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Abstract—Surface acoustic wave (SAW) sensors with increas-
ingly unique and refined designed patterns are often developed
using the lithographic fabrication processes. Emerging applica-
tions of SAW sensors often require the use of novel materials,
which may present uncharted fabrication outcomes. The fidelity
of the SAW sensor performance is often correlated with the ability
to restrict the presence of defects in post-fabrication. Therefore, it
is critical to have effective means to detect the presence of defects
within the SAW sensor. However, due to the need for precision
identification and classification of surface features for increased
confidence in model accuracy, labor-intensive manual labeling is
often required. One approach to automating defect detection is
to leverage effective machine learning techniques to analyze and
quantify defects within the SAW sensor. In this paper, we propose
a machine learning approach using a deep convolutional neural
network to segment surface features semantically. Experimental
results demonstrate an average dice score of 0.72 (0.13) across
five cross-validation folds in segmenting the defective region for
a novel SAW sensor variant.

Index Terms—convolutional neural network, autoencoder, de-
fect detection, image segmentation, photo-lithography, surface
acoustic wave sensor

[. INTRODUCTION

The revolution of deep learning has enabled automated
and accurate classification and pattern analysis of images in
myriad research and applications. Fast and automatic detec-
tion of defects in manufacturing and fabrication is crucial
to ensure large-scale industrial productivity and quality [1].
The detection of manufacturing defects is primarily posed
as an image classification problem where the presence of
a defect is confirmed in a given sample or product unit.
Therefore, classifying defective images paves the path for
sorting or correcting defective units in production. However,
such a binary classification task does not identify the region
of the defect or quantify the extent of the defect to assess the
production quality and efficacy. In photo-lithography sensor
fabrication, the manufactured sensors may contain defects
at varying scales resulting in varying sensor throughput. A
mere presence of a fabrication defect may not always infer
defective sensors with unsatisfactory performance [2]. We
assume that the region or extent of defects is proportional
to the drop in the sensor performance. Therefore, segmenting
the region of defects in sensor fabrication is an important step
toward quantifying and localizing the defect, which cannot
be achieved via traditional image classification tasks. In this
paper, we propose a deep autoencoder-based image reconstruc-
tion framework to segment and localize defects in surface

acoustic wave (SAW) sensor fabrication. Unlike the defect
detection performed on other sensor fabrication, this variant
of SAW sensor is unique and challenging because we are
developing the metallic interdigital transducing (IDT) fingers
on a flexible polymer substrate instead of the conventional
rigid crystalline substrate. It is important for substrates to be
as flat as possible; hence, the flexibility of the substrate often
conflicts with the flatness during the fabrication of the sensor.
A lack of flatness is one of the leading causes of defects
during lithographic fabrication [3]. This paper shows one of
the first studies on localizing and segmenting defective regions
on SAW sensor fabrication using a deep learning method.

The remainder of the paper is organized as follows. Section
II shares a background reviewing the literature on automatic
defect detection in fabrication. Section III presents the sensor
fabrication steps, microscopic imaging of sensors, image pro-
cessing, and deep learning-based experiments and evaluation
steps. Section IV provides the key deep learning and segmen-
tation results with some discussions. The paper concludes in
Section V.

II. BACKGROUND REVIEW

This section highlights the literature on defects in pho-
tolithography and approaches to automated defect detection.

1) Defects in sensor fabrication:. With the burgeoning
demand for micro-electromechanical systems (MEMS) class
devices, the surface acoustic wave (SAW) sensor has shown
promise in meeting the requirements of a wide variety of
applications. The applications of SAW sensors range from
biosensors in the detection of harmful biological agents [4] to
resonant systems that are capable of quantum mode coupling
for qubit storage [5]. Many of these micro/nanoscale sensor
technologies are developed using advanced lithographic tech-
niques such as photolithography, electron-beam lithography,
and ion lithography. The post-lithographic fabrication pro-
cesses are often laden with subtle defects leading to degrada-
tion in sensor performance. According to Aubert et al., defects
located on the surface of SAW devices of size 1-2-micron
depth have been reported to produce errors in temperature
measurement [6]. Floer et al. reported that SAW sensors with
defective lithium niobate substrates could degrade the quality
of the sensor-acquired signals [2]. The post-fabrication defects
from lithography also affect integrated circuits (IC), resulting
in circuit shorting hot spots [7]. These hot spots are a direct
result of scratches and particles on the backside of wafers that



Fig. 1: Original surface acoustic wave sensor IDTs (left). Corresponding RGB mask with defective regions coded in red (right).

affect the photolithographic process by distorting the wafer’s
flatness during UV exposure [3].

2) Detection of sensor fabrication defects: The defect in-
spection process has been classically conducted by human
surveillance, which is subject to human error. This human-
level surveillance is not an efficient means for large-scale
manufacturing and production due to the subtlety of defects
and variability in human ratings. Specifically, as the market
size, demand, and intricacies of lithographically produced
technology continue to increase, the need for more effective
means of inspection will inevitably follow suit. Zhang et al.
report that manufacturing is becoming more challenging as
transistor size continues to shrink, leading to the need for more
precise and large-scale defect analysis [8]. It has also been
reported that the strain on the semiconductor manufacturing
sites due to a global chip shortage has led engineers to
investigate methods for improving the wafer yields at the
site. This improvement may be achieved by optimizing final
test processes via early and accurate defect detection during
manufacturing [9]. Therefore, the need for a more automated
approach to detecting sensor manufacturing defects is in
obvious high demand.

3) Automating fabrication defects detection: Advanced ma-
chine learning techniques can play an important role in
automating and objectively assessing the defects in post-
fabrication processes. The semiconductor industry has pro-
gressively adopted machine learning techniques to analyze
integrated circuits. Torres et al. have proposed a combination
of artificial neural networks (ANN) and support vector ma-
chines (SVM) to detect hot spots following high-performance
lithographic processes [10]. Ye et al. have leveraged machine
learning for hotspot detection in ICs and reported an improved
area under the curve (AUC) in defect classification considering
data imbalances [11].

One major challenge for traditional machine learning is that
it requires the “hand-crafting” of image features prior to train-
ing a classifier model. In contrast, deep learning techniques
are capable of learning optimal image features concurrently
with the training of neural network models. Therefore, deep
learning has automated the feature learning and classification

processes to replace conventional machine learning approaches
in image representation learning. Cheon et al. use a convolu-
tional neural network (CNN) architecture to replace “naked
eyeballing” and ”machine learning of handcrafted features”
for wafer surface defect classification. They achieve this by
identifying mislabeled images classified by the trained CNN to
extract effective feature vectors. A k-nearest neighbor (k-NN)
classifier algorithm is then used to group the defect classes
by measuring the total squared distance between each image
feature vector and its k-nearest neighbor in the same class.
If the squared distance between the image feature vector and
cluster exceeds a certain threshold, then it is labeled as an
“unknown class”. Otherwise, it receives the label given by the
unmodified CNN classifier [12].

Kyeong et al. use CNNs for classifying the presence of
multiple defect patterns in wafer bin maps (WBMs) using
defect-detecting dies that reveal patterns correlated to defects.
The increase in the size of WBMs has increased the probability
of mixed localized noisy defect patterns. CNNs are able
to perform classification robustly against the noisy mixed
defect data. [13]. Borisov et al. have demonstrated, through
experimental results, that a deep CNN produces increased
accuracy in detecting hotspots in ICs [14]. Cha et al. identify
that defect detection is one of the biggest challenges in the
semiconductor manufacturing industry [15]. They propose
a CNN autoencoder with skip connections in the network
architecture to produce high-fidelity images for training a
classifier. Their architecture consists of three encoder and three
decoder blocks that are trained to reproduce the input image at
the output with minimal loss. Within their work, the primary
purpose of the autoencoder was to generate image samples
for training a separate classifier model. After training on the
synthetic autoencoder data, their classification model is found
to produce 98% accuracy when tested on the real data set.

A. Contributions

In this paper, we propose a design and application of a
deep CNN autoencoder architecture to localize and segment
the region of defects in grayscale microscopic images of novel
polymer-based SAW sensors. The contributions of this paper
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Fig. 2: Proposed deep convolutional autoencoder architecture. Enc and dec represent encoder and decoder parts, respectively.
In encoder 2, for example, 32 feature maps, each with 8x8 dimensions, are convolved with 32 4x4 filters, stride of 2, and
feature map padding of 1 to produce 64 feature maps of size 4x4 in the latent layer. K = filter size (KxK), P = padding, S =

stride.

are as follows. First, our image segmentation and localization
objectives are different from CNN-based defect classification
performed in the literature. Second, the proposed variant of
the SAW sensor presents a set of challenges in polymer-
based photo-lithographically produced micro-sensors, which
are relatively novel, making the results of defects unpredictable
and challenging to identify. Third, in a novel methodological
design, our research leverages the autoencoder’s ability to
map a one-channel grayscale image input to a three-channel
RGB output to segment and localize the defective regions in
the SAW sensor electrodes. The color mapping is performed
to automate the process of segmenting and quantifying the
presence of defective pixels in our autoencoder-generated
images. This automated approach is a more efficient route
to post-fabrication defect analysis than conducting human
vision-based defect analysis of SAW microsensors. Fourth,
our proposed self-supervised autoencoder learning approach
alleviates the need for a large image sample size as required
in supervised classification tasks.

III. METHODS

This section discusses the experimental steps and proce-
dures of the proposed work.

A. Sensor fabrication and imaging

In sensor fabrication, we have used the photolithographic
process to develop novel flexible PVDF-based microsensors.
The process involves several sequential stages: metallization,
photoresist deposition, exposure, development, and etching.
After the final etching step in sensor fabrication, microscopic
imaging is used to capture IDTs. Figure 1 shows a gray scale
image with defects present in the IDT’s post-photolithography.
The goal of this paper is to reconstruct a color image (shown
in Figure 1) with the segmented defect region in red color
taking the grayscale microscopic image as the input.

B. Image processing

The objective of training a deep CNN autoencoder is to
reconstruct color images with segmented defect regions from
grayscale image inputs. To facilitate this training, ground truth
color images with segmented defect regions are generated by
manually color coding three observed regions: 1) substrate
(blue), 2) IDT (green), and 3) defect (red), as shown in Fig-
ure 1. The color coding of ground truth images is performed
using the paintbrush tool within the adobe Photoshop appli-
cation. Each original SAW optical image has a corresponding
RGB color-coded mask as depicted in Figure 3. To obtain a
decent amount of training image samples, the original image
is subsampled, and each subsample is subjected to different
image transformations to augment the image sample size.

C. Deep CNN autoencoder

The proposed deep autoencoder architecture with its filter
and parameter settings is shown in Figure 2. The latent
layer yields the representation from which the color images
are reconstructed via sequential deconvolution in multiple
layers. The CNN architecture is excellent at extracting features
from complex data, which may contain multiple foreground
features, such as multiple objects contained in image data.
The convolutional filters in CNNs can extract edges, corners,
and location-invariant geometric patterns in images for pattern
recognition tasks [16]. Autoencoders are designed to compress
and encode input data into a lower dimensional latent space
vector. From the latent space, the vector can be reconstructed
back (decoder) into the original or any target image represen-
tation (image labeled with defects).

D. Model training and evaluation

Following subsampling and augmentation, the grayscale
(input) and color (target) image pairs are split into five folds.
In a five-fold cross-validation scheme, four folds of image
sample pairs are used to train the deep CNN autoencoder to



Fig. 3: Illustration of square grids to generate 108 image subsamples of the original SAW microscopic image.

reconstruct the color-coded defect regions from input grayscale
images. The left-out test fold images are used to detect the
defect regions passing through the trained autoencoder. We use
the two most commonly used metrics in image segmentation:
the Jaccard index and Dice coefficients [17], [18]. These
metrics measure the overlap between hand-annotated color
images and the model-annotated color images from the test
grayscale images. The Jaccard index is also known as the
intersection-over-union (IoU), which is the area of overlap
between the predicted segment and the ground truth. The dice
coefficient and IoU are positively correlated. The IoU and dice
scores are defined using Equations shown in (1) and (2).
Area of overlap
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IV. RESULTS AND DISCUSSION

This section discusses the results we obtained after con-
ducting the proposed experiments on a Dell Precision 5820
workstation running Ubuntu 20.04 with 64GB RAM and an
NVIDIA GeForce RTX 3080 GPU with 10GB memory.

A. Image generation

The original image of 1612x1212 pixels is subsampled
into 108 images, each of 128x128 dimensions, as shown in
Figure 3. Each of the 108 subsamples is subject to eight
different image transformations to produce an additional eight
samples per subsample. These transformations increase the
sample size to a total of 108x8 or 864 subsamples. The eight
image transformations include rotations of an image by 0°,
90°, 180°, and 270° and horizontally flipped versions of those
four rotated images.

B. Deep model architecture

The CNN autoencoder starts by taking an unlabeled
grayscale input image of size 128x128 pixels and is convolved
with 16 filters of size 4x4 with a padding of 1 and stride
of 2. The padding of 1 contributes to maintaining the size
of the original image after convolution. The stride feature

TABLE I: Layer-wise parameter details of the convolutional
autoencoder.

Layer Output Shape  Parameters #
1 Conv2d [16, 64x64] 784
2 Conv2d [32, 32x32] 8,224
3 Conv2d [64, 16x16] 32,832
4 ConvTranspose2d [32, 32x32] 32,800
5 ConvTranspose2d [16, 64x64] 8,208
6 ConvTranspose2d [3, 128x128] 771
Total Trainable Parameters: 83,619

is responsible for downsampling the convolved image into a
compressed representation with a higher receptive field. The
model hyperparameters (filter size, padding, and stride) are
consistent throughout the encoder and decoder architecture.
The first encoder layer yields 16 feature maps of size 16x16
stored in a 16x16x16 tensor. The second encoder layer is a
32x8x8 tensor after convolution. The third encoder layer is the
latent feature layer with a 64x4x4 tensor size. Starting from
this latent layer, deconvolution operations are sequentially per-
formed in the decoder part of the autoencoder. The goal of the
decoder part is to reconstruct the target masked image from the
latent feature. Accordingly, the first decoded layer is a tensor
of size 32x8x8 which is the same size as the second encoded
layer. As expected, the second decoded layer is the same
size as the first encoded layer, and the output will be of size
128x128 pixels except in color. To calculate the loss at each
epoch, the mean squared error between the input grayscale
and the annotated color mask is leveraged. The optimization
method used for backpropagation and filter updates is adaptive
momentum (ADAM) optimization. A learning rate of 0.001
and a weight decay (L2 penalty) of 0.00001 are also used in the
optimization process. Table I shows the number of trainable
parameters at each layer of the proposed deep architecture.



TABLE II: Intersection-Over-Union (IoU) and Dice scores for color image masks reconstructed by the trained deep convolutional

in five-fold cross-validation.

Scores Fold1 Fold2 Fold3 Fold4 Fold5 Average

IoU (RGB) 0.97 0.94 0.97 0.99 094  0.96 (0.02)
Dice (RGB) 0.98 0.97 0.99 0.99 097  0.98 (0.01)
IoU (Defects in red) 0.54 0.46 0.58 0.87 043  0.58 (0.17)
Dice (Defects in red) 0.70 0.63 0.73 0.93 0.61 0.72 (0.13)
IoU (IDTs in green) 0.98 0.98 0.97 0.98 095  0.97 (0.01)
Dice (IDTs in green) 0.99 0.99 0.98 0.99 097  0.98 (0.01)
IoU (Substrate in blue) 0.95 0.96 0.99 0.99 095  0.97 (0.02)
Dice (Substrate in blue) 0.98 0.98 0.99 0.99 098  0.98 (0.01)

C. Deep model training and testing

The 864 subsamples are randomly grouped into five data
folds. In a standard five-fold cross-validation scheme, the
deep autoencoder is trained with four-fold grayscale images
to reconstruct their corresponding color images with defects.
The trained model is then used to reconstruct color images
with segmented defects from the test data folds of grayscale
images.

The results from the five-fold experiment in Table II mea-
sure the overlapping regions between the ground truth color
and the autoencoder-predicted color images. The overlaps
between color images (including IDTs, substrate, and defect)
are very high. These scores are obtained on the test image
folds following 100 epochs of training. Because the defective
region (in red color) accounts for a small and subtle portion of
the image, the corresponding average dice score is relatively
low 0.72 (0.13) with an IoU score of 0.58 (0.17). Furthermore,
these scores measure pixel-level overlap and accuracy where a
near-perfect score may be difficult to achieve given the sample
size. The high defect detection scores on fold 4 image samples
suggest that the proposed model has some variability in terms
of segmentation accuracy. In other words, some defect samples
are better segmented than others.

D. Visualizing the predicted defects

The results can be visually analyzed by comparing the
ground truth labeled masks to the respective autoencoder-
generated masks, as shown in Figure 4. Figure 4 (a) shows
a representative example of a correctly segmented defect.
Although the shape is not perfectly reconstructed, the location
of the defect with an approximate shape is correctly identified.
We also identify instances in Figure 4 (b) where the ground
truth defect label disagrees with its autoencoder-generated
counterpart. This disagreement may be due to human errors
during the labeling of defect regions. Figure 4 (c) shows that
defects can be too subtle to be detected by the autoencoder,
resulting in a false negative scenario.

It can be seen in Figure 4 (a) that the autoencoder is able
to reproduce the three main regions of defects by comparing
the O_Mask and AE_Mask RGB color images. In Figure 4(b),
the autoencoder (AE_Mask) generates a region of defect that

does not appear in the ground truth (O_Mask). Upon careful
observation in the grayscale optical image, it can be noted that
the autoencoder correctly reproduced a defect that the human
labeling process overlooked.

E. Discussion of the results

The accuracy scores indicate a high fidelity in segmenting
the two classes (IDT and substrate) features in the image.
The defect areas are with subtler and finer features with
more complexity than the IDT and substrate features. The
false positive and false negative scenarios suggest that more
representative image samples are required to improve the
segmentation performance of the proposed deep model. It is
important to note that obtaining such fabrication images at a
large scale is expensive and time-consuming, which is one of
the requirements for developing robust deep-learning models.
The defect features were more difficult for the autoencoder
to capture indicated by the accuracy scores. False positive and
false negative predictions for regions of defects can also be
observed. These two scenarios have to be further investigated
because the false predictions often correct the misidentified
regions of defects during labeling caused by human oversight
(error). This could suggest that the model is observing details
that a human may easily overlook. The second analysis of
the false predictions is that the model is identifying some of
the noise or minor/granular details in the image as defects
where these features may not contribute to sensor performance.
The model’s ability to potentially capture features that are
not present in the ground truth label but should have been
identified and labeled serves as a good second opinion in
discovering defective regions in the images.

V. CONCLUSIONS

In this study, we proposed a custom application of CNN
autoencoder for the segmentation of defect regions, IDTs, and
substrate areas in microscopic images of SAW sensors. The
segmentation results show a promising approach to automating
the defect detection process, especially when human visual
inspections can be error-prone. Our proposed deep model is
successful in segmenting three regions in grayscale images
by transforming the image regions into color codes, which
aided image segmentation and defect visualization. The defect



Fig. 4: The ground truth color image labeled with the defective region (O_Mask) and the predicted color image (AE_Mask).
The ground truth segments of defect, IDTs, and substrate are shown using O prefix. The predicted segments are shown using
the AE prefix. (a) An example of correct segmentation, (b) misidentified (false positive) segments, and (c) missed detection

(false negative) where the defect was too subtle to detect.

regions are segmented with less accuracy compared to other
regions due to the subtly of the region. This technology
can contribute to the automation of defect analysis in the
microsensor manufacturing field to reduce the sole reliance
on “eye-balling” defects as well as provide a second opinion
for identified defects. In the future, more image samples will
be required to improve the robustness of the proposed deep
model in similar image segmentation tasks.
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