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Abstract

We study the Dirichlet problem for least gradient functions for domains
in metric spaces equipped with a doubling measure and supporting a (1,1)-
Poincaré inequality when the boundary of the domain satisfies a positive mean
curvature condition. In this setting, it was shown by Maly, Lahti, Shanmu-
galingam, and Speight that solutions exist for continuous boundary data. We
extend these results, showing existence of solutions for boundary data that is
approximable from above and below by continuous functions. We also show
that for each f € L'(0Q), there is a least gradient function in Q whose trace
agrees with f at points of continuity of f, and so we obtain existence of so-
lutions for boundary data which is continuous almost everywhere. This is in
contrast to a result of Spradlin and Tamasan, who constructed an L'-function
on the unit circle which has no least gradient solution in the unit disk in R?.
Modifying the example of Spradlin and Tamasan, we show that the space of
solvable L!-functions on the unit circle is non-linear, even though the unit disk
satisfies the positive mean curvature condition.
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1 Introduction

Given a function f on the boundary of a domain €2, the Dirichlet problem for least
gradient functions is the problem of minimizing || Du||(2) over all u € BV (£2) with
trace Tu = f a.e. on the boundary. This form of the problem, where the boundary
condition is attained in the sense of traces, was originally introduced in the Euclidean
setting by Sternberg, Williams, and Ziemer in [37]. There they showed that if the
boundary of the domain has non-negative mean curvature and is not locally area
minimizing, then existence and uniqueness of solutions is guaranteed for continuous
boundary data. Furthermore, they showed that the imposed curvature conditions
are necessary to guarantee existence of solutions, and if the boundary data is of class
C% for 0 < o < 1, then the solution is of class C%*/2, provided the boundary of the
domain has strictly positive mean curvature. Their proof makes uses an important
result of Bombieri, De Giorgi, and Giusti from |7]|, which states that characteristic
functions of superlevel sets of least gradient functions are themselves of least gradient.
Using this, the authors constructed a least gradient solution by building its superlevel
sets so that each was of least gradient and compatible with the boundary data.

Since the appearance of [37], existence, uniqueness, and regularity of the above
least gradient problem have been studied extensively in the Euclidean setting. For
instance, we refer the interested reader to the following sampling [10-12,14,29,33,34]
and the references therein. In particular, it was shown in [29] that there is an
equivalence between least gradient solutions and solutions to the Dirichlet problem
for the 1-Laplacian. Moreover, the authors showed that in strictly convex domains,
uniqueness of solutions may fail for discontinuous boundary data. For more on the
study of uniqueness of solutions, see [11].

In recent decades, a theory of analysis on metric measure spaces has been de-
veloped under the assumptions that the measure is doubling and that the space
supports a Poincaré inequality, see for example [3,6, 18,20]. Miranda Jr. extended
the definition of BV functions to this setting in [30], leading to the development of a
theory of least gradient functions and associated Dirichlet problems in metric spaces
[1,4,17,22,23,25,26,28|. In [25]|, Lahti, Maly, Shanmugalingam, and Speight studied
the Dirichlet problem for least gradient functions, originally introduced in [37], in the
setting of a doubling metric measure space supporting a (1, 1)-Poincaré inequality.
There they introduced a notion of positive mean curvature which makes sense in the
metric setting (Definition 2.12 below). They showed that if a domain satisfies this
condition and if compatibility conditions are assumed between the measure and the
codimension 1 Hausdorff measure of the boundary of the domain, then existence of
solutions is guaranteed for continuous boundary data. Their strategy adapts the ar-



gument from [37] to the metric setting, similarly building a solution by constructing
its superlevel sets in an appropriate manner.

In contrast to [37], [25] also provided examples in the weighted Euclidean setting
which show that even for Lipschitz boundary data, solutions may fail to be continuous
up to the boundary and may fail to be unique. However, it was recently shown in
[38] that continuous solutions exist for the weighted Euclidean least gradient problem
with continuous boundary data, provided the weights are positive, bounded away
from zero, and of class C?. This result, valid in dimensions n > 2, extends the earlier
result from [21], which guarantees existence of continuous solutions in low dimensions
for C™! weights which are positive and bounded away from zero. In [21], it was also
shown that for such weights and continuous boundary data, solutions to the weighted
problem in dimensions n > 2 are unique. For more on the weighted Euclidean
least gradient problem, anisotropic formulations, and connections of these problems
to conductivity imaging, see [10,12,31,32|. Such applications provide additional
motivation for the study of the least gradient problem in the metric setting. For a
recent work on Gauss-Green formulas and connections to the least gradient problem
in the metric setting, see [13].

From [37] in the Euclidean setting, certain non-negative curvature conditions
are required to guarantee existence of solutions to the Dirichlet problem for least
gradients. From [5,9], it is also known that the the trace class of BV functions on a
Euclidean Lipschitz domain is the L'-class of its boundary. In fact, analagous trace
and extension results hold for BV functions in the metric setting as well, see |26, 28].
Therefore if a Euclidean domain satisfies the curvature conditions from [37], it is
natural to ask whether all L'-functions on the boundary of such a domain admit
solutions to the Dirichlet problem for least gradient functions. This question was
answered in the negative by Spradlin and Tamasan in [36]. A certain fat Cantor
set was constructed on the boundary of the unit disk in R? in [36], such that the
characteristic function of that set is not the trace of a least gradient function in
the unit disk, despite the fact that the unit disk satisfies the necessary curvature
conditions. Thus the question of which L'-functions arise as traces of functions
of least gradient is open even in the Euclidean setting. The goal of this paper is
to investigate the conditions sufficient to guarantee existence of solutions to the
Dirichlet problem in both the Euclidean and metric settings.

After introducing the necessary definitions and background information in Sec-
tion 2, we begin Section 3 by examining the example presented in [36] in the Eu-
clidean setting of the unit disk (Example 3.1 below). We modify this example in
such a way as to obtain a solution (Example 3.3 below) which demonstrates that
the set of L'-functions on the boundary of the unit disk for which solutions exist is



non-linear. Namely, we show that the example function from [36] can be expressed as
the sum of two functions, each of which arise as the trace of a least gradient function.
Moreover, our example shows that even in the case of the unit disk, the Dirichlet
problem is non-local in the following sense. There is a boundary data f for which a
least gradient solution to the Dirichlet problem exists, but nf has no solution for a
suitable compactly supported Lipschitz function n on the boundary. This example
illustrates the significant difference between the Dirichlet problem for least gradient
functions and the Dirichlet problem for p-harmonic functions when p > 1, see [6].

In Sections 4 and 5, we obtain sufficient conditions for existence of solutions in
the metric setting under the following standing assumptions:

e (X,d,p) is a complete metric measure space supporting a (1, 1)-Poincaré in-
equality, with p a doubling Borel regular measure.

e () C X is a bounded domain with p(X \ £2) > 0.
e 02 has positive mean curvature as in [25], see Definition 2.12.

o H(0) < oo, H| o0, 18 doubling, and H| o0, 18 lower codimension 1 Ahlfors regu-
lar, see (2.6).

Here, #H is a codimension 1 Hausdorff measure on 0%, see (2.5). The examples
presented in Section 3 are in the setting of the unit disk in R?, which satisfies the
above assumptions as well. The following is the first of the main results of the paper,
proved in Section 4.

Theorem 1.1. Let f € L®(09Q), and for each k € N, let gy, hy, € C(9Q) be such
that g, hy — f as k — oo pointwise H-a.e. on 02, with

Ik < g1 < f < hir < by

H-a.e. on O). Then, there is a function w € BV () which is the minimal solution
to the Dirichlet problem with boundary data f.

The following is an equivalent reformulation of the hypotheses of Theorem 1.1:

o Let f e L™®(092) and assume that there is a lower semicontinuous function g on

0f) and an upper semicontinuous function h on 9€) such that g < h everywhere
on JX2 and g = h = f H-a.e. on 0.



The key step is to show existence of minimal solutions for continuous boundary
data, from which we obtain a comparison theorem for minimal solutions; note that
uniqueness of solutions is not guaranteed (see [25]), and so a more general comparison
theorem will not hold for least gradient functions. This is in contrast to p-harmonic
functions with p > 1, which always satisfy a comparison theorem (see [6]).

As a consequence, we obtain the following result regarding characteristic functions
of subsets of the boundary of the domain.

Theorem 1.2. Let F' C 0 be measurable, and let OF denote the boundary of F
relative to 02 If H(OF) = 0, then there is a function u € BV () which is the
manimal solution to the Dirichlet problem with boundary data xp.

In Section 5, we continue to adopt the setting and assumptions from the previous
section. By adapting an argument from [10] in the Euclidean setting, we use the
metric technology of discrete convolution to obtain the following result.

Theorem 1.3. Given f € L'(00), there exists a least gradient function u € BV ()
such that for all x € O such that f is continuous at x, we have that Tu(x) = f(z).
In particular, if f is continuous H-a.e. on 0S), then there is a solution to the Dirichlet
problem with boundary data f.

This result was established for strictly convex, Euclidean domains in [10]. Our
extension to the metric setting includes Euclidean domains that are not strictly
convex but satisfy the positive mean curvature condition. For example, the capped
cylinder described in Remark 5.8 below is not strictly convex, but satisfies the positive
mean curvature condition.

Although Theorem 1.1, Theorem 1.2, and Theorem 1.3 provide sufficient con-
ditions on the boundary data to guarantee existence of solutions in this setting,
Example 3.3 below shows that these conditions are not sharp (see Remarks 4.14 and
5.10). It seems that even for sufficiently regular domains, a characterization of L!
boundary data admitting solutions is still unknown.

2 Preliminaries

2.1 General metric measure spaces and BV theory

Throughout this paper, we assume that (X, d, i) is a complete metric measure space
equipped with a doubling Borel regular measure p. By doubling, we mean that there
exists a constant Cp > 1 such that

0 < pu(B(z,2r) < Cpu(B(z,1)) < 00

>



for all x € X and r > 0. By iterating the doubling condition, there are constants
C > 1 and @ > 1 such that

W(BW.T)) - o (71O
o) 2 (7) 2y

for every 0 < r < R and y € B(z, R).

A complete metric space equipped with a doubling measure is proper, that is,
closed and bounded sets are compact. Thus for any open set {2 C X, we define
L .(Q) as the space of functions that are in L'(Y') for every ) € Q, i.e., for every
open set Q' such that (¥ is a compact subset of Q. Also, if A and B are subsets of
X, we use the notation A C B to mean that u(A\ B) = 0. By a domain, we mean
a non-empty connected open set in X.

Given a function u : X — R, we say that a Borel function g : X — [0, 00] is
an upper gradient of u if the following inequality holds for all non-constant compact

rectifiable curves 7 : [a,b] — X,

uly) = u(o)] < [ gds
y
whenever u(z) and u(y) are both finite, and fy gds = oo otherwise. Here z and y
denote the endpoints of the curve v. Upper gradients were originally introduced in
[19].

Let N1(X) be the class of all functions in L'(X) for which there exists an upper
gradient in L'(X). For u € N'!(X), we define

lull §100x0) = llull o) + inf 9]lL1 ),

where the infimum is taken over all upper gradients g of u. Now, we define an
equivalence relation in N*'(X) by u ~ v if and only if [u — v 511, = 0.

The Newtonian space N*'(X) is defined as the quotient N (X)/ ~, and it is
equipped with the norm [[u|y11(x) = [[u[|§1.1(y)- One can analogously define NLH(Q)
for an open set 2 C X. For more on Newtonian spaces, see [35], [20], or [6].

We now define functions of bounded variation on metric spaces, following the
definition introduced by Miranda Jr. in [30]. For u € L{ .(X), we define the total
variation of u by

[e.e]

| Dul|(X) = inf {liminf/ Gu, dpt - NeH(X) 3wy — u in LIIOC(X)} :
11— b'e
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where g, are upper gradients of ;. For an open set {2 C X, we analogously define
||Du||(€2), and for an arbitrary A C X, we define

|Dul|(A) = inf {||Du]|(2) : A C 2, Q C X open}.

For u € L'(X), we say that u € BV (X) (u is of bounded variation) if || Du||(X) < oco.
We equip BV (X) with the norm

[ull vy = llullorx) + [[Dul| (X).

We note that this definition coincides with the standard definition of the BV class
in the Euclidean setting, see for example [2,8]. See also [1] and [4] for more on BV
theory in the metric setting.

For u € BV(X), it was shown in [30, Theorem 3.4] that || Du||(-) is a finite Radon
measure on X. Moreover, for an open set  C X, if uy — uw in L _(£2), then

1Dull () < lim inf || Duse] (€2). (2.2)
—00

That is, the BV energy is lower semi-continuous with respect to convergence in L.
[30, Proposition 3.6]

We say that a measurable set £ C X is of finite perimeter if ||Dxg|/(X) < oo,
and we denote the perimeter of E in ) by

P(E, Q) = [[Dxel/(2).

We have the following coarea formula, given by [30, Proposition 4.2|. If Q@ C X
is an open set and u € L{ _(©), then

| Dul|(Q2) = /_OO P({u > t},Q)dt, (2.3)

[e.e]

and if u € BV (X), then the above holds with Q replaced by any Borel set A C €.

2.2 Poincaré inequality and consequences

We will also assume throughout this paper that X supports a (1,1)-Poincaré in-
equality, meaning that there are positive constants A and Cp such that for every ball
B = B(x,r), every locally integrable function u, and every upper gradient g of u, we

have that
][ lu —upldp < C’pr][ gdu,
B AB

7



where A\B := B(z, A\r), and

1
ug = ud:—/ud.
s ]i By

Throughout this paper, we let C' denote a constant which depends, unless otherwise
noted, on Cp, Cp, A, or Q). Its precise value is not of interest here and may not be
the same at each occurrence.

As shown in [16], when p is doubling, the (1,1)-Poincaré inequality implies the
following Sobolev-Poincaré inequality,

Q-1

Q
(F i)™ <o f o
B A\B

where @Q > 1 is the exponent from (2.1). Given u € L. _(X), one can apply this in-

loc
equality to the approximating functions in N'!(X) in the definition of total variation

to obtain the inequality

Q-1
2 2 |Dul|(27B)
— —1 < B)—— 7
(é'u ul? du) = OB o)

from which the following lemma is obtained in [22].

Lemma 2.4. ([22, Lemma 2.2|) Let u € BV (X), and for a ball B C X, let
A={z e B:|u(x) > 0}.

If u(A) < vu(B) for some 0 < v < 1, then

Q-1

o\ _ Crad(B)||Dul(2AB)
—1 <
<]{9‘U‘Q dﬂ) — 1—9Y9 wu2AB)

where Q > 1 is the lower mass bound exponent given in (2.1).

We will use the above lemma in the proof of Lemma 5.4 to obtain L!-bounds for
a sequence of BV functions.
Given F C X, we define its codimension 1 Hausdorff measure, H(E), by

e 1(By) . n . ' '
H(E) = Jim, mf{  fad(B) B; ballsin X, E C LZJBZ, rad(B;) < 6} . (2.5)

8



We say that 'H}m is lower codimension 1 Ahlfors reqular if there exists C' > 0 such
that

H(B(z,r)NIQ) > cMBET) (2.6)

r

for every x € 002 and 0 < r < 2diam(02).

It was shown in [1] and [4] that if u is doubling and X supports a (1, 1)-Poincaré
inequality, then there is a constant C' > 1 such that whenever F C X is of finite
perimeter and A C X is a Borel set, we have

CYH(AN OE) < P(E, A) < CH(AN Oy E),

where Oy E is the measure-theoretic boundary of E, which is the set of all points
x € X for which

> 0.

: w(B(z, )N E) . w(B(z,r)\ F)
s By 0 e )

Given an extended real-valued function v on X, we define the approximate upper
and lower limits of u by

u”(z) := inf {t €R: lim “({“;;}(2 ggx,r)) = 0} ,

u(x) = sup {t eR: Tl_i)r& u({u;(;}(; g()x,r)) = 0} :

From the Lebesgue differentiation theorem, u¥ = v p-a.e. if u € L} (X).

2.3 Dirichlet problem for least gradient functions

Definition 2.7. Given a bounded domain 2 C X and a function u € BV (), we
say that u has a trace at a point x € 9% if there is a number Tu(x) € R such that

lim |u — Tu(z)|du = 0.
r—0+ B(z,r)NQ

Definition 2.8. Let 2 C X be an open set, and let u € BVj,.(€2). We say that u is
of least gradient in §Q if
[Dul[(V) < [[Dul[(V),

whenever v € BV (Q) with {x € Q : u(x) #v(x)} CV € Q.




Definition 2.9. Let 2 be a bounded domain in X with p(X \ Q) > 0, and let
f € BVioe(X). We say that u € BVj..(X) is a weak solution to the Dirichlet problem
for least gradients in £ with boundary data f, or simply, weak solution to the Dirichlet
problem with boundary data f,if u= f on X \ Q and

[1Dul[(2) < [[Dv][(€),
whenever v € BV (X)) with v = f on X \ Q.

Definition 2.10. Let €2 be a domain in X and f : 92 — R. We say that a func-
tion u € BV () is a solution to the Dirichlet problem for least gradients in 2 with
boundary data f, or simply, solution to the Dirichlet problem with boundary data f,
if Tu = f H-a.e. on 02 and whenever v € BV(Q), with Tv = f H-a.e. on 0L, we
must have

[Dul[(2) < [[Do][($2).

Note that solutions and weak solutions to Dirichlet problems on a domain €2 are
necessarily of least gradient in 2.

Definition 2.11. A (weak) solution xg to the Dirichlet problem with boundary
data xp is called a minimal (weak) solution to the said problem if every (weak)
solution X corresponding to the data xp satisfies £ C E, that is, w(E\ E) =0, or
alternatively, xg < x5 p-a.e. in X,

It is shown in [25] that if F' C X is such that P(F, X) < oo, then there is a set
E C X with P(F, X) < oo such that yg is a weak solution to the Dirichlet problem
with boundary data yr. We call E a weak solution set. Moreover, for such an F|,
there is a minimal weak solution, and such a minimal weak solution is unique p-a.e.
in X, [25, Proposition 3.7]. However, without additional assumptions on €2, the trace
of the weak solution may not agree with xyr on 0€). That is, a weak solution may
not necessarily be a solution. For example, if 2 = (0,1) x (0,1) C R?, and F is the
disk centered at (1/2,0) of radius 1/10, then the trace of the minimal weak solution
will have zero trace on 02, and in fact there is no least gradient function with the
appropriate trace on the boundary. To address this issue, the following definition
was introduced in [25], extending the formulation from [37] to the metric setting.

Definition 2.12. Given a domain 2 C X, we say that the boundary 02 has pos-
itive mean curvature if for each x € 01, there exists a non-decreasing function
¢z : (0,00) — (0,00) and a constant r, > 0 such that for all 0 < r < r, with
P(B(x,r),X) < oo, we have that B(z,¢,(r)) C Ep,, where Ep,y C X gives
the minimal weak solution to the Dirichlet problem with boundary data xp(.,), as
defined above.

10



In [25], positive mean curvature is defined by existence of ¢ and 9 > 0 so that
the condition is satisfied for all z € 02 and all 0 < r < ry. However, the results from
[25] hold if the definition is weakened to allow dependence on z, as above.

Remark 2.13. It is shown in |25, Proposition 4.8, 4.9] that if H(02) < oo, and
F C X is open with P(F, X) < oo and H(OF N0 = 0, then under the assumption
of positive mean curvature, all weak solutions of xr are solutions. Additionally, if
v € BV(Q) is a solution for xp, then extending v outside Q by yr yields a weak
solution.

3 Motivating examples

The domain Q = B(0,1) C R? has boundary of positive mean curvature as defined
above, but it was shown by Spradlin and Tamasan in [36] that there exists a function
f € LY(09) for which there is no solution to the Dirichlet problem when f is the
given boundary data. The function f is the characteristic function of a certain fat
Cantor set on the unit circle. The following example, due to Goérny [12, Example 4.7/,
is a modification of the example from [36].

Example 3.1. Let Q = B(0,1) C R?. We construct a Cantor set K7/4 on the unit
circle as follows. Let

In:={(cosf,sinf) : w/2 —1/2 <60 <7w/2+1/2},

and define fy : 92 = R by fo = xy,- To construct f; : 9 — R, we remove an arc of
arc-length 1/4 from the center of I, and let

I 1 ={(cos,sinf) :w/2-1/2 <60 <7/2—-1/8},

I o = {(cosf,sinf) : m/24+1/8 < 6 < w/2+1/2},

and let Jl = [171 U [172. Define .fl 00 — R by .fl = XJ;-

Continuing inductively in this manner, we construct f,, from f,,_; by removing an
arc of arc-length 1/4™ from the center of I,,_1,, for each m € {1,...,2"}, that is,
from each arc comprising .J,,_;. We then obtain a new collection of arcs {I,, ., }2_;,
and by a direct computation, it follows that the arc length of each I, ,, is given by

2"+ 1
H(In,m) = W

11



Figure 1: u; = 1 in the shaded regions, Figure 2: w = 0 in the shaded regions,

and u; = 0 elsewhere in the and w = 1 elsewhere in Q4.
disk.

Setting J,, = Uf::l Iy, we define f,, : 92 = R by f,, = x,. The Cantor set is then
given by K4 = (\,en J/ns and we define f : 00 — R by f = XK, - We note that
f e LY(090).

For each n € N, consider the function u, : 2 — R given as follows. For each
m € {1,...,2"}, let u,, = 1 on the region of Q2 bounded by I, ,,, and the chord joining
the endpoints of I, ,,,. Let u,, = 0 elsewhere in Q. It was shown in [12, Example 4.7|
that u,, is a solution to the Dirichlet problem with boundary data f,,. This was done
by considering the trapezoid formed by the chord joining the endpoints of each arc
I5,_1m, the chord joining the endpoints of the arc removed from the center of I,,_1 ,,,
and the chords joining the endpoints of the two arcs remaining after the removal.
Since the Cantor set was constructed using the removal parameter 1/4, it was shown
that the sum of the lengths of the bases of the trapezoid is greater than the sum of the
lengths of the sides, and such an inequality holds on every stage of the construction
(see Figure 1). Here by bases, we mean the two parallel sides of the trapezoid.

Claim. If n € N is sufficiently large, then for any set F C €2 such that w = yg is a
solution to the Dirichlet problem with boundary data f,, we have that w = u,, a.e.
in €2. That is, for sufficiently large n € N, solution sets to the Dirichlet problem with
boundary data f,, are unique a.e.

12



Proof of claim. By summing the lengths of the line segments which comprise the
boundary of {u, = 1}, we have by direct computation that

[ Dun(€2) = H(K1/a) = 1/2

as n — oo. Since 2sin(5/16) > 1/2, there exists N € N such that for all n € N,
n > N implies that
| Duy,||(§2) < 2sin(5/16). (3.2)

Fix n > N and suppose that there exists E C {2 such that w = g is a solution to the
Dirichlet problem with boundary data f,,. Since w is of least gradient in €2, we have
that OF N} consists of straight line segments. We will show that multiple arcs from
{I,,,m}?_, cannot be contained in the boundary of a single connected component of
E. In doing so, this will show that w = u,, a.e. in €.

Suppose that a connected component Ej of E contains multiple arcs from {I,,,, }%_,
it its boundary. Let I, ,,, and I, ,,, be the two arcs forming part of the boundary
of Ey farthest from one another on 0f2, and let A be the shortest arc on 02 which
contains both I, ,,,, and I, ,,,. Since the chord joining the endpoints of A forms part
of the perimeter of E, we have that

| Dwl|(€2) > 2sin(H(A)/2).
If H(A) > 5/8, then by the choice of N and (3.2), we would have that
| Dw||(£2) > 2sin(5/16) > ||[Du,||(©2).

However, this contradicts w being a solution to the Dirichlet problem with boundary
data f,, and so it follows that H(A) < 5/8.

Let Q4 denote the region of {2 bounded by A and the chord joining the endpoints
of A. Since H(A) < 5/8, it follows from the argument in Example 3.3 that for each
subarc of A which was removed in the construction of f,,, w = 0 on the region of
4 bounded by that subarc and the chord joining its endpoints. Likewise, w = 1
elsewhere in (4. It is shown, as part of the discussion of Example 3.3, that this
configuration minimizes the perimeter of potential solution sets in such regions €24,
see Figure 2.

Let C' denote the largest subarc of A removed during the construction of f,,
and let k € N such that H(C) = 47%; we note that k¥ < n. Consider the function
h: [0, H(Ixm)] — R, given by

h(f) = 2 lsin (@) + sin (7{(1’“”) +2H(C) T 9) — sin (W) — sin (g)} :

13




where Iy, ,,, is one of the two arcs adjacent to C' at the k-th stage of the construction.
The function h measures the difference between the sum of the lengths of the bases
and the sum of the lengths of the sides of the quadrilateral shown in Figure 3.
Here, by bases we mean the chord joining the end points of C' and the side of the
quadrilateral opposite that chord. Because the trapezoid inequality between side and
base lengths discussed above was shown to hold at every stage of the construction in
[12, Example 4.7|, we have that h (H({),,)) > 0. Furthermore, we have that

B (0) = cos (H(Ik,m) +2H(C) + 9) s (g) <0,

and so h is positive on [0, H(Ig,)]. Similarly, for any fixed A € [0, H(Ixm)], the
function hy : [0, H(Ik,m)] — R given by

a0 =2 [sin (M) g (LAY gy (XY (9]

is decreasing with hy(H(Ix,m)) > 0. Hence, h) is positive on [0, H(Ix.m)]-

Thus the sum of the length of the the chord joining the endpoints of C' and the
length of the chord joining the endpoints of A is strictly greater than the sum of the
lengths of the chords which join each endpoint of C' to the corresponding endpoint
of A, see Figure 4. This is a contradiction, since w is a solution, and the chord
joining the endpoints of A and the chord joining the endpoints of C' form part of the
perimeter of A in Q. Hence, multiple arcs from {/},,,}%_; cannot be contained in the
boundary of a single connected component of E. Therefore, we have that w = wu,
a.e. in €2, proving the claim.

[k.m

Figure 3 Figure 4
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Now suppose that there exists a solution u € BV () to the Dirichlet problem
with boundary data f = xk,,. By Remark 4.7 below, x{,> is a solution to the
Dirichlet problem with boundary data xys~¢ for L-a.e. t € R. Thus we may assume
that there exists some E C (2 such that u = xg. Since for all n € N, f < f,, on
092, it follows from Lemma 4.4 below that max{u,u,} is a solution to the Dirichlet
problem with boundary data f,. But max{w,u,} is the characteristic function of a
subset of €, and so by the claim above, max{u,u,} = u, a.e. in Q for sufficiently
large n. Hence for sufficiently large n, u < u, a.e. in 2, and since u,, — 0 as n — oo,
it follows that v = 0 a.e. in Q. However H(K;,) = 1/2, and for each z € Ky 4,
Tu(x) = 0 # f(x), a contradiction. Therefore there is no solution to the Dirichlet
problem with boundary data f.

In the next example, we show that a slight modification of the function f con-
structed above, namely the addition of another arc to K4, renders the new function
solvable.

Example 3.3. Let F' := 90\ Iy. For each n € N, let g, := f. + xXr = Xu, + XF»
and g := f + Xr = XK, ,, + xr. We claim that there is a solution v € BV/(f2) to the
Dirichlet problem with boundary data g, i.e. Tv = g H-a.e. on 0.

To show this, we first note that for each n € N, g,, has a solution, see Theorem 1.1
proved in Section 4. Furthermore, g can be extended to a BV function in 2 by
Proposition 4.1 below, which can then be extended to a BV function on R?. Thus
by [25, Lemma 3.1|, this extension of g has a weak solution. For each n € N, we
will construct a solution v,, for the Dirichlet problem with boundary data g,, and
show that these solutions converge in L'({2) to a function v whose trace agrees with
g H-a.e. on 0f2.

We first denumerate the removed arcs in the construction as follows. Let C;
denote the arc removed from I, in the construction of fi, and similarly, let Cy;
and Cy 9 denote the arcs removed from I;; and I  respectively, in the construction
of f5. Inductively, let {C’nm}%:;i be the collection of arcs removed from the arcs
{In_l,m}%;:i in the construction of f,,. We recall that each C, ,, has arc length 1/4™,

and we note that

n 2271

L=\ U U Cum

{=1m=1

For each n € N, consider the function v, : Q — R given as follows. For each
(e{l,....,n} and m € {1,...,251} let v, = 0 in the region of Q bounded by Cj,,
and the chord joining the endpoints of Cy,,, and let v, = 1 elsewhere in €2 (see Figure
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F

Figure 5: v = 0 on the shaded region Figure 6: An example of the case when
bounding C' ; and on the very FEy has multiple arcs from C,
small shaded regions bound- in its boundary, and Cy, ,,, is
ing Cy1 and Ca2, and vy =1 the largest sub-arc of A from
elsewhere in the disk. Cn.

5). We wish to show that v,, is a solution to the Dirichlet problem with boundary
data g,.

Let w € BV(Q) be a solution to the Dirichlet problem with boundary data g,,
guaranteed to exist by Theorem 1.1. We note that g, is the characteristic function
of a subset of the boundary of 2, and so by Remark 4.7, we may assume that there
exists a set F C () such that w = xg. Furthermore we may assume that OE N 2
consists of straight line segments. We will show that multiple arcs from

Cp={Com:1<l<n1<m<2°"}

cannot be contained in the boundary of a single connected component of {w = 0}.
In doing so, this will show that w = v,,.

Suppose that a connected component Ejy of {w = 0} contains multiple arcs from
C, in its boundary. Let Cy, ,,, and Cy, ., be the extreme arcs joined by FEj, that
is, the two arcs connected to Ey which are farthest from one another on 9f). Let A
be the shortest arc on 92 which contains both Cy, ,,, and Cy, ,,,. Since the arc F'
was added to J, in the construction of g,, it follows that w = 1 on the region of 2
bounded by F' and the chord joining the endpoints of F. Therefore, by this choice of
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A, the chord joining the endpoints of A forms part of the perimeter of E. Thus,
|| Dwl|(2) = P(E,Q) > 2sin(H(A)/2).
We also note that
[ Don|(2) < H(lo \ Kija) = 1/2.
If H(A) > 5/8, then

| Dwl|(©2) > 2sin(H(A)/2) > 2sin(5/16) > 1/2 > || Dv,||(2),
contradicting the fact that w is a solution. Thus, H(A) < 5/8, and we have that
H(A) — 2sin(H(A)/2) < 0.011

Here is another point at which the addition of F' = 02\ I to K, makes a
difference. In the previous example, the invalid trace was caused by “cutting off” the
arcs Iy, in constructing the solution to f,,. When constructing the solution for g,,
however, we are unable to “cut off” the arc F'; otherwise, we would have to include
the line segment joining the end points of the arc F' in the perimeter measure of that

solution, creating too much perimeter.
For k € Nand m € {1,...,2"}, we have that

H(Ljm N Kiya) = H(Kyya) /28 = 1/25

and 1/27 < 0.011 < 1/2° Thus, if A contained a sub-arc Iy, with & < 5, then we
have that

H(A) — 2811’1(?‘[(14)/2) < 0.011 < H(Ik’m N K1/4) < H(A N K1/4),

hence H(A\ Ky,4) < 2sin(H(A)/2). However, setting 24 to be the open region of
bounded by A and the chord joining the endpoints of A, we note that

[1Dva| (24N Q) <H(AN Kija).

Since the chord joining the endpoints of A has length 2sin(#H(A)/2) and comprises
part of the perimeter of E, this contradicts the assumption that w is a solution.
Therefore, A cannot contain a sub-arc I}, with £ < 5. We now consider two cases.

Case 1: Suppose that either Cy, ,,,, or Cy, ., is the largest arc in C, which is
a sub-arc of A (see Figure 6). We note that the largest such sub-arc is unique.
Indeed, by the construction, if the arc A contains two arcs Cj,,, and C ,, then
there exists a & < k and 1 < m < 2¥ such that Cp C A. That is to say, A would
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necessarily contain a larger removed sub-arc. Without loss of generality, we assume
that C) := Cy, , is the largest such sub-arc of A.

Let B := A\ (4, and let Cj,, be the largest arc from C, such that Cj,, C B. As
above, C} ,, is the unique such sub-arc. We recall that Cj,, was removed from the
center of the arc I;_; ,,, and since Cj,, was chosen as the largest removed sub-arc of
B, it follows from the construction that B C Ij_1 ,,. Indeed, if I}_; ,, did not contain
B, then B would contain one of the removed arcs bordering Ij_; ,,, which would
necessarily be strictly larger than Cj ,,,. It follows from direct computation that

HB\ Kyjs) < U\ Kypg) = (1430 1/20) /4% = 245

Moreover, since Cy and C} ,, are the largest sub-arcs of A from C,,, it follows from
the construction that the sub-arc of B connecting C to C}, is of the form I, for
some 1 < m < 2%, This is because the arc joining any removed arc Cy,, to a larger
removed arc, always contains an arc of the form Iy ,,,. Thus,

2k +1 1
22k+1 > 2k+1'

H(B) = H(lkm) =

Since Iy, C B C A, it follows from the prior argument in this proof that k& > 6.
We note that || Dv,||(24NQ) < 2sin(H(Ch)/2) + H(B\ K1/4), and we would like
to show that

2sin(H(C1)/2) + H(B \ K14) < 2sin (H(Cl) ;F H<B>) = 2sin(H(A)/2).

Using the computations above, we prove the following stronger inequality.

sin (H(Cl) b ) — sin (@) > 4%. (3.4)

2 2]€+2
Proof of claim. Since Cy = Cy, 1, it follows that H(C})/2 < 1/8. By the mean value
theorem, there exists H(C1)/2 < 2z < H(C1)/2 + 1/2%2 such that

sin (”H(gl) n #) e <”H(Cl)) _coslr) o o <’H(Cl) N L) Joh+2,

2 9k+2 2 9k+2
Since H(C1)/2 < 1/8 and k > 6, it then follows that

sin (H(Cl) 41 ) — sin (H(ch)) > 1/2843 > 1/4F,

2 2k+2

Claim.
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Figure 7: An example of the case when Ej has multiple arcs from C,, in its boundary, but
neither Cy, ,, nor Cy, p, is the largest sub-arc of A from C,.

proving the claim.

Thus, it follows that ||Duv,|(Q4 N Q) < 2sin(H(A)/2). As above, since the
chord joining the endpoints of A has length 2sin(#(A)/2) and comprises part of the
perimeter of E, this contradicts the assumption that w is a solution. Therefore, this
configuration cannot occur for w.

Case 2: Now consider the case when neither Cy, ,,,, nor Cy, ., is the largest arc
in C,, which is a sub-arc of A. Let C3 denote the largest such sub-arc, and let B,
and By be the disjoint arcs which comprise A \ C5 (see Figure 7). We iterate the
argument from the first case as follows. First, setting C; := B; U (3, we see that
(3.4) holds by the same proof. Since H(A) < 5/8, it follows that H(C})/2 < 3/8
here, and so for & > 6, the same inequalities hold. Thus,

H(B1) + H(Cs)
2

2sin(H(A)/2) > 2sin < ) + H(Bs \ Kij4).

Now, we repeat the argument for (3.4), this time setting C; := C3. Once again, the
claim holds, and so it follows that

. (H(B1) +H(Cs)
2sin ( 5

) > 2sin(H(Cs)/2) + H(B1 \ K1/4).

Thus, we have that
2sin(H(A)/2) > 2sin(H(Cs)/2) + H(B1 \ K1ya) + H(By \ Ki/4) > | Dv, || (Q4 N Q),

again contradicting the fact that w is a solution. Having exhausted all the possible
cases, it follows that the connected component Fjy cannot contain multiple arcs from
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C, in its boundary. Therefore w = v,, and so v, solves the Dirichlet problem for
boundary data g,.

Let v : © — R be given as follows. Let C := J,,cyyCn. For each C' € C, let v =0
on the region of {2 bounded by C' and the chord joining the endpoints of C. Let v = 1
elsewhere in Q. Then, v, — v in L*(2), and so by [17, Proposition 3.1], it follows
that v is a function of least gradient in Q. If x € 9Q \ (K4 U F), then there exists
C € C such that € C. Since each C' is an open arc on 052, it follows that v = 0 on
B(z,r)NQ for small enough r > 0. Thus, Tw(z) = 0 = g(z). Similarly, if z € F, and
x is not one of the endpoints of F', then Tv(z) = 1 = g(z).

For x € K4, there exists a fixed angle ¢ such that v = 1 on the circular sector
of angle 6 in B(x,r) N§Q for sufficiently small » > 0. Thus, Tv(z) > 0. Since v is the
characteristic function of a set in €2, T'v must take values of either 1 or 0 H-a.e., see
|12, Example 4.8]. Therefore Tv(z) = 1 = g(x) for H-a.e. v € K;4, and so Tv = g
H-a.e. on 0f2. Hence by Lemma 4.3, v is a solution to the Dirichlet problem with
boundary data g.

Remark 3.5. Given a domain 2, let S C L'(99Q) denote the set of functions f on
0f) for which there exists a solution to the Dirichlet problem with boundary data
f. Examples 3.1 and 3.3 show that S does not necessarily form a vector space, even
when Q = B(0,1) C R?. In particular, S can be non-linear. As shown above, g and
xr both have solutions, but ¢ — xr = Xxk,,, = f has no solution.

Remark 3.6. Example 3.3 also shows that solutions to the Dirichlet problem for
least gradient functions may be non-local in the following sense. In Example 3.3,
a solution exists for boundary data g = xx, J4UF - However, for any Iy, from the
construction of K4, let 7, denote a Lipschitz function on 02 such that 7, = 1
on Iy ,, and whose support is contained in the union of I} ,,, and the two removed arcs
adjacent to I ,,. Then there is no solution to the Dirichlet problem with boundary
data g mg = XK1 /a0 This is because the set Ki/4 N I, can be constructed
in the same way that K, is constructed in Example 3.1. By the choice of the
parameter a = 1/4, the same inequality between the side and base lengths of the
trapezoids created in the construction holds at every stage, and so the same argument
from Example 3.1 shows that no solution exists for boundary data 7y, ,,g. This non-
locality contrasts the case involving solutions to the Dirichlet problem for p-harmonic
functions when p > 1. Such solutions are known to exist if the boundary data f is the
trace of a function in N'?(Q). If n is a compactly supported Lipschitz function on
99, then nf is similarly the trace of a function in N'?(€2) and hence has a solution.
For more on the Dirichlet problem for p-harmonic functions and traces of functions
of class N1 when p > 1, see for example [6] and [27].
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4 Sufficient conditions for existence of solutions

For the remainder of this paper, we assume that (X, d, p) is a complete metric mea-
sure space supporting a (1, 1)-Poincaré inequality, with u a doubling Borel regular
measure. We also assume that Q C X is a bounded domain, with u(X \ ©) > 0,
such that 02 has positive mean curvature as in Definition 2.12. Furthermore, we
assume that H(02) < oo, that 'H}m is doubling, and that ”H‘m is lower codimen-
sion 1 Ahlfors regular, as in (2.6). The unit disk in R? satisfies the above conditions,
and so Example 3.1 above shows that an L!-function on the boundary of such a
domain need not have a solution. However, for such domains, it was shown in [25]
that given f € C(0f2), there exists a solution u € BV(Q2) to the Dirichlet problem
with boundary data f. We show that the solution for continuous data constructed
in [25] is in fact the minimal solution, and that if an arbitrary f € L'(9) can be
approximated pointwise a.e. from above and below by continuous functions, then
there exists a solution to the Dirichlet problem with boundary data f. We point out
that approximation of the boundary data in this manner was used in [34] to show
existence of solutions for convex polygonal domains in R2. There, the boundary data
belonged to BV (0€2) and satisfied restrictive admissibility conditions with respect to
the geometry of the boundary.

Since we are interested in finding solutions to the Dirichlet problem given data f
defined on 052, we need methods and control over extensions of f into {2 and to the
entire space X. The following results from [28]| and [25] give existence and bounds
for such extensions.

Proposition 4.1. (|28, Propositions 4.2, 4.3]) There exists a nonlinear, bounded
extension E : L'(0Q) — BV (Q), satisfying

[Efllr @) < Cdiam(Q)|[fllzro0) and
IDEFI[(2) < C(1+H(OD)I fll 2100

Moreover, TEf = f H-a.e. on 0S2.

Proposition 4.2. (|25, Lemma 5.1, Proposition 5.2|) There exists a nonlinear ex-
tension Ext : C(0Q2) — C(X) N BV (X) satisfying

| Ext fllzery < 1 lzmom + 1 and
|DExt £/(X) < C (1+H@9) (1]l 00 + 1l zom) +1).

Moreover, for f € C(0) and z € 09, it follows that
lim  Ext f(z) = f(2).

(X\oQ)2z—=2
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We will need the following lemmas.

Lemma 4.3. Let f € L'(09Q), and let u € BV (Q) be a function of least gradient in
Q such that Tu = f H-a.e. on 0S). Then, u is a solution to the Dirichlet problem
with boundary data f.

Proof. Let v € BV (Q) such that Tv = f H-a.e. on J2. Then, T'(v —u) = 0 H-a.c.
on Jf), and so by [26, Theorem 6.9], there exists wy € BV,.(Q) for k& € N such that
w — v —u in BV(Q). Thus, it follows that

1D+ wi) [|(2) = | D][(£2),
as k — oo. Since u is of least gradient and wy € BV,(2), we have that
[ Dul|(€2) < |D(u+ wi) [ (€2) = [[Do]|(€2)
as k — oo, and so it follows that ||Du|[(Q) < ||Dv||(€2). O

Lemma 4.4. Let f,g € L*(09Q) be such that f < g H-a.e., and let u,v € BV (Q)
be solutions to the Dirichlet problem with boundary data f and g respectively. Then,
min{u, v} and max{u,v} are solutions to the Dirichlet problem with boundary data
f and g respectively.

Proof. By |24, Lemma 3.1], it follows that
1D min{u, v}[[(2) + || D max{u, v}[|(©2) < [[Dul[(Q) + [ Do][(2).  (4.5)

For x € 09 such that f(z) < g(x) and setting U, := B(x,r) N, we have that

i _ ! v— f(z u—
i o} = 1@l = s ([ o= s [ e sln)
1

:u(Ur) /Urﬂ{uzv} |,U N f(x)|d’u + ]ir |u - f(x)|dlua

<

and it follows that

[ - f@lds
Urn{u>v}

|v—ﬂwuu+/ v — f(@)ldp

/zm{uzv}n{u>f(m)} Urn{u>v}n{v<f(z)}

< | lu—=f@)dp+ | v—g(z)|dp.
UT UT
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Therefore, for H-a.e. x € 0f2, we have that
][ | min{u,v} — f(z |d,u<2][ lu — f( \du—l—][ v —g(x)|du — 0

as 7 — 07. Thus, T min{u,v} = f H-a.e. on 052, and a similar argument shows that
Tmax{u,v} = g H-a.e. on S
Now, suppose that ||Dmin{u,v}||(©2) > |[Dul[(€2). Then by (4.5) we have that
|| D max{u,v}||(2) < ||Dv||(€2). This is a contradiction since T'max{u,v} = g H-a.e.,
and v is a solution to the Dirichlet problem with boundary data g. Thus, we have
that
[0 min{u, v}{|(€2) < [ Dul|(€2),

and so min{w, v} is a solution to the Dirichlet problem with boundary data f. Sim-
ilarly, we have that max{u, v} is a solution to the Dirichlet problem with boundary
data g. O

Lemma 4.6. Let f € LY (09), and suppose that u € L (Q) with Tu = f H-a.e. on
0. Then, for L-a.e. t € R, we have that T'x >ty = X{r>t} H-a.e. on 0.

Proof. Since H(0S2) < oo, it follows that H({f =t}) = 0 for L-a.e. t € R. For such
t € R let x € 2N {f # t} be such that Tu(x) = f(x). This property holds for
H-a.e. € 0L

We first consider the case when f(z) > t. Setting U, := B(x,r) NS, we have that

1
]{] : Xqusty = X{s>0 (@) |dp = W0 [X{u>ty — 1]dp

CENUA
N(Ur> '

Suppose that this quantity does not go to zero as r goes to zero. That is, suppose
there exists g3 > 0 such that for all § > 0, there exists 0 < r5 < § such that

p{u <t} NU,) .
1(Urs) =
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Let € := |f(x) — t|go. Since Tu(x) = f(x), there exists § > 0 such that

AL

s

1
~ u(U) u— f(x)ld u— f(z)|ld
uw@<ﬁmm; s ﬂﬂu)
1

> — u— f(z)|du
,U(Ura) /Uran{ugt} | (@)

p{u <ty NUy)
> |f($(7) - t| M(UT5>

a contradiction. Thus, it follows that

> [f(z) —tleo =¢,

][ |X{u>t} - X{f>t}(95)|dﬂ — 0
Uy

as r — 0T.
If f(x) < t, then we have that

pw({u >t} NU,)
) — dp = |
]{]T IXqusty — Xr>0(2)|dp PIGA)

If we suppose that this quantity does not go to zero as r goes to zero, then we arrive
at a contradiction by the same method as above. However, in this case, we use the
fact that

1 / p({u >t} NU,)
ju— f(2)|dp > | f(x) — ] =
M(Uhs) Urs {u>t} M(Uhs)
Thus, for H-a.e. x € 05), we have that
lim ]{J X (usty — X{r>03(2)|dp = 0,
and 50 T'X{u>1} = X{s>t} H-a.e. on 0. O

Remark 4.7. If u € BV(f2) is a solution to the Dirichlet problem with boundary
data f, then by the coarea formula, we have that (.~ € BV(Q) for L-a.e. t € R.
Moreover, as u is necessarily of least gradient in 2, it follows that for each t € R,
X{u>t} is of least gradient in € as shown in [17, Lemma 3.6]. Thus, by Lemma 4.3
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and Lemma 4.6, it follows that xy,~ is a solution to the Dirichlet problem with
boundary data xss4 for L-a.e. t € R. In particular, if f = xp for some F' C 012,
and there exists a solution u to the Dirichlet problem with boundary data f, we may
assume that u = y g for some E C Q with P(E, ) < oco.

We now show that the solution constructed in [25] for continuous data is minimal
in the following sense.

Proposition 4.8. Let f € C(0N2). Then, there exists a solution u € BV (Q) to the
Dirichlet problem with boundary data f, such that for any solution v’ to the said
Dirichlet problem, we have that u < u' p-a.e. in .

Proof. We follow the construction of a solution u € BV({2) given in the proof of
[25, Theorem 4.10] and show that u has the desired property.

Let Ext f € C(X)NBV(X) be the extension of f to X given by Proposition 4.2.
Fort € R, let F, := {z € X : Ext f(z) > t}. Then, F; is open by continuity of Ext f,
and since Ext f € BV(X), it follows from the coarea formula that P(F;, X) < oo for
L-a.e. t € R. Moreover, if x € JF,, then Ext f(z) =t by continuity of Ext f, and so
OF, NOF; = @ for s # t. Since H(JN) < oo, it then follows that H(0Q N IOF;) = 0
for L-a.e. t € R. Let

J:={teR: P(F,X)<ooand H(0Q2NIF;) = 0}.

For each t € J, there exists a unique minimal solution set Et to the Dirichlet
problem with boundary data xr,, |25, Proposition 3.7, 4.8|. Setting

L, ={x € X : x5 (z) > 0},

it follows that g, is also a minimal solution. Since L(R \ J) = 0, we can find a
countable set I C J such that I is dense in R. Let u : X — R be given by

u(z) =sup{s € [ : x € Es}.

In |25, Theorem 4.10], it is shown that v € BV (2) and u is a solution to the Dirichlet
problem with boundary data f.
Now, let v’ € BV (€2) be another solution to the Dirichlet problem with boundary
data f. Then, setting
Et, = {U, > t}v

it follows from the discussion in Remark 4.7 that xg; is a solution to the Dirichlet
problem with boundary data xp, for L-a.e. t € R. Letting

J' = {t € J:xpg is a solution for xp,} C J,
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we have that L(R\ J’) = 0. Hence, there exists a countable set I’ C J' such that I’ is
dense in R. For each s € I', we have that xg, < xg p-a.c., since xp, is the minimal
solution for yg,. Therefore, letting

Gs:=E,\ E, = {:5 €Q:xm(x) < XES(x)} ,
we have that u(Gs) = 0. Letting
G=Ja.
sel’

it follows that u(G) = 0.
Moreover, for s* € I’ and s € I such that s* < s, we have from [25, Lemma 3.8|
that F, C Es. Let
Hys:={reQ: v € E,\ Ex}.

H=J) J Hew

s*el’ sel,s>s*

Then, p(Hs+ ) = 0. Let

Then, we have u(H) = 0.

Let z € X \ (GU H), and suppose that v'(x) < u(z) = sup{s € I : x € E}.
Then, by the definition of u, there exists s € I with u/(z) < s < u(x) such that
x € F, and by the density of I’ in R, there exists s* € I’ such that

u'(x) < s* < s <u(z).

Since s* < s and x € H, we have that x € Fy. Moreover, since u/(x) < s*, it follows
that © € E'.. Thus we have that

However, this is a contradiction since z ¢ G«. Therefore, it follows that u(z) < u/'(x),
and since u(G U H) = 0, we have that v < v’ p-a.e. in Q. O

Remark 4.9. If v is another solution which is minimal in the sense of Proposition 4.8,
then u = v p-a.e. Thus, we call u the minimal solution to the Dirichlet problem with
boundary data f.

As an immediate corollary, we obtain a comparison-type result for minimal solu-
tions.
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Corollary 4.10. Let f,g € C(09) be such that f < g H-a.e. on OS2, and let u
and v be minimal solutions to the Dirichlet problem with boundary data f and g
respectively. Then u < v p-a.e. in Q.

Proof. Existence of the minimal solutions v and v is guaranteed by Proposition 4.8.
By Lemma 4.4, min{u, v} is a solution to the Dirichlet problem with boundary data
f. Therefore, as u is a minimal solution, we have that

u < min{u,v} <wv
p-a.e. in §2. 0J

We note that in this setting, uniqueness of solutions is not guaranteed even for
Lipschitz boundary data (see [25]), and so such a comparison theorem may not hold
for solutions which are not minimal.

Using the previous corollary, we are now able to establish Theorem 1.1.

Proof of Theorem 1.1. For k € N, let ux and vy be the minimal solutions for the
Dirichlet problem with boundary data g and hy, respectively. The existence of such
minimal solutions follows from Proposition 4.8 above. By Corollary 4.10, we have

U < Upg1 < Vg < U (4.11)
p-a.e. in . Let u : X — R be given by

u = supug = lim wuyg.
k k—o0

We have that |u — u| < 2max{|uy],|v1|}, p-a.e. in Q, and since uy,v; € L'(Q),
it follows that

/ 2 mas{|ur], o1 }dp < oc.
Q

Therefore, by the dominated convergence theorem, we have that

lim / lup — u|dp =0,
k—oo Jq
and so it follows that uy — u in L'(2). By [17, Proposition 3.1], it follows that wu is
a function of least gradient in ).

Let Eg, € BV(Q2) be the extension of g; into €, as given by Proposition 4.1.
Since wuy is a solution to the Dirichlet problem with boundary data g, and since
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uy, — u in L*(Q), we have by lower semi-continuity of the BV energy and the bounds
from Proposition 4.1 that

|1Dul|(€2) < liminf [ Dug[|(€2) < lim inf | DEgy[|(£2)
— 00 —00
< liminf C(1 +H(0Q))lgx | 2100)
< C(1+H(0))|| max{[ga], |h1|}H| L1 o) < oo

Thus, u € BV (Q).

It remains to show that Tu = f H-a.e. on 0. Let z € 0N be such that
ge(), () — f(x) as k — oo, and such that for all £k € N, Tug(z) = gr(x)
and Tvg(z) = hi(x). By the hypothesis, these conditions hold for H-a.e. x € 0.
Then we have that

1
~ f(@)|du = ~ f(a)|d — f(@)|du ).
][T'“ Pl =~ (/m{uw}m F(@)ldu + /m{um}m f@)] u)

Since (4.11) holds for all & € N, it follows that |u(y) — f(x)| < |uk(y) — f(z)| for
pra.e. y € U.N{u > f(x)}, and similarly, |u(y) — f(z)| < |ux(y) — f(x)| for p-a.e.
y € U.N{u < f(x)}. Therefore we have that

1
— fl@)|dp < — — f(x)|d — f(x)|d
< ][ o, — f(2)|dp +][ luk — f(2)|dp.

Let € > 0. Since gx(z), hi.(z) — f(z) as k — oo, we can choose k € N sufficiently
large such that |gi(z) — f(2)|, |he(x) — f(z)| < €. Thus, it follows that

][ lu—f(z)|dp

< g lvi, — hi ()] + | e () — f(2)|dp + g \ur — gr(z)] + |gr(x) — f(2)|dp

I Idu+][ g — gn ()] dp + 2=.

Ur

Since Tuy(z) = gx(x) and T'vi(z) = hg(x), we have that

lim ][ lu — f(z)|dp < 2e,

r—0+
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and so taking ¢ — 0, it follows that Tu(x) = f(x). Thus, Tu = f H-a.e. on 0L, and
so by Lemma 4.3, u € BV (€2) is a solution to the Dirichlet problem with boundary
data f.

Let v’ € BV (2) be a solution to the Dirichlet problem with boundary data f. For
each k£ € N, it follows that min{ug,u’} is a solution to the Dirichlet problem with
boundary data g, by Lemma 4.4. However, as u; is a minimal solution, it follows
that ur < min{ug, v’} < o' p-ae. in €. Since up — u pointwise p-a.e., it follows
that v < ' p-a.e. in §). Thus u is a minimal solution, and uniqueness follows from
minimality. O

Example 4.12. We point out that the functions v above need not converge to the
minimal solution u. Let  C R? be the (unweighted) unit disc, and let

fog) = {1, [yl > 1/v2

0, |yl <1/v2.
Letting
1, ly| > 1/vV2+2/k
(o.4) = kly— (1/V2+1/k), 1/V2+1/k<y<1/V2+2/k
WEITN hly + VI k), —(VE+2/k) <y < —(1/V2+1/R)
0, lyl < 1IV2 +1/k
and
1, lyl > 1/v2—1/k
() = kly —(1/vV2=2/k), 1/V2<y<1/vV2-1/k

Sh(y +1/V2—2/k), —(N3—1/K) <y < —(1/v/2 — 2/K)
for sufficiently large k, we have that g, < f < hy. It follows that the wu; converge
to the minimal solution u = Xqny>1/v3 tO the Dirichlet problem with boundary

data f, and the v, converge to the maximal solution v = Xon{|z|<1/v3}- FOr more on
non-uniqueness of solutions, see [29, Example 2.7] and [11].

As a consequence of Theorem 1.1, we are able to prove Theorem 1.2. Recall that
given F' C 02, we let OF denote the boundary of F' relative to 0f2.
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Proof of Theorem 1.2. For € > 0, let nt : 9Q — R be given by

dist(z, F') 0}

nt(z) = max{l —
£

Then 7 is continuous, and xp < nf < nf) on 0Q for e; < ;. If € F, then
nd(x) =1 for all ¢ > 0. Likewise, if x € 99 is in the exterior of F relative to 052,
then nf (x) = 0 for sufficiently small e > 0. Therefore, lim._,onF (z) = xr(z) for all
x € 00\ OF, hence H-a.e. on .

Similarly, for € > 0, let 7= : 9 — R be given by

. min{dist(:):,ﬂ \F) 1} |

€

Then 7 is continuous, and 7. < n; < xr on 08 for €1 < &5. Similarly since

H(gF) = 0, we have that n_ — xr H-a.e. on 92 as ¢ — 0. Having constructed the
necessary approximating sequences, Theorem 1.1 gives the existence of the minimal
solution u € BV (Q). O

We note that existence of a solution in Theorem 1.2 also follows from the results
of Section 5. However, minimality of the solution is not guaranteed by those results.

As the following example shows, some sets F' C 92 with poorly behaved bound-
aries still satisfy the H(OF) = 0 condition. Theorem 1.2 gives us a way to ensure
existence of minimal solutions even in these cases.

Example 4.13. Let Q = B(0,1) C R?, and let K C 99 = S? be a bi-Lipschitz
embedding of the von Koch snowflake domain in R? onto S?. Then, OK is a curve of
infinite length, and so yx € L'(0Q)\ BV (99). Since H ~ H? in this example, where
H? is the standard 2-dimensional Hausdorff measure, it follows that 7—[(5[( ) = 0.
Hence by Theorem 1.2, there exists a minimal solution to the Dirichlet problem with
boundary data xp.

Remark 4.14. It should be noted that the conditions imposed on f in Theorem 1.1
are rather strict. Unbounded functions are excluded, for example. Furthermore, the
conditions are not necessary in general to guarantee existence of a solution. As seen
in Example 3.3 above, the function g has a solution but cannot be approximated H-
a.e. from below by continuous functions. Likewise, Example 3.3 also shows that the
conditions imposed on a subset of 92 in Theorem 1.2 are not necessary in general.

Since g = Xk, ,,ur, We have that H(g(K1/4 UF)) = H(5K1/4) =H(K1s) =1/2.
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5 Solutions at points of continuity of the boundary
data

In this section, we consider an arbitrary f € L'(99), and show that there exists a
least gradient function v € BV (€2) whose trace agrees with f at points of continuity
of f. The argument follows that of [10, Theorem 3.1|, where an analogous result
was shown for strictly convex domains in R™. However, our results apply even for
domains that are not strictly convex (see Remark 5.8). We first need the following
lemmas regarding minimal solution sets.

Lemma 5.1. Let Fy, Fy C X be open sets such that P(Fy, X), P(Fy, X) < 0o and
HOF, NON) = 0 = H(OF, N ON). Suppose also that Fy N Fy, N O = &, and let
E\,E; € X be minimal solution sets to the Dirichlet problem with boundary data
Xr, and X g, respectively. Then, p(Ey N E,N Q) =0.

1

Proof. Let 0" := {x € 0Q : T'xg, () = xp, (z) and T'xpg,(x) = xp,(z)}. We claim
that T'xp\g (z) = xr, (2) for z € 0Q*, and hence for H-a.e. x € 0Q.
Indeed, for x € 0Q* N F, (setting U, := B(x,r) N ), we have that

f X\ (@)
Uy

=10/
= X12—1d+/ X12_1d)
w(U:) ( UmEz| e law Ur\(ElUE2)| e |,u
_ M(Ur N Ez) N(Ur \ (El U E2))

w(U,) w(U;)
N(Ur N E2) 4 N(UT \ El)
1(U;) w(U;)

—F e = xn@idn+ e = )ldn >0
Ur Ur

as r — 07. Similarly, for z € 9Q* \ F}, we have that

IXENE, — XF (2)|dp = ][ XE\E At < ][ Xedi =1 |xE, — Xm (2)|dp — 0
U, U,

U Ur

as 7 — 0%. Thus, we have that TxXp\E, = Xr, H-a.e. on 0Q. Likewise, a symmetric
argument shows that T'xg,\ g, = Xr, H-a.e. on 0L
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Now, by [30, Proposition 4.7|, we have that

P(Ey\ (B2 NQ),Q) = P(Eq\ By, Q)

(B1N (2 E2), Q)

(B1,Q) + P(Q\ Ep, Q) — P(E1U (R E2), Q)
(E1, Q) + P(E2,Q) — P(E2 \ E1, Q)
(E£1,Q) 4+ P(Es, Q) — P(Ex \ (E1NQ), Q).

P
<P
—p
=P

Thus, we have that
P(Ey\ (E2NQ),Q)+ P(Ey\ (E1NQ),Q) < P(E,Q) + P(E,, Q).

If P(Ey\ (E2N),Q) > P(E,Q), then we have that P(E>\ (E1NQ), Q) < P(E,, Q).
However, since T'xg,\g, = Xr, H-a.e. on 082, and since Ej is a solution set for xp,,
this is a contradiction. Therefore, we have that P(E; \ (E2NQ),Q) < P(E}, ), and
so B\ (B2 N Q) is a solution set for xg,. Thus, since F; is the minimal solution set,
we have that u(E, N E, N Q) =0. O

The following lemma follows from a similar argument.

Lemma 5.2. Let Fy, Fy C X be open sets such that P(Fy, X), P(Fy, X) < oo and
H(OF1NON) = 0 = H(OF>,NON). Suppose also that FyNIQY C Fy, and let By, Ey C X
be minimal solution sets to the Dirichlet problem with boundary data xp, and X,
respectively. Then, E1 N Q) C Es.

Since X is doubling, it follows that for each K > 1, there exists Cx > 0 such that
for every r > 0, we can find a finite cover { B(x;, 7)}ics, C X of 0Q with z; € 02 such
that ZieJT XB(zi,kr) < Ck. Let € > 0, and consider such a cover {B(z;,€/5)}ic..
By the 5B-Lemma, there exists a disjoint subcollection { B(x;,/5)}ier.cs. such that
O C U,ep. B(wi, €). Thus, we obtain a finite cover {B;. := B(x;, ) }ies. of 02 such
that the set {x;}icr. is 2¢/5-separated, and for all K > 1, we have that

ZXKB” < Ck. (5.3)
iel.

We can then find a Lipschitz partition of unity {¢5 };cr. subject to this cover. That is,
for each ¢ € I, there is a C'/e-Lipschitz function ¢5 : X — [0, 1], (with C' depending
only on the doubling constant) such that supt(¢5) C 2B;., and >, ¢ = 1 on 0.
For proof of these facts, see for example [15, Appendix B|, [18], and [20].
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For f € L'(99), define

f.=f fan
BLEHBQ
and let f. : 00 — R be given by

=D f5 ¥l

i€l

Then, as f. is continuous, there is a minimal solution u. € BV (£2) to the Dirichlet
problem with boundary data f., by Proposition 4.8.

Lemma 5.4. Let u. be the minimal solution to the Dirichlet problem with boundary
data f., as defined above. Then,

Sup (lluellzr@) + 1 Duel| () < oo.
That is, {ue}eso is bounded in BV (€2).
Proof. We have that

[ i< 3 [ 1

i€l

2 / \fon, M.

icl. jel. Y BieNo

Fori e I, let J;. :={j € l.: Bj.N2B;. # &}. If j € J;., then B;. C 4B,
and so by the doubling property and the fact that {z;};c;. is a 2¢/5-separated set,
there exists C' > 0 depending only on the doubling constant such that |J;.| < C,
where |J; .| denotes the number of elements in J; .. Since ¢5 is compactly supported
in 2B, ., it follows that ¢f =0 on B;, for j € I. \ J;.. Therefore, we have that

DD / fi il

i€le jE€J; e

= Z /anag (ﬁisnag |f|d%> "

i€le jE€J; e

H(Bj-N0Q)
o Z Z Bze N (%2) /i,sﬂaQ |f|d%

i€le jE€J; e

< CZ/BZMQ | fldH < C/m | f|dH, (5.5)

1€l
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where the constant C' > 0 depends on the doubling constant of H and the bounded
overlap constant from (5.3).

Let Ef. : Q2 — R be the extension of f. to €2 given by Proposition 4.1. Since
us € BV(Q) is a solution to the Dirichlet problem with boundary data f., and by
(5.5), we have that

|Du|(Q) < [DEL|(Q) < C /8 < C /a ISl (5.6)

Now, let v, : 2 — R be given by v. := u. — Ef., and let 0. be the zero extension
of v, to all of X. Since Tu. = TE f. = f. H-a.e. on 012, it follows that
I ! / fo.ldp = 0
im ————— veldp =
r—0F M(B(LU, T)) B(z,r)NQ

for H-a.e. x € 0. Thus, by [26, Theorem 6.1], it follows that 0. € BV (X) and
Do (X ©2) = 0.
Since u(X \ ) > 0, we can find a ball B C X such that Q C B and pu(B\Q) >0
By Holder’s Inequality, we have that
Q-1
Q
Q- 1dlu>

/Iveldu</|veldu<u B/ (/ ]
Q
) (f lodFan)

where Q > 1 is the exponent from (2.1). Since 0. = 0 on B \ €, it follows from
Lemma 2.4 that

Crad(B Do ||[(2AB
J, el < )= <u<ﬂ>/2<;>>w H u@HA(B) )
< C (D)) + Do (X \ 9)
— C||Du. (@)
< C(|Du.l(©) + | DEL]()

Here the constant C' > 0 depends on €2, B, and the doubling and Poincaré constants,
but is independent of ¢, f., and w..
Then by (5.6), we have that

/ wldp < [ |flan,
Q o0
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and by the Triangle Inequality, it follows that

/ u Jdj < C / FldH + / Ef.|dp.
Q o0 Q

Therefore, by Proposition 4.1 and (5.5), we have that

[ tddn=c [ 1nian
Q o0

Lemma 5.7. Let f be continuous at x € 0S). Then, for all n > 0 there exists § > 0
such that for all0 < e < § and for ally € B(x,§)NO, we have that | f-(y)—f(x)] < n.

O

Proof. Let n > 0. By the continuity of f at x, there exists o > 0 such that if
y € B(x,00) N0, then |f(y)— f(z)| < n. Let 6 := dp/10. Then, for y € B(x,d) N1,
and for 0 < € < ¢, we have that

() = F@) = D fo,.05 (W) — [(2) D5 (w)

i€l i€l

<> FEWIfe,. — f@)l.

i€l
Let Jy.:={i € I. : y € 2B;.}. Then, ¢5(y) =0 for all ¢ € I, \ J, .. Thus, we have
that
f(w) = F@) < Y e W)lfs,. — f@)].

i€ Jy,e

Since 0 < € < 9, it follows that for ¢ € J, ., we have that B;. C B(x,d). Therefore,

o, @< f 1F = fa@ldr <,

and so it follows that |f.(y) — f(z)| < n.

We are now able to establish Theorem 1.3.

Proof of Theorem 1.3. Since (u:).>o is bounded in BV (), it follows from the com-
pact embedding theorem [30, Theorem 3.7] that there exists u € BV,.(2) and a
subsequence, also denoted u. € BV (), such that u. — u in L} (), and passing to

loc
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a further subsequence if necessary, we have that u. — u pointwise a.e. in 2. Hence
by Fatou’s lemma and Lemma 5.4, we have that

/ lu|dp < liminf/ |uc|ldu < oo.
Q e—0 Q

By lower semi-continuity of the BV energy and (5.6), we have that || Dul|(2) < oo,
and so v € BV(Q). Furthermore by [17, Proposition 3.1, it follows that u is a
function of least gradient.

Let f be continuous at x € 0€), and let n > 0. By Lemma 5.7, there exists > 0
such that for all 0 < e < 4, and for all y € B(z,d) N 02, we have that

|f(y) — f(@)] <.

Let r, > 0 be as in Definition 2.12. Then by the coarea formula, and since
H(0N) < 0o, there exists d, > 0 such that

min{d, r,}/2 < d, < min{d, .},

with P(B(z,9,), X) < oo and H(9B(z,d,) N Q) = 0. Denote F, := B(z,d,), and
let £, C X be a minimal solution set for xr,. Let 0 := min{d,, ¢,(d,)}, where ¢, is
as in Definition 2.12. Then, for all 0 < r < 5\, it follows that B(z,r) NQ C E,.

For 0 < e < g, let F¥ := {Ext f. > t}, where Ext f. is the extension of f. to X
given by Proposition 4.2. Recall that u. : X — R is given by

u(y) =sup{t € Z. : y € E; },

where Z. and E} are as in the proof of Proposition 4.8. By the choice of 5\, we note
that for ¢ € Z. such that ¢t > f(z) + n, it follows that Ff N F, N 0Q = @. Thus,
by Lemma 5.1, we have that p(E; N E, N Q) = 0. Similarly, for t € Z. such that
t < f(x) —n, we have that F,, N 0Q C Fy, and so by Lemma 5.2, it follows that
E,NQ C E;. Therefore, for all 0 < ¢ < § and for all 0 < r < 5\, it follows from the
construction of u, that

lue(y) — f(@)| <

for p-a.e. y € B(x,r) N
Therefore, for all n > 0, we have that

lim lim lue — f(x)|dp <,

r—0t e—0+ B(z,r)NQ
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and as u. — u pointwise a.e., it follows from the dominated convergence theorem
that
lim |lu — f(x)|du = 0.
r—0+t B(z,r)NQ
Thus, we have that Tu(x) = f(z).
O

We note that in the proof of Theorem 1.3, we apply Lemmas 5.1 and 5.2 to the
regularized sets
Ei={zeX: x%ﬁs(:c) > 0},

where E? is the minimal solution set for Xrs. However since ((EEAES) = 0, the
lemmas still hold.

Remark 5.8. We note that Theorem 1.3 generalizes [10, Theorem 3.1] to the metric
setting and also extends that result to domains in R™ which are not strictly convex
but satisfy the positive mean curvature condition. For example, consider the domain
in R? constructed by attaching half of the unit ball to either end of the cylinder
D x [0,1]. The boundary of this capped cylinder has positive mean curvature, but
is not strictly convex. See the discussion from [25, Section 4] and [37, Section 3|
relating the notion of positive mean curvature given above to that of domains in R"
with smooth boundary.

Remark 5.9. If we consider a measurable set F C 99 such that H(OF) = 0, as
in Theorem 1.2, we see that existence of a solution to the Dirichlet problem with
boundary data xp follows immediately from Theorem 1.3, since xr is continuous
at all points x € 9 \ OF. Thus we obtain another proof of the existence part of
Theorem 1.2, though it is unclear if minimality of the solution also follows from
these results, as it does in Section 4.

Remark 5.10. As with Theorem 1.1 and Theorem 1.2, we point out that the con-
dition on f of continuity H-a.e. in Theorem 1.3 is not sharp, as illustrated by Ex-
ample 3.3. There, a solution exists for the Dirichlet problem with boundary data g,
but g is discontinuous on the set K4, which has positive H-measure.
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