this paper and quasimorphisms on the
universal cover of the group of contact di�eomorphisms of a contact
manifold constructed by Givental [Giv90] and Eliashberg–Polterovich
[EP00]. We are grateful to Leonid Polterovich for bringing these results
to our attention.
Analogies. We end with a comparison between the motivating con-
cepts in dynamical systems and their categorical counterparts.

Translation numbers Shifting numbers

f œ Homeo+

Z (R) F : D æ D

basepoint x0 œ R split generator G œ D

amount of translation phase of stability condition

f
n(x0) ≠ x0 „

±

‡ (F n
G) ≠ „

±

‡ (G)

translation number Âfl upper/lower shifting numbers ·
±

Conventions. Let k be a base field. Throughout this article, all tri-
angulated categories are assumed to be k-linear, Z-graded, saturated,
and of finite type (i.e. the k-vector space üiHomD(E, F [i]) is finite-
dimensional for any pair of objects E, F in the category). Functors
between triangulated categories are assumed to be k-linear, triangu-
lated, and not virtually zero (i.e. any power is not the zero functor).
Acknowledgments. We are grateful to Leonid Polterovich and Ivan
Smith for insightful comments on a preliminary version of the manu-
script. We are grateful to Genki Ouchi for pointing out the reference
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[EL19] after the first version of the present article was posted on the
arXiv.

YF would like to thank Emanuele Macrì for helpful discussions during
the early stages of the project. This research was partially conducted
during the period SF served as a Clay Research Fellow. SF gratefully
acknowledges support from the Institute for Advanced Study. This
material is based upon work supported by the National Science Foun-
dation under Grant No. DMS-2005470. This material is based upon
work supported by the National Science Foundation under Grant No.
DMS-1638352, DMS-1107452, 1107263, 1107367 “RNMS: Geometric
Structures and Representation Varieties” (the GEAR Network). This
material is based upon work supported by the National Science Foun-
dation under Grant No. DMS-1440140 while SF was in residence at
the Mathematical Sciences Research Institute in Berkeley, California,
during the Fall 2019 semester.

2. Construction and properties of shifting
numbers

Outline of section. Inspired by the classical construction of the trans-
lation and rotation numbers, we study the notion of shifting number
of an endofunctor of a triangulated category and some of its basic
properties.

2.1. The definition
The translation number of an element f œ Homeo+

Z (R) measures the
average displacement of points in an orbit {f

n(x0)}. To study its
categorical analogue, one needs a notion of “distance” between pairs
of objects in a triangulated category. We first recall the complexity

function introduced in [DHKK14].
2.1.1. Definition (Complexity function [DHKK14, Definition 2.1]).
Let E1, E2 be objects in a triangulated category D. The complexity

function of E2 relative to E1 is the function ”t(E1, E2) : R æ [0, Œ]
given by

”t(E1, E2) := inf
I

mÿ

k=1

e
nkt

----
0=A0æA1æ···æAm=E2üF for some F œOb(D),

where Cone(Ak≠1æAk)≥=E1[nk] for all k

J

.

Define ”t(E1, E2) = 0 if E2
≥= 0, and define ”t(E1, E2) = Œ if E2 does

not lie in the thick triangulated subcategory generated by E1.
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An object G is called a split generator if for any E œ D we have that
”t(G, E) < +Œ.

The notion of complexity function was introduced in [DHKK14] in
order to define the categorical entropy function of an endofunctor. An-
other important distance function, called the Ext-distance function in
[FFO20], is obtained by computing the dimensions of morphism spaces.
2.1.2. Definition (Ext-distance function and upper/lower Ext-dis-
tance). Let E1, E2 be objects in a triangulated category D.

• The Ext-distance function from E1 to E2 is the function of the
t-variable ‘t(E1, E2) : R æ RØ0 given by

‘t(E1, E2) :=
ÿ

kœZ
dimk Hom(E1, E2[≠k])ekt

.

• The upper and lower Ext-distances from E1 to E2 are defined
to be

‘
+(E1, E2) := max{k œ Z : Hom(E1, E2[≠k]) ”= 0},

and

‘
≠(E1, E2) := min{k œ Z : Hom(E1, E2[≠k]) ”= 0}.

2.1.3. Remark. The upper and lower Ext-distances ‘
±(E1, E2) were

used in the study of Serre dimensions of triangulated categories [EL19,
KOT19]. They are not defined if Hom•(E1, E2) = 0. We will only use
them for E1 = G and E2 = F

n
G, where G is a split generator of D and

F is an endofunctor of D (which is not virtually zero). By the proof
of [DHKK14, Theorem 2.7] we have that Hom•(G, F

n
G) ”= 0 and so

‘
±(G, F

n
G) is well-defined.

2.1.4. Definition (Categorical entropy function [DHKK14, Defini-
tion 2.5]). Let F : D æ D be an endofunctor of a triangulated category
D with a split generator G. The categorical entropy function of F is
the function ht(F ) : R æ [≠Œ, Œ) in variable t given by

ht(F ) := lim
næŒ

log ”t(G, F
n
G)

n
.

The following result summarizes [DHKK14, Lemma 2.6, Theorem 2.7].
2.1.5. Theorem. Let F : D æ D be an endofunctor of a triangulated

category D with a split generator G. Then the limit in Definition 2.1.4

defining the categorical entropy function ht(F ) is independent of the

choice of generator. Moreover, it can be computed alternatively via
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the Ext-distance function:

ht(F ) = lim
næŒ

log ‘t(G, F
n
G)

n
.

Before introducing the definition of shifting numbers, we first prove
that the value ≠Œ can be excluded for the categorical entropy function.
2.1.6. Theorem (Convexity and finiteness of categorical entropy func-

tion). The categorical entropy function ht(F ) is a real-valued convex

function in t.

Proof. Consider the functions

ht,n(F ) := log ‘t (G, F
n
G)

n
appearing in Theorem 2.1.5.

Note that each function ht,n(F ) is convex in t, as can be verified by
di�erentiating twice any function of the form log

1q
aie

ki·t
2

with ai Ø 0
and applying Cauchy–Schwarz. Since ht(F ) is a pointwise limit of
convex functions, it is itself convex.

Next, we do know that h0(F ) Ø 0 from Definition 2.1.4, since the
defining functions always satisfy that. Additionally, we also know that
ht(F ) < +Œ for all t since the existence of the limit established in
[DHKK14] is via Fekete’s lemma, in particular it equals the infimum
of the sequence 1

n log ”t(G, F
n
G), and for n = 1 this is already finite.

Together with convexity, this excludes the possibility that ht(F ) = ≠Œ
for some t ”= 0, since convexity would force h≠t(F ) = +Œ which is a
contradiction. ⇤

2.1.7. Theorem (Shifting numbers via entropy, see also [EL19]). Let

F : D æ D be an endofunctor of a triangulated category D with a

split generator G. Then the following limits exist (in R)

·
+(F ) := lim

næŒ

‘
+(G, F

n
G)

n
and ·

≠(F ) := lim
næŒ

‘
≠(G, F

n
G)

n
,

and are independent of the choice of split generator G. Moreover, the

limits limtæ±Œ

ht(F )

t also exist, and we have

lim
tæ±Œ

ht(F )
t

= ·
±(F ).

Additionally, the following inequalities for the entropy function hold:

t · ·
+(F ) Æ ht(F ) Æ h0(F ) + t · ·

+(F ) for t Ø 0,

t · ·
≠(F ) Æ ht(F ) Æ h0(F ) + t · ·

≠(F ) for t Æ 0.
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2.1.8. Definition (Upper and lower shifting numbers). For an end-
ofunctor F : D æ D, the quantities ·

+(F ) and ·
≠(F ) are called the

upper, resp. lower, shifting numbers of F .

Proof of Theorem 2.1.7. The proof is essentially given in [EL19, Propo-
sition 6.13], except for the precise upper bound on ht(F ). We are grate-
ful to Genki Ouchi, who indicated to us the paper of Elagin and Lunts
after a first version of this text appeared on the arXiv.

Suppose first that t > 0. Then we have

e
‘+

(G,F nG)t Æ ‘t(G, F
n
G) Æ

3 ÿ

k

dimk Hom(G, F
n
G[≠k])

4
· e

‘+
(G,F nG)t

.

By applying log(≠)/n and taking n æ Œ, one obtains

t · lim sup
næŒ

‘
+(G, F

n
G)

n
Æ lim sup

næŒ

log ‘t(G, F
n
G)

n

= lim
næŒ

log ‘t(G, F
n
G)

n
= ht(F )

= lim inf
næŒ

log ‘t(G, F
n
G)

n

Æ lim inf
næŒ

log
3 q

k dimk Hom(G, F
n
G[≠k])

4
+ ‘

+(G, F
n
G)t

n

= h0(F ) + t · lim inf
næŒ

‘
+(G, F

n
G)

n
.

Hence

t · lim sup
næŒ

‘
+(G, F

n
G)

n
Æ ht(F ) Æ h0(F ) + t · lim inf

næŒ

‘
+(G, F

n
G)

n
.

(2.1.9)

Note that h0(F ) is a non-negative real number (we always assume that
the functors are not virtually zero). Dividing by t and sending it to
+Œ, it follows that the two limits exist and coincide:

lim
tæ+Œ

ht(F )
t

= lim
næŒ

‘
+(G, F

n
G)

n

Knowing that the limits exist and equal to ·
+(F ) and returning to

Eqn. (2.1.9), the inequality
t · ·

+(F ) Æ ht(F ) Æ h0 + t · ·
+(F ) follows for t Ø 0.

Similarly to the above reasoning, for t < 0 we have

e
‘≠

(G,F nG)t Æ ‘t(G, F
n
G) Æ

3 ÿ

k

dimk Hom(G, F
n
G[k])

4
· e

‘≠
(G,F nG)t

.
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Hence

t · lim inf
næŒ

‘
≠(G, F

n
G)

n
Æ ht(F ) Æ h0(F ) + t · lim sup

næŒ

‘
≠(G, F

n
G)

n
,

and therefore

lim inf
næŒ

‘
≠(G, F

n
G)

n
Ø ht(F )

t
Ø h0(F )

t
+ lim sup

næŒ

‘
≠(G, F

n
G)

n
.

By letting t æ ≠Œ, we prove the following two limits both exist and
coincide:

lim
tæ≠Œ

ht(F )
t

= lim
næŒ

‘
≠(G, F

n
G)

n

and the claimed inequality for t Æ 0 and ht(F ) follows as before.
Finally, we note that ·

±(F ) œ R follows from the above inequalities
and the finiteness of ht(F ) (Theorem 2.1.6). ⇤

2.1.10. Remark.
(i) If h0(F ) = 0 then from Theorem 2.1.7 it follows that there exist

constants ·
±(F ) œ R such that ht(F ) = ·

±(F ) · t for t Ø 0,
resp. t Æ 0.

(ii) In general, the upper and lower shifting numbers of an endo-
functor do not have to coincide, cf. examples of spherical twists
in §3.2.

In Section 3, we will see that in some situations the upper and lower
shifting numbers agree, and give a quasimorphism, and sometimes they
don’t agree. When they don’t agree, such as the example of the A2

quiver in §4.3, it is useful to introduce the average of the two quantities:
2.1.11. Definition. Let F : D æ D be an endofunctor of a triangu-
lated category D with a split generator G. Define the shifting number

of F to be the average

·(F ) := ·
+(F ) + ·

≠(F )
2 .

2.2. Shifting numbers via stability conditions
2.2.1. Setup. In this section, we show that if a triangulated category D
admits a Bridgeland stability condition ‡, then the upper/lower shifting
numbers of F coincide with the average displacements of {„

±

‡ (F n
G)} ™

R, where „
±

‡ : Ob(D) æ R are the phase functions with respect to ‡. We
first recall the notion of Bridgeland stability conditions on triangulated
categories.
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2.2.2. Definition (Bridgeland [Bri07]). Let D be a triangulated cat-
egory and let cl : K0(D) æ � be a group homomorphism from the
Grothendieck group of D to a finite rank free abelian group �. A
Bridgeland stability condition ‡ = (Z‡, P‡) on D consists of a group
homomorphism Z‡ : � æ C (central charge), and a collection of full
additive subcategories P‡ = {P‡(„)}„œR of D (‡-semistable objects of

phase „), such that:

(i) Z‡(E) := Z‡(cl([E])) œ R>0 · e
ifi„ for any 0 ”= E œ P‡(„),

(ii) P‡(„ + 1) = P‡(„)[1] for any „ œ R,
(iii) Hom(E1, E2) = 0 if Ei œ P‡(„i) and „1 > „2,
(iv) for any E œ D, there exist exact triangles Ei≠1 æ Ei æ Ai

+1≠æ
for 1 Æ i Æ n, such that E0 = 0, En = E, Ai œ P‡(„i), and
„1 > · · · > „n,

(v) (support property [KS08]) there exist a constant C > 0 and a
norm Î·Î on � ¢Z R such that Îcl([E])Î Æ C|Z‡(E)| for any
0 ”= E œ fi„œRP‡(„).

The collection of exact triangles in (iv) is called the Harder–Narasimhan

filtration of E and the objects Ai are called the ‡-semistable factors.
The maximal and minimal phases in the filtration are denoted by
„

+

‡ (E) := „1 and „
≠

‡ (E) := „n and define real-valued functions:

„
±

‡ : Ob(D) æ R.

Note that when E is a ‡-semistable object, „‡(E) = „
+

‡ (E) = „
≠

‡ (E)
is nothing but the rotation angle of its central charge Z‡(E) œ C.

Next we recall the definitions of mass function and mass growth
function with respect to a Bridgeland stability condition.
2.2.3. Definition (Mass functions with respect to stability conditions
[DHKK14, §4.5],[Ike16]). Let E be a non-zero object in a triangulated
category D and let ‡ be a Bridgeland stability condition on D. The
mass function of E with respect to ‡ is the function of the t-variable
m‡,t(E) : R æ R>0 given by

m‡,t(E) :=
mÿ

k=1

|Z‡(Ak)|e„‡(Ak)t
,

where A1, . . . , Am are the ‡-semistable factors of E.
2.2.4. Definition (Mass growth function [DHKK14, §4.5],[Ike16]). Let
F : D æ D be an endofunctor of a triangulated category D. The mass

growth function of F with respect to a Bridgeland stability condition ‡



ASYMPTOTIC SHIFTING NUMBERS IN TRIANGULATED CATEGORIES 15

on D is the function h‡,t(F ) : R æ [≠Œ, Œ) in variable t given by

h‡,t(F ) := sup
EœD

Y
]

[ lim sup
næŒ

log m‡,t(F n
E)

n

Z
^

\.

The relationship between ht(F ) and h‡,t(F ) was suggested in [DHKK14,
§4.5] and later proved by Ikeda [Ike16].
2.2.5. Theorem ([Ike16, Theorem 1.1]). With notation as above, as-

sume that D has a split generator G. Then

h‡,t(F ) = lim sup
næŒ

log m‡,t(F n
G)

n
.

Moreover,

h‡,t(F ) Æ ht(F ) < Œ
for any stability condition ‡, and h‡,t(F ) = h‡Õ,t(F ) if ‡ and ‡

Õ
lie

in the same connected component of the space of Bridgeland stability

conditions on D.

In general, it is not known whether the categorical entropy ht(F ) al-
ways coincides with the mass growth h‡,t(F ). Nevertheless, we prove
in the following theorem that their linear growth rates at infinity co-
incide for any Bridgeland stability condition ‡. Moreover, the average
displacements of {„

±

‡ (F n
G)} ™ R also give the same numbers.

2.2.6. Theorem (Shifting numbers via stability conditions). Let F : D æ
D be an endofunctor of a triangulated category D with a split gener-

ator G, and let ‡ be a Bridgeland stability condition on D. Then the

following limits exist and coincide with the upper shifting number:

lim
næŒ

„
+

‡ (F n
G)

n
= lim

tæŒ

h‡,t(F )
t

= ·
+(F ).

Moreover, if D admits a Serre functor, then the following limits exist

and coincide with the lower shifting number:

lim
næŒ

„
≠

‡ (F n
G)

n
= lim

tæ≠Œ

h‡,t(F )
t

= ·
≠(F ).

Additionally, the following inequalities for the mass growth function

hold:

t · ·
+(F ) Æ h‡,t(F ) Æ h‡,0(F ) + t · ·

+(F ) for t Ø 0,

t · ·
≠(F ) Æ h‡,t(F ) Æ h‡,0(F ) + t · ·

≠(F ) for t Æ 0.

Proof. The proof follows the same idea as in [KOT19, Proposition 3.10,
Lemma 3.12]. Let ‡ be any Bridgeland stability condition on D. By the
support property (Definition 2.2.2(v)), there exists a constant C

Õ
> 0
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such that |Z‡(E)| > C
Õ holds for any ‡-semistable object E. Suppose

that t > 0. Then
C

Õ · e
„+

‡ (F nG)t Æ m‡,t(F n
G) Æ m‡,0(F n

G) · e
„+

‡ (F nG)t
.

By applying log(·)

n and taking n æ Œ, one has

(2.2.7) t · lim sup
næŒ

„
+

‡ (F n
G)

n
Æ h‡,t(F ) Æ h‡,0(F )+t · lim sup

næŒ

„
+

‡ (F n
G)

n
.

Note that 0 Æ h‡,0(F ) Æ h0(F ) < Œ is a real number. By dividing t

and letting t æ Œ, one obtains

lim
tæŒ

h‡,t(F )
t

= lim sup
næŒ

„
+

‡ (F n
G)

n
.

On the other hand, recall that
‘

+(G, F
n
G) = max{k œ Z : Hom(G, F

n
G[≠k]) ”= 0}.

Hence
„

+

‡ (F n
G) ≠ „

≠

‡ (G) Ø ‘
+(G, F

n
G).

Thus

lim inf
næŒ

„
+

‡ (F n
G)

n
Ø lim

næŒ

‘
+(G, F

n
G)

n
= ·

+(F ) = lim
tæŒ

ht(F )
t

by Theorem 2.1.7. Combining these inequalities together with Theo-
rem 2.2.5 gives

lim inf
næŒ

„
+

‡ (F n
G)

n
Ø ·

+(F ) = lim
tæŒ

ht(F )
t

Ø lim
tæŒ

h‡,t(F )
t

= lim sup
næŒ

„
+

‡ (F n
G)

n
.

This proves the first part of the statement, namely that the limits exist
and:

lim
næŒ

„
+

‡ (F n
G)

n
= lim

tæŒ

h‡,t(F )
t

= ·
+(F ).

Plug this into Eqn. (2.2.7) one obtains
t · ·

+(F ) Æ h‡,t(F ) Æ h‡,0(F ) + t · ·
+(F ) for t Ø 0.

Now we prove the second part of the statement. Assume that t < 0,
so we have now instead:

C
Õ · e

„≠
‡ (F nG)t Æ m‡,t(F n

G) Æ m‡,0(F n
G) · e

„≠
‡ (F nG)t

.

Again by taking log(·)

n and limnæ+Œ (and remembering t < 0 now):

t · lim inf
næŒ

„
≠

‡ (F n
G)

n
= lim sup

næŒ

„
≠

‡ (F n
G)t

n
Æ h‡,t(F )

Æ h‡,0(F ) + lim sup
næŒ

„
≠

‡ (F n
G)t

n
= h‡,0(F ) + t · lim inf

næŒ

„
≠

‡ (F n
G)

n
.
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It follows that

lim
tæ≠Œ

h‡,t(F )
t

= lim inf
næŒ

„
≠

‡ (F n
G)

n
.

Recall that
‘

≠(G, F
n
G) = min{k œ Z : Hom(G, F

n
G[≠k]) ”= 0}.

We assumed that D admits a Serre functor S so we have
Hom(F n

G[≠‘
≠(G, F

n
G)], SG) ”= 0.

Hence
„

+

‡ (SG) ≠ „
≠

‡ (F n
G) Ø ≠‘

≠(G, F
n
G), or equivalently

‘
≠(G, F

n
G) Ø „

≠

‡ (F n
G) ≠ „

+

‡ (SG).
Combined with Theorem 2.1.7 this gives

lim
tæ≠Œ

ht(F )
t

= ·
≠(F ) = lim

næŒ

‘
≠(G, F

n
G)

n
Ø lim sup

næŒ

„
≠

‡ (F n
G)

n
.

Together with the bound h‡,t(F ) Æ ht(F ) from Theorem 2.2.5 (and
recalling t < 0 now) we find

lim inf
næŒ

„
≠

‡ (F n
G)

n
= lim

tæ≠Œ

h‡,t(F )
t

Ø lim
tæ≠Œ

ht(F )
t

= ·
≠(F ) Ø lim sup

næŒ

„
≠

‡ (F n
G)

n
.

This concludes the proof. ⇤

2.3. Further properties of shifting numbers
We show that the basic properties of Poincaré translation numbers
listed in the introduction are also satisfied by the shifting numbers of
endofunctors.
2.3.1. Proposition. Let F, G : D æ D be endofunctors of a triangu-

lated category D. Then we have:

(i) ·
±(F ¶ [k]) = ·

±(F ) + k for any k œ Z. In particular, ·([k]) =
·

±([k]) = k.

(ii) ·
±(F n) = n·

±(F ) for any positive integer n.

(iii) If F is an autoequivalence and D admits a Serre functor, then

·
±(F ≠1) = ≠·

û(F ).
(iv) ·

±(FG) = ·
±(GF ). In particular, if G is an autoequivalence

of D, then ·
±(GFG

≠1) = ·
±(F ).

Proof. These statements all follow straightforwardly from

·
±(F ) = lim

tæ±Œ

ht(F )
t
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established in Theorem 2.1.7, and some basic properties of the categor-
ical entropy function ht(F ).

Parts (i) and (ii) follow from the formulas

ht(F ¶ [k]) = ht(F ) + kt and ht(F n) = nht(F ) for any n Ø 1

established in [DHKK14, §2] or [KT19, Lemma 3.7]. If D admits a
Serre functor, then ht(F ≠1) = h≠t(F ) by [FFO20, Lemma 2.11] and
this proves part (iii). Part (iv) follows from ht(FG) = ht(GF ), see e.g.
[Kik17, Lemma 2.8]. ⇤
We will use the following lemma in the next section.
2.3.2. Lemma. Let F : D æ D be an endofunctor of a triangulated

category D. Suppose there is a split generator G of D and an integer

M Ø 0 such that

Hom(G, F
n
G[k]) = 0 for any |k| Ø M and n Ø 0,

(for instance, when F preserves a bounded t-structure of finite coho-

mological dimension). Then ·(F ) = ·
±(F ) = 0.

Proof. Under the vanishing assumption, ht(F ) is a constant function
in t [DHKK14, Lemma 2.11]. Thus ·(F ) = ·

±(F ) = 0 by Theo-
rem 2.1.7. ⇤

2.4. Legendre transform of entropy functions
Recall from Theorem 2.1.6 that the categorical entropy function ht(F )
of any endofunctor F of a triangulated category is a real-valued convex
function in the variable t. It is then natural to consider its Legendre

transform

h
ú(F ) : I

ú æ R,

where the domain is

I
ú :=

;
t
ú œ R : sup

tœR

3
t
ú
t ≠ ht(F )

4
< Œ

<
,

and the value at t
ú œ I

ú, denoted by h
ú

tú(F ), is defined to be

h
ú

tú(F ) := sup
tœR

3
t
ú
t ≠ ht(F )

4
.

2.4.1. Proposition. Let F be an endofunctor of a triangulated cat-

egory, and let h
ú(F ) be the Legendre transform of the associated

categorical entropy function ht(F ). Then

(i) The domain of definition of h
ú(F ) is [·≠(F ), ·

+(F )].
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(ii) The minimum of h
ú(F ) is given by the categorical entropy:

min{h
ú

tú(F ) : t
ú œ [·≠(F ), ·

+(F )]} = ≠h0(F ).

(iii) Applying a shift to the functor we have that the Legendre trans-

form is also shifted:

h
ú

tú (F ¶ [k]) = h
ú

tú≠k(F )

Proof. Part (i) follows straightforwardly from Theorem 2.1.7 and the
definition of Legendre transform. To prove (ii), first observe that for
any t

ú œ [·≠(F ), ·
+(F )], we have

h
ú

tú(F ) Ø t
ú · 0 ≠ h0(F ) = ≠h0(F ).

On the other hand, since ht(F ) is convex, it has a left and right deriva-
tive at 0 because the function

ht(F ) ≠ h0(F )
t

is increasing for t œ R\{0}. Hence for any t
ú œ R satisfying

lim
tæ0≠

ht(F ) ≠ h0(F )
t

Æ t
ú Æ lim

tæ0+

ht(F ) ≠ h0(F )
t

we have that h
ú

tú(F ) = ≠h0(F ) so the value is achieved.
Finally (iii) follows from the property ht(F ¶ [k]) = ht(F ) + kt es-

tablished in [DHKK14] and standard properties of the Legendre trans-
form. ⇤

3. Examples of shifting numbers
Outline of section. In this section, we compute the shifting numbers
of the standard autoequivalences of DbCoh(X), spherical twists, P-
twists, pseudo-Anosov autoequivalences in the sense of [DHKK14], and
an autoequivalence of a Calabi–Yau category that is pseudo-Anosov in
a more general sense proposed in [FFH+19].

3.1. Standard autoequivalences
3.1.1. Setup. Let X be a smooth projective variety over the base field
k and D = DbCoh(X) be the bounded derived category of coherent
sheaves on X. The group of standard autoequivalences of D is the
subgroup of Aut(D) defined by:

Autstd(D) := (Aut(X) n Pic(X)) ◊ Z[1] ™ Aut(D).
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3.1.2. Theorem. We have an agreement of upper and lower shifting

numbers ·(F ) = ·
±(F ) œ R for any F œ Autstd(D). Moreover,

the map · : Autstd(D) æ R given by the shifting number is a group

homomorphism and can be factored as

Autstd(D) fi≠æ Z ÿ≠æ R,

where fi is the projection to the Z[1]-factor, and ÿ is the natural

inclusion of integers into real numbers.

Proof. Let F = Lf
ú(≠ ¢ L)[n] œ Autstd(D), where f œ Aut(X), L œ

Pic(X), and n œ Z. Since F ¶[≠n] = Lf
ú(≠¢L) preserves the standard

t-structure on D, we have ·
±(F ¶ [≠n]) = 0 by Lemma 2.3.2. Hence

·
±(F ) = n by Proposition 2.3.1(i). ⇤

3.1.3. Corollary. Let X be a smooth projective variety such that KX

is ample or anti-ample. Then the shifting numbers give a homomor-

phism

· : Aut(DbCoh(X)) æ R.

Proof. By [BO01, Theorem 3.1] we have the equality Aut(DbCoh(X)) =
Autstd(DbCoh(X)) if KX is ample or anti-ample. The result then follows
from Theorem 3.1.2. ⇤

3.2. Spherical twists and P-twists
3.2.1. Setup. Let D be a triangulated category which admits a Serre
functor S and let N be a positive integer. Recall that an object E in
D is called N -spherical if S(E) ≥= E[N ] and Hom•(E, E) ≥= k ü k[≠N ].
Examples of spherical objects include line bundles in the bounded
derived categories of N -dimensional Calabi–Yau manifolds, and La-
grangian spheres in certain derived Fukaya categories [ST01]. Seidel
and Thomas [ST01] introduce an autoequivalence of D associated to
each spherical object E, which is called the spherical twist TE. It is
defined by

TE(F ) := Cone(Hom•(E, F ) ¢ E
ev≠æ F ),

and is the categorical analogue of Dehn twists along Lagrangian spheres.
3.2.2. Theorem (Spherical twist calculation). Let E be an N -spherical

object in D and suppose that E
‹ := {F œ D : Hom•(E, F ) = 0} ”= ÿ.

Then

·
+(TE) = 0 and ·

≠(TE) = 1 ≠ N.

Hence ·(TE) = 1≠N
2

.



ASYMPTOTIC SHIFTING NUMBERS IN TRIANGULATED CATEGORIES 21

Proof. This follows directly from Theorem 2.1.7 and [Ouc20, Theo-
rem 3.1] which states that

ht(TE) =

Y
]

[
(1 ≠ N)t, if t Æ 0;
0, if t Ø 0.

⇤
3.2.3. Remark. In general, it is di�cult to compute the categorical
entropy function, and therefore the shifting numbers, of a composi-
tion of several spherical twists TE1 , . . . , TEn with non-trivial couplings
(i.e. Hom•(Ei, Ej) ”= 0). We work out the details in §4.3 of the case of
autoequivalences of Calabi–Yau category associated to the A2 quiver.
This is the simplest example which contains non-trivial couplings of
spherical twists.
3.2.4. P-twists. Huybrechts and Thomas [HT06] introduced the cate-
gorical analogue of a Dehn twist along a Lagrangian complex projective
plane. Recall that an object E is called a PN

-object if S(E) ≥= E[2N ]
and Hom•(E, E) ≥= H

ú(PN
,Z) ¢ k as k-algebras. Examples of PN -

objects include line bundles and the structure sheaf of an embedded
PN in the bounded derived categories of a 2N -dimensional holomorphic
symplectic manifold. One can also define an autoequivalence, called
the P-twist PE, associated to an PN -object E. We refer to [HT06] for
the precise definition.
3.2.5. Proposition. Let E be a PN

object in D and suppose that

E
‹ := {F œ D : Hom•(E, F ) = 0} ”= ÿ. Then

·
+(PE) = 0 and ·

≠(PE) = ≠2N.

Hence ·(PE) = ≠N .

Proof. This follows directly from Theorem 2.1.7 and [Fan18b, Theo-
rem 3.1] which states that

ht(TE) =

Y
]

[
≠2Nt, if t Æ 0;
0, if t Ø 0.

⇤

3.3. Pseudo-Anosov autoequivalences
The notion of pseudo-Anosov autoequivalences of triangulated categories
was introduced in [DHKK14] as a categorical generalization of pseudo-
Anosov maps on Riemann surfaces. To formulate the definition, recall
that the space of Bridgeland stability conditions Stab(D) carries natural
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group actions, by Aut(D) on the left and by ÁGL
+

2
(R) on the right, see

[Bri07, Lemma 8.2].
To define the action, for an autoequivalence F œ Aut(D) set

‡ = (Z, P ) ‘æ F · ‡ := (Z ¶ F
≠1

, P
Õ),

where P
Õ(„) := F (P („)). To define the action of ÁGL

+

2
(R) on Stab(D),

recall that ÁGL
+

2
(R) is isomorphic to the group of pairs (T, f), where T œ

GL+

2
(R) and f : R æ R is an increasing map with f(„ + 1) = f(„) + 1,

such that their induced maps on S
1 ≥= (R2\{(0, 0)})/R>0

≥= R/2Z
coincide. For g = (T, f) œ ÁGL

+

2
(R) define

‡ = (Z, P ) ‘æ ‡ · g := (T ≠1 ¶ Z, P
ÕÕ),

where P
ÕÕ(„) := P (f(„)). It can be checked that the actions of Aut(D)

and ÁGL
+

2
(R) commute.

3.3.1. Rotation number for ÁGL
+

2
(R). We have the following dia-

gram:

0 Z ÁGL
+

2
(R) GL+

2
(R) id

0 Z Homeo+

Z (R) Homeo+(R/Z) id

Z R R/Z
Âfl fl

The first two rows are exact sequences (and central extensions) and the
maps from the middle to the last row are given by the Poincaré trans-
lation and rotation numbers respectively. This observation provides a
connection between the Poincaré translation number and the shifting
numbers of autoequivalences in certain examples, see Proposition 3.3.4
and §4.1.

Now we recall the definition of pseudo-Anosov autoequivalences from
[DHKK14].
3.3.2. Definition ([DHKK14, Definition 4.1]). An autoequivalence
F œ Aut(D) is said to be pseudo-Anosov if there exists a Bridgeland
stability condition ‡ œ Stab(D) and an element g = (T, f) œ ÁGL

+

2
(R)

such that
(i) F · ‡ = ‡ · g,

(ii) T =
A

r 0
0 r

≠1

B

or
A

r
≠1 0
0 r

B

for some ⁄ := |r| > 1.
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3.3.3. Remark (On pseudo-Anosov autoequivalences).
(i) One obtains an equivalent definition if only requiring T to be

conjugate to a diagonal matrix, instead of being equal. Indeed,
if F · ‡ = ‡ · cgc

≠1 then F · (‡ · c) = (‡ · c) · g.
(ii) The stability condition ‡ is analogous to a pair of measured foli-

ations on a Riemann surface, and condition (i) and (ii) describe
the expansion/contraction of the foliations by a pseudo-Anosov
map.

(iii) Examples of pseudo-Anosov autoequivalences include the Serre
functor of the derived category of representations of Kronecker
quiver with at least three arrows [DHKK14, §4.2], and autoe-
quivalences on the bounded derived category of an elliptic curve
such that their induced actions on the numerical Grothendieck
group are hyperbolic [Kik19, Proposition 4.14]. Note that there
is a more general definition of pseudo-Anosov autoequivalences
introduced in [FFH+19], where examples of pseudo-Anosov au-
toequivalences of certain 3-Calabi–Yau categories (with respect
to the more general definition) are provided.

3.3.4. Proposition. Let D be a triangulated category with a split gen-

erator G, and let F be a pseudo-Anosov autoequivalence of D in the

sense of Definition 3.3.2. Then the upper and lower shifting numbers

agree and satisfy

·(F ) = ·
±(F ) = Âfl(f) = f(0) œ Z,

where Âfl(f) is the Poincaré translation number of f œ Homeo+

Z (R)
defined in the introduction.

Proof. Since F · ‡ = ‡ · g, we have F (P‡(„)) = P‡(f(„)) for any phase
„ œ R. Let A1, . . . , An be the ‡-Harder–Narasimhan semistable factors
of a split generator G with phases „‡(A1) > · · · > „‡(An). Then

F (Ai) œ F (P‡(„(Ai))) = P‡(f(„(Ai))).
Hence F (A1), . . . , F (An) are the ‡-Harder–Narasimhan factors of F (G)
with phases f(„(A1)) > · · · > f(„(An)). Therefore, we have

„
+

‡ (F k
G) = f

(k)(„(A1)) and „
≠

‡ (F k
G) = f

(k)(„(An))
for any k Ø 1. Hence

·(F ) = ·
±(F ) = Âfl(f)

by Theorem 2.2.6 and the definition of Poincaré translation number.
By condition (ii) in Definition 3.3.2, the x-axis and y-axis are pre-

served under the linear map T . Since T and f are compatible under
the identification S

1 ≥= (R2\{(0, 0)})/R>0
≥= R/2Z, we have f(0) œ Z.
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Thus f
(k)(0) = kf(0) since f is compatible with integral shifts. There-

fore Âfl(f) = f(0) œ Z. ⇤

3.4. An example for Calabi–Yau manifolds
We include also a computation of shifting numbers for pseudo-Anosov
autoequivalences associated to Calabi–Yau manifolds.
3.4.1. Theorem. Let X be a projective Calabi–Yau manifold of di-

mension N Ø 3. Consider the autoequivalence of DbCoh(X) given

by the composition

F := TOX ¶ (≠ ¢ OX(≠1)).

Then

·
+(F ) = 0 and ·

≠(F ) = 1 ≠ N.

Proof. By [Fan18a, Theorem 1.1], the value of the categorical entropy
function ht(F ) at t œ R is the unique positive real number satisfying

ÿ

kØ1

‰(O(k))
eht(F )·k

= e
(N≠1)t

.

Note that ‰(O(k)) is a polynomial of degree N in k by Riemann–Roch.
Recall also that for ¸ œ ZØ0 and x > 1, there is an integral polynomial
P¸ of degree ¸ such that

ÿ

kØ1

k
¸

xk
= Li≠¸

3 1
x

4
= P¸(x)

(x ≠ 1)¸+1
.

Hence we have

(3.4.2) e
(N≠1)t =

ÿ

kØ1

‰(O(k))
eht(F )·k

= QN(eht(F ))
(eht(F ) ≠ 1)N+1

for a polynomial QN of degree N .
To compute the shifting numbers of F , we need to study the asymp-

totic behavior of ht(F ) as t æ ±Œ. First, let us consider t æ +Œ. By
Theorem 2.1.7 and the fact that ht(F ) > 0 for any t [Fan18a, Theo-
rem 1.1] (for this particular autoequivalence F ), the limit limtæ+Œ ht(F )
is either zero or +Œ. Observe that the case limtæ+Œ ht(F ) = +Œ can
be excluded by Eqn. (3.4.2). Therefore we have limtæ+Œ ht(F ) = 0,
hence ·

+(F ) = 0 by Theorem 2.1.7.
Now we let t æ ≠Œ. By the same argument as above, the limit

limtæ≠Œ ht(F ) is either zero or +Œ. In this case limtæ≠Œ ht(F ) = 0
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is excluded by Eqn. (3.4.2), so we have limtæ≠Œ ht(F ) = +Œ. By
multiplying e

ht(F ) on both sides of Eqn. (3.4.2), we get

e
ht(F )+(N≠1)t = e

ht(F )
QN(eht(F ))

(eht(F ) ≠ 1)N+1
.

Since limtæ≠Œ ht(F ) = +Œ, the limit limtæ≠Œ of the right hand side
of the above equality is a finite number. Therefore ·

≠(F ) = 1 ≠ N by
Theorem 2.1.7. ⇤

Below is a sketch comparing the graphs of the entropy functions
ht(TOX ) and ht(TOX ¶ (≠ ¢ OX(≠1))).

t

ht(F )
ht(TOX )

3.4.3. Remark. The autoequivalence F = TOX ¶ (≠ ¢ OX(≠1)), at
least in the case of quintic Calabi–Yau threefolds, is a pseudo-Anosov

autoequivalence in the sense of [FFH+19]. It was used in [Fan18a] to
construct a counterexample to the categorical Gromov–Yomdin conjec-
ture.

4. Quasimorphisms and shifting numbers
Outline. We establish in this section that in some cases of interest, the
shifting number yields a quasimorphism on the corresponding group of
autoequivalences. Specifically, §4.1 deals with the case of elliptic curves
and §4.2 deals with the case of an abelian surface. In §4.3 the case
of the N -Calabi–Yau category of the A2 quiver is analyzed. This last
example is an instance where the upper and lower shifting numbers do
not agree, but their average does give a quasimorphism. The case of
abelian surfaces is revisited in Section 5, where the same quasimorphism
is obtained from a construction associated to the central extension of
the Lie group SO2,fl(R).
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4.1. The derived category of an elliptic curve
The case of autoequivalences for a curve of genus g Ø 2 or g = 0 is
handled by Corollary 3.1.3, and in Theorem 4.1.1 below we handle
the case of an elliptic curve. Together, these results show that Ques-
tion 1.4 has an a�rmative answer if D is the bounded derived category
of coherent sheaves on a curve.
4.1.1. Theorem. Let D be the bounded derived category of coherent

sheaves on an elliptic curve. Then ·
+(F ) = ·

≠(F ) œ R, and the

shifting numbers

· = ·
± : Aut(D) æ R

give a quasimorphism. Moreover, · can be factored as

Aut(D) s≠æ ÁGL
+

2
(R) t≠æ Homeo+

Z (R) Âfl≠æ R,

where s, t are homomorphisms, and Âfl is the quasimorphism given by

the Poincaré translation number (see §3.3.1).

Proof. First, we define the group homomorphism s. By [Bri07, Theo-
rem 9.1], the ÁGL

+

2
(R)-action on Stab(D) is free and transitive. Fix a

stability condition ‡0 œ Stab(D), and define

�‡0 : ÁGL
+

2
(R)≠̃æStab(D), g ‘æ ‡0 · g.

Using this identification, one defines a map

s : Aut(D) æ ÁGL
+

2
(R), F ‘æ �≠1

‡0 (F · ‡0).

Since the Aut(D)-actions and ÁGL
+

2
(R)-actions on Stab(D) commute

with each other, the map s is a group homomorphism.
Next, we define the second group homomorphism t. Recall that

elements in ÁGL
+

2
(R) can be represented by pairs (T, f), where T œ

GL+(2,R) and f œ HomeoZ(R) satisfy certain compatibility conditions.
The group homomorphism t is defined to be the map given by the
second component

t : ÁGL
+

2
(R) æ Homeo+

Z (R), (T, f) ‘æ f.

Now we compute the shifting numbers of an autoequivalence F œ
Aut(D). Choose a split generator G = O ü O(1), where O(1) is an
ample line bundle on the elliptic curve. By Theorem 2.2.6, we have

·
±(F ) = lim

næŒ

„
±

‡0(F n
G)

n
.
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Recall that both O and O(1) are stable with respect to any stability
condition on D. Denote „0 := „‡0(O) and „1 := „‡0(O(1)). Then

„0 = „F ·‡0(F (O)) = „‡0·s(F )(F (O)).

Hence F (O) is ‡0-stable and of phase ((t ¶ s)(F ))(„0). Denote the
image of F under t ¶ s by

ÂF := (t ¶ s)(F ) œ Homeo+

Z (R).

Then we have

„‡0(F n(O)) = ÂF (n)(„0), and similarly „‡0(F n(O(1))) = ÂF (n)(„1).

Therefore

„
+

‡0(F n
G) = ÂF (n)(max{„0, „1}) and „

≠

‡0(F n
G) = ÂF (n)(min{„0, „1}).

This proves

·(F ) = ·
±(F ) = Âfl( ÂF ) = (Âfl ¶ t ¶ s)(F ).

by Theorem 2.2.6. Since the composition of a group homomorphism
and a quasimorphism is a quasimorphism, this concludes the proof. ⇤

4.2. The derived category of an abelian surface
4.2.1. Theorem. Let D = DbCoh(X) be the bounded derived category

of coherent sheaves on an abelian surface X. Then ·
+(F ) = ·

≠(F )
and the shifting numbers

· = ·
± : Aut(D) æ R

give a quasimorphism.

Furthermore, the shifting numbers agree with the homogenization of

the quasimorphism

Â· : Aut(D) æ R
Â·(F ) = „‡0(F (k(x)))

where ‡0 is a fixed (geometric) stability condition and „‡0 denotes

the phase with respect to ‡0, while x œ X(C) is a point and k(x) is

the skyscraper sheaf at x.
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4.2.2. Distinguished component and slice. We first recall the de-
scription of a distinguished connected component Stab†(D) ™ Stab(D)
of the space of stability conditions on D. The main reference is [Bri08].
For each complexified ample class — + iÊ, i.e. —, Ê œ NS(X) ¢ R and Ê

ample, there is an associated stability condition ‡—,Ê œ Stab†(D). The
central charge of ‡—,Ê is given by

Z—,Ê(E) = Èexp(— + iÊ), v(E)Í ,

where È≠, ≠Í and v(≠) denote the Mukai pairing and Mukai vector,
respectively. Furthermore, skyscraper sheaves are ‡—,Ê-stable and of
phase 1, a fact particular to abelian surfaces. This collection of stability
conditions associated to complexified ample classes on X defines a
submanifold V (D) ™ Stab†(D).
4.2.3. Theorem (Bridgeland [Bri08, §15]). Let D be the bounded de-

rived category of coherent sheaves on an abelian surface, and consider

V (D) ™ Stab†(D) as above.

(i) The set V (D) defines a slice for the ÁGL
+

2
(R)-action, i.e. for

any ‡ œ Stab†(D), there exists a unique element g œ ÁGL
+

2
(R)

such that ‡ · g œ V (D).
(ii) Autoequivalences preserve the distinguished connected compo-

nent Stab†(D), i.e. for any ‡ œ Stab†(D) and F œ Aut(D),
F · ‡ œ Stab†(D),

Now we prove Theorem 4.2.1.

Proof of Theorem 4.2.1. By [AM16] line bundles are stable with respect
to stability conditions in V (D) and therefore stable with respect to
stability conditions in Stab†(D) by Theorem 4.2.3(i) since V (D) is a
slice for the ÁGL

+

2
(R)-action. By Theorem 4.2.3(ii) the images of line

bundles or skyscraper sheaves under autoequivalences are also stable
with respect to any stability condition in Stab†(D).

Fix now a stability condition ‡0 œ V (D) and a split generator G =
O ü O(1) ü O(2). We would like to compute the shifting numbers via
Theorem 2.2.6:

·
±(F ) = lim

næŒ

„
±

‡0(F n
G)

n
.

For any line bundle L and skyscraper sheaf k(x) on X, one has
Hom(L, k(x)) ≥= Hom(k(x), L[2])‚ ”= 0.

Therefore
„‡0(F n

k(x)) ≠ 2 Æ „‡0(F n
L) Æ „‡0(F n

k(x))
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for any autoequivalence F and any n œ Z. Hence
„‡0(F n

k(x)) ≠ 2 Æ „
≠

‡0(F n
G) Æ „

+

‡0(F n
G) Æ „‡0(F n

k(x)).
By dividing n and taking n æ Œ, one obtains

lim sup
næŒ

„‡0(F n
k(x))

n
Æ ·

≠(F ) Æ ·
+(F ) Æ lim inf

næŒ

„‡0(F n
k(x))

n
.

Thus the limit limnæŒ

3
„‡0(F n

k(x))/n

4
exists and we have agreement

of upper and lower shifting numbers:

·(F ) = ·
±(F ) = lim

næŒ

„‡0(F n
k(x))

n
.

Observe that · is the homogenization of
Â· : Aut(D) æ R, F ‘æ „‡0(F (k(x))).

Therefore, to prove the theorem, it su�ces to show that Â· is a quasimor-
phism, i.e. there exists a constant C such that for any F, G œ Aut(D),

|Â·(FG) ≠ Â·(F ) ≠ Â·(G)| Æ C.

One can assume that
0 < „‡0(F (k(x))) Æ 1 and 0 < „‡0(G(k(x))) Æ 1

by composing F and G with appropriate powers of the shift functor
[1] œ Aut(D). It remains to find an uniform bound of „‡0(FG(k(x)))
under these conditions.

Let g = (T, f) œ ÁGL
+

2
(R) be the unique element such that F

≠1
‡0g œ

V (D). Then
f(1) = „F ≠1‡0(k(x)) = „‡0(F (k(x))) œ (0, 1]

by our assumption. The quantity we would like to bound is
„‡0(FG(k(x))) = „F ≠1‡0(G(k(x))) = f(„F ≠1‡0g(G(k(x)))).

There exists an integer n such that G(k(x))[n] is a coherent sheaf on
X, since any Fourier–Mukai transform between derived categories of
abelian surfaces is a sheaf transform [BM01, Corollary 2.10]. Then by
[Bri08, Lemma 10.1(c)],

≠1 < „‡0(G(k(x))[n]) Æ 1.

Since we assumed that 0 < „‡0(G(k(x))) Æ 1 it follows that ≠1 Æ n Æ
0.

Since F
≠1

‡0g œ V (D), again by [Bri08, Lemma 10.1(c)] we have
≠1 < „F ≠1‡0g(G(k(x))[n]) Æ 1.
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Hence
≠2 < „F ≠1‡0g(G(k(x))) Æ 1.

Since f is an increasing map and compatible with integral shifts, using
f(1) œ (0, 1] we obtain

≠3 < f(≠2) Æ „‡0(FG(k(x))) = f(„F ≠1‡0g(G(k(x)))) Æ f(1) Æ 1.

This concludes the proof. ⇤

4.3. The Calabi–Yau categories of the A2 quiver
4.3.1. Setup. Fix for this section a positive integer N Ø 3 and con-
sider the bounded derived category DN = DN(A2) of the N -Calabi–Yau
Ginzburg dg-algebra associated to the A2 quiver (• æ •). It is one of
the simplest triangulated categories admitting spherical objects with
non-trivial intersections. We refer to [Gin06, Kel11] for the precise defi-
nition. The triangulated category DN is characterized by the following
properties:

(i) It is an N -Calabi–Yau category, i.e. we have isomorphism
Hom•(E, F ) ≥= Hom•(F, E[N ])‚ for any E, F œ DN .

(ii) It is generated by two N -spherical objects S1 and S2 satisfying
Hom•(S1, S2) = C[≠1].

The space of Bridgeland stability conditions of DN is studied in [BQS20].
There is a distinguished connected component Stabú(DN) ™ Stab(DN)
containing stability conditions whose heart P (0, 1] coincides with the
canonical heart HN = ÈS1, S2Íext

(see [BQS20, §2 and §4]).
Consider the subgroup Autú(DN) ™ Aut(DN) generated by the shift

functor [1] and the spherical twists T1, T2 associated to the spherical
objects S1, S2. By [BQS20, Proposition 2.7], the subgroup can be
described using generators and relations as

Autú(DN) =
=

T1, T2, [1]
---- T1T2T1 = T2T1T2, (T1T2)3 = [4 ≠ 3N ], Ti[1] = [1]Ti

>
.

4.3.2. Central extension and braid group. The presentation of
Autú(DN) above allows us to write it as a central extension of PSL2(Z):

1 æ Z æ Autú(DN) –≠æ PSL2(Z) æ 1.

The map Z æ Autú(DN) sends 1 to the shift [1] and – is given by

T1 ‘æ
A

1 1
0 1

B

, T2 ‘æ
A

1 0
≠1 1

B

, and [1] ‘æ
A

1 0
0 1

B

in PSL2(Z).

As a preliminary to the main result of this section, we need:
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4.3.3. Definition. The group homomorphism w : Autú(DN) æ R is
defined by setting

w(T1) = w(T2) = 4 ≠ 3N

6 and w([1]) = 1.

4.3.4. Theorem. The map given by the shifting number

· : Autú(DN) æ R

is a quasimorphism. More precisely,

· = w ≠ 1

6
(„ ¶ –),

where „ is the (homogenization of the) Rademacher function on

PSL2(Z), see Appendix A.

Recall the following shorthand notation used in [FFH+19].
4.3.5. Definition. Let E, A1, . . . , An be objects in a triangulated cat-
egory D. We write

E œ {A1, . . . , An}

if there exists a sequence of exact triangles Bi≠1 æ Bi æ Ai
+1≠æ for

1 Æ i Æ n, such that B0 = 0 and Bn = E. Note that the (ordered)
elements A1, . . . , An are not required to be the Harder–Narasimhan
factors of E with respect to a stability condition.

We will make use of the following computations of Ti(Sj) for i, j œ
{1, 2}, which can be established from the definition of the spherical
twists, cf. [BQS20, §2].
4.3.6. Lemma. Let N Ø 3 be an integer. In DN = DN(A2), we have

T1(S1) = S1[1 ≠ N ] and T1(S2) œ {S2, S1},

T
≠1

2
(S2) = S2[N ≠ 1] and T

≠1

2
(S1) œ {S2, S1}.

The next result computes the upper and lower shifting numbers,
assuming a specific presentation of an autoequivalence.
4.3.7. Proposition. Take F = T

a1
1 T

≠b1
2 · · · T

ak
1 T

≠bk
2 œ Autú(DN) for

some ai, bi Ø 0. Then

·
+(F ) = (N ≠ 1)

kÿ

i=1

bi and ·
≠(F ) = ≠(N ≠ 1)

kÿ

i=1

ai

Hence ·(F ) = 1≠N
2

(q
i(ai ≠ bi)).

Proof. Choose a split generator G := S1 üS2 œ DN . Let ‡ œ Stabú(DN)
be a stability condition such that S1, S2 and their shifts are the
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only indecomposable ‡-semistable objects, and their phases satisfy
0 < „‡(S1) < „‡(S2) < 1. By Lemma 4.3.6, we have

F
n
G œ {S

üm1
i1 [(N ≠ 1)n1], . . . , S

ümk
ik

[(N ≠ 1)nk]}
for some i1, . . . , ik œ {1, 2}, m1, . . . , mk > 0, and n1, . . . , nk œ Z. As an
intermediate claim, we assert that

• „
+

‡ (F n
G) = max1Æ¸Æk{„‡(Si¸

) + (N ≠ 1)n¸}, and
• „

≠

‡ (F n
G) = min1Æ¸Æk{„‡(Si¸

) + (N ≠ 1)n¸}.
To establish the assertion, consider first the case when the phases of

these objects are strictly decreasing, i.e.
„‡(Si1) + (N ≠ 1)n1 > · · · > „‡(Sik

) + (N ≠ 1)nk.

Then {S
üm1
i1 [(N≠1)n1], . . . , S

ümk
ik

[(N≠1)nk]} is the Harder–Narasimhan
filtration of F

n
G, and the assertion follows.

Next, if there are two consecutive terms with the same phase
„‡(Si¸

) + (N ≠ 1)n¸ = „‡(Si¸+1) + (N ≠ 1)n¸+1

then i¸ = i¸+1 and n¸ = n¸+1. Since Hom(Si, Si[1]) = 0 for i = 1, 2, one
can merge these two terms and obtain

F
n
G œ {S

üm1
i1 [(N ≠ 1)n1], . . . , S

üm¸+m¸+1
i¸

[(N ≠ 1)n¸],
S

üm¸+2
i¸+2 [(N ≠ 1)n¸+2], . . . , S

ümk
ik

[(N ≠ 1)nk]}.

Therefore if the phases of these objects are nonincreasing
„‡(Si1) + (N ≠ 1)n1 Ø · · · Ø „‡(Sik

) + (N ≠ 1)nk,

then one can merge the terms with the same phases and obtain the
Harder–Narasimhan filtration of F

n
G, which proves the assertion.

Finally, suppose there exists some ¸ such that
„‡(Si¸

) + (N ≠ 1)n¸ < „‡(Si¸+1) + (N ≠ 1)n¸+1.

Then the pair of objects {S
üm¸
i¸

[(N ≠ 1)n¸], S
üm¸+1
i¸+1 [(N ≠ 1)n¸+1]} is of

one of the following types:
• {S

üm¸
i [(N ≠1)n¸], S

üm¸+1
i [(N ≠1)(n¸ +m)]} for some i œ {1, 2}

and m > 0,
• {S

üm¸
2 [(N ≠ 1)n¸], S

üm¸+1
1 [(N ≠ 1)(n¸ + m)]} for some m > 0,

• {S
üm¸
1 [(N ≠ 1)n¸], S

üm¸+1
2 [(N ≠ 1)(n¸ + m)]} for some m Ø 0.

Using the fact that Hom•(Si, Si) = CüC[≠N ], Hom•(S1, S2) = C[≠1],
Hom•(S2, S1) = C[1 ≠ N ], and the assumption that N Ø 3, it follows
that there are no nontrivial extensions, i.e.

Hom(Süm¸+1
i¸+1 [(N ≠ 1)n¸+1], S

üm¸
i¸

[(N ≠ 1)n¸][1]) = 0,
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between the relevant objects. Therefore one can swap the order of
{S

üm¸
i¸

[(N ≠ 1)n¸], S
üm¸+1
i¸+1 [(N ≠ 1)n¸+1]} and still have

F
n
G œ {S

üm1
i1 [(N ≠ 1)n1], . . . , S

üm¸+1
i¸+1 [(N ≠ 1)n¸+1],

S
üm¸
i¸

[(N ≠ 1)n¸], . . . , S
ümk
ik

[(N ≠ 1)nk]}.

Hence one can reorder the sequence {S
üm1
i1 [(N ≠ 1)n1], . . . , S

ümk
ik

[(N ≠
1)nk]} and assume that they are of decreasing phases. The claim then
follows from the previous argument.

Now we can compute „
±

‡ (F n
G) where G = S1 ü S2 and F =

T
a1
1 T

≠b1
2 · · · T

ak
1 T

≠bk
2 œ Autú(DN) for some ai, bi Ø 0. Using Lem-

ma 4.3.6 we compute that

„
+

‡ (F n
G) = max

1Æ¸Æk
{„‡(Si¸

) + (N ≠ 1)n¸} = „‡(S2) + n(N ≠ 1)
kÿ

i=1

bi

and

„
≠

‡ (F n
G) = min

1Æ¸Æk
{„‡(Si¸

) + (N ≠ 1)n¸} = „‡(S1) ≠ n(N ≠ 1)
kÿ

i=1

ai.

By Theorem 2.2.6, we have

·
+(F ) = lim

næŒ

Q

a„‡(S2)
n

+ (N ≠ 1)
kÿ

i=1

bi

R

b = (N ≠ 1)
kÿ

i=1

bi

and

·
≠(F ) = lim

næŒ

Q

a„‡(S1)
n

≠ (N ≠ 1)
kÿ

i=1

ai

R

b = ≠(N ≠ 1)
kÿ

i=1

ai

as claimed. ⇤
4.3.8. Proof of Theorem 4.3.4. Let F œ Autú(DN) be an autoequiv-
alence. First consider the case when –(F ) œ PSL2(Z) is of finite order.
Then –(F ) is conjugate to either

–(T1T2T1) =
A

0 1
≠1 0

B

, –(T2T1) =
A

1 1
≠1 0

B

, –((T2T1)2) =
A

0 1
≠1 ≠1

B

, or I2.

Hence F can be written as
F = g ÂFg

≠1[n]

for some ÂF œ {T1T2T1, T2T1, (T2T1)2
, idDN }, g œ Autú(DN), and n œ

Z. Observe that there exists a power k Ø 1 such that F
k = [¸] for

some ¸ œ Z, since (T1T2)3 = [4 ≠ 3N ]. Hence the shifting numbers
satisfy ·(F ) = ·

±(F ) = w(F ) by Proposition 2.3.1(i)(ii). Note that
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„(–(F )) = 0 in this case since the quasimorphism „ vanishes on finite
order elements in PSL2(Z).

Next consider the case when –(F ) œ PSL2(Z) is of infinite order.
Then –(F ) is conjugate to a positive word in

–(T1) =
A

1 1
0 1

B

and –(T ≠1

2
) =

A
1 0
1 1

B

.

Hence F can be written as

F = gT
a1
1

T
≠b1
2

· · · T
ak
1 T

≠bk
2 g

≠1[n]

for some a1, b1, . . . , ak, bk Ø 0 (not all zero), g œ Autú(D), and n œ Z.
Using Proposition 4.3.7 and Proposition 2.3.1(i)(iv) we find

·(F ) = 1 ≠ N

2

3 kÿ

i=1

(ai ≠ bi)
4

+ n.

Recall that

w(F ) = 4 ≠ 3N

6

3 kÿ

i=1

(ai ≠ bi)
4

+ n

and

„(–(F )) =
kÿ

i=1

(ai ≠ bi).

This proves that the shifting number can be expressed as · = w≠1

6
(„¶–).

Since w and – are group homomorphisms and „ is a quasimorphism, it
follows that · is a quasimorphism. ⇤
4.3.9. Remark. The maps ·

± : Aut(DN) æ R given by the upper or
lower shifting numbers are not quasimorphisms. For instance,

|·+(T n
1

) + ·
+(T ≠n

1
) ≠ ·

+(id)| = n(N ≠ 1)

for any n > 0 by Theorem 3.2.2 and Proposition 2.3.1(ii)(iii).

5. Quasimorphisms on Lie groups
Outline. We describe the central Z-extension of a Lie group of Her-
mitian type and its associated quasimorphism in §5.1. In §5.2 we
then apply this construction to the group of autoequivalences of an
abelian surface and connect this quasimorphism to the shifting number
constructed earlier in Theorem 4.2.1.
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5.1. SO(2, fl)
We describe a classical quasimorphism on the universal cover of the
orthogonal group of signature (2, fl). A reference for the analogous case
of Sp

2g is Barge–Ghys [BG92], and for a reference covering all groups
of hermitian type see Burger–Iozzi–Wienhard [BIW10, §7].

5.1.1. Setup. Let NR be a real vector space equipped with a non-
degenerate inner product of signature (2, fl), with fl Ø 1. The inner
product of two vectors v, w is denoted by Èv, wÍ. The complexification
is denoted by NC := NR ¢R C.

Inside P (NC) we have the quadric of null-lines Q(NC), i.e. [v] such
that È[v], [v]Í = 0. Inside Q(NC) we have the hermitian symmetric
space D defined by

D := {[v] œ P(NC) : È[v], [v]Í = 0 Èv, vÍ > 0}

Over D we have a variation of weight 2 polarized Hodge structure, of
K3 type. The Hodge decomposition H

2,0 ü H
1,1 ü H

0,2 over a point
[v] œ D is given by:

H
2,0 = [v] H

0,2 := [v] H
1,1 :=

1
H

2,0 ü H
0,2

2‹

where the last orthogonal complement is for the indefinite inner product
(and it is also an orthogonal complement for the positive-definite inner
product induced by the Hodge structure). Define also

P :=
1
H

2,0 ü H
0,2

2
\ {v : Èv, vÍ = 0}(5.1.2)

We view P naturally as a subset of NC and observe that it has two
connected components. Denote by P+ the one that contains H

2,0. The
most direct way to see the structure of P is to quotient by the free C◊-
action and obtain a bundle over D, with fibers P (H2,0 ü H

0,2) ≥= P1(C)
with equators, corresponding to real vectors, removed.

In particular, observe that the inclusion H
2,0
◊ Òæ P+ induces a homo-

topy equivalence, where H
2,0
◊ denotes the bundle with the zero section

removed.
5.1.3. Remark (On the GL2(R)-action). The group GL2(R) naturally
acts on NC := NR ¢R C ≥= NR ¢ R2 via its action on R2. The subset
P µ NC is invariant under this action and the quotient is identified
with D. If we restrict to GL+

2
(R) then the quotient is two copies of D,

corresponding to the two components of P .
Note also that the map P+ æ D is not holomorphic, even though

restricted to the subset H
2,0
◊ µ P+ it is.
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5.1.4. The associated groups. Denote by G := SO¶(NR) the con-
nected component of the identity of the group of real isometries of the
indefinite pairing on NR. Then G acts transitively on D, with stabilizer
of a point [v0] equal to a maximal compact subgroup K of G. Fur-
thermore, the variation of Hodge structure and other spaces above also
admit G-actions and the maps between spaces are G-equivariant.

The group K is isomorphic to SO2(R) ◊ SOfl(R), where the SO2(R)
factor corresponds to real isometries of H

2,0 ü H
0,2 and SOfl(R) corre-

sponds to real isometries of H
1,1. Furthermore, the SO2(R)-factor is

naturally identified with the unitary rotations U(1) of H
2,0 (over the

basepoint [v0]).

5.1.5. Z-covers of groups and spaces. Observe that K is not simply
connected and we denote by ÊK the Z-cover of K corresponding to the
cover of SO2(R) by R. We ignore the additional cover that might come
from the case fl = 2. Recall also that G is homotopy-equivalent to K,
so we also have a Z-cover ÂG æ G. Both maps give central Z-extensions
of the groups G and K respectively.

Similarly, observe that the space P+ is also not simply connected.
Indeed if we take the quotient of P+ by the free C◊-action, we get
a disk bundle over D. The total space of the disk bundle is simply
connected, even contractible, so P+ has fundamental group Z. Recall
also that the disk bundle has a reference point, given by H

2,0. Fix now
a lift v0 œ H

2,0([v0]) = [v0] of the basepoint [v0] œ D and define the
associated universal covers ÂP+ æ P and ÊH2,0

◊ æ H
2,0
◊ .

We have natural actions of the groups: of G on P+ preserving H
2,0
◊ ,

and of ÂG on ÂP+ preserving ÊH2,0
◊ .

5.1.6. Quasimorphism on ÂG. We follow [BG92, Part C, Prop. 1.2]
in the setting of our group G isomorphic to SO2,fl(R), with some reinter-
pretations. Note that the construction of the quasimorphism involves
only the bundle H

2,0
◊ and its universal cover.

Fix a real isotropic vector, i.e. w0 œ NR\{0} such that Èw0, w0Í = 0.
It follows that for any v œ NC such that [v] œ D we have that Èv, w0Í ”= 0,
since relative to the Hodge decomposition determined by [v], the vector
w0 must have nontrivial (2, 0) and (0, 2)-components. Define for g œ G

the function

j[v](g) := È(gv), w0Í
Èv, w0Í

œ C◊ which only depends on [v], not v.
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We have the basic calculation

j[v](g1 · g2) = Èg1g2v, w0Í
Èg2v, w0Í

· Èg2v, w0Í
Èv.w0Í

= jg2[v](g1) · j[v](g2)
(5.1.7)

Define next the function „[v](g) := arg j[v](g) œ R/Z and its lift to the
universal cover ÂG of G:

� Â[v]
(Âg) = ÁargÂj Â[v]

(Âg)

which is the unique continuous extension to R of the pullback „[v](g)
from g, viewed as a map to R/Z.

Note for future reference that � Â[v]
(Âg + 1) = � Â[v]

(Âg) + 1 where 1
in the first expression denote adding 1 in the center of ÂG. Similarly
�

l· Â[v]
(Âg) = � Â[v]

(Âg) where l is in the center of ÂG again.

5.1.8. Theorem (Quasimorphism on orthogonal group). For a fixed

[Êv0] the map �
[ Âv0]

: ÂG æ R is a quasimorphism.

Proof. The basic cocycle relation in Eqn. (5.1.7) generalizes straightfor-
wardly to � to give

�
[ Âv0]

(Êg1Êg2) = �Âg2[ Âv0]
(Êg1) + �

[ Âv0]
(Êg2)

so it su�ces to check that
---�Âg2[ Âv0]

(Êg1) ≠ �
[ Âv0]

(Êg1)
--- Æ C for C independent of Êg1, Êg2.(5.1.9)

Observe next that adding elements of the center of ÂG to Êg1 does not
change the expression, so above we can replace Êg1 by its projection
g1 œ G. Similarly shifting the basepoint Á[v0] by an element of the center
does not a�ect the expression, and analogously for Êg2. So the expression
to be estimated depends only on the projections of the parameters to
D and G.

With these simplifications, the quantity in Eqn. (5.1.9) is bounded,
up to within 1, by the following geometric number. Connect [v0] and
g2[v0] by a path “t staying in D, and count (with sign) the total number
of times arg j“t(g1) crosses the origin.

In order to perform this computation, select representatives v0 and
v1 for [v0] and g2[v0] such that v0.w0 = 1 = v1.w0. The function j[v](g)
is independent of the choice of representative v, but when v.w0 = 1 the
function is polynomial in the entries of g. Taking “t = tv0 + (1 ≠ t)v1

makes the function j“t(g1) a polynomial in the entries of g1, of degree
bounded by fl + 2. It follows that this function crosses the real axis at
most fl + 2 times, so the defect in Eqn. (5.1.9) is at most fl + 3. ⇤
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5.1.10. Remark (Sections of the canonical bundle). The reader will
recognize that the above constructions use implicitly a trivialization
of the canonical bundle of the hermitian domain D, using the vector
w0 fixed initially. Incidentally, the same construction that gives a
nonvanishing holomorphic section of H

1,0 (for weight 1 variations of
Hodge structure) and H

2,0 (for weight 2 variations of Hodge structure
of K3 type) is used in [Kon97] and [Fil18] respectively to compute
Lyapunov exponents of the corresponding local systems.

5.2. Autoequivalences and Lie groups
5.2.1. Setup.
5.2.2. Theorem (Quasimorphisms for abelian surfaces). Suppose that

X is an abelian surface of Picard rank fl, D is its derived category,

and NZ is its Mukai lattice, of signature (2, fl).
(i) Let Aut¶D denote the finite index subgroup of AutD that maps

to SO¶ (NR) under the natural map AutD æ O(NR). Then

there exists a lift

Aut¶D æ ÁSO¶(NZ) Òæ ÁSO¶(NR)

to the central extension of SO¶(NZ) coming from the central

extension of the corresponding Lie group constructed in §5.1.5.

The double shift functor [2] maps to the generator of the center.

(ii) The homogenization of the quasimorphism in Theorem 5.1.8

agrees with twice the shifting number quasimorphism from The-

orem 4.2.1, when restricted to Aut¶D.

Proof. The existence of the lift and its properties follow from [Bri08,
Thm. 15.2].

The agreement of the homogeneous quasimorphisms, one coming from
the Lie group and the other from the shifting number, follows from the
agreement of their pre-homogenized versions Â· in Theorem 4.2.1 and
�

[ Âv0]
in Theorem 5.1.8. Indeed Â·(F ) = „‡0(F (k(x))), so we can take

[Êv0] = ‡0 under Bridgeland’s identification of Stab†(X) and ÁP+ (loc.
cit.). We also take w0 in the construction of �

[ Âv0]
to be the Mukai

vector of k(x). ⇤

5.2.3. Remark (The case of K3 surfaces). In the case of K3 surfaces,
we cannot expect an agreement of the two quasimorphisms. According
to Theorem 3.2.2 spherical twists have non-trivial shifting numbers
when N = 2, but their second powers generate a group that’s (at least
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conjecturally for fl Ø 2) “disjoint” from the relevant central extension,
see [BB17, Thm. 1,4].

Nonetheless, let us note that the construction of Theorem 5.2.2(i)
works for K3 surfaces and yields a quasimorphism there. We do not
know if the shifting number · also gives a quasimorphism on AutD in
this case.

Appendix A. An explicit quasimorphism on
PSL2(Z)

Outline of section. In this section, we define an explicit quasimor-
phism „ : PSL2(Z) æ R that is used in §4.3. More information and
further details appear in [BG92].

We start by recalling a fact about constructing quasimorphisms on
free products of groups. For a group G define C

odd

b (G,R) to be the
set of bounded functions f : G æ R such that f(g) = ≠f(g≠1) for any
g œ G.

Let {Gs}sœS be a collection of groups and let G = ısœSGs be the
associated free product group. Then any element x œ G \ 1 can be
uniquely written as x = x1x2 · · · xn such that xi œ Gsi is nontrivial and
si ”= si+1 for each i.
A.0.1. Proposition ([Rol09, Prop. 4.1]). Let {fs}sœS be a collection of

functions such that fs œ C
odd

b (Gs,R) and supsœS ÎfsÎŒ
< Œ. Then

the function g : G æ R defined by

g(x) =
nÿ

i=1

fsi(xi)

is a quasimorphism.

A.0.2. Presentation and elements of PSL2(Z). Recall that we have
the following presentation:

PSL2(Z) = (Z/2Z) ú (Z/3Z) =
e
S, U : S

2 = U
3 = 1

f

with matrices

S =
A

0 ≠1
1 0

B

U =
A

0 ≠1
1 1

B

L = SU =
A

1 1
0 1

B

R = SU
≠1 =

A
1 0
1 1

B
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Any element in PSL2 (Z) can be uniquely written as
S

”1U
‘1SU

‘2S · · · SU
‘mS

”2(A.0.3)
for some ”1, ”2 œ {0, 1} and ‘1, . . . , ‘m œ {≠1, 1}.
A.0.4. Definition. Define „0 : PSL2(Z) æ R by

„0(A) :=
ÿ

i

‘i

if A = S
”1U

‘1SU
‘2S · · · SU

‘mS
”2 for some ”1, ”2 œ {0, 1} and ‘1, . . . , ‘m œ

{≠1, 1}. This is also called the Rademacher function in [BG92, §B-4]
This defines a quasimorphism on PSL2(Z) by Proposition A.0.1.

A.0.5. Definition. Define „ : PSL2(Z) æ R to be the homogenization
of „0, i.e.

„(A) := lim
næŒ

„0(An)
n

.

It is a standard fact that the homogenization of a quasimorphism
is again a quasimorphism. Moreover, it is homogeneous in the sense
that „(An) = n„(A), and is constant on conjugacy classes. There is an
alternative description of „ which we use in §4.3.
A.0.6. Lemma. Let A be an element in PSL2(Z).

(i) If A is of finite order, then „(A) = 0.

(ii) If A is of infinite order, then it is conjugate to a positive

word in L and R, i.e. A = BL
a1R

b1 · · · L
akR

bkB
≠1

for some

a1, b1, . . . , ak, bk Ø 0 not all zero, and B œ PSL2(Z). Moreover,

we have

„(A) =
kÿ

i=1

(ai ≠ bi).

Proof. Part (i) follows from the fact that „ is homogeneous. Now
suppose A œ PSL2(Z) is of infinite order. Let us see that A can be
conjugated to a positive word in L = SU and R = SU

≠1. Using the
presentation in Eqn. (A.0.3), observe that by one conjugation by S we
can ensure that the last letter is not S. If the first letter is S then we
are done, otherwise we conjugate by U

≠‘1 . If ‘m + ‘1 ”= 0 then we are
done, otherwise we apply an S-conjugation again to remove the S at
the end and repeat this argument. Either the process of conjugation
stops, and the claim follows, or we are left at the end with S or U ,
which are finite order (a contradiction since A was assumed of infinite
order and conjugacy does not change this fact).

Observe from the definition of „0 that if W is a positive word in L

and R, then „0(W n) = n„(W ) for any n œ N, hence „(W ) = „0(W ).
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Since „ is constant on conjugacy classes, we have

„(A) = „(La1R
b1 · · · L

akR
bk)

= „0(La1R
b1 · · · L

akR
bk)

=
kÿ

i=1

(ai ≠ bi).

which is the required claim. ⇤
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