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Abstract—Surface acoustic wave (SAW) sensors with increas- 

ingly unique and refined designed patterns are often developed 
using the lithographic fabrication processes. Emerging applica- 
tions of SAW sensors often require the use of novel materials, 
which may present uncharted fabrication outcomes. The fidelity 
of the SAW sensor performance is often correlated with the ability 
to restrict the presence of defects in post-fabrication. Therefore, it 
is critical to have effective means to detect the presence of defects 
within the SAW sensor. However, due to the need for precision 
identification and classification of surface features for increased 
confidence in model accuracy, labor-intensive manual labeling is 
often required. One approach to automating defect detection is 
to leverage effective machine learning techniques to analyze and 
quantify defects within the SAW sensor. In this paper, we propose 
a machine learning approach using a deep convolutional neural 
network to segment surface features semantically. Experimental 
results demonstrate an average dice score of 0.72 (0.13) across 
five cross-validation folds in segmenting the defective region for 
a novel SAW sensor variant. 

Index Terms—convolutional neural network, autoencoder, de- 
fect detection, image segmentation, photo-lithography, surface 
acoustic wave sensor 

 
I. INTRODUCTION 

The revolution of deep learning has enabled automated 

and accurate classification and pattern analysis of images in 

myriad research and applications. Fast and automatic detec- 

tion of defects in manufacturing and fabrication is crucial 

to ensure large-scale industrial productivity and quality [1]. 

The detection of manufacturing defects is primarily posed 

as an image classification problem where the presence of 

a defect is confirmed in a given sample or product unit. 

Therefore, classifying defective images paves the path for 

sorting or correcting defective units in production. However, 

such a binary classification task does not identify the region 

of the defect or quantify the extent of the defect to assess the 

production quality and efficacy. In photo-lithography sensor 

fabrication, the manufactured sensors may contain defects 

at varying scales resulting in varying sensor throughput. A 

mere presence of a fabrication defect may not always infer 

defective sensors with unsatisfactory performance [2]. We 

assume that the region or extent of defects is proportional 

to the drop in the sensor performance. Therefore, segmenting 

the region of defects in sensor fabrication is an important step 

toward quantifying and localizing the defect, which cannot 

be achieved via traditional image classification tasks. In this 

paper, we propose a deep autoencoder-based image reconstruc- 

tion framework to segment and localize defects in surface 

 
acoustic wave (SAW) sensor fabrication. Unlike the defect 

detection performed on other sensor fabrication, this variant 

of SAW sensor is unique and challenging because we are 

developing the metallic interdigital transducing (IDT) fingers 

on a flexible polymer substrate instead of the conventional 

rigid crystalline substrate. It is important for substrates to be 

as flat as possible; hence, the flexibility of the substrate often 

conflicts with the flatness during the fabrication of the sensor. 

A lack of flatness is one of the leading causes of defects 

during lithographic fabrication [3]. This paper shows one of 

the first studies on localizing and segmenting defective regions 

on SAW sensor fabrication using a deep learning method. 

The remainder of the paper is organized as follows. Section 

II shares a background reviewing the literature on automatic 

defect detection in fabrication. Section III presents the sensor 

fabrication steps, microscopic imaging of sensors, image pro- 

cessing, and deep learning-based experiments and evaluation 

steps. Section IV provides the key deep learning and segmen- 

tation results with some discussions. The paper concludes in 

Section V. 

II. BACKGROUND REVIEW 

This section highlights the literature on defects in pho- 

tolithography and approaches to automated defect detection. 

1) Defects in sensor fabrication: With the burgeoning 

demand for micro-electromechanical systems (MEMS) class 

devices, the surface acoustic wave (SAW) sensor has shown 

promise in meeting the requirements of a wide variety of 

applications. The applications of SAW sensors range from 

biosensors in the detection of harmful biological agents [4] to 

resonant systems that are capable of quantum mode coupling 

for qubit storage [5]. Many of these micro/nanoscale sensor 

technologies are developed using advanced lithographic tech- 

niques such as photolithography, electron-beam lithography, 

and ion lithography. The post-lithographic fabrication pro- 

cesses are often laden with subtle defects leading to degrada- 

tion in sensor performance. According to Aubert et al., defects 

located on the surface of SAW devices of size 1–2-micron 

depth have been reported to produce errors in temperature 

measurement [6]. Floer et al. reported that SAW sensors with 

defective lithium niobate substrates could degrade the quality 

of the sensor-acquired signals [2]. The post-fabrication defects 

from lithography also affect integrated circuits (IC), resulting 

in circuit shorting hot spots [7]. These hot spots are a direct 

result of scratches and particles on the backside of wafers that 



 
 

Fig. 1: Original surface acoustic wave sensor IDTs (left). Corresponding RGB mask with defective regions coded in red (right). 

 
 

affect the photolithographic process by distorting the wafer’s 

flatness during UV exposure [3]. 

2) Detection of sensor fabrication defects: The defect in- 

spection process has been classically conducted by human 

surveillance, which is subject to human error. This human- 

level surveillance is not an efficient means for large-scale 

manufacturing and production due to the subtlety of defects 

and variability in human ratings. Specifically, as the market 

size, demand, and intricacies of lithographically produced 

technology continue to increase, the need for more effective 

means of inspection will inevitably follow suit. Zhang et al. 

report that manufacturing is becoming more challenging as 

transistor size continues to shrink, leading to the need for more 

precise and large-scale defect analysis [8]. It has also been 

reported that the strain on the semiconductor manufacturing 

sites due to a global chip shortage has led engineers to 

investigate methods for improving the wafer yields at the 

site. This improvement may be achieved by optimizing final 

test processes via early and accurate defect detection during 

manufacturing [9]. Therefore, the need for a more automated 

approach to detecting sensor manufacturing defects is in 

obvious high demand. 

3) Automating fabrication defects detection: Advanced ma- 

chine learning techniques can play an important role in 

automating and objectively assessing the defects in post- 

fabrication processes. The semiconductor industry has pro- 

gressively adopted machine learning techniques to analyze 

integrated circuits. Torres et al. have proposed a combination 

of artificial neural networks (ANN) and support vector ma- 

chines (SVM) to detect hot spots following high-performance 

lithographic processes [10]. Ye et al. have leveraged machine 

learning for hotspot detection in ICs and reported an improved 

area under the curve (AUC) in defect classification considering 

data imbalances [11]. 

One major challenge for traditional machine learning is that 

it requires the “hand-crafting” of image features prior to train- 

ing a classifier model. In contrast, deep learning techniques 

are capable of learning optimal image features concurrently 

with the training of neural network models. Therefore, deep 

learning has automated the feature learning and classification 

 

processes to replace conventional machine learning approaches 

in image representation learning. Cheon et al. use a convolu- 

tional neural network (CNN) architecture to replace “naked 

eyeballing” and ”machine learning of handcrafted features” 

for wafer surface defect classification. They achieve this by 

identifying mislabeled images classified by the trained CNN to 

extract effective feature vectors. A k-nearest neighbor (k-NN) 

classifier algorithm is then used to group the defect classes 

by measuring the total squared distance between each image 

feature vector and its k-nearest neighbor in the same class. 

If the squared distance between the image feature vector and 

cluster exceeds a certain threshold, then it is labeled as an 

”unknown class”. Otherwise, it receives the label given by the 

unmodified CNN classifier [12]. 

Kyeong et al. use CNNs for classifying the presence of 

multiple defect patterns in wafer bin maps (WBMs) using 

defect-detecting dies that reveal patterns correlated to defects. 

The increase in the size of WBMs has increased the probability 

of mixed localized noisy defect patterns. CNNs are able 

to perform classification robustly against the noisy mixed 

defect data. [13]. Borisov et al. have demonstrated, through 

experimental results, that a deep CNN produces increased 

accuracy in detecting hotspots in ICs [14]. Cha et al. identify 

that defect detection is one of the biggest challenges in the 

semiconductor manufacturing industry [15]. They propose 

a CNN autoencoder with skip connections in the network 

architecture to produce high-fidelity images for training a 

classifier. Their architecture consists of three encoder and three 

decoder blocks that are trained to reproduce the input image at 

the output with minimal loss. Within their work, the primary 

purpose of the autoencoder was to generate image samples 

for training a separate classifier model. After training on the 

synthetic autoencoder data, their classification model is found 

to produce 98% accuracy when tested on the real data set. 

A. Contributions 

In this paper, we propose a design and application of a 

deep CNN autoencoder architecture to localize and segment 

the region of defects in grayscale microscopic images of novel 

polymer-based SAW sensors. The contributions of this paper 



 
 

Fig. 2: Proposed deep convolutional autoencoder architecture. Enc and dec represent encoder and decoder parts, respectively. 

In encoder 2, for example, 32 feature maps, each with 8x8 dimensions, are convolved with 32 4x4 filters, stride of 2, and 

feature map padding of 1 to produce 64 feature maps of size 4x4 in the latent layer. K = filter size (KxK), P = padding, S = 

stride. 

 

are as follows. First, our image segmentation and localization 

objectives are different from CNN-based defect classification 

performed in the literature. Second, the proposed variant of 

the SAW sensor presents a set of challenges in polymer- 

based photo-lithographically produced micro-sensors, which 

are relatively novel, making the results of defects unpredictable 

and challenging to identify. Third, in a novel methodological 

design, our research leverages the autoencoder’s ability to 

map a one-channel grayscale image input to a three-channel 

RGB output to segment and localize the defective regions in 

the SAW sensor electrodes. The color mapping is performed 

to automate the process of segmenting and quantifying the 

presence of defective pixels in our autoencoder-generated 

images. This automated approach is a more efficient route 

to post-fabrication defect analysis than conducting human 

vision-based defect analysis of SAW microsensors. Fourth, 

our proposed self-supervised autoencoder learning approach 

alleviates the need for a large image sample size as required 

in supervised classification tasks. 

 
III. METHODS 

This section discusses the experimental steps and proce- 

dures of the proposed work. 

 
A. Sensor fabrication and imaging 

In sensor fabrication, we have used the photolithographic 

process to develop novel flexible PVDF-based microsensors. 

The process involves several sequential stages: metallization, 

photoresist deposition, exposure, development, and etching. 

After the final etching step in sensor fabrication, microscopic 

imaging is used to capture IDTs. Figure 1 shows a gray scale 

image with defects present in the IDT’s post-photolithography. 

The goal of this paper is to reconstruct a color image (shown 

in Figure 1) with the segmented defect region in red color 

taking the grayscale microscopic image as the input. 

B. Image processing 

The objective of training a deep CNN autoencoder is to 

reconstruct color images with segmented defect regions from 

grayscale image inputs. To facilitate this training, ground truth 

color images with segmented defect regions are generated by 

manually color coding three observed regions: 1) substrate 

(blue), 2) IDT (green), and 3) defect (red), as shown in Fig- 

ure 1. The color coding of ground truth images is performed 

using the paintbrush tool within the adobe Photoshop appli- 

cation. Each original SAW optical image has a corresponding 

RGB color-coded mask as depicted in Figure 3. To obtain a 

decent amount of training image samples, the original image 

is subsampled, and each subsample is subjected to different 

image transformations to augment the image sample size. 

C. Deep CNN autoencoder 

The proposed deep autoencoder architecture with its filter 

and parameter settings is shown in Figure 2. The latent 

layer yields the representation from which the color images 

are reconstructed via sequential deconvolution in multiple 

layers. The CNN architecture is excellent at extracting features 

from complex data, which may contain multiple foreground 

features, such as multiple objects contained in image data. 

The convolutional filters in CNNs can extract edges, corners, 

and location-invariant geometric patterns in images for pattern 

recognition tasks [16]. Autoencoders are designed to compress 

and encode input data into a lower dimensional latent space 

vector. From the latent space, the vector can be reconstructed 

back (decoder) into the original or any target image represen- 

tation (image labeled with defects). 

D. Model training and evaluation 

Following subsampling and augmentation, the grayscale 

(input) and color (target) image pairs are split into five folds. 

In a five-fold cross-validation scheme, four folds of image 

sample pairs are used to train the deep CNN autoencoder to 



 
 

Fig. 3: Illustration of square grids to generate 108 image subsamples of the original SAW microscopic image. 

 

reconstruct the color-coded defect regions from input grayscale 

images. The left-out test fold images are used to detect the 

defect regions passing through the trained autoencoder. We use 

the two most commonly used metrics in image segmentation: 

the Jaccard index and Dice coefficients [17], [18]. These 

metrics measure the overlap between hand-annotated color 

images and the model-annotated color images from the test 

grayscale images. The Jaccard index is also known as the 

intersection-over-union (IoU), which is the area of overlap 

between the predicted segment and the ground truth. The dice 

coefficient and IoU are positively correlated. The IoU and dice 

scores are defined using Equations shown in (1) and (2). 

Area of overlap 

TABLE I: Layer-wise parameter details of the convolutional 

autoencoder. 

 

Layer Output Shape Parameters # 

1 Conv2d [16, 64x64] 784 

2 Conv2d [32, 32x32] 8,224 

3 Conv2d [64, 16x16] 32,832 

4 ConvTranspose2d [32, 32x32] 32,800 

5 ConvTranspose2d [16, 64x64] 8,208 

6 ConvTranspose2d [3, 128x128] 771 

Total Trainable Parameters:  83,619 
 

IoU = 
 

Dice  = 

Area of union 
(1)

 

2 ∗ Area of overlap 
(2) 

Total pixels combined 

IV. RESULTS AND DISCUSSION 

This section discusses the results we obtained after con- 

ducting the proposed experiments on a Dell Precision 5820 

workstation running Ubuntu 20.04 with 64GB RAM and an 

NVIDIA GeForce RTX 3080 GPU with 10GB memory. 

A. Image generation 

The original image of 1612x1212 pixels is subsampled 

into 108 images, each of 128x128 dimensions, as shown in 

Figure 3. Each of the 108 subsamples is subject to eight 

different image transformations to produce an additional eight 

samples per subsample. These transformations increase the 

sample size to a total of 108x8 or 864 subsamples. The eight 

image transformations include rotations of an image by 0°, 

90°, 180°, and 270° and horizontally flipped versions of those 

four rotated images. 

B. Deep model architecture 

The CNN autoencoder starts by taking an unlabeled 

grayscale input image of size 128x128 pixels and is convolved 

with 16 filters of size 4x4 with a padding of 1 and stride 

of 2. The padding of 1 contributes to maintaining the size 

of the original image after convolution. The stride feature 

is responsible for downsampling the convolved image into a 

compressed representation with a higher receptive field. The 

model hyperparameters (filter size, padding, and stride) are 

consistent throughout the encoder and decoder architecture. 

The first encoder layer yields 16 feature maps of size 16x16 

stored in a 16x16x16 tensor. The second encoder layer is a 

32x8x8 tensor after convolution. The third encoder layer is the 

latent feature layer with a 64x4x4 tensor size. Starting from 

this latent layer, deconvolution operations are sequentially per- 

formed in the decoder part of the autoencoder. The goal of the 

decoder part is to reconstruct the target masked image from the 

latent feature. Accordingly, the first decoded layer is a tensor 

of size 32x8x8 which is the same size as the second encoded 

layer. As expected, the second decoded layer is the same 

size as the first encoded layer, and the output will be of size 

128x128 pixels except in color. To calculate the loss at each 

epoch, the mean squared error between the input grayscale 

and the annotated color mask is leveraged. The optimization 

method used for backpropagation and filter updates is adaptive 

momentum (ADAM) optimization. A learning rate of 0.001 

and a weight decay (L2 penalty) of 0.00001 are also used in the 

optimization process. Table I shows the number of trainable 

parameters at each layer of the proposed deep architecture. 



TABLE II: Intersection-Over-Union (IoU) and Dice scores for color image masks reconstructed by the trained deep convolutional 

in five-fold cross-validation. 

 

Scores Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

IoU (RGB) 0.97 0.94 0.97 0.99 0.94 0.96 (0.02) 

Dice (RGB) 0.98 0.97 0.99 0.99 0.97 0.98 (0.01) 

IoU (Defects in red) 0.54 0.46 0.58 0.87 0.43 0.58 (0.17) 

Dice (Defects in red) 0.70 0.63 0.73 0.93 0.61 0.72 (0.13) 

IoU (IDTs in green) 0.98 0.98 0.97 0.98 0.95 0.97 (0.01) 

Dice (IDTs in green) 0.99 0.99 0.98 0.99 0.97 0.98 (0.01) 

IoU (Substrate in blue) 0.95 0.96 0.99 0.99 0.95 0.97 (0.02) 

Dice (Substrate in blue) 0.98 0.98 0.99 0.99 0.98 0.98 (0.01) 

 

C. Deep model training and testing 

The 864 subsamples are randomly grouped into five data 

folds. In a standard five-fold cross-validation scheme, the 

deep autoencoder is trained with four-fold grayscale images 

to reconstruct their corresponding color images with defects. 

The trained model is then used to reconstruct color images 

with segmented defects from the test data folds of grayscale 

images. 

The results from the five-fold experiment in Table II mea- 

sure the overlapping regions between the ground truth color 

and the autoencoder-predicted color images. The overlaps 

between color images (including IDTs, substrate, and defect) 

are very high. These scores are obtained on the test image 

folds following 100 epochs of training. Because the defective 

region (in red color) accounts for a small and subtle portion of 

the image, the corresponding average dice score is relatively 

low 0.72 (0.13) with an IoU score of 0.58 (0.17). Furthermore, 

these scores measure pixel-level overlap and accuracy where a 

near-perfect score may be difficult to achieve given the sample 

size. The high defect detection scores on fold 4 image samples 

suggest that the proposed model has some variability in terms 

of segmentation accuracy. In other words, some defect samples 

are better segmented than others. 

D. Visualizing the predicted defects 

The results can be visually analyzed by comparing the 

ground truth labeled masks to the respective autoencoder- 

generated masks, as shown in Figure 4. Figure 4 (a) shows 

a representative example of a correctly segmented defect. 

Although the shape is not perfectly reconstructed, the location 

of the defect with an approximate shape is correctly identified. 

We also identify instances in Figure 4 (b) where the ground 

truth defect label disagrees with its autoencoder-generated 

counterpart. This disagreement may be due to human errors 

during the labeling of defect regions. Figure 4 (c) shows that 

defects can be too subtle to be detected by the autoencoder, 

resulting in a false negative scenario. 

It can be seen in Figure 4 (a) that the autoencoder is able 

to reproduce the three main regions of defects by comparing 

the O Mask and AE Mask RGB color images. In Figure 4(b), 

the autoencoder (AE Mask) generates a region of defect that 

does not appear in the ground truth (O Mask). Upon careful 

observation in the grayscale optical image, it can be noted that 

the autoencoder correctly reproduced a defect that the human 

labeling process overlooked. 

E. Discussion of the results 

The accuracy scores indicate a high fidelity in segmenting 

the two classes (IDT and substrate) features in the image. 

The defect areas are with subtler and finer features with 

more complexity than the IDT and substrate features. The 

false positive and false negative scenarios suggest that more 

representative image samples are required to improve the 

segmentation performance of the proposed deep model. It is 

important to note that obtaining such fabrication images at a 

large scale is expensive and time-consuming, which is one of 

the requirements for developing robust deep-learning models. 

The defect features were more difficult for the autoencoder 

to capture indicated by the accuracy scores. False positive and 

false negative predictions for regions of defects can also be 

observed. These two scenarios have to be further investigated 

because the false predictions often correct the misidentified 

regions of defects during labeling caused by human oversight 

(error). This could suggest that the model is observing details 

that a human may easily overlook. The second analysis of 

the false predictions is that the model is identifying some of 

the noise or minor/granular details in the image as defects 

where these features may not contribute to sensor performance. 

The model’s ability to potentially capture features that are 

not present in the ground truth label but should have been 

identified and labeled serves as a good second opinion in 

discovering defective regions in the images. 

V. CONCLUSIONS 

In this study, we proposed a custom application of CNN 

autoencoder for the segmentation of defect regions, IDTs, and 

substrate areas in microscopic images of SAW sensors. The 

segmentation results show a promising approach to automating 

the defect detection process, especially when human visual 

inspections can be error-prone. Our proposed deep model is 

successful in segmenting three regions in grayscale images 

by transforming the image regions into color codes, which 

aided image segmentation and defect visualization. The defect 



 

Fig. 4: The ground truth color image labeled with the defective region (O Mask) and the predicted color image (AE Mask). 

The ground truth segments of defect, IDTs, and substrate are shown using O prefix. The predicted segments are shown using 

the AE prefix. (a) An example of correct segmentation, (b) misidentified (false positive) segments, and (c) missed detection 

(false negative) where the defect was too subtle to detect. 

 

regions are segmented with less accuracy compared to other 

regions due to the subtly of the region. This technology 

can contribute to the automation of defect analysis in the 

microsensor manufacturing field to reduce the sole reliance 

on ”eye-balling” defects as well as provide a second opinion 

for identified defects. In the future, more image samples will 

be required to improve the robustness of the proposed deep 

model in similar image segmentation tasks. 
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