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Abstract

We study the Dirichlet problem for least gradient functions for domains
in metric spaces equipped with a doubling measure and supporting a (1,1)-
Poincaré inequality when the boundary of the domain satisfies a positive mean
curvature condition. In this setting, it was shown by Malý, Lahti, Shanmu-
galingam, and Speight that solutions exist for continuous boundary data. We
extend these results, showing existence of solutions for boundary data that is
approximable from above and below by continuous functions. We also show
that for each f ∈ L1(∂Ω), there is a least gradient function in Ω whose trace
agrees with f at points of continuity of f , and so we obtain existence of so-
lutions for boundary data which is continuous almost everywhere. This is in
contrast to a result of Spradlin and Tamasan, who constructed an L1-function
on the unit circle which has no least gradient solution in the unit disk in R

2.

Modifying the example of Spradlin and Tamasan, we show that the space of
solvable L1-functions on the unit circle is non-linear, even though the unit disk
satisfies the positive mean curvature condition.

2020 Mathematics Subject Classification. 46E36, 49Q05, 49Q20, 31E05.
Keywords and phrases. Metric measure space, bounded variation, least gradient, mean curva-

ture, Dirichlet problem.
∗The author was partially supported by the NSF grants #DMS-1800161 and #DMS-2054960.

The author would like to thank Nageswari Shanmugalingam for her kind encouragement and many
fruitful discussions regarding this project, as well as Marie Snipes for her helpful insight. The author
would also like to thank Piotr Rybka for pointing out the reference [34], Panu Lahti and Gareth
Speight for helpful feedback and suggestions, and finally the anonymous referees whose comments
and corrections helped to improve this paper. In particular the author would like to thank the
referee for pointing out Example 4.12.

1

http://arxiv.org/abs/2201.02829v3


1 Introduction

Given a function f on the boundary of a domain Ω, the Dirichlet problem for least
gradient functions is the problem of minimizing ‖Du‖(Ω) over all u ∈ BV (Ω) with
trace Tu = f a.e. on the boundary. This form of the problem, where the boundary
condition is attained in the sense of traces, was originally introduced in the Euclidean
setting by Sternberg, Williams, and Ziemer in [37]. There they showed that if the
boundary of the domain has non-negative mean curvature and is not locally area
minimizing, then existence and uniqueness of solutions is guaranteed for continuous
boundary data. Furthermore, they showed that the imposed curvature conditions
are necessary to guarantee existence of solutions, and if the boundary data is of class
C0,α for 0 < α ≤ 1, then the solution is of class C0,α/2, provided the boundary of the
domain has strictly positive mean curvature. Their proof makes uses an important
result of Bombieri, De Giorgi, and Giusti from [7], which states that characteristic
functions of superlevel sets of least gradient functions are themselves of least gradient.
Using this, the authors constructed a least gradient solution by building its superlevel
sets so that each was of least gradient and compatible with the boundary data.

Since the appearance of [37], existence, uniqueness, and regularity of the above
least gradient problem have been studied extensively in the Euclidean setting. For
instance, we refer the interested reader to the following sampling [10–12,14,29,33,34]
and the references therein. In particular, it was shown in [29] that there is an
equivalence between least gradient solutions and solutions to the Dirichlet problem
for the 1-Laplacian. Moreover, the authors showed that in strictly convex domains,
uniqueness of solutions may fail for discontinuous boundary data. For more on the
study of uniqueness of solutions, see [11].

In recent decades, a theory of analysis on metric measure spaces has been de-
veloped under the assumptions that the measure is doubling and that the space
supports a Poincaré inequality, see for example [3, 6, 18, 20]. Miranda Jr. extended
the definition of BV functions to this setting in [30], leading to the development of a
theory of least gradient functions and associated Dirichlet problems in metric spaces
[1,4,17,22,23,25,26,28]. In [25], Lahti, Malý, Shanmugalingam, and Speight studied
the Dirichlet problem for least gradient functions, originally introduced in [37], in the
setting of a doubling metric measure space supporting a (1, 1)-Poincaré inequality.
There they introduced a notion of positive mean curvature which makes sense in the
metric setting (Definition 2.12 below). They showed that if a domain satisfies this
condition and if compatibility conditions are assumed between the measure and the
codimension 1 Hausdorff measure of the boundary of the domain, then existence of
solutions is guaranteed for continuous boundary data. Their strategy adapts the ar-
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gument from [37] to the metric setting, similarly building a solution by constructing
its superlevel sets in an appropriate manner.

In contrast to [37], [25] also provided examples in the weighted Euclidean setting
which show that even for Lipschitz boundary data, solutions may fail to be continuous
up to the boundary and may fail to be unique. However, it was recently shown in
[38] that continuous solutions exist for the weighted Euclidean least gradient problem
with continuous boundary data, provided the weights are positive, bounded away
from zero, and of class C2. This result, valid in dimensions n ≥ 2, extends the earlier
result from [21], which guarantees existence of continuous solutions in low dimensions
for C1,1 weights which are positive and bounded away from zero. In [21], it was also
shown that for such weights and continuous boundary data, solutions to the weighted
problem in dimensions n ≥ 2 are unique. For more on the weighted Euclidean
least gradient problem, anisotropic formulations, and connections of these problems
to conductivity imaging, see [10, 12, 31, 32]. Such applications provide additional
motivation for the study of the least gradient problem in the metric setting. For a
recent work on Gauss-Green formulas and connections to the least gradient problem
in the metric setting, see [13].

From [37] in the Euclidean setting, certain non-negative curvature conditions
are required to guarantee existence of solutions to the Dirichlet problem for least
gradients. From [5,9], it is also known that the the trace class of BV functions on a
Euclidean Lipschitz domain is the L1-class of its boundary. In fact, analagous trace
and extension results hold for BV functions in the metric setting as well, see [26,28].
Therefore if a Euclidean domain satisfies the curvature conditions from [37], it is
natural to ask whether all L1-functions on the boundary of such a domain admit
solutions to the Dirichlet problem for least gradient functions. This question was
answered in the negative by Spradlin and Tamasan in [36]. A certain fat Cantor
set was constructed on the boundary of the unit disk in R

2 in [36], such that the
characteristic function of that set is not the trace of a least gradient function in
the unit disk, despite the fact that the unit disk satisfies the necessary curvature
conditions. Thus the question of which L1-functions arise as traces of functions
of least gradient is open even in the Euclidean setting. The goal of this paper is
to investigate the conditions sufficient to guarantee existence of solutions to the
Dirichlet problem in both the Euclidean and metric settings.

After introducing the necessary definitions and background information in Sec-
tion 2, we begin Section 3 by examining the example presented in [36] in the Eu-
clidean setting of the unit disk (Example 3.1 below). We modify this example in
such a way as to obtain a solution (Example 3.3 below) which demonstrates that
the set of L1-functions on the boundary of the unit disk for which solutions exist is
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non-linear. Namely, we show that the example function from [36] can be expressed as
the sum of two functions, each of which arise as the trace of a least gradient function.
Moreover, our example shows that even in the case of the unit disk, the Dirichlet
problem is non-local in the following sense. There is a boundary data f for which a
least gradient solution to the Dirichlet problem exists, but ηf has no solution for a
suitable compactly supported Lipschitz function η on the boundary. This example
illustrates the significant difference between the Dirichlet problem for least gradient
functions and the Dirichlet problem for p-harmonic functions when p > 1, see [6].

In Sections 4 and 5, we obtain sufficient conditions for existence of solutions in
the metric setting under the following standing assumptions:

• (X, d, µ) is a complete metric measure space supporting a (1, 1)-Poincaré in-
equality, with µ a doubling Borel regular measure.

• Ω ⊂ X is a bounded domain with µ(X \ Ω) > 0.

• ∂Ω has positive mean curvature as in [25], see Definition 2.12.

• H(∂Ω) < ∞, H
∣∣
∂Ω

is doubling, and H
∣∣
∂Ω

is lower codimension 1 Ahlfors regu-
lar, see (2.6).

Here, H is a codimension 1 Hausdorff measure on ∂Ω, see (2.5). The examples
presented in Section 3 are in the setting of the unit disk in R

2, which satisfies the
above assumptions as well. The following is the first of the main results of the paper,
proved in Section 4.

Theorem 1.1. Let f ∈ L∞(∂Ω), and for each k ∈ N, let gk, hk ∈ C(∂Ω) be such
that gk, hk → f as k → ∞ pointwise H-a.e. on ∂Ω, with

gk ≤ gk+1 ≤ f ≤ hk+1 ≤ hk

H-a.e. on ∂Ω. Then, there is a function u ∈ BV (Ω) which is the minimal solution
to the Dirichlet problem with boundary data f .

The following is an equivalent reformulation of the hypotheses of Theorem 1.1:

• Let f ∈ L∞(∂Ω) and assume that there is a lower semicontinuous function g on
∂Ω and an upper semicontinuous function h on ∂Ω such that g ≤ h everywhere
on ∂Ω and g = h = f H-a.e. on ∂Ω.
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The key step is to show existence of minimal solutions for continuous boundary
data, from which we obtain a comparison theorem for minimal solutions; note that
uniqueness of solutions is not guaranteed (see [25]), and so a more general comparison
theorem will not hold for least gradient functions. This is in contrast to p-harmonic
functions with p > 1, which always satisfy a comparison theorem (see [6]).

As a consequence, we obtain the following result regarding characteristic functions
of subsets of the boundary of the domain.

Theorem 1.2. Let F ⊂ ∂Ω be measurable, and let ∂̃F denote the boundary of F
relative to ∂Ω. If H(∂̃F ) = 0, then there is a function u ∈ BV (Ω) which is the
minimal solution to the Dirichlet problem with boundary data χF .

In Section 5, we continue to adopt the setting and assumptions from the previous
section. By adapting an argument from [10] in the Euclidean setting, we use the
metric technology of discrete convolution to obtain the following result.

Theorem 1.3. Given f ∈ L1(∂Ω), there exists a least gradient function u ∈ BV (Ω)
such that for all x ∈ ∂Ω such that f is continuous at x, we have that Tu(x) = f(x).
In particular, if f is continuous H-a.e. on ∂Ω, then there is a solution to the Dirichlet
problem with boundary data f .

This result was established for strictly convex, Euclidean domains in [10]. Our
extension to the metric setting includes Euclidean domains that are not strictly
convex but satisfy the positive mean curvature condition. For example, the capped
cylinder described in Remark 5.8 below is not strictly convex, but satisfies the positive
mean curvature condition.

Although Theorem 1.1, Theorem 1.2, and Theorem 1.3 provide sufficient con-
ditions on the boundary data to guarantee existence of solutions in this setting,
Example 3.3 below shows that these conditions are not sharp (see Remarks 4.14 and
5.10). It seems that even for sufficiently regular domains, a characterization of L1

boundary data admitting solutions is still unknown.

2 Preliminaries

2.1 General metric measure spaces and BV theory

Throughout this paper, we assume that (X, d, µ) is a complete metric measure space
equipped with a doubling Borel regular measure µ. By doubling, we mean that there
exists a constant CD ≥ 1 such that

0 < µ(B(x, 2r) ≤ CDµ(B(x, r)) < ∞
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for all x ∈ X and r > 0. By iterating the doubling condition, there are constants
C ≥ 1 and Q > 1 such that

µ(B(y, r))

µ(B(x,R))
≥ C−1

( r

R

)Q

(2.1)

for every 0 < r ≤ R and y ∈ B(x,R).
A complete metric space equipped with a doubling measure is proper, that is,

closed and bounded sets are compact. Thus for any open set Ω ⊂ X, we define
L1

loc
(Ω) as the space of functions that are in L1(Ω′) for every Ω′

⋐ Ω, i.e., for every
open set Ω′ such that Ω′ is a compact subset of Ω. Also, if A and B are subsets of
X, we use the notation A ⊏ B to mean that µ(A \ B) = 0. By a domain, we mean
a non-empty connected open set in X.

Given a function u : X → R, we say that a Borel function g : X → [0,∞] is
an upper gradient of u if the following inequality holds for all non-constant compact
rectifiable curves γ : [a, b] → X,

|u(y)− u(x)| ≤
ˆ

γ

g ds,

whenever u(x) and u(y) are both finite, and
´

γ
g ds = ∞ otherwise. Here x and y

denote the endpoints of the curve γ. Upper gradients were originally introduced in
[19].

Let Ñ1,1(X) be the class of all functions in L1(X) for which there exists an upper

gradient in L1(X). For u ∈ Ñ1,1(X), we define

‖u‖Ñ1,1(X) = ‖u‖L1(X) + inf
g
‖g‖L1(X),

where the infimum is taken over all upper gradients g of u. Now, we define an
equivalence relation in Ñ1,1(X) by u ∼ v if and only if ‖u− v‖Ñ1,1(X) = 0.

The Newtonian space N1,1(X) is defined as the quotient Ñ1,1(X)/ ∼, and it is
equipped with the norm ‖u‖N1,1(X) = ‖u‖Ñ1,1(X). One can analogously define N1,1(Ω)

for an open set Ω ⊂ X. For more on Newtonian spaces, see [35], [20], or [6].
We now define functions of bounded variation on metric spaces, following the

definition introduced by Miranda Jr. in [30]. For u ∈ L1
loc
(X), we define the total

variation of u by

‖Du‖(X) = inf

{
lim inf
i→∞

ˆ

X

gui
dµ : N1,1

loc
(X) ∋ ui → u in L1

loc
(X)

}
,
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where gui
are upper gradients of ui. For an open set Ω ⊂ X, we analogously define

‖Du‖(Ω), and for an arbitrary A ⊂ X, we define

‖Du‖(A) = inf {‖Du‖(Ω) : A ⊂ Ω,Ω ⊂ X open} .

For u ∈ L1(X), we say that u ∈ BV (X) (u is of bounded variation) if ‖Du‖(X) < ∞.
We equip BV (X) with the norm

‖u‖BV (X) = ‖u‖L1(X) + ‖Du‖(X).

We note that this definition coincides with the standard definition of the BV class
in the Euclidean setting, see for example [2, 8]. See also [1] and [4] for more on BV
theory in the metric setting.

For u ∈ BV (X), it was shown in [30, Theorem 3.4] that ‖Du‖(·) is a finite Radon
measure on X. Moreover, for an open set Ω ⊂ X, if uk → u in L1

loc
(Ω), then

‖Du‖(Ω) ≤ lim inf
k→∞

‖Duk‖(Ω). (2.2)

That is, the BV energy is lower semi-continuous with respect to convergence in L1.
[30, Proposition 3.6]

We say that a measurable set E ⊂ X is of finite perimeter if ‖DχE‖(X) < ∞,
and we denote the perimeter of E in Ω by

P (E,Ω) := ‖DχE‖(Ω).

We have the following coarea formula, given by [30, Proposition 4.2]. If Ω ⊂ X
is an open set and u ∈ L1

loc
(Ω), then

‖Du‖(Ω) =
ˆ ∞

−∞
P ({u > t},Ω) dt, (2.3)

and if u ∈ BV (X), then the above holds with Ω replaced by any Borel set A ⊂ Ω.

2.2 Poincaré inequality and consequences

We will also assume throughout this paper that X supports a (1, 1)-Poincaré in-
equality, meaning that there are positive constants λ and CP such that for every ball
B = B(x, r), every locally integrable function u, and every upper gradient g of u, we
have that

 

B

|u− uB|dµ ≤ CP r

 

λB

g dµ,
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where λB := B(x, λr), and

uB :=

 

B

u dµ =
1

µ(B)

ˆ

B

u dµ.

Throughout this paper, we let C denote a constant which depends, unless otherwise
noted, on CD, CP , λ, or Ω. Its precise value is not of interest here and may not be
the same at each occurrence.

As shown in [16], when µ is doubling, the (1,1)-Poincaré inequality implies the
following Sobolev-Poincaré inequality,

(
 

B

|u− uB|
Q

Q−1dµ

)Q−1

Q

≤ C rad(B)

 

λB

gu dµ,

where Q > 1 is the exponent from (2.1). Given u ∈ L1
loc
(X), one can apply this in-

equality to the approximating functions in N1,1(X) in the definition of total variation
to obtain the inequality

(
 

B

|u− uB|
Q

Q−1dµ

)Q−1

Q

≤ C rad(B)
‖Du‖(2λB)

µ(2λB)
,

from which the following lemma is obtained in [22].

Lemma 2.4. ([22, Lemma 2.2]) Let u ∈ BV (X), and for a ball B ⊂ X, let

A = {x ∈ B : |u(x)| > 0}.

If µ(A) ≤ γµ(B) for some 0 < γ < 1, then

(
 

B

|u|
Q

Q−1dµ

)Q−1

Q

≤ C rad(B)

1− γ1/Q

‖Du‖(2λB)

µ(2λB)
,

where Q > 1 is the lower mass bound exponent given in (2.1).

We will use the above lemma in the proof of Lemma 5.4 to obtain L1-bounds for
a sequence of BV functions.

Given E ⊂ X, we define its codimension 1 Hausdorff measure, H(E), by

H(E) = lim
δ→0+

inf

{
∑

i

µ(Bi)

rad(Bi)
: Bi balls in X, E ⊂

⋃

i

Bi, rad(Bi) < δ

}
. (2.5)
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We say that H
∣∣
∂Ω

is lower codimension 1 Ahlfors regular if there exists C > 0 such
that

H(B(x, r) ∩ ∂Ω) ≥ C
µ(B(x, r))

r
(2.6)

for every x ∈ ∂Ω and 0 < r < 2 diam(∂Ω).
It was shown in [1] and [4] that if µ is doubling and X supports a (1, 1)-Poincaré

inequality, then there is a constant C ≥ 1 such that whenever E ⊂ X is of finite
perimeter and A ⊂ X is a Borel set, we have

C−1H(A ∩ ∂ME) ≤ P (E,A) ≤ CH(A ∩ ∂ME),

where ∂ME is the measure-theoretic boundary of E, which is the set of all points
x ∈ X for which

lim sup
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0 and lim sup

r→0+

µ(B(x, r) \ E)

µ(B(x, r))
> 0.

Given an extended real-valued function u on X, we define the approximate upper
and lower limits of u by

u∨(x) := inf

{
t ∈ R : lim

r→0+

µ({u > t} ∩ B(x, r))

µ(B(x, r))
= 0

}
,

u∧(x) := sup

{
t ∈ R : lim

r→0+

µ({u < t} ∩B(x, r))

µ(B(x, r))
= 0

}
.

From the Lebesgue differentiation theorem, u∨ = u∧ µ-a.e. if u ∈ L1
loc
(X).

2.3 Dirichlet problem for least gradient functions

Definition 2.7. Given a bounded domain Ω ⊂ X and a function u ∈ BV (Ω), we
say that u has a trace at a point x ∈ ∂Ω if there is a number Tu(x) ∈ R such that

lim
r→0+

 

B(x,r)∩Ω
|u− Tu(x)|dµ = 0.

Definition 2.8. Let Ω ⊂ X be an open set, and let u ∈ BVloc(Ω). We say that u is
of least gradient in Ω if

‖Du‖(V ) ≤ ‖Dv‖(V ),

whenever v ∈ BV (Ω) with {x ∈ Ω : u(x) 6= v(x)} ⊂ V ⋐ Ω.
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Definition 2.9. Let Ω be a bounded domain in X with µ(X \ Ω) > 0, and let
f ∈ BVloc(X). We say that u ∈ BVloc(X) is a weak solution to the Dirichlet problem
for least gradients in Ω with boundary data f , or simply, weak solution to the Dirichlet
problem with boundary data f , if u = f on X \ Ω and

‖Du‖(Ω) ≤ ‖Dv‖(Ω),

whenever v ∈ BV (X) with v = f on X \ Ω.
Definition 2.10. Let Ω be a domain in X and f : ∂Ω → R. We say that a func-
tion u ∈ BV (Ω) is a solution to the Dirichlet problem for least gradients in Ω with
boundary data f , or simply, solution to the Dirichlet problem with boundary data f ,
if Tu = f H-a.e. on ∂Ω and whenever v ∈ BV (Ω), with Tv = f H-a.e. on ∂Ω, we
must have

‖Du‖(Ω) ≤ ‖Dv‖(Ω).
Note that solutions and weak solutions to Dirichlet problems on a domain Ω are

necessarily of least gradient in Ω.

Definition 2.11. A (weak) solution χE to the Dirichlet problem with boundary
data χF is called a minimal (weak) solution to the said problem if every (weak)

solution χẼ corresponding to the data χF satisfies E ⊏ Ẽ, that is, µ(E \ Ẽ) = 0, or
alternatively, χE ≤ χẼ µ-a.e. in X.

It is shown in [25] that if F ⊂ X is such that P (F,X) < ∞, then there is a set
E ⊂ X with P (E,X) < ∞ such that χE is a weak solution to the Dirichlet problem
with boundary data χF . We call E a weak solution set. Moreover, for such an F ,
there is a minimal weak solution, and such a minimal weak solution is unique µ-a.e.
in X, [25, Proposition 3.7]. However, without additional assumptions on Ω, the trace
of the weak solution may not agree with χF on ∂Ω. That is, a weak solution may
not necessarily be a solution. For example, if Ω = (0, 1)× (0, 1) ⊂ R

2, and F is the
disk centered at (1/2, 0) of radius 1/10, then the trace of the minimal weak solution
will have zero trace on ∂Ω, and in fact there is no least gradient function with the
appropriate trace on the boundary. To address this issue, the following definition
was introduced in [25], extending the formulation from [37] to the metric setting.

Definition 2.12. Given a domain Ω ⊂ X, we say that the boundary ∂Ω has pos-
itive mean curvature if for each x ∈ ∂Ω, there exists a non-decreasing function
φx : (0,∞) → (0,∞) and a constant rx > 0 such that for all 0 < r < rx with
P (B(x, r), X) < ∞, we have that B(x, φx(r)) ⊏ EB(x,r), where EB(x,r) ⊂ X gives
the minimal weak solution to the Dirichlet problem with boundary data χB(x,r), as
defined above.
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In [25], positive mean curvature is defined by existence of φ and r0 > 0 so that
the condition is satisfied for all x ∈ ∂Ω and all 0 < r < r0. However, the results from
[25] hold if the definition is weakened to allow dependence on x, as above.

Remark 2.13. It is shown in [25, Proposition 4.8, 4.9] that if H(∂Ω) < ∞, and
F ⊂ X is open with P (F,X) < ∞ and H(∂F ∩ ∂Ω) = 0, then under the assumption
of positive mean curvature, all weak solutions of χF are solutions. Additionally, if
v ∈ BV (Ω) is a solution for χF , then extending v outside Ω by χF yields a weak
solution.

3 Motivating examples

The domain Ω = B(0, 1) ⊂ R
2 has boundary of positive mean curvature as defined

above, but it was shown by Spradlin and Tamasan in [36] that there exists a function
f ∈ L1(∂Ω) for which there is no solution to the Dirichlet problem when f is the
given boundary data. The function f is the characteristic function of a certain fat
Cantor set on the unit circle. The following example, due to Górny [12, Example 4.7],
is a modification of the example from [36].

Example 3.1. Let Ω = B(0, 1) ⊂ R
2. We construct a Cantor set K1/4 on the unit

circle as follows. Let

I0 := {(cos θ, sin θ) : π/2− 1/2 ≤ θ ≤ π/2 + 1/2} ,

and define f0 : ∂Ω → R by f0 = χI0 . To construct f1 : ∂Ω → R, we remove an arc of
arc-length 1/4 from the center of I0, and let

I1,1 = {(cos θ, sin θ) : π/2− 1/2 ≤ θ ≤ π/2− 1/8},

I1,2 = {(cos θ, sin θ) : π/2 + 1/8 ≤ θ ≤ π/2 + 1/2},
and let J1 := I1,1 ∪ I1,2. Define f1 : ∂Ω → R by f1 = χJ1 .

Continuing inductively in this manner, we construct fn from fn−1 by removing an
arc of arc-length 1/4n from the center of In−1,m for each m ∈ {1, . . . , 2n−1}, that is,
from each arc comprising Jn−1. We then obtain a new collection of arcs {In,m}2

n

m=1,
and by a direct computation, it follows that the arc length of each In,m is given by

H(In,m) =
2n + 1

22n+1
.

11



I1,1 I1,2

Figure 1: u1 = 1 in the shaded regions,
and u1 = 0 elsewhere in the
disk.

ΩA

A

Figure 2: w = 0 in the shaded regions,
and w = 1 elsewhere in ΩA.

Setting Jn =
⋃2n

m=1 In,m, we define fn : ∂Ω → R by fn = χJn . The Cantor set is then
given by K1/4 =

⋂
n∈N Jn, and we define f : ∂Ω → R by f = χK1/4

. We note that

f ∈ L1(∂Ω).
For each n ∈ N, consider the function un : Ω → R given as follows. For each

m ∈ {1, . . . , 2n}, let un = 1 on the region of Ω bounded by In,m and the chord joining
the endpoints of In,m. Let un = 0 elsewhere in Ω. It was shown in [12, Example 4.7]
that un is a solution to the Dirichlet problem with boundary data fn. This was done
by considering the trapezoid formed by the chord joining the endpoints of each arc
In−1,m, the chord joining the endpoints of the arc removed from the center of In−1,m,
and the chords joining the endpoints of the two arcs remaining after the removal.
Since the Cantor set was constructed using the removal parameter 1/4, it was shown
that the sum of the lengths of the bases of the trapezoid is greater than the sum of the
lengths of the sides, and such an inequality holds on every stage of the construction
(see Figure 1). Here by bases, we mean the two parallel sides of the trapezoid.

Claim. If n ∈ N is sufficiently large, then for any set E ⊂ Ω such that w = χE is a
solution to the Dirichlet problem with boundary data fn, we have that w = un a.e.
in Ω. That is, for sufficiently large n ∈ N, solution sets to the Dirichlet problem with
boundary data fn are unique a.e.

12



Proof of claim. By summing the lengths of the line segments which comprise the
boundary of {un = 1}, we have by direct computation that

‖Dun‖(Ω) → H(K1/4) = 1/2

as n → ∞. Since 2 sin(5/16) > 1/2, there exists N ∈ N such that for all n ∈ N,
n > N implies that

‖Dun‖(Ω) < 2 sin(5/16). (3.2)

Fix n > N and suppose that there exists E ⊂ Ω such that w = χE is a solution to the
Dirichlet problem with boundary data fn. Since w is of least gradient in Ω, we have
that ∂E ∩Ω consists of straight line segments. We will show that multiple arcs from
{In,m}2

n

m=1 cannot be contained in the boundary of a single connected component of
E. In doing so, this will show that w = un a.e. in Ω.

Suppose that a connected component E0 of E contains multiple arcs from {In,m}2
n

m=1

it its boundary. Let In,m1
and In,m2

be the two arcs forming part of the boundary
of E0 farthest from one another on ∂Ω, and let A be the shortest arc on ∂Ω which
contains both In,m1

and In,m2
. Since the chord joining the endpoints of A forms part

of the perimeter of E, we have that

‖Dw‖(Ω) ≥ 2 sin(H(A)/2).

If H(A) ≥ 5/8, then by the choice of N and (3.2), we would have that

‖Dw‖(Ω) ≥ 2 sin(5/16) > ‖Dun‖(Ω).

However, this contradicts w being a solution to the Dirichlet problem with boundary
data fn, and so it follows that H(A) < 5/8.

Let ΩA denote the region of Ω bounded by A and the chord joining the endpoints
of A. Since H(A) < 5/8, it follows from the argument in Example 3.3 that for each
subarc of A which was removed in the construction of fn, w = 0 on the region of
ΩA bounded by that subarc and the chord joining its endpoints. Likewise, w = 1
elsewhere in ΩA. It is shown, as part of the discussion of Example 3.3, that this
configuration minimizes the perimeter of potential solution sets in such regions ΩA,
see Figure 2.

Let C denote the largest subarc of A removed during the construction of fn,
and let k ∈ N such that H(C) = 4−k; we note that k ≤ n. Consider the function
h : [0,H(Ik,m)] → R, given by

h(θ) = 2

[
sin

(H(C)

2

)
+ sin

(H(Ik,m) +H(C) + θ

2

)
− sin

(H(Ik,m)

2

)
− sin

(
θ

2

)]
,

13



where Ik,m is one of the two arcs adjacent to C at the k-th stage of the construction.
The function h measures the difference between the sum of the lengths of the bases
and the sum of the lengths of the sides of the quadrilateral shown in Figure 3.
Here, by bases we mean the chord joining the end points of C and the side of the
quadrilateral opposite that chord. Because the trapezoid inequality between side and
base lengths discussed above was shown to hold at every stage of the construction in
[12, Example 4.7], we have that h (H(Ik,m)) > 0. Furthermore, we have that

h′(θ) = cos

(H(Ik,m) +H(C) + θ

2

)
− cos

(
θ

2

)
< 0,

and so h is positive on [0,H(Ik,m)]. Similarly, for any fixed λ ∈ [0,H(Ik,m)], the
function hλ : [0,H(Ik,m)] → R given by

hλ(θ) = 2

[
sin

(H(C)

2

)
+ sin

(
λ+H(C) + θ

2

)
− sin

(
λ

2

)
− sin

(
θ

2

)]

is decreasing with hλ(H(Ik,m)) > 0. Hence, hλ is positive on [0,H(Ik,m)].
Thus the sum of the length of the the chord joining the endpoints of C and the

length of the chord joining the endpoints of A is strictly greater than the sum of the
lengths of the chords which join each endpoint of C to the corresponding endpoint
of A, see Figure 4. This is a contradiction, since w is a solution, and the chord
joining the endpoints of A and the chord joining the endpoints of C form part of the
perimeter of A in Ω. Hence, multiple arcs from {Ik,m}2

n

m=1 cannot be contained in the
boundary of a single connected component of E. Therefore, we have that w = un

a.e. in Ω, proving the claim.

C

Ik,m
θ

Figure 3

C

A

Figure 4
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Now suppose that there exists a solution u ∈ BV (Ω) to the Dirichlet problem
with boundary data f = χK1/4

. By Remark 4.7 below, χ{u>t} is a solution to the
Dirichlet problem with boundary data χ{f>t} for L-a.e. t ∈ R. Thus we may assume
that there exists some E ⊂ Ω such that u = χE . Since for all n ∈ N, f ≤ fn on
∂Ω, it follows from Lemma 4.4 below that max{u, un} is a solution to the Dirichlet
problem with boundary data fn. But max{u, un} is the characteristic function of a
subset of Ω, and so by the claim above, max{u, un} = un a.e. in Ω for sufficiently
large n. Hence for sufficiently large n, u ≤ un a.e. in Ω, and since un → 0 as n → ∞,
it follows that u = 0 a.e. in Ω. However H(K1/4) = 1/2, and for each x ∈ K1/4,
Tu(x) = 0 6= f(x), a contradiction. Therefore there is no solution to the Dirichlet
problem with boundary data f .

In the next example, we show that a slight modification of the function f con-
structed above, namely the addition of another arc to K1/4, renders the new function
solvable.

Example 3.3. Let F := ∂Ω \ I0. For each n ∈ N, let gn := fn + χF = χJn + χF ,
and g := f + χF = χK1/4

+ χF . We claim that there is a solution v ∈ BV (Ω) to the
Dirichlet problem with boundary data g, i.e. Tv = g H-a.e. on ∂Ω.

To show this, we first note that for each n ∈ N, gn has a solution, see Theorem 1.1
proved in Section 4. Furthermore, g can be extended to a BV function in Ω by
Proposition 4.1 below, which can then be extended to a BV function on R

2. Thus
by [25, Lemma 3.1], this extension of g has a weak solution. For each n ∈ N, we
will construct a solution vn for the Dirichlet problem with boundary data gn, and
show that these solutions converge in L1(Ω) to a function v whose trace agrees with
g H-a.e. on ∂Ω.

We first denumerate the removed arcs in the construction as follows. Let C1,1

denote the arc removed from I0 in the construction of f1, and similarly, let C2,1

and C2,2 denote the arcs removed from I1,1 and I1,2 respectively, in the construction
of f2. Inductively, let {Cn,m}2

n−1

m=1 be the collection of arcs removed from the arcs
{In−1,m}2n−1

m=1 in the construction of fn. We recall that each Cn,m has arc length 1/4n,
and we note that

Jn = I0 \




n⋃

ℓ=1

2ℓ−1⋃

m=1

Cℓ,m


 .

For each n ∈ N, consider the function vn : Ω → R given as follows. For each
ℓ ∈ {1, . . . , n} and m ∈ {1, . . . , 2ℓ−1}, let vn = 0 in the region of Ω bounded by Cℓ,m

and the chord joining the endpoints of Cℓ,m, and let vn = 1 elsewhere in Ω (see Figure
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C1,1

F

C2,1 C2,2

I2,1

I2,2 I2,3

I2,4

Figure 5: v2 = 0 on the shaded region
bounding C1,1 and on the very
small shaded regions bound-
ing C2,1 and C2,2, and v2 = 1
elsewhere in the disk.

E0
Cl2,m2

Cl1,m1

A

Figure 6: An example of the case when
E0 has multiple arcs from Cn
in its boundary, and Cℓ1,m1

is
the largest sub-arc of A from
Cn.

5). We wish to show that vn is a solution to the Dirichlet problem with boundary
data gn.

Let w ∈ BV (Ω) be a solution to the Dirichlet problem with boundary data gn,
guaranteed to exist by Theorem 1.1. We note that gn is the characteristic function
of a subset of the boundary of Ω, and so by Remark 4.7, we may assume that there
exists a set E ⊂ Ω such that w = χE . Furthermore we may assume that ∂E ∩ Ω
consists of straight line segments. We will show that multiple arcs from

Cn := {Cℓ,m : 1 ≤ ℓ ≤ n, 1 ≤ m ≤ 2ℓ−1}

cannot be contained in the boundary of a single connected component of {w = 0}.
In doing so, this will show that w = vn.

Suppose that a connected component E0 of {w = 0} contains multiple arcs from
Cn in its boundary. Let Cℓ1,m1

and Cℓ2,m2
be the extreme arcs joined by E0, that

is, the two arcs connected to E0 which are farthest from one another on ∂Ω. Let A
be the shortest arc on ∂Ω which contains both Cℓ1,m1

and Cℓ2,m2
. Since the arc F

was added to Jn in the construction of gn, it follows that w = 1 on the region of Ω
bounded by F and the chord joining the endpoints of F. Therefore, by this choice of
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A, the chord joining the endpoints of A forms part of the perimeter of E. Thus,

‖Dw‖(Ω) = P (E,Ω) ≥ 2 sin(H(A)/2).

We also note that
‖Dvn‖(Ω) < H(I0 \K1/4) = 1/2.

If H(A) ≥ 5/8, then

‖Dw‖(Ω) ≥ 2 sin(H(A)/2) ≥ 2 sin(5/16) > 1/2 > ‖Dvn‖(Ω),

contradicting the fact that w is a solution. Thus, H(A) < 5/8, and we have that

H(A)− 2 sin(H(A)/2) < 0.011.

Here is another point at which the addition of F = ∂Ω \ I0 to K1/4 makes a
difference. In the previous example, the invalid trace was caused by “cutting off” the
arcs Ik,m in constructing the solution to fn. When constructing the solution for gn,
however, we are unable to “cut off” the arc F ; otherwise, we would have to include
the line segment joining the end points of the arc F in the perimeter measure of that
solution, creating too much perimeter.

For k ∈ N and m ∈ {1, . . . , 2k}, we have that

H(Ik,m ∩K1/4) = H(K1/4)/2
k = 1/2k+1,

and 1/27 < 0.011 < 1/26. Thus, if A contained a sub-arc Ik,m with k ≤ 5, then we
have that

H(A)− 2 sin(H(A)/2) < 0.011 < H(Ik,m ∩K1/4) ≤ H(A ∩K1/4),

hence H(A \K1/4) < 2 sin(H(A)/2). However, setting ΩA to be the open region of Ω
bounded by A and the chord joining the endpoints of A, we note that

‖Dvn‖(ΩA ∩ Ω) < H(A \K1/4).

Since the chord joining the endpoints of A has length 2 sin(H(A)/2) and comprises
part of the perimeter of E, this contradicts the assumption that w is a solution.
Therefore, A cannot contain a sub-arc Ik,m with k ≤ 5. We now consider two cases.

Case 1: Suppose that either Cℓ1,m1
or Cℓ2,m2

is the largest arc in Cn which is
a sub-arc of A (see Figure 6). We note that the largest such sub-arc is unique.
Indeed, by the construction, if the arc A contains two arcs Ck,m1

and Ck,m2
, then

there exists a k′ < k and 1 ≤ m ≤ 2k
′

such that Ck′ ⊂ A. That is to say, A would

17



necessarily contain a larger removed sub-arc. Without loss of generality, we assume
that C1 := Cℓ1,m1

is the largest such sub-arc of A.
Let B := A \C1, and let Ck,m be the largest arc from Cn such that Ck,m ⊂ B. As

above, Ck,m is the unique such sub-arc. We recall that Ck,m was removed from the
center of the arc Ik−1,m, and since Ck,m was chosen as the largest removed sub-arc of
B, it follows from the construction that B ⊂ Ik−1,m. Indeed, if Ik−1,m did not contain
B, then B would contain one of the removed arcs bordering Ik−1,m, which would
necessarily be strictly larger than Ck,m. It follows from direct computation that

H(B \K1/4) ≤ H(Ik−1,m \K1/4) = (1 +
∞∑

j=1

1/2j)/4k = 2/4k.

Moreover, since C1 and Ck,m are the largest sub-arcs of A from Cn, it follows from
the construction that the sub-arc of B connecting C1 to Ck,m is of the form Ik,m for
some 1 ≤ m ≤ 2k. This is because the arc joining any removed arc Ck,m to a larger
removed arc, always contains an arc of the form Ik,m. Thus,

H(B) ≥ H(Ik,m) =
2k + 1

22k+1
>

1

2k+1
.

Since Ik,m ⊂ B ⊂ A, it follows from the prior argument in this proof that k ≥ 6.
We note that ‖Dvn‖(ΩA∩Ω) < 2 sin(H(C1)/2)+H(B \K1/4), and we would like

to show that

2 sin(H(C1)/2) +H(B \K1/4) < 2 sin

(H(C1) +H(B)

2

)
= 2 sin(H(A)/2).

Using the computations above, we prove the following stronger inequality.

Claim.

sin

(H(C1)

2
+

1

2k+2

)
− sin

(H(C1)

2

)
>

1

4k
. (3.4)

Proof of claim. Since C1 = Cℓ1,m1
, it follows that H(C1)/2 ≤ 1/8. By the mean value

theorem, there exists H(C1)/2 < zk < H(C1)/2 + 1/2k+2 such that

sin

(H(C1)

2
+

1

2k+2

)
− sin

(H(C1)

2

)
=

cos(zk)

2k+2
≥ cos

(H(C1)

2
+

1

2k+2

)
/2k+2.

Since H(C1)/2 ≤ 1/8 and k ≥ 6, it then follows that

sin

(H(C1)

2
+

1

2k+2

)
− sin

(H(C1)

2

)
≥ 1/2k+3 > 1/4k,
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E0

C3

B1 B2

A

Figure 7: An example of the case when E0 has multiple arcs from Cn in its boundary, but
neither Cℓ1,m1

nor Cℓ2,m2
is the largest sub-arc of A from Cn.

proving the claim.

Thus, it follows that ‖Dvn‖(ΩA ∩ Ω) < 2 sin(H(A)/2). As above, since the
chord joining the endpoints of A has length 2 sin(H(A)/2) and comprises part of the
perimeter of E, this contradicts the assumption that w is a solution. Therefore, this
configuration cannot occur for w.

Case 2: Now consider the case when neither Cℓ1,m1
nor Cℓ2,m2

is the largest arc
in Cn which is a sub-arc of A. Let C3 denote the largest such sub-arc, and let B1

and B2 be the disjoint arcs which comprise A \ C3 (see Figure 7). We iterate the
argument from the first case as follows. First, setting C1 := B1 ∪ C3, we see that
(3.4) holds by the same proof. Since H(A) < 5/8, it follows that H(C1)/2 < 3/8
here, and so for k ≥ 6, the same inequalities hold. Thus,

2 sin(H(A)/2) ≥ 2 sin

(H(B1) +H(C3)

2

)
+H(B2 \K1/4).

Now, we repeat the argument for (3.4), this time setting C1 := C3. Once again, the
claim holds, and so it follows that

2 sin

(H(B1) +H(C3)

2

)
≥ 2 sin(H(C3)/2) +H(B1 \K1/4).

Thus, we have that

2 sin(H(A)/2) ≥ 2 sin(H(C3)/2) +H(B1 \K1/4) +H(B2 \K1/4) > ‖Dvn‖(ΩA ∩ Ω),

again contradicting the fact that w is a solution. Having exhausted all the possible
cases, it follows that the connected component E0 cannot contain multiple arcs from

19



Cn in its boundary. Therefore w = vn, and so vn solves the Dirichlet problem for
boundary data gn.

Let v : Ω → R be given as follows. Let C :=
⋃

n∈N Cn. For each C ∈ C, let v = 0
on the region of Ω bounded by C and the chord joining the endpoints of C. Let v = 1
elsewhere in Ω. Then, vn → v in L1(Ω), and so by [17, Proposition 3.1], it follows
that v is a function of least gradient in Ω. If x ∈ ∂Ω \ (K1/4 ∪ F ), then there exists
C ∈ C such that x ∈ C. Since each C is an open arc on ∂Ω, it follows that v = 0 on
B(x, r)∩Ω for small enough r > 0. Thus, Tv(x) = 0 = g(x). Similarly, if x ∈ F, and
x is not one of the endpoints of F , then Tv(x) = 1 = g(x).

For x ∈ K1/4, there exists a fixed angle θ such that v = 1 on the circular sector
of angle θ in B(x, r) ∩Ω for sufficiently small r > 0. Thus, Tv(x) > 0. Since v is the
characteristic function of a set in Ω, T v must take values of either 1 or 0 H-a.e., see
[12, Example 4.8]. Therefore Tv(x) = 1 = g(x) for H-a.e. x ∈ K1/4, and so Tv = g
H-a.e. on ∂Ω. Hence by Lemma 4.3, v is a solution to the Dirichlet problem with
boundary data g.

Remark 3.5. Given a domain Ω, let S ⊂ L1(∂Ω) denote the set of functions f on
∂Ω for which there exists a solution to the Dirichlet problem with boundary data
f. Examples 3.1 and 3.3 show that S does not necessarily form a vector space, even
when Ω = B(0, 1) ⊂ R

2. In particular, S can be non-linear. As shown above, g and
χF both have solutions, but g − χF = χK1/4

= f has no solution.

Remark 3.6. Example 3.3 also shows that solutions to the Dirichlet problem for
least gradient functions may be non-local in the following sense. In Example 3.3,
a solution exists for boundary data g = χK1/4∪F . However, for any Ik,m from the
construction of K1/4, let ηk,m denote a Lipschitz function on ∂Ω such that ηk,m = 1
on Ik,m and whose support is contained in the union of Ik,m and the two removed arcs
adjacent to Ik,m. Then there is no solution to the Dirichlet problem with boundary
data ηk,mg = χK1/4∩Ik,m . This is because the set K1/4 ∩ Ik,m can be constructed
in the same way that K1/4 is constructed in Example 3.1. By the choice of the
parameter a = 1/4, the same inequality between the side and base lengths of the
trapezoids created in the construction holds at every stage, and so the same argument
from Example 3.1 shows that no solution exists for boundary data ηk,mg. This non-
locality contrasts the case involving solutions to the Dirichlet problem for p-harmonic
functions when p > 1. Such solutions are known to exist if the boundary data f is the
trace of a function in N1,p(Ω). If η is a compactly supported Lipschitz function on
∂Ω, then ηf is similarly the trace of a function in N1,p(Ω) and hence has a solution.
For more on the Dirichlet problem for p-harmonic functions and traces of functions
of class N1,p when p > 1, see for example [6] and [27].
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4 Sufficient conditions for existence of solutions

For the remainder of this paper, we assume that (X, d, µ) is a complete metric mea-
sure space supporting a (1, 1)-Poincaré inequality, with µ a doubling Borel regular
measure. We also assume that Ω ⊂ X is a bounded domain, with µ(X \ Ω) > 0,
such that ∂Ω has positive mean curvature as in Definition 2.12. Furthermore, we
assume that H(∂Ω) < ∞, that H

∣∣
∂Ω

is doubling, and that H
∣∣
∂Ω

is lower codimen-
sion 1 Ahlfors regular, as in (2.6). The unit disk in R

2 satisfies the above conditions,
and so Example 3.1 above shows that an L1-function on the boundary of such a
domain need not have a solution. However, for such domains, it was shown in [25]
that given f ∈ C(∂Ω), there exists a solution u ∈ BV (Ω) to the Dirichlet problem
with boundary data f . We show that the solution for continuous data constructed
in [25] is in fact the minimal solution, and that if an arbitrary f ∈ L1(∂Ω) can be
approximated pointwise a.e. from above and below by continuous functions, then
there exists a solution to the Dirichlet problem with boundary data f . We point out
that approximation of the boundary data in this manner was used in [34] to show
existence of solutions for convex polygonal domains in R

2. There, the boundary data
belonged to BV (∂Ω) and satisfied restrictive admissibility conditions with respect to
the geometry of the boundary.

Since we are interested in finding solutions to the Dirichlet problem given data f
defined on ∂Ω, we need methods and control over extensions of f into Ω and to the
entire space X. The following results from [28] and [25] give existence and bounds
for such extensions.

Proposition 4.1. ([28, Propositions 4.2, 4.3]) There exists a nonlinear, bounded
extension E : L1(∂Ω) → BV (Ω), satisfying

‖Ef‖L1(Ω) ≤ C diam(Ω)‖f‖L1(∂Ω) and

‖DEf‖(Ω) ≤ C(1 +H(∂Ω))‖f‖L1(∂Ω).

Moreover, TEf = f H-a.e. on ∂Ω.

Proposition 4.2. ([25, Lemma 5.1, Proposition 5.2]) There exists a nonlinear ex-
tension Ext : C(∂Ω) → C(X) ∩ BV (X) satisfying

‖Ext f‖L∞(X) ≤ ‖f‖L∞(∂Ω) + 1 and

‖DExt f‖(X) ≤ C (1 +H(∂Ω)) (‖f‖L1(∂Ω) + ‖f‖L∞(∂Ω) + 1).

Moreover, for f ∈ C(∂Ω) and z ∈ ∂Ω, it follows that

lim
(X\∂Ω)∋x→z

Ext f(x) = f(z).

21



We will need the following lemmas.

Lemma 4.3. Let f ∈ L1(∂Ω), and let u ∈ BV (Ω) be a function of least gradient in
Ω such that Tu = f H-a.e. on ∂Ω. Then, u is a solution to the Dirichlet problem
with boundary data f .

Proof. Let v ∈ BV (Ω) such that Tv = f H-a.e. on ∂Ω. Then, T (v − u) = 0 H-a.e.
on ∂Ω, and so by [26, Theorem 6.9], there exists wk ∈ BVc(Ω) for k ∈ N such that
wk → v − u in BV (Ω). Thus, it follows that

‖D(u+ wk)‖(Ω) → ‖Dv‖(Ω),

as k → ∞. Since u is of least gradient and wk ∈ BVc(Ω), we have that

‖Du‖(Ω) ≤ ‖D(u+ wk)‖(Ω) → ‖Dv‖(Ω)

as k → ∞, and so it follows that ‖Du‖(Ω) ≤ ‖Dv‖(Ω).

Lemma 4.4. Let f, g ∈ L1(∂Ω) be such that f ≤ g H-a.e., and let u, v ∈ BV (Ω)
be solutions to the Dirichlet problem with boundary data f and g respectively. Then,
min{u, v} and max{u, v} are solutions to the Dirichlet problem with boundary data
f and g respectively.

Proof. By [24, Lemma 3.1], it follows that

‖Dmin{u, v}‖(Ω) + ‖Dmax{u, v}‖(Ω) ≤ ‖Du‖(Ω) + ‖Dv‖(Ω). (4.5)

For x ∈ ∂Ω such that f(x) ≤ g(x) and setting Ur := B(x, r) ∩ Ω, we have that

 

Ur

|min{u, v} − f(x)|dµ =
1

µ(Ur)

(
ˆ

Ur∩{u≥v}
|v − f(x)|dµ+

ˆ

Ur∩{v>u}
|u− f(x)|dµ

)

≤ 1

µ(Ur)

ˆ

Ur∩{u≥v}
|v − f(x)|dµ+

 

Ur

|u− f(x)|dµ,

and it follows that
ˆ

Ur∩{u≥v}
|v − f(x)|dµ

=

ˆ

Ur∩{u≥v}∩{v>f(x)}
|v − f(x)|dµ+

ˆ

Ur∩{u≥v}∩{v≤f(x)}
|v − f(x)|dµ

≤
ˆ

Ur

|u− f(x)|dµ+

ˆ

Ur

|v − g(x)|dµ.
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Therefore, for H-a.e. x ∈ ∂Ω, we have that

 

Ur

|min{u, v} − f(x)|dµ ≤ 2

 

Ur

|u− f(x)|dµ+

 

Ur

|v − g(x)|dµ → 0

as r → 0+. Thus, T min{u, v} = f H-a.e. on ∂Ω, and a similar argument shows that
T max{u, v} = g H-a.e. on ∂Ω.

Now, suppose that ‖Dmin{u, v}‖(Ω) > ‖Du‖(Ω). Then by (4.5) we have that
‖Dmax{u, v}‖(Ω) < ‖Dv‖(Ω). This is a contradiction since T max{u, v} = g H-a.e.,
and v is a solution to the Dirichlet problem with boundary data g. Thus, we have
that

‖Dmin{u, v}‖(Ω) ≤ ‖Du‖(Ω),
and so min{u, v} is a solution to the Dirichlet problem with boundary data f. Sim-
ilarly, we have that max{u, v} is a solution to the Dirichlet problem with boundary
data g.

Lemma 4.6. Let f ∈ L1(∂Ω), and suppose that u ∈ L1(Ω) with Tu = f H-a.e. on
∂Ω. Then, for L-a.e. t ∈ R, we have that Tχ{u>t} = χ{f>t} H-a.e. on ∂Ω.

Proof. Since H(∂Ω) < ∞, it follows that H({f = t}) = 0 for L-a.e. t ∈ R. For such
t ∈ R, let x ∈ ∂Ω ∩ {f 6= t} be such that Tu(x) = f(x). This property holds for
H-a.e. x ∈ ∂Ω.

We first consider the case when f(x) > t. Setting Ur := B(x, r)∩Ω, we have that

 

Ur

|χ{u>t} − χ{f>t}(x)|dµ =
1

µ(Ur)

ˆ

Ur

|χ{u>t} − 1|dµ

=
µ({u ≤ t} ∩ Ur)

µ(Ur)
.

Suppose that this quantity does not go to zero as r goes to zero. That is, suppose
there exists ε0 > 0 such that for all δ > 0, there exists 0 < rδ < δ such that

µ({u ≤ t} ∩ Urδ)

µ(Urδ)
≥ ε0.
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Let ε := |f(x)− t|ε0. Since Tu(x) = f(x), there exists δ > 0 such that

ε >

 

Urδ

|u− f(x)|dµ

=
1

µ(Urδ)

(
ˆ

Urδ
∩{u>t}

|u− f(x)|dµ+

ˆ

Urδ
∩{u≤t}

|u− f(x)|dµ
)

≥ 1

µ(Urδ)

ˆ

Urδ
∩{u≤t}

|u− f(x)|dµ

≥ |f(x)− t|µ({u ≤ t} ∩ Urδ)

µ(Urδ)
≥ |f(x)− t|ε0 = ε,

a contradiction. Thus, it follows that
 

Ur

|χ{u>t} − χ{f>t}(x)|dµ → 0

as r → 0+.
If f(x) < t, then we have that

 

Ur

|χ{u>t} − χ{f>t}(x)|dµ =
µ({u > t} ∩ Ur)

µ(Ur)
.

If we suppose that this quantity does not go to zero as r goes to zero, then we arrive
at a contradiction by the same method as above. However, in this case, we use the
fact that

1

µ(Urδ)

ˆ

Urδ
∩{u>t}

|u− f(x)|dµ ≥ |f(x)− t|µ({u > t} ∩ Urδ)

µ(Urδ)
.

Thus, for H-a.e. x ∈ ∂Ω, we have that

lim
r→0

 

Ur

|χ{u>t} − χ{f>t}(x)|dµ = 0,

and so Tχ{u>t} = χ{f>t} H-a.e. on ∂Ω.

Remark 4.7. If u ∈ BV (Ω) is a solution to the Dirichlet problem with boundary
data f , then by the coarea formula, we have that χ{u>t} ∈ BV (Ω) for L-a.e. t ∈ R.
Moreover, as u is necessarily of least gradient in Ω, it follows that for each t ∈ R,
χ{u>t} is of least gradient in Ω as shown in [17, Lemma 3.6]. Thus, by Lemma 4.3
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and Lemma 4.6, it follows that χ{u>t} is a solution to the Dirichlet problem with
boundary data χ{f>t} for L-a.e. t ∈ R. In particular, if f = χF for some F ⊂ ∂Ω,
and there exists a solution u to the Dirichlet problem with boundary data f , we may
assume that u = χE for some E ⊂ Ω with P (E,Ω) < ∞.

We now show that the solution constructed in [25] for continuous data is minimal
in the following sense.

Proposition 4.8. Let f ∈ C(∂Ω). Then, there exists a solution u ∈ BV (Ω) to the
Dirichlet problem with boundary data f , such that for any solution u′ to the said
Dirichlet problem, we have that u ≤ u′ µ-a.e. in Ω.

Proof. We follow the construction of a solution u ∈ BV (Ω) given in the proof of
[25, Theorem 4.10] and show that u has the desired property.

Let Ext f ∈ C(X)∩BV (X) be the extension of f to X given by Proposition 4.2.
For t ∈ R, let Ft := {x ∈ X : Ext f(x) > t}. Then, Ft is open by continuity of Ext f ,
and since Ext f ∈ BV (X), it follows from the coarea formula that P (Ft, X) < ∞ for
L-a.e. t ∈ R. Moreover, if x ∈ ∂Ft, then Ext f(x) = t by continuity of Ext f, and so
∂Ft ∩ ∂Fs = ∅ for s 6= t. Since H(∂Ω) < ∞, it then follows that H(∂Ω ∩ ∂Ft) = 0
for L-a.e. t ∈ R. Let

J := {t ∈ R : P (Ft, X) < ∞ and H(∂Ω ∩ ∂Ft) = 0}.

For each t ∈ J, there exists a unique minimal solution set Ẽt to the Dirichlet
problem with boundary data χFt , [25, Proposition 3.7, 4.8]. Setting

Et := {x ∈ X : χ∨
Ẽt
(x) > 0},

it follows that χEt is also a minimal solution. Since L(R \ J) = 0, we can find a
countable set I ⊂ J such that I is dense in R. Let u : X → R be given by

u(x) = sup{s ∈ I : x ∈ Es}.

In [25, Theorem 4.10], it is shown that u ∈ BV (Ω) and u is a solution to the Dirichlet
problem with boundary data f .

Now, let u′ ∈ BV (Ω) be another solution to the Dirichlet problem with boundary
data f. Then, setting

E ′
t = {u′ > t},

it follows from the discussion in Remark 4.7 that χE′

t
is a solution to the Dirichlet

problem with boundary data χFt for L-a.e. t ∈ R. Letting

J ′ := {t ∈ J : χE′

t
is a solution for χFt} ⊂ J,
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we have that L(R\J ′) = 0. Hence, there exists a countable set I ′ ⊂ J ′ such that I ′ is
dense in R. For each s ∈ I ′, we have that χEs ≤ χE′

s
µ-a.e., since χEs is the minimal

solution for χFs. Therefore, letting

Gs := Es \ E ′
s =

{
x ∈ Ω : χE′

s
(x) < χEs(x)

}
,

we have that µ(Gs) = 0. Letting

G :=
⋃

s∈I′
Gs,

it follows that µ(G) = 0.
Moreover, for s∗ ∈ I ′ and s ∈ I such that s∗ < s, we have from [25, Lemma 3.8]

that Es ⊏ Es∗ . Let
Hs∗,s := {x ∈ Ω : x ∈ Es \ Es∗}.

Then, µ(Hs∗,s) = 0. Let

H :=
⋃

s∗∈I′

⋃

s∈I,s>s∗

Hs∗,s.

Then, we have µ(H) = 0.
Let x ∈ X \ (G ∪ H), and suppose that u′(x) < u(x) = sup{s ∈ I : x ∈ Es}.

Then, by the definition of u, there exists s ∈ I with u′(x) < s ≤ u(x) such that
x ∈ Es, and by the density of I ′ in R, there exists s∗ ∈ I ′ such that

u′(x) < s∗ < s ≤ u(x).

Since s∗ < s and x 6∈ H, we have that x ∈ Es∗ . Moreover, since u′(x) < s∗, it follows
that x 6∈ E ′

s∗. Thus we have that

χE′

s∗
(x) < χEs∗

(x).

However, this is a contradiction since x 6∈ Gs∗ . Therefore, it follows that u(x) ≤ u′(x),
and since µ(G ∪H) = 0, we have that u ≤ u′ µ-a.e. in Ω.

Remark 4.9. If v is another solution which is minimal in the sense of Proposition 4.8,
then u = v µ-a.e. Thus, we call u the minimal solution to the Dirichlet problem with
boundary data f .

As an immediate corollary, we obtain a comparison-type result for minimal solu-
tions.
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Corollary 4.10. Let f, g ∈ C(∂Ω) be such that f ≤ g H-a.e. on ∂Ω, and let u
and v be minimal solutions to the Dirichlet problem with boundary data f and g
respectively. Then u ≤ v µ-a.e. in Ω.

Proof. Existence of the minimal solutions u and v is guaranteed by Proposition 4.8.
By Lemma 4.4, min{u, v} is a solution to the Dirichlet problem with boundary data
f. Therefore, as u is a minimal solution, we have that

u ≤ min{u, v} ≤ v

µ-a.e. in Ω.

We note that in this setting, uniqueness of solutions is not guaranteed even for
Lipschitz boundary data (see [25]), and so such a comparison theorem may not hold
for solutions which are not minimal.

Using the previous corollary, we are now able to establish Theorem 1.1.

Proof of Theorem 1.1. For k ∈ N, let uk and vk be the minimal solutions for the
Dirichlet problem with boundary data gk and hk, respectively. The existence of such
minimal solutions follows from Proposition 4.8 above. By Corollary 4.10, we have

uk ≤ uk+1 ≤ vk+1 ≤ vk (4.11)

µ-a.e. in Ω. Let u : X → R be given by

u := sup
k

uk = lim
k→∞

uk.

We have that |uk − u| ≤ 2max{|u1|, |v1|}, µ-a.e. in Ω, and since u1, v1 ∈ L1(Ω),
it follows that

ˆ

Ω

2max{|u1|, |v1|}dµ < ∞.

Therefore, by the dominated convergence theorem, we have that

lim
k→∞

ˆ

Ω

|uk − u|dµ = 0,

and so it follows that uk → u in L1(Ω). By [17, Proposition 3.1], it follows that u is
a function of least gradient in Ω.

Let Egk ∈ BV (Ω) be the extension of gk into Ω, as given by Proposition 4.1.
Since uk is a solution to the Dirichlet problem with boundary data gk, and since
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uk → u in L1(Ω), we have by lower semi-continuity of the BV energy and the bounds
from Proposition 4.1 that

‖Du‖(Ω) ≤ lim inf
k→∞

‖Duk‖(Ω) ≤ lim inf
k→∞

‖DEgk‖(Ω)

≤ lim inf
k→∞

C(1 +H(∂Ω))‖gk‖L1(∂Ω)

≤ C(1 +H(∂Ω))‖max{|g1|, |h1|}‖L1(∂Ω) < ∞.

Thus, u ∈ BV (Ω).
It remains to show that Tu = f H-a.e. on ∂Ω. Let x ∈ ∂Ω be such that

gk(x), hk(x) → f(x) as k → ∞, and such that for all k ∈ N, Tuk(x) = gk(x)
and Tvk(x) = hk(x). By the hypothesis, these conditions hold for H-a.e. x ∈ ∂Ω.
Then we have that

 

Ur

|u− f(x)|dµ =
1

µ(Ur)

(
ˆ

Ur∩{u>f(x)}
|u− f(x)|dµ+

ˆ

Ur∩{u≤f(x)}
|u− f(x)|dµ

)
.

Since (4.11) holds for all k ∈ N, it follows that |u(y) − f(x)| ≤ |vk(y) − f(x)| for
µ-a.e. y ∈ Ur ∩ {u > f(x)}, and similarly, |u(y)− f(x)| ≤ |uk(y)− f(x)| for µ-a.e.
y ∈ Ur ∩ {u ≤ f(x)}. Therefore we have that
 

Ur

|u− f(x)|dµ ≤ 1

µ(Ur)

(
ˆ

Ur∩{u>f(x)}
|vk − f(x)|dµ+

ˆ

Ur∩{u≤f(x)}
|uk − f(x)|dµ

)

≤
 

Ur

|vk − f(x)|dµ+

 

Ur

|uk − f(x)|dµ.

Let ε > 0. Since gk(x), hk(x) → f(x) as k → ∞, we can choose k ∈ N sufficiently
large such that |gk(x)− f(x)|, |hk(x)− f(x)| < ε. Thus, it follows that
 

Ur

|u−f(x)|dµ

≤
 

Ur

|vk − hk(x)| + |hk(x)− f(x)|dµ+

 

Ur

|uk − gk(x)|+ |gk(x)− f(x)|dµ

<

 

Ur

|vk − hk(x)|dµ+

 

Ur

|uk − gk(x)|dµ+ 2ε.

Since Tuk(x) = gk(x) and Tvk(x) = hk(x), we have that

lim
r→0+

 

Ur

|u− f(x)|dµ < 2ε,
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and so taking ε → 0, it follows that Tu(x) = f(x). Thus, Tu = f H-a.e. on ∂Ω, and
so by Lemma 4.3, u ∈ BV (Ω) is a solution to the Dirichlet problem with boundary
data f .

Let u′ ∈ BV (Ω) be a solution to the Dirichlet problem with boundary data f. For
each k ∈ N, it follows that min{uk, u

′} is a solution to the Dirichlet problem with
boundary data gk, by Lemma 4.4. However, as uk is a minimal solution, it follows
that uk ≤ min{uk, u

′} ≤ u′ µ-a.e. in Ω. Since uk → u pointwise µ-a.e., it follows
that u ≤ u′ µ-a.e. in Ω. Thus u is a minimal solution, and uniqueness follows from
minimality.

Example 4.12. We point out that the functions vk above need not converge to the
minimal solution u. Let Ω ⊂ R

2 be the (unweighted) unit disc, and let

f(x, y) =

{
1, |y| > 1/

√
2

0, |y| ≤ 1/
√
2.

Letting

gk(x, y) =





1, |y| ≥ 1/
√
2 + 2/k

k(y − (1/
√
2 + 1/k)), 1/

√
2 + 1/k < y < 1/

√
2 + 2/k

−k(y + 1/
√
2 + 1/k), −(1/

√
2 + 2/k) < y < −(1/

√
2 + 1/k)

0, |y| ≤ 1
√
2 + 1/k

and

hk(x, y) =





1, |y| ≥ 1/
√
2− 1/k

k(y − (1/
√
2− 2/k)), 1/

√
2 < y < 1/

√
2− 1/k

−k(y + 1/
√
2− 2/k), −(1/

√
2− 1/k) < y < −(1/

√
2− 2/k)

0, |y| ≤ 1
√
2− 2/k,

for sufficiently large k, we have that gk ≤ f ≤ hk. It follows that the uk converge
to the minimal solution u = χΩ∩{|y|>1/

√
2} to the Dirichlet problem with boundary

data f , and the vk converge to the maximal solution v = χΩ∩{|x|<1/
√
2}. For more on

non-uniqueness of solutions, see [29, Example 2.7] and [11].

As a consequence of Theorem 1.1, we are able to prove Theorem 1.2. Recall that
given F ⊂ ∂Ω, we let ∂̃F denote the boundary of F relative to ∂Ω.
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Proof of Theorem 1.2. For ε > 0, let η+ε : ∂Ω → R be given by

η+ε (x) = max

{
1− dist(x, F )

ε
, 0

}
.

Then η+ε is continuous, and χF ≤ η+ε1 ≤ η+ε2 on ∂Ω for ε1 < ε2. If x ∈ F, then
η+ε (x) = 1 for all ε > 0. Likewise, if x ∈ ∂Ω is in the exterior of F relative to ∂Ω,
then η+ε (x) = 0 for sufficiently small ε > 0. Therefore, limε→0 η

+
ε (x) = χF (x) for all

x ∈ ∂Ω \ ∂̃F, hence H-a.e. on ∂Ω.
Similarly, for ε > 0, let η−ε : ∂Ω → R be given by

η−ε (x) = min

{
dist(x,Ω \ F )

ε
, 1

}
.

Then η−ε is continuous, and η−ε2 ≤ η−ε1 ≤ χF on ∂Ω for ε1 < ε2. Similarly since

H(∂̃F ) = 0, we have that η−ε → χF H-a.e. on ∂Ω as ε → 0. Having constructed the
necessary approximating sequences, Theorem 1.1 gives the existence of the minimal
solution u ∈ BV (Ω).

We note that existence of a solution in Theorem 1.2 also follows from the results
of Section 5. However, minimality of the solution is not guaranteed by those results.

As the following example shows, some sets F ⊂ ∂Ω with poorly behaved bound-
aries still satisfy the H(∂̃F ) = 0 condition. Theorem 1.2 gives us a way to ensure
existence of minimal solutions even in these cases.

Example 4.13. Let Ω = B(0, 1) ⊂ R
3, and let K ⊂ ∂Ω = S2 be a bi-Lipschitz

embedding of the von Koch snowflake domain in R
2 onto S2. Then, ∂̃K is a curve of

infinite length, and so χK ∈ L1(∂Ω)\BV (∂Ω). Since H ≃ H2 in this example, where

H2 is the standard 2-dimensional Hausdorff measure, it follows that H(∂̃K) = 0.
Hence by Theorem 1.2, there exists a minimal solution to the Dirichlet problem with
boundary data χK .

Remark 4.14. It should be noted that the conditions imposed on f in Theorem 1.1
are rather strict. Unbounded functions are excluded, for example. Furthermore, the
conditions are not necessary in general to guarantee existence of a solution. As seen
in Example 3.3 above, the function g has a solution but cannot be approximated H-
a.e. from below by continuous functions. Likewise, Example 3.3 also shows that the
conditions imposed on a subset of ∂Ω in Theorem 1.2 are not necessary in general.
Since g = χK1/4∪F , we have that H(∂̃(K1/4 ∪ F )) = H(∂̃K1/4) = H(K1/4) = 1/2.
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5 Solutions at points of continuity of the boundary

data

In this section, we consider an arbitrary f ∈ L1(∂Ω), and show that there exists a
least gradient function u ∈ BV (Ω) whose trace agrees with f at points of continuity
of f . The argument follows that of [10, Theorem 3.1], where an analogous result
was shown for strictly convex domains in R

n. However, our results apply even for
domains that are not strictly convex (see Remark 5.8). We first need the following
lemmas regarding minimal solution sets.

Lemma 5.1. Let F1, F2 ⊂ X be open sets such that P (F1, X), P (F2, X) < ∞ and
H(∂F1 ∩ ∂Ω) = 0 = H(∂F2 ∩ ∂Ω). Suppose also that F1 ∩ F2 ∩ ∂Ω = ∅, and let
E1, E2 ⊂ X be minimal solution sets to the Dirichlet problem with boundary data
χF1

and χF2
respectively. Then, µ(E1 ∩ E2 ∩ Ω) = 0.

Proof. Let ∂Ω∗ := {x ∈ ∂Ω : TχE1
(x) = χF1

(x) and TχE2
(x) = χF2

(x)}. We claim
that TχE1\E2

(x) = χF1
(x) for x ∈ ∂Ω∗, and hence for H-a.e. x ∈ ∂Ω.

Indeed, for x ∈ ∂Ω∗ ∩ F1, (setting Ur := B(x, r) ∩ Ω), we have that

 

Ur

|χE1\E2
−χF1

(x)|dµ

=
1

µ(Ur)

(
ˆ

Ur∩E2

|χE1\E2
− 1|dµ+

ˆ

Ur\(E1∪E2)

|χE1\E2
− 1|dµ

)

=
µ(Ur ∩ E2)

µ(Ur)
+

µ(Ur \ (E1 ∪ E2))

µ(Ur)

≤ µ(Ur ∩ E2)

µ(Ur)
+

µ(Ur \ E1)

µ(Ur)

=

 

Ur

|χE2
− χF2

(x)|dµ+

 

Ur

|χE1
− χF1

(x)|dµ → 0

as r → 0+. Similarly, for x ∈ ∂Ω∗ \ F1, we have that

 

Ur

|χE1\E2
− χF1

(x)|dµ =

 

Ur

χE1\E2
dµ ≤

 

Ur

χE1
dµ =

 

Ur

|χE1
− χF1

(x)|dµ → 0

as r → 0+. Thus, we have that TχE1\E2
= χF1

H-a.e. on ∂Ω. Likewise, a symmetric
argument shows that TχE2\E1

= χF2
H-a.e. on ∂Ω.
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Now, by [30, Proposition 4.7], we have that

P (E1 \ (E2 ∩ Ω),Ω) = P (E1 \ E2,Ω)

= P (E1 ∩ (Ω \ E2),Ω)

≤ P (E1,Ω) + P (Ω \ E2,Ω)− P (E1 ∪ (Ω \ E2),Ω)

= P (E1,Ω) + P (E2,Ω)− P (E2 \ E1,Ω)

= P (E1,Ω) + P (E2,Ω)− P (E2 \ (E1 ∩ Ω),Ω).

Thus, we have that

P (E1 \ (E2 ∩ Ω),Ω) + P (E2 \ (E1 ∩ Ω),Ω) ≤ P (E1,Ω) + P (E2,Ω).

If P (E1 \(E2∩Ω),Ω) > P (E1,Ω), then we have that P (E2 \(E1∩Ω),Ω) < P (E2,Ω).
However, since TχE2\E1

= χF2
H-a.e. on ∂Ω, and since E2 is a solution set for χF2

,
this is a contradiction. Therefore, we have that P (E1 \ (E2 ∩Ω),Ω) ≤ P (E1,Ω), and
so E1 \ (E2 ∩Ω) is a solution set for χF1

. Thus, since E1 is the minimal solution set,
we have that µ(E1 ∩ E2 ∩ Ω) = 0.

The following lemma follows from a similar argument.

Lemma 5.2. Let F1, F2 ⊂ X be open sets such that P (F1, X), P (F2, X) < ∞ and
H(∂F1∩∂Ω) = 0 = H(∂F2∩∂Ω). Suppose also that F1∩∂Ω ⊂ F2, and let E1, E2 ⊂ X
be minimal solution sets to the Dirichlet problem with boundary data χF1

and χF2

respectively. Then, E1 ∩ Ω ⊏ E2.

Since X is doubling, it follows that for each K ≥ 1, there exists CK > 0 such that
for every r > 0, we can find a finite cover {B(xi, r)}i∈Jr ⊂ X of ∂Ω with xi ∈ ∂Ω such
that

∑
i∈Jr χB(xi,Kr) ≤ CK . Let ε > 0, and consider such a cover {B(xi, ε/5)}i∈Jε.

By the 5B-Lemma, there exists a disjoint subcollection {B(xi, ε/5)}i∈Iε⊂Jε such that
∂Ω ⊂

⋃
i∈Iε B(xi, ε). Thus, we obtain a finite cover {Bi,ε := B(xi, ε)}i∈Iε of ∂Ω such

that the set {xi}i∈Iε is 2ε/5-separated, and for all K ≥ 1, we have that

∑

i∈Iε

χKBi,ε
≤ CK . (5.3)

We can then find a Lipschitz partition of unity {ϕε
i}i∈Iε subject to this cover. That is,

for each i ∈ Iε, there is a C/ε-Lipschitz function ϕε
i : X → [0, 1], (with C depending

only on the doubling constant) such that supt(ϕε
i ) ⊂ 2Bi,ε, and

∑
i ϕ

ε
i = 1 on ∂Ω.

For proof of these facts, see for example [15, Appendix B], [18], and [20].
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For f ∈ L1(∂Ω), define

fBi,ε
:=

 

Bi,ε∩∂Ω
f dH,

and let fε : ∂Ω → R be given by

fε :=
∑

i∈Iε
fBi,ε

ϕε
i

∣∣
∂Ω
.

Then, as fε is continuous, there is a minimal solution uε ∈ BV (Ω) to the Dirichlet
problem with boundary data fε, by Proposition 4.8.

Lemma 5.4. Let uε be the minimal solution to the Dirichlet problem with boundary
data fε, as defined above. Then,

sup
ε>0

(
‖uε‖L1(Ω) + ‖Duε‖(Ω)

)
< ∞.

That is, {uε}ε>0 is bounded in BV (Ω).

Proof. We have that
ˆ

∂Ω

|fε|dH ≤
∑

i∈Iε

ˆ

∂Ω

|fBi,ε
ϕε
i |dH

≤
∑

i∈Iε

∑

j∈Iε

ˆ

Bj,ε∩∂Ω
|fBi,ε

ϕε
i |dH.

For i ∈ Iε, let Ji,ε := {j ∈ Iε : Bj,ε ∩ 2Bi,ε 6= ∅}. If j ∈ Ji,ε, then Bj,ε ⊂ 4Bi,ε,
and so by the doubling property and the fact that {xi}i∈Iε is a 2ε/5-separated set,
there exists C > 0 depending only on the doubling constant such that |Ji,ε| ≤ C,
where |Ji,ε| denotes the number of elements in Ji,ε. Since ϕε

i is compactly supported
in 2Bi,ε, it follows that ϕε

i = 0 on Bj,ε for j ∈ Iε \ Ji,ε. Therefore, we have that
ˆ

∂Ω

|fε|dH ≤
∑

i∈Iε

∑

j∈Ji,ε

ˆ

Bj,ε∩∂Ω
|fBi,ε

ϕε
i |dH

≤
∑

i∈Iε

∑

j∈Ji,ε

ˆ

Bj,ε∩∂Ω

(
 

Bi,ε∩∂Ω
|f |dH

)
dH

=
∑

i∈Iε

∑

j∈Ji,ε

H(Bj,ε ∩ ∂Ω)

H(Bi,ε ∩ ∂Ω)

ˆ

Bi,ε∩∂Ω
|f |dH

≤ C
∑

i∈Iε

ˆ

Bi,ε∩∂Ω
|f |dH ≤ C

ˆ

∂Ω

|f |dH, (5.5)
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where the constant C > 0 depends on the doubling constant of H and the bounded
overlap constant from (5.3).

Let Efε : Ω → R be the extension of fε to Ω given by Proposition 4.1. Since
uε ∈ BV (Ω) is a solution to the Dirichlet problem with boundary data fε, and by
(5.5), we have that

‖Duε‖(Ω) ≤ ‖DEfε‖(Ω) ≤ C

ˆ

∂Ω

|fε|dH ≤ C

ˆ

∂Ω

|f |dH. (5.6)

Now, let vε : Ω → R be given by vε := uε −Efε, and let v̂ε be the zero extension
of vε to all of X. Since Tuε = TEfε = fε H-a.e. on ∂Ω, it follows that

lim
r→0+

1

µ(B(x, r))

ˆ

B(x,r)∩Ω
|vε|dµ = 0

for H-a.e. x ∈ ∂Ω. Thus, by [26, Theorem 6.1], it follows that v̂ε ∈ BV (X) and
‖Dv̂ε‖(X \ Ω) = 0.

Since µ(X \Ω) > 0, we can find a ball B ⊂ X such that Ω ⊂ B and µ(B \Ω) > 0.
By Hölder’s Inequality, we have that

ˆ

Ω

|vε|dµ ≤
ˆ

B

|v̂ε|dµ ≤ µ(B)1/Q
(
ˆ

B

|v̂ε|
Q

Q−1dµ

)Q−1

Q

= µ(B)

(
 

B

|v̂ε|
Q

Q−1dµ

)Q−1

Q

,

where Q > 1 is the exponent from (2.1). Since v̂ε = 0 on B \ Ω, it follows from
Lemma 2.4 that

ˆ

Ω

|vε|dµ ≤ µ(B)
C rad(B)

1− (µ(Ω)/µ(B))1/Q
‖Dv̂ε‖(2λB)

µ(2λB)

≤ C (‖Dv̂ε‖(Ω) + ‖Dv̂ε‖(X \ Ω))
= C‖Dvε‖(Ω)
≤ C (‖Duε‖(Ω) + ‖DEfε‖(Ω)) .

Here the constant C > 0 depends on Ω, B, and the doubling and Poincaré constants,
but is independent of ε, fε, and uε.

Then by (5.6), we have that

ˆ

Ω

|vε|dµ ≤ C

ˆ

∂Ω

|f |dH,
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and by the Triangle Inequality, it follows that
ˆ

Ω

|uε|dµ ≤ C

ˆ

∂Ω

|f |dH+

ˆ

Ω

|Efε|dµ.

Therefore, by Proposition 4.1 and (5.5), we have that

ˆ

Ω

|uε|dµ ≤ C

ˆ

∂Ω

|f |dH.

Lemma 5.7. Let f be continuous at x ∈ ∂Ω. Then, for all η > 0 there exists δ > 0
such that for all 0 < ε < δ and for all y ∈ B(x, δ)∩∂Ω, we have that |fε(y)−f(x)| < η.

Proof. Let η > 0. By the continuity of f at x, there exists δ0 > 0 such that if
y ∈ B(x, δ0)∩∂Ω, then |f(y)−f(x)| < η. Let δ := δ0/10. Then, for y ∈ B(x, δ)∩∂Ω,
and for 0 < ε < δ, we have that

|fε(y)− f(x)| =
∣∣∣∣∣
∑

i∈Iε
fBi,ε

ϕε
i (y)− f(x)

∑

i∈Iε
ϕε
i (y)

∣∣∣∣∣

≤
∑

i∈Iε

ϕε
i (y)|fBi,ε

− f(x)|.

Let Jy,ε := {i ∈ Iε : y ∈ 2Bi,ε}. Then, ϕε
i (y) = 0 for all i ∈ Iε \ Jy,ε. Thus, we have

that
|fε(y)− f(x)| ≤

∑

i∈Jy,ε

ϕε
i (y)|fBi,ε

− f(x)|.

Since 0 < ε < δ, it follows that for i ∈ Jy,ε, we have that Bi,ε ⊂ B(x, δ). Therefore,

|fBi,ε
− f(x)| ≤

 

Bi,ε∩∂Ω
|f − f(x)|dH < η,

and so it follows that |fε(y)− f(x)| < η.

We are now able to establish Theorem 1.3.

Proof of Theorem 1.3. Since (uε)ε>0 is bounded in BV (Ω), it follows from the com-
pact embedding theorem [30, Theorem 3.7] that there exists u ∈ BVloc(Ω) and a
subsequence, also denoted uε ∈ BV (Ω), such that uε → u in L1

loc(Ω), and passing to
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a further subsequence if necessary, we have that uε → u pointwise a.e. in Ω. Hence
by Fatou’s lemma and Lemma 5.4, we have that

ˆ

Ω

|u|dµ ≤ lim inf
ε→0

ˆ

Ω

|uε|dµ < ∞.

By lower semi-continuity of the BV energy and (5.6), we have that ‖Du‖(Ω) < ∞,
and so u ∈ BV (Ω). Furthermore by [17, Proposition 3.1], it follows that u is a
function of least gradient.

Let f be continuous at x ∈ ∂Ω, and let η > 0. By Lemma 5.7, there exists δ > 0
such that for all 0 < ε < δ, and for all y ∈ B(x, δ) ∩ ∂Ω, we have that

|fε(y)− f(x)| < η.

Let rx > 0 be as in Definition 2.12. Then by the coarea formula, and since
H(∂Ω) < ∞, there exists δx > 0 such that

min{δ, rx}/2 < δx < min{δ, rx},

with P (B(x, δx), X) < ∞ and H(∂B(x, δx) ∩ ∂Ω) = 0. Denote Fη := B(x, δx), and

let Eη ⊂ X be a minimal solution set for χFη . Let δ̂ := min{δx, φx(δx)}, where φx is

as in Definition 2.12. Then, for all 0 < r < δ̂, it follows that B(x, r) ∩ Ω ⊏ Eη.

For 0 < ε < δ̂, let F ε
t := {Ext fε > t}, where Ext fε is the extension of fε to X

given by Proposition 4.2. Recall that uε : X → R is given by

uε(y) = sup{t ∈ Iε : y ∈ Eε
t },

where Iε and Eε
t are as in the proof of Proposition 4.8. By the choice of δ̂, we note

that for t ∈ Iε such that t ≥ f(x) + η, it follows that F ε
t ∩ Fη ∩ ∂Ω = ∅. Thus,

by Lemma 5.1, we have that µ(Eε
t ∩ Eη ∩ Ω) = 0. Similarly, for t ∈ Iε such that

t ≤ f(x) − η, we have that Fη ∩ ∂Ω ⊂ F ε
t , and so by Lemma 5.2, it follows that

Eη ∩ Ω ⊏ Eε
t . Therefore, for all 0 < ε < δ̂ and for all 0 < r < δ̂, it follows from the

construction of uε that
|uε(y)− f(x)| ≤ η

for µ-a.e. y ∈ B(x, r) ∩ Ω.
Therefore, for all η > 0, we have that

lim
r→0+

lim
ε→0+

 

B(x,r)∩Ω
|uε − f(x)|dµ ≤ η,
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and as uε → u pointwise a.e., it follows from the dominated convergence theorem
that

lim
r→0+

 

B(x,r)∩Ω
|u− f(x)|dµ = 0.

Thus, we have that Tu(x) = f(x).

We note that in the proof of Theorem 1.3, we apply Lemmas 5.1 and 5.2 to the
regularized sets

Eε
t = {x ∈ X : χ∨

Ẽε
t
(x) > 0},

where Ẽε
t is the minimal solution set for χF ε

t
. However since µ(Eε

t∆Ẽε
t ) = 0, the

lemmas still hold.

Remark 5.8. We note that Theorem 1.3 generalizes [10, Theorem 3.1] to the metric
setting and also extends that result to domains in R

n which are not strictly convex
but satisfy the positive mean curvature condition. For example, consider the domain
in R

3 constructed by attaching half of the unit ball to either end of the cylinder
D × [0, 1]. The boundary of this capped cylinder has positive mean curvature, but
is not strictly convex. See the discussion from [25, Section 4] and [37, Section 3]
relating the notion of positive mean curvature given above to that of domains in R

n

with smooth boundary.

Remark 5.9. If we consider a measurable set F ⊂ ∂Ω such that H(∂̃F ) = 0, as
in Theorem 1.2, we see that existence of a solution to the Dirichlet problem with
boundary data χF follows immediately from Theorem 1.3, since χF is continuous
at all points x ∈ ∂Ω \ ∂̃F. Thus we obtain another proof of the existence part of
Theorem 1.2, though it is unclear if minimality of the solution also follows from
these results, as it does in Section 4.

Remark 5.10. As with Theorem 1.1 and Theorem 1.2, we point out that the con-
dition on f of continuity H-a.e. in Theorem 1.3 is not sharp, as illustrated by Ex-
ample 3.3. There, a solution exists for the Dirichlet problem with boundary data g,
but g is discontinuous on the set K1/4, which has positive H-measure.
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