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Abstract
We show that, for any given dimension d ≥ 2, the range of distinct possible designs for periodic 
frameworks with auxetic capabilities is infinite. We rely on a purely geometric approach to auxetic 
trajectories developed within our general theory of deformations of periodic frameworks.
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1 Introduction
New digital manufacturing techniques have vastly expanded the possibilities of generating 
complex three-dimensional structures, across length scales, and have opened up new 
opportunities for kinematic and geometric design to address functional desiderata. This 
paper is concerned with periodic structures and metamaterials with auxetic capabilities, a 
challenging and fast evolving topic at the intersection of mathematics, mechanical design 
and materials science [6, 8, 14, 18]. Our contribution is to derive new principles for auxetic 
design from the geometric theory of auxetic deformations recently introduced in [6].

Auxetic behavior
When stretched, most materials will shrink laterally. Auxetic behavior is the rather counter-
intuitive property exhibited by some materials that widen laterally upon stretching. In 
elasticity theory, such materials are said to have negative Poisson’s ratios [10]. The promise 
of various applications and increased interest in obtaining synthetic structures or 
metamaterials with this type of response to tensile loading has led to a sequence of studies, 
with emphasis on cellular and periodic structures [1, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20]. 
However, the repertory of auxetic designs proposed in the literature remained confined to a 
few dozen examples in dimension two and much less in dimension three [8]. The authors of 
[14] remark on p.4792 that “it has been a challenge to design 3D auxetic micro-/nano-
structured materials”.
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New foundations for periodic auxetics
In [6], we introduced a purely geometric approach to auxetic deformations for crystalline 
materials and man-made mechanical structures modeled as periodic bar-and-joint 
frameworks. This approach, reviewed in Section 2 below, presents a number of distinct 
advantages over the conventional route through Poisson’s ratios. First of all, as a rigorous 
mathematical theory, the model can be applied to a wide range of structures, across length 
scales, provided that a periodic bar-and-joint framework organization is the dominant 
feature. There is no need for experimental or simulated determinations of Poisson’s ratios, 
since auxetic capabilities can be recognized by strictly geometric criteria. In fact, our 
mathematical theory works in arbitrary dimension. Moreover, the geometric approach 
clarifies the analysis of flexible structures with several degrees of freedom. In this case, 
certain deformation trajectories may be auxetic, while many other trajectories would not be 
auxetic. Thus, the notion of auxetic behavior must refer only to a certain type of one-
parameter deformations of a periodic structure.

Auxetic design
The ascendancy of the geometric approach is probably most conspicuous in matters of 
design. We have shown in [3, 5] that the stronger notion of expansive behavior, when all 
distances between joints increase or stay the same, can be completely elucidated in 
dimension two in terms of a class of periodic structures called periodic pseudo-
triangulations (and kinematic equivalence classes of refinements to pseudo-triangulations). 
An example is presented in Figure 1.

We have also shown that expansive implies auxetic, hence this leads to an infinite gallery of 
planar auxetic periodic mechanisms, by virtue of the fact that all periodic pseudo-
triangulations have exactly one degree of freedom to deform. While periodic pseudo-
triangulations are easy to generate (see [6] section 5(i) for a description and illustration of 
the procedure), proving their stated properties is not so elementary. Interested readers can 
find the full treatment in [5].

The expansive implies auxetic principle is valid in arbitrary dimension, but the structure of 
expansive periodic frameworks in three or higher dimensions is only partially understood 
[4]. In [6], we have relied on the suggestive value of necessary conditions for expansiveness 
for a couple of new designs of three dimensional periodic frameworks with auxetic 
capabilities.

Main contribution
In the present work, we formulate and prove, in arbitrary dimension d ≥ 2, a general 
principle for converting a finite linkage with adequate prerequisites on d pairs of 
unconnected joints into a periodic framework with auxetic capabilities. From the standpoint 
of geometric auxetics [6] these prerequisites are natural, elementary and easily satisfied. 
This implies endless possibilities for auxetic design in arbitrary dimension.
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Figure 1. 
A planar periodic pseudo-triangulation.
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Figure 2. 
A planar four-bar mechanism with two marked pairs of vertices and the associated “double 
arrowhead” periodic framework.
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Figure 3. 
Deforming the quadrilateral in Figure 2.
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Figure 4. 
Paneled simplex
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Figure 5. 
A finite linkage with two degrees of freedom with auxetic capabilities for the associated 
periodic framework. The deployed configuration on the right can be reached via an auxetic 
path.
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Figure 6. 
The d = 3 version of the planar scenario in Figure 5. The finite linkage is a paneled 
tetrahedron, as in Figure 4. Only one ‘in depth’ translate is shown.
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Figure 7. 
A finite linkage in R3, with 5 vertices, 6 edges and 3 pairs of vertices marked by arrows. A 
fragment of the associated periodic framework is shown nearby. It has 2 orbits of vertices 
and 6 orbits of edges modulo periodicity.
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Figure 8. 
The planar linkage in Figure 5 has two degrees of freedom but can be converted to a single 
degree of freedom mechanism which retains the desired infinitesimal deformation on the 
vertices v0, v1, v2.
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Figure 9. 
Two new edge orbits in the associated periodic framework.
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Figure 10. 
Auxetic mechanism. The fragment shows three floors. Alternative view as “breathing 
stacked roofs”. Inhaling is auxetic. The one degree of freedom deformation can be 
parametrized by the dihedral angle of a roof. The floors vary accordingly. The framework 
edges are all contained in roof planes. Floors contain no edges but must respect periodicity 
constraints.
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Figure 11. 
Alternative way for introducing new edge orbits (in the same roof planes).
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Figure 12. 
The finite linkage L3 with a diagram for the deformation effect in the horizontal plane.
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