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Abstract— Optimization-based falsification, or search-based
testing, is a method of automatic test generation for Cyber-
Physical System (CPS) safety evaluation. CPS safety evaluation
is guided by high level system requirements that are expressed
in Signal Temporal Logic (STL). Trajectories from executed
CPS simulations are evaluated against STL requirements using
satisfaction robustness as a quantitative metric. In particular,
robustness is the distance metric between the simulated system
trajectory, associated to a specific input, and the known
unsafe set, i.e., regions of the search space that violate the
requirements. Identification of violations can be formulated
as an optimization problem, where inputs that minimize the
robustness function are of interest. In fact, an input falsifies a
requirement if the associated robustness is negative.

In this work, specifically, we consider the case where multiple
requirements determine the unsafe set. Due to the compu-
tational burden of executing CPS simulations, practitioners
often test all system requirements simultaneously by combining
the requirement components and obtaining so-called “conjunc-
tive requirements”. Conjunctive requirements can challenge
optimization-based falsification approaches due to the fact
that the robustness function may “mask” the contributions of
individual conjunctive requirement components. We propose a
new algorithm, minimum Bayesian optimization (minBO), that
deals with this problem by considering the contributions of
each component of the conjunctive requirement. We show the
advantages of the minBO optimization algorithm when applied
to general non-linear non-convex optimization problems as well
as when applied to realistic falsification applications.

I. INTRODUCTION

Falsification of Cyber-Physical Systems (CPS) refers to
methods that attempt to demonstrate that a given system-level
requirement is not satisfied over a CPS model. Falsification
problems have gained prominence in the field of safety
critical systems, where any behavior that violates system
requirements must be detected and corrected prior to real
world CPS implementation and deployment. Due to its
importance in practice, CPS falsification via the discovery
of counter-examples to system specifications (requirements)
has drawn attention from academia and industry [1], [2].

Complex CPS requirements can be typically formalized
using Signal Temporal Logic (STL). STL specifies require-
ments as sequences of unsafe states combined with timing
and logical or reactive requirements [3]. Motivated by the
need to falsify complex requirements that are composed via
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STL statements, the falsification problem has been translated
into a minimization problem through the notion of STL
robustness [4], [5]. In the following, we assume that the
CPS under test can be represented as a model M which
takes as input a vector of initial conditions x0, a vector of
parameters p and a vector signal u, and returns as output
a vector signal M(x0, p, u). In practice, the input signals u
need to be finitely parameterized over time as well (see [4]
for details and [6] on how this constraint can be removed).
Therefore, the output behaviors of a CPS model M can be
explored over a finite dimensional continuous search space
X , i.e., for any point x ∈ X , we can observe a model
behavior M(x).

Formally, the falsification problem can be stated as: given
a system specification ϕ in STL and a system model M,
find a point x (initial conditions x0, parameters p and input
signals u) such that M(x) violates ϕ. STL robustness is
a quantitative measure that captures how robustly a system
behavior, or trajectory, M(x) satisfies a requirement ϕ. In
other words, the robustness quantifies how closeM(x) came
to falsifying requirement ϕ. We will use ρϕ (x) to refer to
the robustness function that assigns an extended real number
to the system behavior M(x), i.e., ρϕ (x) ∈ R∪{−∞,∞}.
Large positive robustness values imply that the behavior is
robustly satisfied (very far from violating the STL), while
large negative values imply a behavior is heavily violating
the STL and is robustly unsafe. The notion of STL robustness
and robust semantics has allowed for the development of
optimization-based falsification, where the resulting mini-
mization problem searches for system inputs and parameters
such that the resulting STL robustness ρϕ (x) is less than or
equal to zero, thus falsifying the STL specification.

The transformation of the falsification problem into an op-
timization problem has initiated new research directions into
re-purposing or developing optimization methods which take
into account the structure of the falsification problem [7],
[4], [8]. Common optimization methods such as Cross-
Entropy [9], Simulated Annealing [4], and Tabu Search [10]
have been adopted for falsification; techniques such as Monte
Carlo Tree Search and Deep Reinforcement Learning have
also been applied in recent years [11], [12]. The Stochastic
Optimization with Adaptive Restart (SOAR) framework,
which is a combined global local stochastic search described
in [13], was applied to and proven quite successful over a
range of falsification problems [14], [1], [2]. A distinguishing
feature of SOAR ([14]) is that it can quantify the robustness
uncertainty when no falsifications are found within the
sampling budget – currently, SOAR is the only falsification
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method capable of doing so.
In many practical applications of falsification, the system

evaluator may desire to test several system requirements,
ϕi i = 1, . . . , n, to certify the safety of the system. The
system model M often has a very long simulation execu-
tion time, such that a single observation M(x) can take
minutes to hours to be generated [15]. On the other hand,
the robustness calculations associated with each conjunctive
component ρϕi (u) are fast. This imbalance in computation
cost makes it undesirable to test each requirement ϕi individ-
ually. An alternative approach is to test all n requirements
simultaneously by creating a conjunctive requirement such
that ϕ := ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn. Thus, if any conjunctive
component ϕi is violated, then the collective conjunctive
requirement ϕ is also violated. For conjunctive requirements,
the robustness function is computed as the minimum of the
robustness function of each sub-requirement, i.e.,

ρϕ (x) = min
i=1,...,n

ρϕi (x) .

Although using conjunctive requirements is computation-
ally attractive, it presents the challenge of hiding the con-
tributions of each requirement to the robustness function.
This is a problem that is related to the “scale problem”
in falsification as discussed in [16], but it also manifests
itself even when all the variables have been normalized to
the same range. The scale effect can be easily explained
and conceptualized when the scale of the robustness of
each conjunctive component is very different. For example,
consider the conjunctive requirement where a system always
maintains a speed less than 20 mph (ϕ1 := �speed < 20)
and the rpm are always less than 4000 (ϕ2 := rpm < 4000),
yielding ϕ := ϕ1∧ϕ2. In this case the first component ϕ1 has
robustness values on the order of tens while ϕ2 robustness
is on the order of thousands. As such ϕ2 is masked by ϕ1

and it is not possible for optimization-based falsification to
use the information of both components. The same principle
can occur and reduce falsification efficiency even when all
the variables have been normalized to the same scale.

Contribution: We present the problem of conjunctive
requirement falsification as a minimization problem of a
function which is the minimum of a number of components.
In light of such structure knowledge, we propose a new
Bayesian optimization algorithm that takes advantage of the
structure of the conjunctive requirements and explicitly mod-
els information from each resulting robustness component.
The result is the algorithm minimum Bayesian optimization
(minBO). For testing purposes we imported the algorithm
within the S-TaLiRo CPS falsification tool [17], thus verify-
ing the increased falsification performance over two standard
benchmark problems for the CPS community [2].

II. RELATED WORK

A. Scale Problem in CPS Falsification

The scale problem in its various instantiations has been
reported in several works. In [18] and [19] the problem is en-
countered tangentially while investigating vacuity aware fal-

sification, and interface-aware STL, respectively. These ap-
proaches rely on Boolean connectives to falsify antecedent-
consequent pairs and, thus, tangentially mitigate the general
scale problem by sequentially addressing the antecedent or
consequent sub-formulas. The work in [16] is most related
to our research since it directly addresses the scale problem.
The authors aim to tackle the scale problem by making
use of a multi-armed bandit approach, where sub-formulas
are considered as arms in the multi-armed bandit problem.
However, the foundation of [16] is built to falsify problem
requirements of the form �I(ϕ1 ∨ ϕ2) or �I(ϕ1 ∧ ϕ2).
Thus, the method is not applicable to our more general
requirement form ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn. The most recent and
related work, presented in [20], focuses on the conjunctive
requirement synthesis problem, i.e., finding an input x such
that ρϕi

(M(x)) > 0 for all i = 1, . . . , n. On the other
hand, the conjunctive falsification problem aims to find x
such that ρϕi(M(x)) ≤ 0 for at least one i. Considering the
structure of the conjunctive synthesis problem, the authors
in [20] employ a constrained co-variance matrix adaption
evolution strategy (CMA-ES).

B. Stochastic Search Optimization Methods

As mentioned in Section I, optimization-based falsification
has seen a proliferation with respect to CPS [7], [4], [9], [11],
[12]. Stochastic optimization techniques such as simulated
annealing, genetic algorithms, ant colony optimization, and
the cross-entropy method have been applied in this domain.
However, these methods notably lack sample efficiency,
partly due to the difficulty in setting the numerous hyper-
parameters for methods with memory, and the inability of
exploiting information from previous iterations for memory
free methods. As an example of memory free sampling, hit
and run, which in a common implementation of uniform
random sampling, epitomizes myopic search: locations iter-
atively evaluated have no impact upon subsequent sampling
decisions. The benefit of these stochastic search techniques
is their easy to derive guarantees in terms of coverage.

On the other hand, local search and hill climbing tech-
niques (which are deterministic with noiseless function
evaluations) such as CMA-ES, simplex search, trust re-
gion search, response surface methodology, and gradient
ascent/descent have increased sample efficiency. However,
due to the notorious non-linearity of robustness landscapes in
CPS falsification, these local techniques often get trapped in
sub-optimal local regions as these searches lack explorative
properties.

Bayesian optimization (BO) is a popular black-box
stochastic optimization method which has proven quite suc-
cessful in simulation-based optimization problems [21]. BO
balances exploration and exploitation via surrogate modeling
to produce high quality solutions in a relatively small number
of iterations. However, due to the overhead costs associated
to BO, such as surrogate model estimation and acquisition
function optimization, the technique is recommended to be
employed when observations of the objective function are
expensive to collect- as in the case of observing the robust-
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ness ρϕ(M(x)) for a given input x. BO has proven to be
quite successful over CPS falsification problems [22], [23],
[24]. Recently BO was combined with a local trust region
search in an intelligent global-local optimization framework
and proved highly effective for CPS falsification [13], [14].

III. PROPOSED METHOD: MINIMUM BAYESIAN
OPTIMIZATION

We want to efficiently find, if they exist, falsifications of
conjunctive requirements for CPS. We approach the falsifi-
cation as a global optimization problem:

x∗ ∈ arg min
x∈X

f(x) (1)

with f(x) = min (h1(x), . . . , hn(x))

where X ⊂ Rd represents the input domain, x is the input
to the model M, and hi(x) is the robustness associated to
the ith conjunctive component, i.e, hi(x) = ρϕi(M(x)).
We assume that hi(x) for i = 1, . . . , n are simultaneously
returned with a single evaluation of f(x). This assumption
aligns with the structure of the conjunctive falsification prob-
lem: once the simulated trajectory M(x) is observed, then
the robustness calculation for ϕi is an iterative computation
over the system output.

We propose a variant of Bayesian optimization (BO) for
solving (1) that we call Minimum Bayesian Optimization
(minBO). The goal of minBO is to remove the masking
effect that occurs when observing f(x) by leveraging the
information learned about the individual components hi(x).
Algorithm 1 outlines the inputs needed and algorithmic steps
of minBO.

We initialize minBO by generating and sampling a random
Latin hypercube design with b0 locations. After initialization,
each iteration of minBO includes n inner BO iterations
where Gaussian processes (GPs) are estimated for each of
the i = 1, . . . , n components. Each GP is built on the
same sample of locations xtrain, collecting the specific sub-
requirement data yi

train = hi(xtrain); where xtrain ∈ Rt×d,
yi

train ∈ Rt×1, and t is the number of evaluations taken
so far (the number of executions of the system simulator
M). For details on GP estimation we refer readers to [25].
After GPs have been estimated for all n components, we
will have n models, i.e.,

(
ĥi(x), ŝ2i (x)

)
. We then maximize

the Expected Improvement EIi(x) for each component, with
respect to the best observed sample across all components
y∗ = min

i=1,...,n
min

j=1,...,t
yi

train,j where yi
train,j is the jth observa-

tion of component i, we formalize as:

EIi(x) = E

[
max

(
[y∗ − ĥi(x)]Φ

(
y∗ − ĥi(x)

ŝi(x)

)
(2)

+ŝi(x)φ

(
y∗ − ĥi(x)

ŝi(x)

)
, 0
)]
.

We set xi
EI ← arg maxx∈X EIi (x) , i = 1, . . . , n and set the

next location to be sampled as: x∗EI ← arg maxi=1,...,n x
i
EI.

After sampling x∗EI, we update xtrain and all of the yi
train. This

completes a single iteration and we begin a new iteration by
re-estimating the GPs.

Algorithm 1 Minimum Bayesian Optimization: minBO
Input: domain X ⊂ Rd, n components
{h1(x), . . . , hn(x)}, objective function f(x) =
min (h1(x), . . . , hn(x)), initialization budget b0, and
total budget T
Output: best location and value x∗minBO ∈ X, f(x∗minBO)

Step 1: Create initializing Latin Hypercube design xtrain
with b0 locations from X, xtrain ∈ Rb0×d

Step 2: Sample xtrain over the n composite functions, set
yi

train = hi(xtrain) for i = 1, . . . , n.
Step 3: set t← b0
while t < T do

for i = 1, . . . , n do
Step 4: Estimate a GP using the training data
{xtrain,y

i
train}, resulting in

(
ĥi(x), ŝ2i (x)

)
for all x ∈

X
Step 5: xi

EI ← arg maxx∈X EIi (x)
end for
Step 6: x∗EI ← arg maxi=1,...,n x

i
EI, append x∗EI to xtrain

Step 7: Sample and append hi(x
∗
EI) to yi

train, for i =
1, . . . , n.
Step 8: t← t+ 1

end while
Step 9: Report best observed location and value
x∗minBO, f(x∗minBO).

Figures 1 and 2 illustrate the difference between the
standard BO approach and our proposed minBO approach
over a 1-dimensional example. Figure 1(a) shows the GP
associated to the black-box BO approach when optimizing
f(x) with four sample locations. The four sample loca-
tions yield the associated h1(x), h2(x), and h3(x) values,
however the GP is fit only to the minimum value at each
location. Figure 2(a) shows the three GPs obtained by fitting
each of the individual components with the same sample
locations and values as Figure 1(a). Figures 1(b)-2(b) show
the respective EI functions. Note that the global minimum
is achieved by h3(x) at x = 0.72. Inspecting Figures 1(b)-
2(b), we see that the standard BO approach would sample
x = 0.4 as the EI maximizer, while our minBO approach
is immediately drawn towards the true global optimum and
would sample x = 0.67 as the maximum EI maximizer
across the three GPs. This example illustrates how modeling
each of the components in minBO yields richer insight into
the problem and effectively removes the masking problem.

In regards to the computational complexity of minBO,
we know BO algorithms scale at O(m2) (with a O(m3)
preparatory GP covariance matrix inversion steps), where m
is the number of function evaluations [21]. Due to the nature
of the minBO algorithm, which executes n independent
BO iterations during each minBO iteration, minBO scales
linearly with respect to BO with a computational complexity
of O(nm2) where n is the number of requirements. We note
that it is important to distinguish between function evaluation
costs, i.e., the cost of executing a simulation to observe the
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Fig. 1. Standard black-box Bayesian optimization approach for 1 dimen-
sional problem f(x) = min (h1(x), h2(x), h3(x)), with t = 4 samples.
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ĥi(x), ŝi(x)
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Fig. 2. Minimun Bayesian optimization approach for 1 dimensional
problem f(x) = min (h1(x), h2(x), h3(x)), with t = 4 samples.

trajectory M(x), and the estimation and optimization costs
of GP modeling and EI maximization. In CPS falsification,
it is generally accepted that the observation cost of M(x)
largely outweighs any other computational costs. Given that
minBO takes a single observation at each iteration, the
additional linearly scaling computational cost for estimation
and optimization can be considered negligible to the overall
falsification run time.

IV. EXPERIMENTATION

We execute two sets of experiments to evaluate minBO’s
performance relative to standard BO. The first set of experi-
ments focuses on performance over a synthetic optimization
problem, where the test functions and associated global
optimum values and locations are known. The second set
of experiments implements minBO within the S-TaLiRo
falsification toolbox and tests falsification performance on
benchmark CPS Simulink models with conjunctive require-
ments.

A. Multiple Component Function Optimization

Our theoretic function optimization tests over objective
functions that are the minimum over multiple component
functions, f(x) = min(h1(x), . . . , hn(x)), matching the
problem structure presented in (1). We perform experimenta-
tion over two and three dimensional problems, both problems
have three component functions, i.e., n = 3.

The two dimensional problem has component functions:

h1(x) = 205 − 100
(

sin
(x1

3

)
+ sin

(x2
3

))
h2(x) = 155 − 75

(
cos
( x1

2.5
+ 15

)
+ cos

( x2
2.5

+ 15
))

h3(x) = (x1 − 7)2 + (x2 − 7)2−

cos

(
x1 − 7

2.75

)
− cos

(
x2 − 7

2.75

)
the global minimum is at x∗ = [7, 7], where the third
component realizes the global minimum value f(x∗) =
h3(x∗) = 0; the first two components both have minimum
values of 5. The three dimensional problem has components:

h1(x) = 305 − 100

(
3∑

j=1

sin
(xi

3

))

h2(x) = 230 − 75

(
3∑

j=1

cos
( xi

2.5
+ 15

))

h3(x) =

3∑
j=1

(xi − 7)2 −
3∑

j=1

cos

(
xi − 7

2.75

)
the global minimum is at x∗ = [7, 7, 7] with f(x∗) =
h3(x∗) = 0, and the first two components both have
minimum values of 5. For both problems the search domain
is [−15, 15] in all dimensions.

For both the two and three dimensional tests we execute
50 algorithm macro-replications; for the two dimensional
test we allow 50 samples per replication, with 10 ini-
tializing samples, and 80 samples per replication with 15
initializing samples for the three dimensional test. Note,
for each replication, initializing designs are identical for
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minBO and BO to remove initialization influence from the
algorithm behavior. Table I shows the final results for the
two and three dimensional problems. Figures 3 and 4 show
the average performance per sample with respect to best
observed function value. We see that minBO outperforms
BO over both problems by a statistically significant margin,
and minBO shows progress towards the global minimum
location, while the progression of BO is unclear.

TABLE I
THEORETIC OPTIMIZATION PROBLEM RESULTS AFTER 50 SAMPLES,

WITH 95% CONFIDENCE INTERVALS PRODUCED OVER 50
MACRO-REPLICATIONS. BOLD ENTRIES INDICATE SIGNIFICANTLY

SUPERIOR PERFORMANCE AT α = 0.05.

Dimension Algorithm f̂ − f∗ ||x̂− x∗||

2 minBO 0.4085± 0.3567 1.491± 1.519
BO 6.338± 0.7705 8.302± 2.672

3 minBO 3.680± 0.5339 13.318± 3.434
BO 6.672± 0.7884 23.828± 2.973
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Fig. 3. Average best observed function value per sample over 2 dimensional
problem, with 95% confidence interval. Average and CI taken over 50
replications.
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Fig. 4. Average best observed function value per sample over 3 dimensional
problem, with 95% confidence interval. Average and CI taken over 50
replications.

B. Application to Benchmark Problems

In this section, we present the experimental results when
minBO is applied for falsification of conjunctive require-
ments. We implement minBO as the optimization engine
within the S-TaLiRo falsification tool [17], and make use of

two industry benchmark models: the automatic transmission
(AT) model from [2], and the ground collision avoidance
system (GCAS) autopilot model for the F-16 fighter jet [26].
For each experiment, while attempting to falsify the require-
ments outlined below, we allow 300 calls to the AT or
GCAS model and complete 50 macro-replications. Again, we
compare minBO to BO and ensure identical starting designs,
for each replication, for the two algorithms.

For both models, we have conjunctive requirements with
3 components, ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3. The AT model uses
requirement components:

ϕ1 = �[0,30](rpm < 3000)→ �[0,4](speed < 35)

ϕ2 = �[0,30](rpm < 3000)→ �[0,8](speed < 50)

ϕ3 = �[0,30](rpm < 3000)→ �[0,20](speed < 65).

These specifications force the system to stay below a speci-
fied speed, for a specified time interval, whenever the rpm’s
are below the 3000 rpm threshold. The GCAS model uses
the requirement components:

ϕ1 = �[0,15] alt > 0

ϕ2 = �[0,15] ((ap1) ∧X (ap0))→ X (p1 ∧ p2)

ϕ3 = ♦[0,15]((ap1) ∧X (ap0))

where ϕ1 requires that the jet does not crash, and ϕ3 specifies
that the autopilot system eventually turns off, and ϕ2 requires
that the jet is in a stable roll and pitch position when the
autopilot is turned off, specifically p1 ≡ (roll ∈ [0.02, 0.04])
and p2 ≡ (pitch ∈ [0.28, 0.28]).

Final results over the two models are reported in Table II.
We report [2]: (1) falsification rate (FR), i.e., the number of
replications that find a falsifying input out of 50, (2) average
number of samples to produce a falsification (S̄), given a
falsification was found, and (3) median number of samples
to produce a falsification (S̃), given a falsification was found.

TABLE II
FALSIFICATION RESULTS WITH 300 MODEL EVALUATIONS ALLOWED

AND 50 REPLICATIONS. 95% CONFIDENCE INTERVALS REPORTED FOR

MEAN EVALUATIONS TO FIND A FALSIFICATION (S̄). BOLD ENTRIES

INDICATE SIGNIFICANTLY SUPERIOR PERFORMANCE AT α = 0.05.

Model Algorithm FR S̄ S̃

AT minBO 48/50 68.6875± 7.2235 61
BO 49/50 65.8163± 6.3645 57

GCAS minBO 50/50 16.3200± 0.1227 16
BO 38/50 24.4737± 1.6611 21.5

Table II shows that minBO significantly outperforms BO
over the GCAS model; finding a falsifying input every repli-
cation quite efficiently, using only a handful of observations.
On the other hand, minBO and BO perform statistically
equivalently for the AT model; both algorithms failing to
find a falsification on at least one replication. Since the
requirement components for the AT model are so similar, we
see that the associated robustness values are all on the same
scale, thus the scale problem discussed in Section I is not
present. However, the component robustness values for the
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GCAS model fall on vastly different scales, with ϕ2 values
being much smaller and masking the information from ϕ1.
We see that minBO substantially outperforms BO in cases
where the scale problem exists, and performs no worse than
BO in cases where the scale problem is not present.

V. CONCLUSIONS

We propose the minimum Bayesian optimization (minBO)
algorithm for efficient falsification of CPS with conjunctive
requirements. In such cases, the scale problem often presents
a barrier to optimization-based falsification approaches. The
goal of minBO is to exploit the structure of the underlying
optimization problem by exposing and leveraging the infor-
mation provided by the components of the objective func-
tion, i.e., the conjunctive requirement components. Empirical
results over both theoretic optimization and practical falsi-
fication application problems, show that minBO performs
significantly better than standard BO when the scale problem
is present. Moreover, in the application cases where the scale
problem is not present we see that minBO performs just
as well as standard BO. In fact, when minBO is used, the
computational gains from simulation reduction far out weight
any additional computation needed. Future work includes: a
comprehensive benchmarking study to test minBO against
other falsification approaches; fully characterizing the the-
oretic properties of minBO; and, studying how the minBO
approach can be applied to other CPS problems such as the
conjunctive synthesis problem.
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“Probabilistic temporal logic falsification of cyber-physical systems,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 12,
no. 2s, p. 95, 2013.

[5] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications,” in Formal Approaches to Testing and Runtime Verification,
ser. LNCS, vol. 4262. Springer, 2006, pp. 178–192.

[6] S. Yaghoubi and G. Fainekos, “Gray-box adversarial testing for
control systems with machine learning components,” in International
Conference on Hybrid Systems: Computation and Control (HSSC),
2019.

[7] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
based approaches for verification of embedded control systems: An
overview of traditional and advanced modeling, testing, and verifica-
tion techniques,” IEEE Control Systems Magazine, vol. 36, no. 6, pp.
45–64, 2016.

[8] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and
G. Fainekos, “Requirements driven falsification with coverage met-
rics,” in 12th International Conference on Embedded Software (EM-
SOFT), 2015.

[9] S. Sankaranarayanan and G. Fainekos, “Falsification of temporal
properties of hybrid systems using the cross-entropy method,” in
ACM International Conference on Hybrid Systems: Computation and
Control, 2012.

[10] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler, “Stochastic local
search for falsification of hybrid systems,” in International Symposium
on Automated Technology for Verification and Analysis. Springer,
2015, pp. 500–517.

[11] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo, “Two-
layered falsification of hybrid systems guided by monte carlo tree
search,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2894–2905, 2018.

[12] T. Akazaki, S. Liu, Y. Yamagata, Y. Duan, and J. Hao, “Falsification of
cyber-physical systems using deep reinforcement learning,” in Formal
Methods (FM), ser. LNCS, vol. 10951, 2018, pp. 456–465.

[13] L. Mathesen, G. Pedrielli, S. H. Ng, and Z. B. Zabinsky, “Stochastic
optimization with adaptive restart: A framework for integrated local
and global learning,” Journal of Global Optimization, vol. 79, no. 1,
pp. 87–110, 2021.

[14] L. Mathesen, S. Yaghoubi, G. Pedrielli, and G. Fainekos, “Falsification
of cyber-physical systems with robustness uncertainty quantification
through stochastic optimization with adaptive restart,” in 2019 IEEE
15th International Conference on Automation Science and Engineering
(CASE). IEEE, 2019, pp. 991–997.

[15] S. Sankaranarayanan, S. A. Kumar, F. Cameron, B. W. Bequette,
G. Fainekos, and D. M. Maahs, “Model-based falsification of an
artificial pancreas control system,” ACM SIGBED Review, vol. 14,
no. 2, pp. 24–33, 2017.

[16] Z. Zhang, I. Hasuo, and P. Arcaini, “Multi-armed bandits for boolean
connectives in hybrid system falsification,” in International Conference
on Computer Aided Verification. Springer, 2019, pp. 401–420.

[17] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
TACAS, 2011.

[18] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. Fainekos, “Vacu-
ity aware falsification for mtl request-response specifications,” in
2017 13th IEEE Conference on Automation Science and Engineering
(CASE). IEEE, 2017, pp. 1332–1337.

[19] T. Ferrère, D. Nickovic, A. Donzé, H. Ito, and J. Kapinski, “Interface-
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