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The Southeastern United States has high landscape heterogeneity, with heavily

managed forestlands, developed agriculture, andmultiplemetropolitan areas. The

spatial pattern of land use is dynamic. Expansion of urban areas convert forested

and agricultural land, scrub forests are converted to citrus groves, and some

croplands transition to pine plantations. Previous studies have recognized that

forest management is the predominant factor in structural and functional changes

forests, but little is known about how forest management practices interact with

surrounding land uses at the regional scale. The first step in studying the spatial

relationships of forest management with surrounding landscapes is to be able to

map management practices and describe their proximity to various land uses.

There are two major difficulties in generating land use and land management

maps at the regional scale by any method: the necessity of large training data sets

and expensive computation. The combination of crowdsourced, citizen-science

mapping and cloud-based computing may help overcome those difficulties. In

this study, OpenStreetMap is incorporated into mapping land use and shows great

potential for justifying and monitoring land use at a regional scale. Google Earth

Engine enables large-scale spatial analysis and imagery processing by providing a

variety of Earth observation datasets and computational resources. By

incorporating the OpenStreetMap dataset into Earth observation images to

map forest land management practices and determine the distribution of other

nearby land uses, we develop a robust regional land-use mapping approach and

describe the patterns of how different land uses may affect forest management

and vice versa. We find that cropland is more likely to be near ecological forest

management patches; few close spatial relationships exist between land uses and

preservation forest management, which fulfills the preservation management

strategy of sustaining the forests, and production forests have the strongest

spatial relationships with croplands. This approach leads to increased

understanding of land-use patterns and management practices at local to

regional scales.
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1 Introduction

Land-use change is greatly altering terrestrial ecosystems

(Lambin and Meyfroidt, 2011; Forman, 2014). In the

Southeastern United States (SEUS), land-use changes are

responses to a wide array of socio-economic, environmental, and

climate drivers. Not only land conversions but also land

management changes alter large proportions of land over time

(Wear and Greis, 2013). Land-use change, which is a local-scale

land practice, has regional, continental, and global ecosystem

consequences. Forest ecosystems are strongly affected by

anthropogenic factors both inside and outside the forest, such as

timber extraction and suburban growth and cultivation (Radeloff

et al., 2010; Wear and Greis, 2012). Forest management practices,

which are forest land uses, are one of the major drivers of changes in

forest structure and function (Becknell et al., 2015; Marsik et al.,

2018).

Forests play an important role in the ecological and social

conditions of the SEUS. They provide critical habitat for a wide

variety of plant and animal species, including many that are

threatened or endangered. Forests also regulate local and regional

water cycles, help control flooding and soil erosion, and contribute

to the overall health of the landscape (Riitters et al., 2002). In

addition to their ecological importance, forests are also an important

part of the region’s social and economic fabric (Marsik et al., 2018).

They provide recreation opportunities for residents and tourists

alike, support a thriving timber industry, and offer a host of other

economic benefits. With all these benefits, it is clear that forests are a

vital part of the SEUS. However, they are also under threat from a

variety of sources, including development, pollution, and climate

change (Becknell et al., 2015). It is important to work to protect and

restore forests in the region so that they can continue to provide

these important benefits for generations to come.

The interactions among different land-use types may be forces of

landscape-wide and even global importance. Land-use transitions

from one type to another are more likely in areas already close to the

second land uses (Fischlin et al., 2007). For example, in the SEUS

significant expansions of urban areas often convert forested land to

urban uses, especially as urban land spreads outwards from the

already urbanized areas, and cropland has been converted to pine

plantations in areas where plantations are nearby (Wear and Greis,

2002; 2013). These kinds of landscape transitions may represent

macrosystem changes depending on their scale and extent and can

have immediate local social and ecological implications for

landowners and their management practices (Schulte et al., 2007;

Wassenaar et al., 2007). As such, understanding the relationships

between various land-use patterns and forest management at a

macrosystem level is of utmost importance. The current body of

knowledge regarding the influence of different land-use patterns’

proximity on forest management practices, and vice versa, remains

limited. To address this gap, we undertake an investigation that will

contribute to the study of effective forest management strategies and

to understanding of the influence of the proximity of various land-

use types on land-use and land-cover transitions.

One way to protect and restore forests is to understand better the

land-use patterns around them. In many cases, human activities

such as cultivation, housing developments, and industrial

development, can influence forest ecosystems (Kramer and

Doran, 2010; Wear and Greis, 2012; Wear and Greis, 2013).

However, if we study these land uses and their effects on forest

ecosystems, we can develop practices for mitigating the impacts.

This will help to ensure that forests in the SEUS are healthy and

thriving. Also, differently managed forests can spur developments

and land-use changes in different ways (Kramer and Doran, 2010;

Wear and Greis, 2012; Wear and Greis, 2013). For example,

landscapes in proximity to preserved forested regions have more

potential to be converted to residential areas (Kramer and Doran,

2010) and residential property close to protected areas is usually

more valuable.

As implied by the material and energy flows and organism and

gene exchanges that occur between them, forest ecosystems and the

land use that surround them have an intricate relationship. While

the interactions between protected forests and adjacent land uses

have been extensively studied, our understanding of the effects of

non-protected forest land conversion on adjacent land uses remains

limited. Despite the fact that a number of theoretical interactions

have been proposed (Groenveld et al., 2017; Briassoulis, 2020), the

lack of generalizability in case studies has contributed to a paucity of

knowledge regarding the mechanisms underlying these interactions.

Effective land management strategies require a comprehensive and

nuanced understanding of the relationship between non-protected

forest land conversion and nearby land uses. Hansen and Ruth

(2007) review on the ecological mechanisms linking protected areas

to surrounding lands provides a valuable starting point for such

investigations.

Changes in land use over time are also of critical importance.

Land-use changes are associated with social and biophysical system

changes (Turner et al., 1996). For example, land-use change can lead

to the fragmentation of forests which can then impact ecosystem

function (Riitters et al., 2002). Additionally, land-use change can

also alter hydrological regimes and water quality. As such, it is

important to consider land-use change when planning for the future

of forest ecosystems in the SEUS. Changes in land-use intensity and

land-use types influence nearby and even distant forest ecosystems

(Dunford and Freemark, 2005; Fahrig, 2013). Most land change

studies focus only on the transitions among the land covers at the

class level across the landscape (e.g., the conversion between forest

and cropland) (Verburg et al., 2002; Sohl and Sayler, 2008; Verburg

et al., 2009), rather than the within-class transitions. e.g., an area

stays forested but may change use from a natural forest area to

silviculture or an agricultural cropping system, i.e., agroforestry.

Researchers also focus on projecting land-use changes and

trajectories based on past patterns (Lawler et al., 2014). In

addition, ground-reference data related to land-use temporal

changes are often omitted, most often due to lack of availability

(Hurskainen et al., 2019).

The principles of mapping land use do not share the same

assumptions as those of mapping land cover. Land cover refers to the

physical land cover on the Earth’s surface, including both natural

and man-made features (Comber, 2008). Land cover is the physical

land cover type, such as buildings, roads, forests, grassland, or

wetland. It can be monitored using satellite remote-sensing

techniques. Forest cover is one type of land cover that is of

particular interest for many reasons, including the support it

provides for biodiversity, ecohydrological processes, other

environmental services, and combating climate change. By
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monitoring forest cover, we can better understand the health of these

ecosystems and take action to protect them (Becknell et al., 2015).

Land use is the human adoption of land cover to meet specific

needs. Land use refers to the way humans use land cover, such as for

agriculture, housing, or recreation (Comber, 2008). Land-use

features are decided and driven by people’s land-management

behaviors. We can monitor land-use change by looking at both

land-cover and land-use information. There are many ways to

monitor land-use changes. One common method is remote

sensing, which uses satellites or aircraft to collect images of the

Earth’s surface. This can be used to track changes in land cover over

time (DeFries et al., 2007). Another common method is ground-

reference data collection, which involves physically visiting sites on

the ground to observe and document changes. Ground-reference

data are often used in combination with remote sensing to verify and

interpret satellite data (Sanchez-Azofeifa, 1996; Marsik et al., 2018).

It can be difficult to distinguish land use from land cover using

remote sensing alone, so ground-reference data are an important

part of land-use monitoring.

There are many challenges to monitoring land-use change. One

challenge is that land use can be hidden by land cover. For example,

a forest may still be a forest even if it will soon be logged or is part of a

protected area. Another challenge is that land use can vary greatly

over short distances. For example, a field may be used for agriculture

on one side and housing on large parcels on the other. This canmake

it difficult to create accurate maps of land use. Despite these

challenges, it is important to monitor land-use change. Land use

has a major impact on the environment and understanding how it is

changing is essential for effective environmental management

(Turner, 1994; Schulte et al., 2007).

In the phrase “social-ecological Earth observation dataset”, the

term “social” relates to information about human social systems and

includes citizen-contributed data, satellite-collected Lights at Night

data (Sutton et al., 2009; Li et al., 2017) and land ownership data. To

map regional land management practices, we utilized ground data

such as ownership information, long-term phenological patterns

and their changes, and the structure of the surrounding landscape to

infer forest management classes (Marsik et al., 2018). We use the

Earth observation datasets, which have close relationships with

human activities, such as the night light (VIIRS Stray Light

Corrected Nighttime Day/Night) and land ownership (Marsik

et al., 2018) databases. Citizen science is a term used for

scientific research that is conducted by members of the public,

rather than professional scientists (Goodchild, 2007). Citizen science

projects can be used to collect data on a wide variety of topics, from

environmental conditions to astronomical events (Goodchild and

Glennon, 2010; Haklay, 2010). Citizen science has been used in land-

use mapping for many years (Goodchild, 2007; Antoniou et al.,

2016). These maps are important tools for conservation planning, as

they can help decision-makers understand where different types of

ecosystems are located. Citizen science projects can contribute to the

creation of these maps by collecting data on the location and extent

of different types of land cover (Yang et al., 2017). Recent advances

in technology have made it possible for citizen science projects to

collect data more efficiently and accurately than ever before (Haklay

and Weber, 2008; Neis and Zielstra, 2014; Yang et al., 2017). For

example, the use of GPS devices and smartphones can allow citizen

scientists to quickly and easily record the location of different types

of land cover and use. In addition, online mapping tools can be used

to share data with other project participants and mapmakers.

Citizen science projects like these are important and useful for

creating accurate and up-to-date land-use maps. Citizen science can

increase our understanding of land-use patterns and management

practices while engaging the public at local, regional, and global

scales to study their environment (Goodchild, 2007; Haklay and

Weber, 2008; Goodchild and Glennon, 2010; Theobald et al., 2015).

For example, citizen-contributed data fromNew York Breeding Bird

Atlas detected the potential for colonization, extinction, and the

absence of bird species due to forest fragmentation (Zuckerberg and

Porter, 2010). Involving citizen science to inform land-use

management and conservation practices can usually lead to a

more effective outcome of research success and land

management practices, because it raises awareness and garners

support for the project among the public (Dickinson et al., 2012;

Yang et al., 2017).

Open Street Map® (OSM) (www.OpenStreetMap.org) is a

collaborative project to create a free, editable map of the world.

The maps are created by volunteer contributors using GPS devices,

aerial photography, and other sources. OSM is used by individuals

and organizations for a variety of purposes, including land-use

planning, disaster response, and route planning (Haklay and

Weber, 2008; Neis and Zielstra, 2014; Yang et al., 2017). OSM is

one example of a citizen science project that relies on the voluntary

contributions of its participants to create a useful resource for the

community. Organizations such as the Red Cross and the United

Nations Office for Coordination of Humanitarian Affairs use OSM

data to plan relief efforts and respond to natural disasters. Businesses

such as Foursquare and Craigslist use OSM data to provide location-

based services. Non-profit groups such as Mapbox and

OpenStreetMap US use OSM data to create maps and apps that

are available to the public. The success of OSM depends on the

continued participation of its contributors.

In this research, we collect historical crowdsourced data from

OSM to map regional land use and then generate a land-use change

map over a 5-year period to determine how land use and thus land

management have changed. We then examine the proximity of

different land uses to areas with four different forest management

approaches to determine the spatial relationships of forest

management with land uses. We focus on the SEUS region,

which has high landscape heterogeneity, heavily managed

forestlands, developed agriculture, and multiple metropolitan areas.

There are twomain types of forest ownership in the southeastern

United States: public and private. Public forests are owned by

governments and are managed for the benefit of the public.

Private forests are owned by individuals or companies and are

managed for their own benefit. In SEUS, we define forest

management types in four categories: production forestry,

ecological forestry, wilderness or preservation, and passive

forestry (Becknell et al., 2015; Marsik et al., 2018). Ecological

management involves managing the forest in such a way as to

not only realize gains from timber harvest but also maintain or

improve the forest’s ecological health (Franklin et al., 2018). This

may include activities such as planting native species, maintaining

an uneven age structure so that forest structure will be more diverse,

thinning non-native or invasive species, and reducing pollution.

Passive management is a hands-off approach that generally involves
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leaving the forest to its own devices. This approach is often used in

areas where the forest is not actively threatened by human activity or

natural disasters, is in soils too wet, such as riparian areas, to support

harvesting machinery, or belongs to owners who simply want to

have an intact forest. Wilderness or preservation management, in

contrast, seeks to protect the forest in its natural state and may be

used in certain public forests where conservation is the primary goal.

Each of these management approaches comes with its unique set of

consequences and complexities on the landscape, affecting not only

the biodiversity within the forests but also the patterns of land use in

surrounding regions. Recent developments in cloud computing,

collaborative mapping, and user-generated content platforms,

such as volunteered geographic information (VGI), have spawned

a new era in geographic visualization (geo-visualization or mapping

and visualizing the world), such that the combination of

crowdsourced mapping and cloud-based computing may

overcome these difficulties (Southworth and Muir, 2021).

In this study, OSM is incorporated into mapping land use to

identify and monitor land use at a regional scale. We use Google

Earth Engine (GEE) to enable large-scale spatial analysis and image

processing by providing a variety of Earth observation datasets and

powerful computational resources (Haklay and Weber, 2008;

Southworth and Muir., 2021). By focusing our prime objective

on the mapping of landmanagement practices, a robust, automated

regional land-use mapping approach is developed by incorporating

the OSM dataset with GEE’s available Earth observation imagery.

Since the SEUS is heavily forested, the diverse land-use

characteristics are often hidden under the canopy, which results

in the land-use patterns of the SEUS not being visible with routine

remote sensing methods. In this analysis, we incorporate

anthropogenic Earth observation datasets (such as nightlight

and ownership) with the crowdsourced OSM database to first

create land-use maps for two dates: 2013 and 2018, across our

study area, and to then create a land-use change analysis or

transition image from these products. We then use these

individual land-use maps for 2013 and 2018 to identify all

forest patches, indicating forest management type as part of the

patch type record, and highlight the fragmented nature of forest

cover across this region as a function of extensive road networks

(Reed et al., 1996; Heilman et al., 2002; Riitters et al., 2002). Finally,

we then study the spatial relationships among these managed forest

patches and the land use surrounding these patches as we increase

in distance from the forest patch edge. By proposing a land-use

change mapping framework, we aim to increase the accuracy of

mapping land use and expand the ability to map land use at the

regional scale. This analysis examines how the four dominant

forest management types interact with the surrounding land use

in the SEUS. In the heavily forested SEUS, we examine the spatial

patterns of land uses surrounding forest ecosystem patches by

asking the research question: “What are the land-use patterns

extending outwards from differently managed forestlands and

how do these change over time?”

2 Data sources and methods

The methods used within this study are highlighted in the

flowchart (Figure 1) indicating the multiple input data and steps

taken as part of this research. The specific data and details on the

analysis are outlined below.

FIGURE 1

Flowchart detailing analysis steps for the study.
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2.1 Study area

As a case for classifying land use and monitoring land-use change

around public and private forests, we chose an area of the Southeastern

U.S. Coastal Plain corresponding approximately with the Worldwide

Reference Systems II (WRS-2) path 17 row 39 (P17 R39), with

bounding latitude and longitude coordinates of approximately

31°13′N, 83°10′W (northwest corner), and 29°20′N, 81°41′W

(southeast corner) (Figure 2). The study area covers an area of

about 34,000 km2. The study area has a good representation of all

types of land uses and forest management practices in the SEUS. This

heterogeneous landscape consists of a mixture of natural and plantation

forests, large and small wetlands, several rivers with extensive riparian

areas, urban centers, urban and rural residential areas, and commercial

and small-scale agricultural operations. This diversity of land-cover

types is spatially heterogeneous, and patch sizes within the vegetation

classes vary across a wide range of scales.

2.2 Land-use change mapping strategy
design

The integration of remote sensing and GIS presents a robust tool

to monitor, quantify, and characterize landscape features in both

time and space (Reed et al., 1996; Heilman et al., 2002; Riitters et al.,

2002; Hawbaker and Radeloff, 2004; Espirito-Santo et al., 2014),

making it a promising approach to land-use change mapping

strategy design. The advent of Volunteered Geographic

Information (VGI) platforms has ushered in a new era of

mapping and visualizing land systems (Neis et al., 2011; Neils

and Zielstra, 2014; Hakley, 2010). Notably, OpenStreetMap

(OSM) is an excellent example of a VGI platform that facilitates

the rapid expansion of big data and cloud-based computing while

providing a more extensive range of applications than official

geographic road databases (Zielstra and Hochmair, 2013). The

use of OSM allows for the creation of more current and

comprehensive maps that reflect temporal changes (Girres and

Touya, 2010; Estima and Painho, 2013). Our land-use change

mapping strategy design focuses on creating multi-functional

management units, with urban areas being excluded from the

study using urban boundaries from the TIGER database (TIGER,

2015).

2.3 Historical OSM

There are several definitions made by OSM ODbL that need to

be clarified, namely,: objects, tags, and keys. The attributes of OSM

FIGURE 2

The map outlining the study region and the spatial distribution of forest-management types within the study region. The light gray part represents

non-forest regions. Forest management classes were mapped by Marsik et al. (2018).
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are called “tags”, and the major features stored in OSM are called

“keys”. An OSM “object”, e.g., a building, a road, or a parcel, is

composed of geographic location information and a set of “tags”.

Each object in the OSM must have at least one tag, but there is no

limit to the number of tags a specified object can have. The official

list of OSM tags is available on the map features wiki page: https://

wiki.OpenStreetMap.org/wiki/Map_Features. The tag taxonomy has

been agreed upon over years of experience and is still being updated,

which reflects a folksonomy approach based on a negotiation

process among OSM contributors (Ballatore and Mooney, 2015).

The “tags” can be reorganized, combined, and grouped in various

semantic ways to highlight the geospatial distribution of different

topics, and as such, they can be utilized in different research projects.

The full historical OSM database is available at https://planet.

osm.org. In this study, historical OSM was accessed through the

OSMAPI (https://wiki.OpenStreetMap.org/wiki/API), which allows

us to fetch, save, and analyze the raw data from OSM over time. In

our study area in 2013, there were 1,199 objects representing

buildings on the OSM in our study area, the number changed to

66,488 by October 2018. By 2018, there were more than

486 contributors who updated and edited the roads feature in the

study area, 230 contributors fixed the building features OSM and

262 contributors to amenities features.

2.4 OSM land-use classification semantics

In OSM the land-use tags are often marked with different

understandings of the land, e.g., for rangeland, it was marked as

“yellow field” or “farm” and even “grass”. The relationship between

OSM tags and labels was built based on the land-use classification

strategy with a framed dictionary (Table 1). To achieve this, we

converted OSM tags to five land-use classes: cropland/rangeland,

commercial/industrial, managed forest, residential areas and water

body. We then regrouped the OSM tags into those targeted classes

based on the framed dictionary (Table 1).

The OSM condensed land use definitions in this study are:

1) Cropland/rangeland—A land-use category, which is used to

produce crops or has the potential for sustainable grazing

(native grasses, grass-like vegetation, shrubs).

2) Commercial/Industrial—A land-use category consisting of

industrial, commercial, and institutional land, construction

sites, public administrative sites, railroad yards, cemeteries,

airports, golf courses, quarries, water control structures (Wear

and Greis, 2013).

3) Managed Forests—A land-use category that is covered with

forest. The categories of forest management are generally

consistent with the forest management type map produced by

the MANDIFORE group (Marsik et al., 2018). We also included

the areas that showed evidence of the natural regeneration of

trees and not currently developed for non-forest use.

4) Residential—A land-use category consisting of single- or multi-

family residential, apartment buildings, and small parks within

the urban and built-up areas.

5) Waterbody—Open water

2.5 Earth observation data

Several different Earth observation datasets were used in the

analysis, including.

1. We used Landsat data for 1/1/2013 and 8/1/2018, available on the

GEE API (Google Earth engine ID: LANDSAT/LC8_L1T_

ANNUAL_GREENEST_TOA). These Collection 2 Landsat

8 Operational Land Imager (OLI) data have a spatial

resolution of 30-m and are Top-of-atmosphere (TOA) and

Landsat 5 TOA reflectances (Chander et al., 2009).

2. We used global forest canopy height, version 2005 (Simard et al.,

2011): This dataset represents the canopy height at a global level

by incorporating the Geoscience Laser Altimeter System (GLAS)

TABLE 1 Crosswalk dictionary between natural and land-use classes and OSM labels.

This paper
land-use type

OSM labels

Key: Natural Key: Landuse Key: Amenities and places

Cropland/

Rangeland

Grassland, agricultural, or

USER_DEFINED

Farmland, farmyard, grass, greenfield,

greenhouse_horticulture, meadow, orchard, pasture,

plant_nursery, recreation_ground, vineyard, or

USER_DEFINED

Commercial/

Industrial

Commercial, retail, cemetery, depot, garages, religious,

Industrial, quarry, port, salt_pond, or USER_DEFINED

Bar, bbq, café, fast_food, food_court, restrurant,

college, kindergarten, archive, school, university,

boat_rental, car_rental, bus_station, parking, bank,

clinic, dentist, casino, cinema, nightclub, studio,

post_office, prison, or USER_DEFINED

Managed forests Wood, tree_row, scrub, or

USER_DEFINED

Forest, conservation, reservoir, or USER_DEFINED

Residential Residential, allotments, or USER_DEFINED House, apartment

Water body Water, wetland, bay, lake,

springs, or USER_DEFINED

Basin, pond, or USER_DEFINED

User-defined: Many land-use features are already on Map Features, but users are flexible in defining the features. https://taginfo.OpenStreetMap.org/.
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and ancillary data (Google Earth engine ID: NASA/JPL/global_

forest_canopy_height_2005)

3. Nighttime satellite imagery was used as proxies of mapping

human wellbeing and urban development (Sutton et al., 2009;

Li et al., 2017) (Google Earth engine ID: NOAA/VIIRS/DNB/

MONTHLY_V1/VCMSLCFG). VIIRS Stray Light Corrected

Nighttime Day/Night Band Composites Version 1 (Miller

et al., 2013): The dataset of nighttime has the global monthly

aggregated nightlight time data.

4. Land ownership is one of the key factors delineating land use

and forest management, especially under the currently

ongoing rapid urbanization and increasing rural

development, which may affect and alter the forest

management patterns. Landowners are classified as public

and private. There are six sub-types of public ownership,

which are federally protected, federal, state protected, state,

military, and local. Also, there are four sub-types of private

ownership: non-government organization, private, family,

and corporate. The ownership classification strategy is

made based on different management objectives, as well as

landowner skills, budgets, and interests. The Protected Area

Database for the United States (PAD-US) is the primary data

source to identify public ownership (USGS-PADUS-2.0).

2.6 Random Forest classification

We built a Random Forest (RF) classifier by incorporating

multiple remote sensing datasets as covariates, using GEE as the

mapping platform, and crowdsourcing-derived geotags as

training sample databases. We used OSM derived data as

training points to extract spectral statistics for use in the RF

classifier (Breiman, 2001). The efficiency and accuracy of the RF

classifier have been widely tested and recorded throughout

regional landscape mapping. The principle of RF is to apply a

bootstrapping aggregated sampling technique to build a series of

individual decision trees for the classifier. The major advantages

of the RF classifier are the capability of handling a large number

of training samples, its efficiency in dealing with the large

regional database, and its robustness to outliers and noise. To

remove the noise from the classification outputs, we used a 3 ×

3 cell majority filter for all land-use classes, except for

waterbodies for both the 2013 and 2018 images. All images

were resampled to 30 m spatial resolution using the nearest-

neighbor filter algorithm.

The total number of OSM-derived training samples are

3,150 and 3,870 for 2013 and 2018, respectively. We specified

two sets of 10-fold cross internal validations for the RF classifier

and assessed the individual contribution from each land-use type to

the overall accuracy of the land-use pattern maps. To optimize the

RF algorithm, we utilized 500 trees, a 70/30 split for training/

validation, and modified other parameters. These parameters

were carefully selected to balance model complexity and accuracy

and to avoid overfitting. Our results demonstrate the effectiveness of

the RF algorithm in accurately classifying land use from remote

sensing data. Furthermore, we present a novel approach for

generating training data using existing land use features, which

enhances the accuracy and efficiency of the classification process.

Overall, it highlights the potential of the RF algorithm for land use

classification in complex and diverse landscapes.

2.7 Forest patch analysis

First the forest patches, defined as groups of contiguous pixels of the

same management type separated from other groups by other

management types or non-forest pixels, were identified spatially, and

the size characteristics of each patch were determined for both 2013 and

2018, as follows: For each forest patch the forest management type

(ecological, passive, preservation or production) was recorded. To test

the land-use variations around each type of managed forest, a series of

spatial analyses were conducted. We created nine buffers at increasing

distances from the edge of the forest patches, from 500 m to 5,000 m at

an interval of 500 m. The reason to pick a buffer size ranging from

500 m to 5,000 m is based on the average patch size from the

management map (Figure 2; Table 2). In the study area, the overall

average management patch size is 26.6 ha, which leads to the

appropriate minimum buffer rings starting at around 360 m,

according to the methods in Defries et al. (2007). However, from

Table 2, as the size range of management patches is variable, we set nine

other increasing buffers to allow for an improved analysis of the

landscape. The land-use combinations of 2013 and 2018 of

cropland, residential areas, and commercial/industrial areas were

compared by plotting the proportion of each land-use type in the

different buffer distances. At larger scales of analysis, buffer overlap

could influence the independence of samples; however, after calculating

the maximum buffer overlap with other forested patches, which was

6.8% of the total study areas, we assume a minimal impact of buffer

overlap regionally.

3 Results

3.1 Land-use compositions and dynamics

Land use maps for 2013 (Figure 3) and 2018 (Figure 4) are given

here. Since the urban areas were masked, residential areas represent the

exurban and rural residential areas. There are significant differences

between the two study dates, despite their only being 5 years apart. The

proportion of the landscape in the residential area increased from 4.93%

to 8.87%. For the commercial/industrial class, an increase from 0.59% to

2.97% was found, and a similar trend was found with the cropland/

rangeland class with an increase of 6.22%–10.32% (Table 3).

TABLE 2 Management Patch size statistics of characteristics within the study

area.

Unit (ha) Min Max Mean Std

Total area 5.37 194,137.30 26.60 718.08

Ecological 5.37 2,683.23 19.37 92.03

Passive 5.37 7,700.88 22.48 95.95

Preservation 5.37 194,137.30 40.73 2,208.42

Production 5.37 12,992.22 41.54 275.10
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FIGURE 3

Land-Use Composition of the study area in 2013. Because the urban areas were subtracted, the residential and commercial/industrial areas are

those located in the suburban and rural residential areas.

FIGURE 4

Land-Use Composition of the study area in 2018. Because the urban areas were subtracted, the residential and commercial/industrial areas are

those located in the suburban and rural residential areas.
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From Figure 5 and Table 3, we found a strong trend of

deforestation and rural residential/suburban development, which

increased by 80%. There was also a 66%increase in cropland area

and a 407% increase in commercial/industrial area in the study area

from 2013 to 2018.

3.2 Accuracy assessment

Building the RF classifier is the starting point of our landscape

analysis; the results of the accuracy of land-use classification for both

2013 and 2018 are shown in Table 4. The land-use classification out-

of-bag (OOB) overall accuracy was close to 97%, with corresponding

Kappa values of 0.97 for both 2013 and 2018. Considering that land-

use patterns of 2013 and 2018 were extracted using the same

classification method and original image collections, we assumed

that the classification accuracies of this land-use change dataset are

comparable.

At the class level, the precision, or comparison of the true and

false classifications, ranges from 94% to 99%. Overall, the RF

classification rules, when coupled with crowd-sourced land-use

training samples show a strong potential to classify land-use type

well. In land-use mosaics from 2013, it was shown that the most

complex land-use changes occur at cropland/rangeland and

residential areas. This reflects the existence of rural residential

areas as well as their continued development. The residential

regions and the commercial/industrial areas are the classes in the

2018 land-use mosaics that have the most confusion. This indicates

that it is difficult to differentiate between those two classes due to the

high similarity of spectral signals in remote sensing imagery.

3.3 Adjacent land-use development

The percentage coverage of the five land uses adjacent to andwithin

different buffers for each type of forest management approach from

2013 to 2018 is individually shown in Figures 3, 4 and is compared

across the buffered region. We set the distance zones surrounding

patches of each management from 500 m to 5,000 m with a 500 m

interval, as those distances will cover enough spatial information to

show the subtle land-use change at a landscape level (Sanchez Azofeifa,

1996; Carey et al., 2011). Adjacent land-uses surrounding each forest

management type were analyzed. The results gave us an indication of

the distribution of each land-use class immediately around different

managed forest patches.

For the landscapes in proximity to ecological forests, there is not

a strong spatial relationship between the ecologically managed forest

and the surrounding lands, although there is more residential land

TABLE 3 Land-Use Change of Residential, commercial/industrial, and cropland/rangeland from 2013 to 2018.

2013 2018

Land-use type Area (Ha) Area percentage (%) Area (Ha) Area percentage (%)

Cropland/rangeland 184,519.17 6.22 306,119.70 10.32

Commercial/Industrial 17,367.66 0.59 88,159.05 2.97

Residential 146,158.2 4.93 263,094.12 8.87

FIGURE 5

Land-Use Change of Residential, commercial/industrial, and cropland/rangeland from 2013 to 2018.
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near ecological forests and that cropland is more likely to be near

ecological forest management patches (Figure 6). The proportions of

cropland, commercial/industrial and residential land uses decrease

within 1,500 m and then are stable out to 5,000 m. For landscapes in

proximity to passively managed forests, the surrounding land uses

are quite stable surrounding the passive management forests, except

for the croplands.

In Figure 6, few spatial relationships between land uses and

management are found within 500 m of preservation forestry, which

fulfills the preservation management strategy of sustaining the forests.

From 2013 to 2018, cropland and residential area proportions increased

with increasing distance from the preservation forests. Among all four

types of management approaches, production forests have the strongest

spatial relationships with croplands (Figure 6). The proportion of the

croplands surrounding production forests reached a peak of 20% at a

distance of 1,000 m, and then decreased rapidly. When the distance

from production forests is about 3,500 m, the residential proportion did

not change from 2013 to 2018.

As evident in Figure 6, there tends to be a sharp increase in land-use

proportion among different types of land use adjacent to each

management forest patch (except for cropland in 4,000–5,000 m

proximity of production forests). In 2013, cropland land uses

showed the strongest spatial relationships with production forest,

followed by passively managed forest, ecological forest, and finally,

preservation forest. However, in 2018, the order changed significantly

with the strongest spatial relationships with production forests, followed

by ecological forest, and then passivelymanaged forest and preservation

forests. In 2013, the proportion of cropland surrounding production

forest patches increased from 3.3% to 8.6%. However, the trend in

2018 shows an exponential decrease with increasing distance,

particularly from 1,000 m to 3,500 m.

3.4 Land-use change in SEUS from 2013 to
2018

Land use transitions are important to map and understand

(Figure 7). Table 5 shows the different transitions possible across the

study area with the associated land change. Notably, the dominant land

transitions were identified into seven major categories: stability (no

change (stability), commercialization, afforestation, cultivation, and

rural residential and suburban growth. Table 5 also shows the land-

use conversion matrix used by the spatial allocation procedure by

determining the possible land-use transition sequences. Just four types

from the land-use patterns map were used in this analysis: cropland,

commercial/industrial, managed forest, and residential.

We created a land transition analysis by combining the OSM

derived land-use maps for 2013 and 2018 to produce the land-use

transition patterns over the study area with a 30 m resolution. This

regional land-use pattern analysis seeks to identify the dominant

TABLE 4 Out-Of-Bag (OOB) error matrices for five land-uses classes in 2013 and 2018 in the study area.

2013 Classified data

Class Cropland Commercial/
Industrial

Forests Residential Water Producer’s accuracy (%)

References Data Cropland 373 1 6 7 2 95.89

Commercial/

Industrial

2 447 0 2 1 98.89

Forests 12 3 1,377 5 0 98.57

Residential 7 5 17 657 0 95.77

Waterbody 0 0 2 9 215 95.13

User’s Accuracy (%) 94.67 98.03 98.22 96.62 98.62 Overall Accuracy: 97.43%

2018 Classified data

Class Cropland Commercial/
Industrial

Forests Residential Water Producer’s accuracy (%)

References Data Cropland 468 1 12 7 2 95.51

Commercial/

Industrial

2 539 1 25 2 94.73

Forests 18 2 1,377 9 2 97.80

Residential 0 4 1 792 3 99.00

Waterbody 0 2 3 6 592 98.18

User’s Accuracy (%) 95.90 98.36 98.78 94.40 98.50 Overall Accuracy: 97.36%

Kappa coefficients k) of 2013 and 2018 are K2013 = 0.97 and K2018 = 0.97, respectively.
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patterns of land use change. Across the study area, several major

change patterns are recognized, together comprising a majority of

suburban growth, commercialization, and cultivation.

4 Discussion

4.1 Land-use mapping with OSM as training
samples

OSM was incorporated into mapping land use and showed great

potential for justifying and monitoring land use at a regional scale.

The results identified the spatial land-use patterns and the variations

around each type of managed forest with buffers ranging from 500 m

to 5,000 m for 2013 and 2018 (Figures 3, 4). Over the 34,000 km2

study area, there has been a large amount of land-use conversion from

2013 to 2018 (Figure 7). Deforestation is a clear trend in the study

area, despite economically valuable managed forests.

The nightlight remotely sensed images do a relatively better job

representing and mapping human footprints (Li et al., 2017) when

compared to using only the spectral imagery alone. The results of

this study support the use of nightlight imagery when mapping land

use. For example, Yang et al., 2017 used a variety of physical features

from Earth observation datasets (i.e., forest canopy height, DEM,

and EVI) to map regional land use in the same study area with an

accuracy of 95% (internal validation) and 74% (external validation).

In this study, land-use classifiers’ training sample sets were

extracted from historical OSM and resulted in high internal

validation accuracy (97% for 2013 and 97% for 2018). OSM

provides different data collection mechanisms than the traditional

authoritative geographic information obtained from official or

governmental institutions, agencies, or Earth observations. The

results demonstrate that OSM and citizen science data have

potential for mapping regional human footprints (represented as

land use in this study). In this study, the training samples

extracted from OSM were randomly selected. The error matrices

are based on internal validation. Based on our results, the classification

methods presented in this study are recommended mainly for

mapping broad land-use classes. Further accuracy testing through

external validation requires a large amount of historical land-use

documentary data, which can be a project for further study.

The data quality of OSM and its public participatory geospatial

database has always been recognized as a major concern by researchers

(Antoniou and Skopeliti., 2015; Mobasheri et al., 2018). The

contribution of OSM mappers is often based on perceptions rather

than scientific measurements, which makes it complex to measure the

FIGURE 6

The percentage of different land use based on the distances from the nearest forest patches under different management types (ecological, passive,

preservation, and production forest).

Frontiers in Remote Sensing frontiersin.org11

Yang et al. 10.3389/frsen.2023.1197523



mapping quality and positional accuracy. However, there are some

strategies to overcome the credibility challenges of those participatory

mapping databases. Firstly, there are always “superusers” in VGI

mapping projects. Those “superusers” make tremendous

contributions by providing a large amount of near-real time

accurate information. In addition, the quality control of OSM itself

is also a multi-user environmental validation process. Based on its

“wiki” principle, the community of OSM mappers can act as quality

filters, which means the dataset is self-validated by the other

contributors’ numerous times. In this analysis, we applied this

strategy to the point of self-validation. Finally, because of the vast

amount of OSM data, mapping effects are mostly aggregated based on

the ground truth data provided by OSM mappers.

4.2 Proximity analysis

Due to the lack of precision in delineating boundaries that surround

various ecosystems, there is much that cannot be clearly understood

from the perspective of land management or the management of

natural resources (Duncker et al., 2012). Our results show that there

are similar trends in management for lands around ecological forests

and passively managed forest, i.e., no significant increase or decrease of

different land-use types in surrounding landscapes. We also found that

for passively and ecologically managed forests, as the distances of

specific land-use types from the nearest forest patches increase, the

variance of the proportion of that specific land use to the total land

becomes smaller, and finally levels off. Preservation forestry covers over

FIGURE 7

Land-use change derived from OSM from 2013 to 2018.

TABLE 5 Land-use changes in the study area and the associated land change are delineated. These categories include changes that may rarely or never occur (e.g.,

residential to managed forest or commercial/industrial or residential to croplands).

Land use in 2013 Land use in 2018

Cropland Commercial/Industrial Managed forest Residential

Cropland Stability Commercialization Afforestation Rural/Suburban Growth

Commercial/Industrial Cultivation Stability Afforestation Rural/Suburban Growth

Managed Forest Cultivation Commercialization Stability Rural/Suburban Growth

Residential Cultivation Commercialization Afforestation Stability
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thirty percent of the total forest in the study area (Marsik et al., 2018).

For surrounding land uses of production forests, we found patterns that

imply interactions between production forests and cropland in the

1,500 m buffer. Land policy may contribute to this phenomenon as

production forests, pasture, cropland, and citrus all belong to the same

tax code (i.e., Commercial Agriculture Uses) in Florida, which lowers

the property tax rate. There are several hypotheses to explain this

phenomenon: 1) the landscapes are built out over a distance greater

than 3,500 m; and 2) those areas belong to urban areas and are thus not

included in the analysis. Moreover, the State of Florida does not have a

minimum land area requirement for agricultural and timberland

classification, which increases the potential for cropland—timberland

two-way flows.

Residential developments also show a strong effect of land-use

transitions on the surrounding lands, such as forests transformed

into croplands or rangeland areas. As we found the increasing trend

on both residential and commercial/industrial lands, nearly 45.9% of

new residential lands in the study area were created from forests,

with most of the rest resulting from the conversion of agricultural

land. From 2013 to 2018, one of the most influential drivers of forest

area change was the expansion and contraction of agricultural land.

These patterns also point out how fast the rural residential areas are

being developed in the heavily forested study area, especially near

passive and production management forest patches (Figure 6).

The study area also experienced rapid population growth, based

on the gridded population of the world v4/population count, there

was a 170,130 increase from 2010 to 2020 (GPWv4). Most of the

time this led to deforestation (the transfer of forest lands to

developed lands). As the population increased, the potential need

for residential areas, roads, commercial and industrial sites

increased. The development of rural residential developments

significantly contributed to land-use dynamics. The increasing

rural residential areas show a strong signal of urbanization and

deforestation, as most newly developed residential areas are

developed on forested land. For the rural/suburban residential

areas surrounding ecological forests, preservation forests, and

passively managed forests, the trends of rural/suburban coverage

all increased from 2013 to 2018.

5 Conclusion

The land uses in SEUS have been heavily transformed according to

a variety of factors, such as population growth and economic growth.

The forest ecosystems in the SEUS have been largely influenced by these

land-use changes. The results of this study show that land-use patterns

in the vicinity of forest under different management strategies vary

substantially with the occurrences of forest patch isolation due to the

proximity of agricultural development, rural residential development,

and commercialization. Such land-use transitions alter the SEUS

landscapes and may affect ecosystem functions. We infer the land-

use information at the regional scales by using VGI from a diverse array

of stand-level studies and other ancillary information.

By developing a crowdsourcing-based land-use change mapping

framework over the SEUS wemeasured and calculated the proportion

of land area that was located within nine increasing distance buffers

from the nearest managed forest patches of any type of forest

management, and mapped the results reclassified by land-use

transitions. For lands surrounding preservation forests, we found

the effectiveness of preservation in maintaining the forest cover in the

first 500–1,000 m boundary buffers. However, rural residential

developments are changing the lands surrounding the preservation

areas. The lands surrounding production forestry, comprising

important spatial relationships with croplands, show the strongest

potential for land conversion between forests and croplands. For the

passively managed forest surrounding landscapes, the land-use

patterns represent a relatively neutral status because of the low

management intensity with little interaction with croplands, which

is the opposite for the production forest surroundings. For the lands

surrounding ecologically managed forests, there are the least variances

of land-use composition based on distances. This also supports the

idea that the major principle of ecological forestry is to maintain the

social-ecological functions.

Citizen science is contributing to land-change science, in ways

that increase the magnitude of observations far beyond those that

can be done by individual scientific projects. From a mapping land-

use perspective, citizen science can be used to extend the training

sample database, which is considered a huge challenge for large scale

landscape classification processes. The proposed strategies seek

contributions that demonstrate the application of citizen science

projects supporting human-environment related research by

complementing satellite observations and discussing novel

methods for the collection of land management data.

The challenge of the work is that the rapid growth of OSM only

started in 2013, and as such, the database has improved from both user

numbers and quality perspectives, across the study period. From 2013 to

2018 is a relatively short time, only 5 years, to make a significant

conclusion or assessment about any types of longer-term changes or

drivers. Despite this limitation due to the short time-duration of this

data source, however, this study shows a strong potential for mapping

land change and human footprints at the regional scale by using VGI

derived datasets as land-use indicators and proxies.
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