
Convergence guarantee for the sparse monotone single
index model

Ran Dai∗, Hyebin Song†, Rina Foygel Barber‡, Garvesh Raskutti§

May 18, 2021

Abstract

We consider a high-dimensional monotone single index model (hdSIM), which is
a semiparametric extension of a high-dimensional generalize linear model (hdGLM),
where the link function is unknown, but constrained with monotone and non-decreasing
shape. We develop a scalable projection-based iterative approach, the “Sparse Or-
thogonal Descent Single-Index Model” (SOD-SIM), which alternates between sparse-
thresholded orthogonalized “gradient-like” steps and isotonic regression steps to recover
the coe�cient vector. Our main contribution is that we provide finite sample estimation
bounds for both the coe�cient vector and the link function in high-dimensional set-
tings under very mild assumptions on the design matrix X, the error term ✏, and their
dependence. The convergence rate for the link function matched the low-dimensional
isotonic regression minimax rate up to some poly-log terms (n�1/3). The convergence
rate for the coe�cients is also n�1/3 up to some poly-log terms. This method can be ap-
plied to many real data problems, including GLMs with misspecified link, classification
with mislabeled data, and classification with positive-unlabeled (PU) data. We study
the performance of this method via both numerical studies and also an application on
a rocker protein sequence data.

1 Introduction

Single index models (SIMs) provide a semi-parametric extension of linear models, where
a scalar response variable Y 2 R is related to a predictor vector X 2 Rp via

E[Y |X] = g?(X
>
u?) (1)

for some unknown parameter vector u? and unknown link function g?.

∗Department of Biostatistics, University of Nebraska Medical Center
†Department of Statistics, The Pennsylvania State University
‡Department of Statistics, University of Chicago
§Department of Statistics, University of Wisconsin-Madison

1

ar
X

iv
:2

10
5.

07
58

7v
1

 [m
at

h.
ST

]
17

 M
ay

 2
02

1

In this paper, we consider a shape-constrained single index model (1) where g?

belongs to a class of monotonic (but not necessarily smooth) functions and the param-
eter u? is high-dimensional and sparse (with sparsity level s?). We develop a scalable
algorithm and provide theoretical guarantees for high-dimensional single index mod-
els. Prior theoretical guarantees for the high-dimensional single index model rely on
the distribution of X being known or symmetric (see e.g. [28, 38]). In a number of
settings, such assumptions on X are not satisfied (in section 1.1.3 we show X follows
a non-symmetric mixture distribution) and prior theoretical guarantees do not apply.
In this paper, we provide a scalable algorithm with theoretical guarantees for the high-
dimensional single index model under more general design assumptions that include
non-symmetric distributions.

We consider a general case where mild assumptions are made on the design matrix
X, the error ✏ := Y � E [Y | X], and their interaction. In particular, X can be deter-
ministic or random. If X is random, the distribution of X can be asymmetric. The
distribution of ✏ may depend on X. In addition we assume that the unknown vector u?
is sparse and high-dimensional. As g? is not assumed to be known a priori, the model
(1) provides a more flexible model specification than a parametric model, while still
circumventing the curse-of-dimensionality by avoiding a p-dimensional non-parametric
function estimation. Two estimation problems exist in single index model framework:
estimation of the unknown vector u? and of the 1-dimensional regression function g?.
Both are addressed in this paper.

To begin, we provide three motivating examples for the hdSIMs in (1). We see that
each example reduces to the estimation problem of u? or g?, or both under the model
(1).

1.1 Examples

1.1.1 Example 1: Mis-specified generalized linear models (GLMs)

Generalized linear models (GLMs) are parametric extensions of linear models, which
includes many popular models such as logistic and Poisson regression. GLMs relate
the conditional expectation of Y given X via a link function , such that E [Y | X] =

�1(X>

u?), where a link function is assumed to be known. The parameter of interest
u? is usually estimated via an iterative procedure using the knowledge of ; therefore,
when is misspecified, an output is inevitably biased for u?, even in an asymptotic
sense. Using the single index model framework, we produce an estimate of u? without
particular link function specification.

1.1.2 Example 2: Classification with corrupted labels

Another interesting example involves classification with corrupted labels. In particular,
instead of observing a sample (X, Ỹ) 2 Rp

⇥ {0, 1} where Ỹ may follow, e.g., a logistic
model, we observe the pair (X,Y) 2 Rp

⇥ {0, 1} where Y is a systematically corrupted
version of Ỹ . In particular Ỹ is related to X via E[Ỹ |X] = g̃(X>

u?) for some unknown
parameter vector u? 2 Rp and a monotonic function g̃, which is potentially unknown.

We assume the corrupted sample Y is independent of X given Ỹ , which corresponds
to a missing-completely-at-random assumption. The corruption structure is completely
specified by corruption probabilities ⇢1 = P(Y = 0|Ỹ = 1) (the probability that a

2

positive label is corrupted) and ⇢0 = P(Y = 1|Ỹ = 0) (the probability that a negative
label is corrupted), assuming ⇢0 + ⇢1 < 1 for identifiability of the model. Under these
assumptions, E[Y |X] = P(Y = 1|X) is given by

P(Y = 1|X) = g̃(X>
u?)P(Y = 1|Ỹ = 1) + (1� g̃(X>

u?))P(Y = 1|Ỹ = 0)

= g̃(X>
u?)(1� ⇢1) + (1� g̃(X>

u?))⇢0

= g?(X
>
u?) (2)

where we let g?(s) := g̃(s)(1 � ⇢1) + (1 � g̃(s))⇢0. (Note g? is monotonic since g̃ is
monotonic and ⇢0 + ⇢1 < 1 by assumption.)

In many practical situations the corruption probabilities ⇢0 and ⇢1 may be unknown.
In such cases, even with the assumption of a specific g̃ (such as a sigmoid function
g̃(u) = 1/(1 + exp(�u)) in the case of a logistic model for Ỹ), with the unknown
parameters ⇢0 and ⇢1, the new link function g? is still unknown, which motivates
moving beyond the parametric model setting.

1.1.3 Example 3: Classification with positive-unlabeled (PU) data

and unknown prevalence ⇡

In various applications such as ecology, text-mining, and biochemistry, negative samples
are often hard or even impossible to be obtained. In positive-unlabeled (PU) learning,
we use positive and unlabeled samples, where positive samples are taken from the
sub-population where responses are known to be positive, and unlabeled samples are
random samples from the population.

To make this concrete, we begin with a distribution D on data (X̃, Ỹ) 2 Rp
⇥

{0, 1}. Here X̃ is a feature vector while Ỹ 2 {0, 1} is a true label, “positive” (1)
or “negative” (0). In some applications, it is not possible to observe (negatively)
labeled data; instead, we observe unlabeled data (i.e., a feature vector X, drawn from
the marginal distribution of X̃ under the joint distribution D), and a subsample of
positively labeled data (i.e., a feature vector X drawn from the conditional distribution
of X̃ | Ỹ = 1, derived from the joint distribution D). The new “label” Y 2 {0, 1} then
specifies whether X was drawn as an unlabeled sample (Y = 0) or as a positive-only
draw (Y = 1). Writing � as the ratio of positive-only samples to unlabeled samples,
the conditional distribution Y | X can be calculated as

P(Y = 1 | X = x) =
�⇡

�1

1
P(Ỹ=1|X̃=x)

+ �⇡�1
,

where ⇡ = P(Ỹ = 1) is the proportion of positive labels under the original distribution
D on (X,Y). Therefore, we can see that if the distribution of Ỹ | X̃, in the underlying
population, satisfies the monotone single-index model, then the same is true for the
new PU data—specifically, if P(Ỹ = 1 | X̃ = x) = g̃(x>u?) for some monotone function
g̃ and some vector u?, then

P(Y = 1 | X = x) = g?(x
>
u?)

for

g?(v) =
�⇡

�1

1
g̃(v) + �⇡�1

,

3

which is also a monotone function, inheriting this property from g̃.
In [33], this problem is addressed with a parametric approach, by assuming that g̃

is known (commonly the sigmoid function, i.e., assuming a logistic model for Ỹ | X̃),
and assuming that the proportion ⇡ = P(Ỹ = 1) of positive labels in the underlying
population is known as well. In settings where ⇡ is unknown, however, this approach
can no longer be applied, even if g̃ is known; reliable estimation of such proportion is
very challenging and heavily relies on model specification [16] and can lead to unreliable
inference. In contrast, assuming only that g? is a monotone function allows for both
unknown ⇡ and unknown (monotone) g̃.

Another interesting aspect of this PU problem is that the distribution of X is, in
general, not symmetric. Even in a setting where the distribution of features in the pop-
ulation (i.e., the marginal distribution of X̃) can plausibly be assumed to be symmetric,
this will no longer be the case for X—this is because the marginal distribution of X
is a mixture between the marginal distribution of X̃, and the conditional distribution
of X̃ | Ỹ = 1. Therefore, this setting cannot be addressed with existing methods that
rely on a symmetric design assumption.

1.2 Prior work

The single index model has been an active area in statistics for a number of decades,
since its introduction in econometrics and statistics [19, 17, 23]. There is extensive
literature about estimation of the index vector u?, which can be broadly classified
into two categories: methods which directly estimate the index vector while avoiding
estimation of a “nuisance” infinite-dimensional function, and methods which involve
estimation of both the infinite-dimensional function and the index vector.

Methods of the first type usually require strong design assumption such as Gaussian
or an elliptically symmetric distribution. Duan and Li [13] proposed an estimator
of u? using sliced inverse regression in the context of su�cient dimension reduction.
p
n consistency and asymptotically normality of the estimator are established in the

low-dimensional regime, under the elliptically symmetrical design assumption. This
result is extended in Lin et al. [25] in high-dimensional regime under similar design
assumptions. Plan et al. [28] studied sparse recovery of the index vector u? when X is
Gaussian, and established a non-asymptotic O((s log(2p/s)/n)1/2) mean-squared error
bound, where s is a sparsity level, i.e. s := ku?k0. Ai et al. [1] studied the error bound
of the same estimator when the design is not Gaussian and showed that the estimator
is biased and the bias depends on the size of ku?k1. The proposed estimator in Plan
et al. [28] is generalized in several directions; Yang et al. [37] propose an estimator
based on the score function of the covariate, which relies on prior knowledge of covariate
distribution. Chen and Banerjee [8] proposed estimators based on U-statistics which
also include Plan et al. [28] as a special case with standard Gaussian design assumption.

Methods of the second type usually do not require strong design assumption, and
our method also falls into this category. One popular approach is via M-estimation or
solving estimation equations. Under smoothness assumptions of g?, methods for a link
function estimation were proposed via Kernel estimation [19, 15, 23, 12, 10], local poly-
nomials [6, 9], or splines [39, 24]. An estimator for the index vector is then obtained
by minimizing certain criterion function such as squared loss [19, 15, 39] or solving an
estimating equation [9, 10].

p
n consistency and asymptotic normality of those pro-

posed estimators were established for those estimators in the low-dimensional regime.

4

Another approach is the average derivative method [29, 18], which takes advantage
of the fact d

dxE [Y | X = x] = u?g
0(x>u?). An estimator is then obtained through a

non-parametric estimation of d
dxE [Y | X = x], also under smoothness assumption of

g?. There are also studies for single index model in high-dimensional regime, using
PAC-Bayesian approach [2] or incorporating penalties [35, 30].

There have been an increasing number of studies where the link function is restricted
to have a particular shape, such as a monotone shape, but is not necessarily a smooth
function. Kalai and Sastry [22] and Kakade et al. [21] investigated single index problem
in low-dimensional regime under monotonic and Lipschitz continuous link assumption,
and proposed iterative perceptron-type algorithms with prediction error guarantees.
In particular, an isotonic regression is used for the estimation of g? then update u?

based on estimated g?. Ganti et al. [14] extended [22, 21] to the high-dimensional
setting via incorporating a projection step onto a sparse subset of the parameter space.
They empirically demonstrated good predictive performance of their algorithms, but
no theoretical guarantee were provided. Balabdaoui et al. [3] study the least square
estimators under monotonicity constraint and establish n

�1/3 consistency of the least-
square estimator. Also in Balabdaoui et al. [4], assuming a smooth link function g?, a
p
n consistent estimator for the index vector u?, based on solving a score function, is

proposed.
Our work focuses on estimation of the index vector in high-dimensional regime

where an unknown function is assumed to be Lipschitz-continuous and monotonic. We
provide an e�cient algorithm via iterative hard-thresholding and a non-asymptotic `2
and mean function error bound. Unlike Ganti et al. [14] and Kakade et al. [21], our
algorithm does not require to input a Lipschitz constant of the unknown function.

1.3 Our contributions

Our major contributions can be summarized as follows:

• Develop a scalable projection-based iterative approach, the “Sparse Orthogonal
Descent Single-Index Model” (SOD-SIM) algorithm, which alternates between
sparse-thresholded orthogonalized “gradient-like” steps and isotonic regression
steps to recover the coe�cient vector.

• Provide finite sample convergence guarantees for the SOD-SIM algorithm, both
in estimating the parameter vector u? and the mean function g?(X>

u?) that the

error scales as O
� s1/2? lognp

n1/3

�
, where s? is the sparsity level of u?. Note that the

minimax rate for low-dimensional isotonic regression is n�1/3 and our algorithm
achieves this rate up to log factors. This rate also matches the n

�1/3 rate shown
for least square estimator in [3]. However, the algorithm to obtain the least square
estimator is computationally intensive even in low dimensional cases. Whereas in
our work, we simultaneously showed the statistical and algorithmic convergence
of a computationally e�cient algorithm, which can also handle high dimensional
case. In estimating u?, with X being elliptically symmetrically distributed, the
link-free slicing regression estimates by Duan and Li [13] has been shown to be
p
n consistent with asymptotic normal distribution. When g? is bounded and

continuously di↵erentiable, the score estimates proposed by Balabdaoui et al.
[4] has been shown to be

p
n consistent with asymptotic normal distribution. In

5

comparison, our convergence result is not asymptotic and has milder assumptions
on X and g?; our algorithm is also much more computationally e�cient than the
score estimator.

• Finally we provide empirical study results based on simulated and real data, which
support our theoretical findings and also shows that our algorithm performs well
compared with existing approaches.

2 Main results

Let X1, . . . , Xn 2 Rp be the feature vectors and Y1, . . . , Yn 2 R the response values,1

which we model as
Yi = g?(X

>
i u?) + Zi,

where g? is monotone non-decreasing; u? is a s?-sparse unit vector; and Zi 2 R denotes
the noise term.

We write X 2 Rn⇥p to denote the matrix with rows Xi, i 2 {1, · · · , n}, and Y 2 Rn

and Z 2 Rn to denote the vectors with entries Yi and Zi, respectively. For any function
g : R ! R and any v 2 Rp, we write g(Xv) to mean that g is applied elementwise to
the vector Xv, i.e. g(Xv) =

�
g(X>

1 v), . . . , g(X>
n v)

�
.

In the remaining of this section, we first present our SOD-SIM algorithm. Then we
present the finite sample convergence results for the estimation of u? and g?.

2.1 Algorithm

Before defining our algorithm, we first define notations for the hard-thresholding op-
erator s(·) and the isotonic regression operator iso(·). First let s : Rp

! Rp be the
“hard-thresholding operator” at sparsity level s, i.e.,

 s(v)i =

(
vi i 2 S,

0 i 62 S,

where S ✓ {1, · · · , p} indexes the s largest-magnitude entries of v (ties may be broken
with any mechanism). Next, for any vectors u 2 Rp and v 2 Rn, define

isoXu(v) = argmin
w2Rn

�
kv � wk

2
2 : wi  wj whenever (Xu)i  (Xu)j

,

i.e. the isotonic regression of v onto Xu. This convex problem can be solved e�ciently
using pool-adjacent-violators algorithm (PAVA) [11].

With these definitions in place, we are ready to define our algorithm for solving the
sparse single index model.2 Given a target sparsity level s � 1 and a step size ⌘ > 0, the
algorithm alternates between taking an orthogonalized gradient-like step (with step size
⌘), and hard-thresholding to enforce s-sparsity. The steps of the algorithm are shown
in Algorithm 1.

1We denote Yi, i = 1, · · · , n as continuous variables for simplicity. In practice, they can be in other data
types (continuous/categorical/mixed).

2Implicitly, the initialization step in our algorithm assumes that X>(Y � Ȳ 1n) 6= 0. In our proofs, we
will verify that this holds with high probability.

6

Algorithm 1 Sparse Orthogonal Descent Single-Index Model (SOD-SIM)
Initialize:

u0 =
 s

�
X

>(Y � Ȳ 1n)
�

k s

�
X>(Y � Ȳ 1n)

�
k2

, (3)

where Ȳ = 1
n

P
i Yi and 1n is the vector of 1’s.

for t = 1, 2, . . . do

• Compute isoXut�1(Y), the isotonic regression of Y onto Xut�1, using PAVA.
• Take an orthogonal gradient-like step,

ũt = ut�1 + ⌘ · P?
ut�1

�
n�1

X
>�

Y � isoXut�1(Y)
��

.

• Enforce sparsity and unit norm,

ut =
 s(ũt)

k s(ũt)k2
.

until some convergence criterion is reached.

For our theoretical guarantee to hold, we will see that the target sparsity level
s needs to be su�ciently large relative to the true sparsity s? of u?. Under mild
assumptions, our theory will guarantee that the iterations of this algorithm converge
to u? up to an error level that is O(s1/2 log(np)/n1/3).

The iterative framework of this algorithm is similar to the CSI method of Ganti
et al. [14]. A key di↵erence is that, in the g? estimation step, the CSI method en-
forces a Lipschitz constraint in addition to the monotonicity constraint, which requires
choosing the Lipschitz constant in advance; whereas our method only uses isotonic
regression to enforce monotonicity. In addition, no theoretical guarantee is given for
CSI. Our gradient update step also has some similarities to the least squares method of
Balabdaoui et al. [3]; however, their algorithm works explicitly to minimize an objec-
tive function kY � isoXu(Y)k22, while our SOD-SIM algorithm recovers u? through an
iterative procedure. The descent direction is not the gradient of least square objective
exactly, but a modified version for computational simplicity. The orthogonal projection
step enforce a steady “gradient-like” decending rate. Empirically in many cases the
algorithm performance is similar without the orthogonal projection step; but in some
cases when the initialization hu0, u?i is close to 0, the orthogonal projected algorithm
has better performance. The orthogonal projection step is also important in solving
the technical issue from the normalization step in the proof.

2.2 Convergence guarantees for fixed design X

We first provide upper bounds of convergence rates for the estimation of u? and g?

when X is fixed. We begin with our assumptions.

7

2.2.1 Assumptions

We assume that

Y = g?(Xu?) + Z, where X 2 Rn⇥p
,Y 2 Rn

,Z 2 Rn
, (4)

and we place the following assumptions on the underlying function g?, parameters u?,
design matrix X and noise Z.

Assumptions on the signal We assume g? is a bounded, Lipschitz, and monotone
non-decreasing function, i.e. for t1 > t0,

0  g?(t1)� g?(t0)  L(t1 � t0), and g?(·) : R ! [�B,B], (5)

while the true parameter vector u? is a sparse unit vector,

ku?k2 = 1 and |Support(u?)|  s?. (6)

For the design matrix X, we assume upper-bounded sparse eigenvalues,

1

n
kXuk

2
2  �kuk

2
2 for all (2s+ s?)-sparse u 2 Rp. (7)

For the corresponding lower bound, we require an identifiability condition, which is
slightly stronger than the usual restricted eigenvalue type condition. This is because
we are working with a substantially larger class of models than the usual parametric
regression setting. In particular, there exists ✏n > 0 such that,

for any s-sparse unit vector u with ku� u?k2 � ✏n

and any monotone non-decreasing g,
1

L2n
kg(Xu)� g?(Xu?)k

2
2 � ↵ku� u?k

2
2. (8)

This condition e↵ectively ensures that we cannot reproduce the true regression function
g?(Xu?) with some other sparse vector u 6= u? without any loss in accuracy, unless
ku� u?k2 is very small. In particular, comparing assumptions (5), (7), and (8), we can
see that we must have ↵  �. To help interpret the parameters in this assumption,
we should think of ↵ and � as constants (expressing properties of the function g?

that are constant regardless of sample size), while ✏n is vanishing as n ! 1 (i.e., the
identifiability condition will hold for vectors u increasingly close to u?, as sample size
n increases). Later in Section 2.3, we will show that (7) and (8) are satisfied with high
probability when X is a mixture of Gaussian distributions.

Assumptions on the noise For Z, we assume for all 1  i  j  n, Zi’s are
independent, with

E [Zi] = 0 and E
⇥
e
tZi
⇤
 e

t2�2/2 for all t 2 R,

and �2max � Var (Zi) = �
2
i � �

2
min > 0 and |�i � �j |  L� ·

j � i

n
. (9)

8

2.2.2 Convergence guarantee for the estimation of u?

Theorem 1. Assume the conditions (4), (5), (6), (7), and (8) hold for the signal, and

condition (9) holds for the noise. Assume we run the algorithm with step size ⌘ > 0
and working sparsity level s � 1 satisfying

⌘ 
1

L�
,

s

s?
� cs >

✓
1

↵⌘L

◆2

. (10)

For � > 0, assume furthermore that

s? log(4p/�)

n

�↵

2
L
2

2�
. (11)

Then, with probability at least 1� �, it holds for all t � 0 that

kut � u?k2 
p
2 · rt + C

✏n +

s
1/2 log(np/�)

n1/3

!
, (12)

where

r =

1� ↵⌘L

1�
p
s?/s

!1/2

< 1,

and where the constant C (specified in the proof) depends on ↵,�, L,B,�, ⌘, cs, but not

on n, p, s, � and ✏n.

This theorem provides information about both computation and statistical conver-
gence in estimating u?. Define

� = C

✏n +

s
1/2 log(np/�)

n1/3

!
.

Then, from a computation perspective, the algorithm converges linearly up to the time
when it reaches the statistical error �. In particular, for any tolerance ⌧ > �, running

the algorithm for t �
log

⇣
⌧��p

2

⌘

log(r) many iterations will lead to kut � u?k
2
2  ⌧ (with

probability at least 1� �).
Next, we consider the dependence on the sample size n. Suppose we assume ✏n 

O(n�1/3) (as we will see in Proposition 2 below, this holds with high probability under
a random model for X). Then � scales with sample size n as n�1/3 (up to log factors).
Balabdaoui et al. [3] also obtained n

�1/3 consistency of a least square estimator of u?
under similar assumptions. With g? being monotone increasing and twice continuously
di↵erentiable, and some further assumptions on the u? and X, Balabdaoui et al. [4]
proposed a score based estimator which is

p
n-consistent, i.e., error scales with sample

size as n�1/2.
Comparing these results, an open question remains regarding the convergence rate

of our algorithm in settings where the true g? is smooth — the n
�1/2 rate achieved

by Balabdaoui et al. [4] with slightly stronger assumptions suggests that perhaps our
n
�1/3 rate can be improved with an additional smoothness assumption. In Section

3.1.2 below, we examine this open question empirically, and will see that while the
n
�1/3 rate appears to be tight for a non-smooth g?, simulation results with a smooth

g? suggest that an improved rate might be possible in that setting.

9

2.2.3 Convergence guarantee for the estimation of g?

We show that with the SOD-SIM algorithm in 2.1, the estimation of g? has convergence

rate of O(✏n + s1/2 log(np)

n1/3). In particular, assuming ✏n  O(n�1/3), the estimation of g?
has O(n�1/3) convergence rate omitting the log terms.

Proposition 1. Assume the conditions (4), (5), (6), (7), and (8) hold for the signal,

and condition (9) holds for the noise. For � > 0, assume (10) and (11) hold for the

step size ⌘, sparsity levels s and s?, and n, p. Then as n is su�ciently large, with

probability at least 1� �, for all t � 1, the prediction error is bounded by:

n
�1/2

kisoXutY � g?(Xu?)k2  L

p
2� · r

t + C
0

✏n +

s
1/2 log(np/�)

n1/3

!
, (13)

where r is defined in Theorem 1, and where the constant C
0
(specified in the proof)

depends on ↵,�, L,B,�, ⌘, cs, but not on n, p, s, � and ✏n.

The proof for Proposition 1 is deferred to section A.4. We show our estimator
isoXutY of g? converges at a n�1/3 rate in `2 norm. The upper bound of the convergence
rate for estimating g? matches its lower bound up to the log factors, as we know the
minimax rate for isotonic regression is n�1/3 [7]. This result matches the convergence
results shown in [3] and [4].

2.3 Convergence guarantees with random design X

In this section we verify that the assumptions in section 2.2.1 are likely to hold for
random design matrices X. In particular, we show the convergence rate for random
design X with normal mixture distribution, which is a much milder condition than the
symmetric elliptical X.

2.3.1 Assumptions

We assume the same model (4) as in section 2.2.1. We have the following assumptions
on g?(·), X, u? and Z under random design matrix X.

Assumptions on the signal Assume g?(·) is bounded Lipschitz and monotone
nondecreasing (5), and u? is a sparse unit vector (6). The rows of X are i.i.d. draws
from a distribution on X 2 Rp, and g?(·), X and u? satisfy that

X ⇠

KX

k=1

ak · N (µk,⌃k), i.e. a mixture-of-normals distribution,

with
KX

k=1

ak = 1, kµkk2  V and c0Ip � ⌃k � c1Ip for all k = 1, . . . ,K. (14)

and that
Var

⇣
g?(X

>
u?)
⌘
� ⌫

2
> 0, (15)

10

Assumptions on the noise Conditional on X, the noise Z is subgaussian with
scale �,

i.e. E
h
e
hv,Zi

��� X
i
 e

�2kvk22/2 holds almost surely over X, for any fixed v 2 Rn. (16)

2.3.2 Convergence guarantees

Proposition 2. Under assumptions (4), (5), (6), (14), (15), and (16). For � > 0,

there exists ✏n � C↵ ·

q
s log(np/�)

n and constants C↵, ↵, � depending on L, c0, c1, B, ⌫, V

but not on n, p, s, �; as n is su�ciently large, with probability at least 1� �, conditions

(7) and (8) hold.

Proposition 2 verifies that under the random X setting proposed in section 2.3.1,
conditions (7) and (8) are satisfied with high probability. This implies that when X
has a normal mixture distribution, with high probability, the results of Theorem 1 still
apply, that our proposed SOD-SIM algorithm leads to n

�1/3 convergence rate in `2

norm for the estimation of the index u?. The proof is deferred in section A.5.

2.4 Proof of Theorem 1

We will now prove our convergence theorem. The detailed proofs for the lemmas are
presented later in Section A.

First, we give two deterministic results, that will use our assumptions (4), (5), (6),
(7), and (8) on the signal (i.e., on X, g?, and u?), but hold for any fixed noise vector
Z. Define

Err1(Z) = n
�1

kX>(Z� Z̄1n)k1,

where Z̄ = 1
n

Pn
i=1 Zi, and

Erriso(Z) = sup
u2Sp�1

s

n
n
�1/2

kisoXu(g?(Xu?) + Z)� isoXu(g?(Xu?))k2
o
,

where
Sp�1
s = {u 2 Rp : kuk2 = 1, u is s-sparse}

is the set of s-sparse unit vectors in Rp.
First, we verify that the initialization u0 defined in (3) is well-defined (i.e., X>(Y�

Ȳ 1n) 6= 0), and is not worse than a random guess, meaning that we have hu0, u?i � 0.

Lemma 1. Assume the conditions (4), (5), (6), (7), and (8) hold. If s � s? ·
�
↵ and

Err1(Z) 
↵L
p
s?

,

then the initialization u0 defined in (3) is well-defined, and satisfies

hu0, u?i � 0.

Next, we prove a bound on the iterative update step of the algorithm.

11

Lemma 2. Assume the conditions (4), (5), (6), (7), and (8) hold. Fix any u 2 Sp�1
s

satisfying hu, u?i � 0, and fix any step size ⌘ 2 [0, 1
L�] and any sparsity level s > s?.

Define a hard-thresholded update step as

ǔ =
 s(ũ)

k s(ũ)k2
where ũ = u+ ⌘ · P

?
u

⇣
1
nX

>�Y � isoXu(Y)
�⌘

.

Then

kǔ� u?k2 

1� ↵⌘L

1�
p

s?/s

!1/2

· ku� u?k2 +Remainder(Z), (17)

where

Remainder(Z) = ✏n

1

1�
p

s?/s

!1/2

+
2⌘
�p

2s+ s? · Err1(Z) +
p
� · Erriso(Z)

�

1�
p
s?/s

.

Combining these two lemmas proves the following deterministic convergence result:

Lemma 3. Assume the conditions (4), (5), (6), (7), and (8) hold. Fix a step size

⌘ � 0 and a sparsity level s � 1 satisfying

⌘ 
1

L�
, s > s? ·

✓
1

↵⌘L

◆2

.

Assume also that

Err1(Z) 
↵L
p
s?

.

Then for all t � 0, it holds that

kut � u?k2 
p
2 · rt +

Remainder(Z)

1� r
,

where

r =

1� ↵⌘L

1�
p
s?/s

!1/2

and where Remainder(Z) is defined as in Lemma 2.

Proof of Lemma 3. We will prove the lemma by induction. We will show that, for each
t � 0, it holds that

kut � u?k2 
p
2 · rt +Remainder(Z) ·

tX

s=1

r
s�1

. (18)

At t = 0, we have

ku0 � u?k
2
2 = ku0k

2
2 + ku?k

2
2 � 2hu0, u?i  2,

since by Lemma 1 we know that u0, u? are unit vectors satisfying hu0, u?i � 0. There-
fore (18) holds at t = 0. Now suppose (18) holds at t = T � 0. We then have

kuT+1 � u?k2  r · kuT � u?k2 +Remainder(Z)

 r ·

p
2 · rT +Remainder(Z) ·

TX

s=1

r
s�1

!
+Remainder(Z),

where the first step holds by Lemma 2 and the second step applies (18) with t = T .
This proves that (18) holds with t = T + 1, completing the proof.

12

With these deterministic results in place, we now need to bound Err1(Z) and
Erriso(Z), under our assumptions on the noise Z.

Lemma 4. Assume the conditions (4), (5), (6), (7), and (8) on the signal, and (9)
on the noise. For any � > 0, with probability at least 1� � it holds that

Err1(Z)  �

r
2� log(4p/�)

n

and

Erriso(Z)  n
�1/3

2B + �

p
8 log n ·

s

log

✓
3n2s+1ps

�

◆!
.

Combining Lemma 3 with Lemma 4, we have proved Theorem 1 with the constant

C = max

⇢
r/(1� r)
p
1� ↵⌘L

,
r
2
/(1� r)

1� ↵⌘L
· ⌘

p
� (7 + 4B + 13�)

�
.

3 Experiments

In this section, we first use simulation experiments to demonstrate the performance
of the SOD-SIM algorithm in estimating u?, and explore the lower bound for the
convergence rate; then we apply the SOD-SIM algorithm to a classification problem
with PU rocker protein data.

3.1 Simulation studies

3.1.1 Performance in estimating u? for PU data

In this section, we study the performance of the SOD-SIM algorithm in estimating u?

for PU data without knowing the prevalence ⇡.

Methods We simulate PU data with 400 positive data and 400 unlabeled data.
Samples in the population are independent and for individual i, Xi 2 Rp

⇠ N (0,⌃⇢),
where ⌃⇢ is the autoregressive matrix with its i, j�th entry being ⇢

|i�j|, where we

let ⇢ = 0.2. Next, let Yi|Xi ⇠ Bernoulli
�
g(X>

i u?)
�
, where g(t) = et

1+et is the expit

function, u? = (
p
2
2 ,�

p
2
2 , 0, · · · , 0) 2 Rp is with sparsity level s? = 2 and we vary

p = 100, 400, 800, 1600.
We compare the performance of our proposed SOD-SIM in estimating u? with the

logistic model with `1 penalized maximum likelihood (sparseLR) method. For the
sparseLR, we choose the tuning parameter using cross validation. For the SOD-SIM
algorithm, we let the working sparsity s = 10 and set the learning rate ⌘ = 0.1. We
simulate for M = 100 times.

Results The performance is shown in Figure 1. Since u? is only identifiable up to
direction, both u? and the estimations bu are rescaled to have unit norms. Besides bias,
standard deviation (SD) and rooted mean square error (RMSE), we also characterize
the mean inner product of u? and bu as their correlation. We can see that for all settings
with di↵erent p, the SOD-SIM method has smaller bias and SD than the sparseLR

13

method and the correlation from SOD-SIM with u? is closer to 1. With the dimension
of the covariates p increases, the performance of the sparseLR method becomes worse,
whereas the SOD-SIM method remains a good performance. The results shows that
the mis-specification of the link function and the non-symmetric covariate distribution
of the PU data a↵ects the estimation of u? using the parametric sparseLR method.
The proposed SOD-SIM method performs well for the PU data without specifying the
prevalence ⇡.

3.1.2 Lower bound exploration

In this section we study whether our convergence rate for kut � u?k2 is tight in terms
of its dependence on the sample size n. We are interested in two questions: (1) Is
the upper bound from Theorem 1 tight for the SOD-SIM algorithm? (2) Does the
SOD-SIM algorithm attain the optimal convergence rate of the global minimizer?

Methods We vary the sample size n = 100, 150, 200, 300, 400, 600, 800, 1200; and

construct two low-dimensional examples with s? = 2, p = 2, u? = (
p
2
2 ,

p
2
2). We let

Y = gn(Xu
?) + Z where Z ⇠ N (0,�2I). In Example 1, � = 1 and in Example 2,

� = 0.8.
We first construct the gn(x) function. In Example 1, we construct gn(x) of which

the second derivative is unbounded as n ! 1. Specifically, we have

gn(x) = x�
n
�1/3

f(n1/3
x)

2 + ✏
where f(x) = 2(x� bxc)� 4(x� bxc � 1/2)+, (19)

where we set ✏ = 0.1. Notice that in this construction, g00n(x) / n
1/3

f
00(n1/3

x) / n
1/3.

In Example 2, we construct a smoother version of gn(x) by letting

gn(x) = x�
n
�2/3

f(n1/3
x)

2 + ✏
(20)

where we set ✏ = 0.1. For this example, gn(x) has bounded limiting second derivative
as n ! 1. These two example functions are plotted in Figure 2.

To construct the covariates, for each sample, we first generate ti ⇠ Unif[0, 1] and
we define Xi as

X1i =

p
2

sd1
n
�1/3

f(n1/3
ti),

X2i =

p
2

sd2
(ti � n

�1/3
f(n1/3

ti)) +
p
2"i,

for i = 1, · · · , n, where "i ⇠ Unif[�0.5, 0.5] are i.i.d. and independent of X1i. The
constants sd1 and sd2 are used to make X1 and X2 to have roughly equal variances.
In particular, in Example 1, we let sd1 = 0.025 and sd2 = 0.4, and in Example 2, we
let sd1 = 0.0014 and sd2 = 0.4.

We compute the global minimizer of the `2 loss. For ✓ 2 [0,⇡/2], with increment
0.001, we compute kY � isoXu✓(Y)k2, where u✓ = (cos ✓, sin ✓), to obtain the minimizer
ûg of the `2 loss.

14

0 500 1000 1500

0.
1

0.
2

0.
3

0.
4

p

Bi
as

sparseLR
SOD−SIM

0 500 1000 1500
0.
6

0.
7

0.
8

0.
9

1.
0

p

C
or
re
la
tio
n

0 500 1000 1500

0.
00

0.
05

0.
10

0.
15

p

SD

0 500 1000 1500

0.
2

0.
4

0.
6

0.
8

p

R
M
SE

Figure 1: Empirical performance of the SOD-SIM and sparseLR algorithms on PU data in
terms of bias, SD, correlation and RMSE with their 95% confidence intervals.

15

0.
0

0.
4

0.
8

Example 1

i

µ
i

10 30 50 70 90
0.

0
0.

4
0.

8

Example 2

i

µ
i

10 30 50 70 90

5.0 6.0 7.0

−2
.8

−2
.4

−2
.0

Slope = −0.36 ± 0.02

log n

lo
g(

R
M

SE
)

5.0 6.0 7.0

−3
.2

−2
.8

−2
.4

−2
.0

Slope = −0.46 ± 0.02

log n

lo
g(

R
M

SE
)

Figure 2: Upper: gn from (19) (left) and (20) (right). Lower: log(RMSE) (with 95% confi-
dence interval) vs log(n) for the global estimator for Example 1 (19) (left) and Example 2
(20) (right).

16

Results We plot the logarithm of rooted mean square error (log(RMSE)) against
log(n) to show the rate of convergence. Example 1 (non-smooth example) has a conver-
gence rate close to n

�1/3, which indicates our proved convergence rate for the SOD-SIM
algorithm is as tight as the global minimizer. The second example (with bounded lim-
iting second derivative) has a faster convergence rate, which is close to n

�1/2.
Our exploratory simulation results match with the reported convergence rate of the

score based estimator in [4]. We do not have a definitive answer for the convergence
rate of our algorithm when the function g? is smooth. A better rate could potentially
be achieved with alternative proof techniques, and is beyond the scope of this work.

3.2 Application to rocker protein data

In this section, we study an application of our SOD-SIM algorithm to the rocker protein
sequence data. The rocker data is composed of sequences with confirmed function
(Y = 1) and sequences with unknown functionality (Y = 0).

To give some biological context to this dataset, Rocker is a de novo designed protein
which recreates the biological function of substrate transportation [20]. A functional
protein successfully transports ions across cell membranes. To study how a mutation at
each site a↵ects the membrane transport ability of proteins, mutations are introduced
to the original Rocker sequence (wild-type) by double site saturation mutagenesis. Mu-
tated sequences are screened by fluorescence-activated cell sorting (FACS), which sort
out functional protein variants. Due to an experimental challenge of obtaining negative
sequences, an additional set of sequences are obtained from the initial library whose
associated functionality is unknown. Therefore, the resulting data set is a Positive-
Unlabeled (PU) dataset, because the first set consists of functional sequence variants
and the second set consists unlabeled examples.

Methods A sequence consists of 25 positions taking one of the 21 discrete val-
ues, which correspond to 20 amino acid letter codes plus an additional letter for the
alignment gap. Each sequence contains at most two mutations. The data consists of
n` = 703030 functional (positive label) and nu = 1287155 unlabeled sequences. To
compare di↵erent algorithms reliably, we split the data into 10 subsets, and use half of
each split for training and remaining half for testing. Each training dataset contains
35K labeled and 64K unlabeled examples on average. We generate features with main
(site-wise) and pairwise (interaction between two sites) e↵ects using one-hot encoding
of the sequences. Removing columns with zero counts, we obtain 27K features on av-
erage, where 490 of the generated features correspond to the main e↵ects. We take
the amino acid levels in the WT sequence as the baseline levels to generate a sparse
design matrix X 2 Rn⇥p where (n, p) ⇡ (100K, 27K). The number of unique sequences
is around 26K (i.e., rank of row space of X ⇡ 26K), which makes the problem high-
dimensional. The response vector Y 2 Rn represents whether each sequence i is labeled
(Yi = 1) or unlabeled (Yi = 0).

We applied four methods to each train dataset which we denote as follows:

• SOD-SIM: our proposed algorithm

• sparseLR: the logistic regression with `1-penalty

17

• PV1: the proposed method in [26]. We solve the following objective:

û
PV 1

2 arg max
u2K(s)

hy,Xui

where K(s) is a s-approximate sparse set, defined as K(s) := {x 2 R : kxk2 

1, kxk1 
p
s}

• PV2: the proposed method in [27].

û
PV 2

2 arg min
u2K(s)

ky �Xuk2.

We used the glmnet package to solve the logistic regression objective with `1-
penalty. To solve objectives in PV1 and PV2, we implemented the projected gradient
methods, where we iteratively projected the gradients onto the intersection of `1 and
`2 balls. We used the Dykstra’s projection algorithm to obtain the projection onto the
intersection of the two balls [5]. Note both objectives in PV1 and PV2 are convex,
and therefore the projected gradient descent algorithm guarantees to find a global
minimum. For PV1 and PV2, we input the standardized X where each column is
centered and scaled. Since sparseLR, PV1, and PV2 are convex problems, we run until
the algorithms the models converge. For SOD-SIM, we let the learning rate ⌘ = 1 and
run the algorithm until changes of estimated parameters is small (< 0.0005) or the
iteration number t reaches the pre-defined maximum number of iterations ( 1000).
In addition, PV1 and PV2 methods do not provide estimates of the link function. We
run an isotonic regression after obtaining û

PV 1 and û
PV 2 to estimate the link function,

and used such estimates to perform downstream prediction tasks.
We used four metrics (Accuracy, F1 score, Brier Score, and AUC value) to evaluate

predictive performance of the four methods. Accuracy is the proportion of correctly
classified examples. F1 score is the harmonic mean of the precision and recall, whose
value lies between 0 and 1. Higher number corresponds to a better performance. Brier
Score is an average squared `2 loss, i.e., Brier Score := 1

ntest

Pntest
i=1 (yi � ŷi)2, and

therefore, lower numbers correspond to better performances. AUC measures the area
under the ROC curve. The perfect classification corresponds to the AUC value of 1,
and a random classification corresponds to 0.5. For the choice of hyperparameters (s
for SOD-SIM, PV1, and PV2, and � for the `1 logistic regression), we use a grid of
100 working sparsity s values from 1 to p, interpolated in a square root scale, and a
grid of 100 lambda values obtained from the glmnet package by default. We picked
the hyperparameters that gave the best results for the most of the metrics on the test
datasets.

Results Figure 3.2 demonstrates the empirical performances of the four methods.
SOD-SIM performed the best in all metrics on average. The predictive performance
of the sparse logistic regression was slightly worse than the SOD-SIM. It is likely due
to the mis-specification error, since we are forcing the link function to be a sigmoid
function. Both PV1 and PV2 seem to su↵er from the deviation X from the Gaussian
design; however, PV2 seems to be more robust to such deviation.

18

Figure 3: Average accuracy rates, F1 scores, 1-Brier Score, and AUC values of the four
methods on 10 test datasets. Higher values correspond to better performance in all four
plots. The error bars represent one standard error.

4 Discussion

In this paper, we propose a scalable iterative projection-based algorithm (SOD-SIM)
for the estimation of hdSIMs, which we show the statistical convergence guarantees
for the estimation of both the coe�cient u? and the unknown function g?. From the
minimax results of isotonic regression perspective, our convergence rate for g? is tight
with respect to n up to some poly log terms. Our simulation results suggest that
under the mild model assumptions, the convergence rate for the estimation of u? is
also tight. However, our simulation results for the smooth g? case suggests that the
convergence rate might potentially decay faster with sample size n, under stronger
model assumptions—while the theoretical upper bounds proved here scale as n

�1/3

(ignoring log terms), the simulations suggest that the lower bound for the settings with
additional smoothness conditions might potentially be improved. The gap between
these two rates in the smooth case remains an open question.

Our statistical guarantee requires very mild model assumptions, especially for the
covariates X. This allows our theoretical guarantee to cover many useful examples such
as the PU data. From our simulation studies, we have shown that even if at population
level the covariates X is normally distributed, the positive-only data has asymmetric
distribution and parametric models such as sparseLR su↵er from estimation bias caused
by both misspecification of the link function and the asymmetric distribution of the
covariates; whereas our SOD-SIM algorithm has good performance in estimating u? in
high-dimensional settings. In our real data analysis, we have shown that our method
(SOD-SIM) also outperforms methods based on the slicing regression idea (PV1, PV2).

19

Acknowledgements

R.F.B. was partially supported by the National Science Foundation via grants DMS-
1654076 and DMS-2023109, and by the O�ce of Naval Research via grant N00014-20-
1-2337. G.R. was partially supported by the National Science Foundation via grant
DMS-1811767 and by the National Institute of Health via grant R01 GM131381-01. H.
S. was partially supported by the National Institute of Health via grant R01 GM131381-
01. The authors thank Sabyasachi Chatterjee for helpful discussions.

References

[1] A. Ai, A. Lapanowski, Y. Plan, and R. Vershynin. One-bit compressed sensing
with non-gaussian measurements. Linear Algebra and its Applications, 441:222
– 239, 2014. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2013.04.002.
Special Issue on Sparse Approximate Solution of Linear Systems.

[2] P. Alquier and G. Biau. Sparse single-index model. Journal of Machine Learning

Research, 14:243–280, 01 2013.

[3] F. Balabdaoui, C. Durot, and H. Jankowski. Least squares estimation in the
monotone single index model. Bernoulli, 25(4B):3276–3310, 11 2019. doi: 10.
3150/18-BEJ1090.

[4] F. Balabdaoui, P. Groeneboom, and K. Hendrickx. Score estimation in the mono-
tone single-index model. Scandinavian Journal of Statistics, 46(2):517–544, 2019.
doi: 10.1111/sjos.12361.

[5] J. P. Boyle and R. L. Dykstra. A method for finding projections onto the intersec-
tion of convex sets in hilbert spaces. In Advances in Order Restricted Statistical

Inference, pages 28–47. Springer New York, 1986.

[6] R. J. Carroll, J. Fan, I. Gijbels, and M. P. Wand. Generalized partially linear
single-index models. Journal of the American Statistical Association, 92(438):
477–489, 1997. doi: 10.1080/01621459.1997.10474001.

[7] S. Chatterjee, A. Guntuboyina, and B. Sen. On risk bounds in isotonic and other
shape restricted regression problems. The Annals of Statistics, 43:1774–1800, 08
2015. doi: 10.1214/15-AOS1324.

[8] S. Chen and A. Banerjee. Robust structured estimation with single-index mod-
els. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International

Conference on Machine Learning, volume 70 of Proceedings of Machine Learn-

ing Research, pages 712–721, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR.

[9] J.-M. Chiou and H.-G. Müller. Quasi-likelihood regression with unknown link
and variance functions. Journal of the American Statistical Association, 93(444):
1376–1387, 1998. doi: 10.1080/01621459.1998.10473799.

20

[10] X. Cui, W. K. Härdle, and L. Zhu. The efm approach for single-index models.
Ann. Statist., 39(3):1658–1688, 06 2011. doi: 10.1214/10-AOS871.

[11] J. de Leeuw, K. Hornik, and P. Mair. Isotone optimization in r: Pool-adjacent-
violators (pava) and active set methods. Journal of Statistical Software, 32:1–24,
2009.

[12] M. Delecroix, W. Härdle, and M. Hristache. E�cient estimation in conditional
single-index regression. Journal of Multivariate Analysis, 86(2):213 – 226, 2003.
ISSN 0047-259X. doi: https://doi.org/10.1016/S0047-259X(02)00046-5.

[13] N. Duan and K.-C. Li. Slicing regression: A link-free regression method. Ann.

Statist., 19(2):505–530, 06 1991. doi: 10.1214/aos/1176348109.

[14] R. Ganti, N. S. Rao, L. Balzano, R. Willett, and R. D. Nowak. On learning high
dimensional structured single index models. In AAAI Conference on Artificial

Intelligence, pages 1898–1904. AAAI Press, 2017.

[15] W. Hardle, P. Hall, and H. Ichimura. Optimal smoothing in single-index models.
Ann. Statist., 21(1):157–178, 03 1993. doi: 10.1214/aos/1176349020.

[16] T. J. Hastie and W. Fithian. Inference from presence-only data; the ongoing
controversy. Ecography, 36 8:864–867, 2013.

[17] J. L. Horowitz and W. Härdle. Direct semiparametric estimation of single-index
models with discrete covariates. Journal of the American Statistical Association,
91(436):1632–1640, 1996. doi: 10.1080/01621459.1996.10476732.

[18] M. Hristache, A. Juditsky, and V. Spokoiny. Direct estimation of the index co-
e�cient in a single-index model. Ann. Statist., 29(3):593–623, 06 2001. doi:
10.1214/aos/1009210682.

[19] H. Ichimura. Semiparametric least squares (sls) and weighted sls estimation of
single-index models. Journal of Econometrics, 58(1):71 – 120, 1993. ISSN 0304-
4076. doi: https://doi.org/10.1016/0304-4076(93)90114-K.

[20] N. H. Joh, T. Wang, M. P. Bhate, R. Acharya, Y. Wu, M. Grabe, M. Hong,
G. Grigoryan, and W. F. DeGrado. De novo design of a transmembrane zn2+-
transporting four-helix bundle. Science, 346(6216):1520–1524, Dec. 2014.

[21] S. M. Kakade, V. Kanade, O. Shamir, and A. Kalai. E�cient learning of general-
ized linear and single index models with isotonic regression. In J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24, pages 927–935. Curran Associates,
Inc., 2011.

[22] A. Kalai and R. Sastry. The isotron algorithm: High-dimensional isotonic regres-
sion. 01 2009.

[23] R. W. Klein and R. H. Spady. An e�cient semiparametric estimator for binary
response models. Econometrica, 61(2):387–421, 1993. ISSN 00129682, 14680262.

21

[24] A. K. Kuchibhotla and R. K. Patra. E�cient estimation in single index models
through smoothing splines. ArXiv, 2016.

[25] Q. Lin, Z. Zhao, and J. S. Liu. On consistency and sparsity for sliced inverse
regression in high dimensions. Ann. Statist., 46(2):580–610, 04 2018. doi: 10.
1214/17-AOS1561.

[26] Y. Plan and R. Vershynin. Robust 1-bit compressed sensing and sparse logistic
regression: A convex programming approach. IEEE Trans. Inf. Theory, 59(1):
482–494, Jan. 2013.

[27] Y. Plan and R. Vershynin. The generalized lasso with Non-Linear observations.
IEEE Trans. Inf. Theory, 62(3):1528–1537, Mar. 2016.

[28] Y. Plan, R. Vershynin, and E. Yudovina. High-dimensional estimation with geo-
metric constraints. Information and Inference: A Journal of the IMA, 6(1):1–40,
2017. doi: 10.1093/imaiai/iaw015.

[29] J. L. Powell, J. H. Stock, and T. M. Stoker. Semiparametric estimation of index
coe�cients. Econometrica, 57(6):1403–1430, 1989. ISSN 00129682, 14680262.

[30] P. Radchenko. High dimensional single index models. Journal of Multivariate

Analysis, 139:266 – 282, 2015. ISSN 0047-259X. doi: https://doi.org/10.1016/j.
jmva.2015.02.007.

[31] C. Sammut and G. I. Webb, editors. McDiarmid’s Inequality, pages 651–
652. Springer US, Boston, MA, 2010. ISBN 978-0-387-30164-8. doi: 10.1007/
978-0-387-30164-8 521. URL https://doi.org/10.1007/978-0-387-30164-8_

521.

[32] C. Sammut and G. I. Webb, editors. Symmetrization Lemma, pages 954–
954. Springer US, Boston, MA, 2010. ISBN 978-0-387-30164-8. doi: 10.1007/
978-0-387-30164-8 808. URL https://doi.org/10.1007/978-0-387-30164-8_

808.

[33] H. Song and G. Raskutti. Pulasso: High-dimensional variable selection with
presence-only data. Journal of the American Statistical Association, 115(529):
334–347, 2020. doi: 10.1080/01621459.2018.1546587.

[34] R. Vershynin. Introduction to the non-asymptotic analysis of random ma-

trices, page 210–268. Cambridge University Press, 2012. doi: 10.1017/
CBO9780511794308.006.

[35] T. Wang, P.-R. Xu, and L.-X. Zhu. Non-convex penalized estimation in high-
dimensional models with single-index structure. Journal of Multivariate Analysis,
109:221 – 235, 2012. ISSN 0047-259X. doi: https://doi.org/10.1016/j.jmva.2012.
03.009.

[36] F. Yang and R. F. Barber. Contraction and uniform convergence of isotonic
regression. Electron. J. Statist., 13(1):646–677, 2019. doi: 10.1214/18-EJS1520.

22

https://doi.org/10.1007/978-0-387-30164-8_521
https://doi.org/10.1007/978-0-387-30164-8_521
https://doi.org/10.1007/978-0-387-30164-8_808
https://doi.org/10.1007/978-0-387-30164-8_808

[37] Z. Yang, K. Balasubramanian, and H. Liu. High-dimensional non-Gaussian single
index models via thresholded score function estimation. In D. Precup and Y. W.
Teh, editors, Proceedings of the 34th International Conference on Machine Learn-

ing, volume 70 of Proceedings of Machine Learning Research, pages 3851–3860,
International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[38] Z. Yang, K. Balasubramanian, P. Zhaoran Wang, and H. Liu. Estimating high-
dimensional non-gaussian multiple index models via stein’s lemma. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 30, pages 6097–
6106. Curran Associates, Inc., 2017.

[39] Y. Yu and D. Ruppert. Penalized spline estimation for partially linear single-index
models. Journal of the American Statistical Association, 97(460):1042–1054, 2002.
doi: 10.1198/016214502388618861.

A Additional proofs

A.1 Proof of Lemma 2

First, writing ū = s(ũ), since u is a s-sparse unit vector we can calculate

1 = kuk
2
2 = hũ, ui  kũsupport(u)k2  max

S⇢[d],|S|=s
kũSk2 = kūk2,

where the second equality holds since ũ is equal to u plus an orthogonal vector. Since
u? is a unit vector, we have

kǔ� u?k2  kū� u?k2,

since ǔ = ū/kūk2 is the projection of ū onto the unit ball, which is a convex set
containing u?.

A trivial calculation shows that

kū� u?k
2
2 = ku� u?k

2
2 � ku� ūk

2
2 + 2hu� ū, u? � ūi. (21)

Now we work with this inner product. By definition of ũ, we can write

hu� ū, u? � ūi = hũ� ū, u? � ūi+
⌘

n
hP

?
u X>�Y � isoXu(Y)

�
, ū� u?i



p
s?

2
p
s
ku? � ūk

2
2 +

⌘

n
hP

?
u X>�Y � isoXu(Y)

�
, ū� u?i,

where the last step applies Lemma 5 (presented later on). Plugging this back into (21)
and rearranging terms, we obtain

✓
1�

r
s?

s

◆
kū� u?k

2
2  ku� u?k

2
2 � ku� ūk

2
2 +

2⌘

n
hP

?
u X>�Y � isoXu(Y)

�
, ū� u?i.

23

Moreover, noting that 1>n (y � isov(y)) = 0 for any y, v 2 Rn by properties of isotonic
regression, we can equivalently write this as
✓
1�

r
s?

s

◆
kū� u?k

2
2

 ku� u?k
2
2 � ku� ūk

2
2 +

2⌘

n
hP

?
u X>

P
?
1n

�
Y � isoXu(Y)

�
, ū� u?i. (22)

Next, working with this last term, denote µ? = g?(Xu?), we can write

P
?
1n

�
Y � isoXu(Y)

�

= P
?
1n

(µ? � isoXu(µ?)) + P
?
1n

(Y � µ?) + P
?
1n

(isoXu(µ?)� isoXu(Y))

= (µ? � isoXu(µ?)) +
�
Z� Z̄1n

�
+ P

?
1n

(isoXu(µ?)� isoXu(Y)) ,

and since

hP
?
u X>

P
?
1n

�
Y � isoXu(Y)

�
, ū� u?i  hP

?
u X>�

µ? � isoXu(µ?)
�
, ū� u?i

+
���X> �Z� Z̄1n

����
1
kP

?
u

�
ū� u?

�
k1+kisoXu(Y)� isoXu(µ?)k2kP

?
1n
XP

?
u

�
ū� u?

�
k2,

and therefore plugging in our definitions of Err1(Z) and Erriso(Z) from above,

hP
?
u X>�Y � isoXu(Y)

�
, ū� u?i  hP

?
u X>�

µ? � isoXu(µ?)
�
, ū� u?i

+ nErr1(Z) · kP?
u

�
ū� u?

�
k1 + n

1/2Erriso(Z) · kP
?
1n
XP

?
u

�
ū� u?

�
k2.

Since u, ū are s-sparse and u? is s?-sparse, we can calculate that P
?
u

�
ū � u?

�
is

(2s+ s?)-sparse and therefore

kP
?
u

�
ū� u?

�
k1 

p
2s+ s?kP

?
u

�
ū� u?

�
k2 

p
2s+ s?kū� u?k2.

By our condition (7) bounding the sparse eigenvalues of X, we also have

kP
?
1n
XP

?
u

�
ū� u?

�
k2  kXP

?
u

�
ū� u?

�
k2 

p
�nkP

?
u

�
ū� u?

�
k2 

p
�nkū� u?k2.

Combining everything and returning to (22), then,
✓
1�

r
s?

s

◆
kū� u?k

2
2  ku� u?k

2
2 � ku� ūk

2
2

+ 2⌘kū� u?k2

⇣p
2s+ s? · Err1(Z) +

p
� · Erriso(Z)

⌘

+
2⌘

n
hP

?
u X>�

µ? � isoXu(µ?)
�
, ū� u?i. (23)

Next we work with the remaining inner product. We have

hP
?
u X>�

µ? � isoXu(µ?)
�
, ū� u?i

= hµ? � isoXu(µ?),XP
?
u (ū� u?))i

= hµ? � isoXu(µ?),XP
?
u ūi � hµ? � isoXu(µ?),XP

?
u u?i

= hµ? � isoXu(µ?),XP
?
u (ū� u)i � hµ? � isoXu(µ?),X(u? � u · u

>
u?)i

 kµ? � isoXu(µ?)k2 · kXP
?
u (ū� u)k2 � hµ? � isoXu(µ?),Xu?i

+ hu, u?i · hµ? � isoXu(µ?),Xui

 kµ? � isoXu(µ?)k2 ·
p
�nkū� uk2 �

1

L
kµ? � isoXu(µ?)k

2
2,

24

where to prove the last step, we apply (7) to the first term, apply Lemma 6 (presented
later) to the second term, and for the third term we observe that it is  0, because
hu, u?i � 0 by assumption while hµ? � isoXu(µ?),Xui  0 by definition of isotonic
regression (i.e., since isotonic regression is projection onto a convex cone). Finally, by
Cauchy–Schwarz we have

kµ? � isoXu(µ?)k2 ·
p
�nkū� uk2 

L�n

2
kū� uk

2
2 +

1

2L
kµ? � isoXu(µ?)k

2
2.

Therefore, we have calculated

hP
?
u X>�

µ? � isoXu(µ?)
�
, ū� u?i 

L�n

2
kū� uk

2
2 �

1

2L
kµ? � isoXu(µ?)k

2
2.

Plugging these calculations back into (23), and applying the assumption that ⌘ 
1
L� ,

we obtain

✓
1�

r
s?

s

◆
kū� u?k

2
2  ku� u?k

2
2 �

⌘

Ln
kµ? � isoXu(µ?)k

2
2

+ 2⌘kū� u?k2

⇣p
2s+ s? · Err1(Z) +

p
� · Erriso(Z)

⌘
. (24)

Next, we split into cases. If ku� u?k  ✏n, then (24) implies that

✓
1�

r
s?

s

◆
kū� u?k

2
2  ✏

2
n + 2⌘kū� u?k2

⇣p
2s+ s? · Err1(Z) +

p
� · Erriso(Z)

⌘

which can be relaxed to

kū� u?k2 
✏n

�
1�

p
s?
s

�1/2 +
2⌘
�p

2s+ s? · Err1(Z) +
p
� · Erriso(Z)

�

1�
p

s?
s

.

If instead ku� u?k2 � ✏n, then by the identifiability assumption (8), noting that by the
definition of isotonic regression, we can write isoXu(µ?) = g(Xu) for some monotone
non-decreasing function g, we have

1

L2n
kµ? � isoXu(µ?)k

2
2 =

1

L2n
kg?(Xu?)� g(Xu)k22 � ↵ku� u?k

2
2.

In this case, (24) implies that

✓
1�

r
s?

s

◆
kū� u?k

2
2

 (1� ↵⌘L) ku� u?k
2
2 + 2⌘kū� u?k2

⇣p
2s+ s? · Err1(Z) +

p
� · Erriso(Z)

⌘

which can be relaxed to

kū� u?k2 

1� ↵⌘L

1�
p

s?
s

!1/2

ku� u?k2 +
2⌘
�p

2s+ s? · Err1(Z) +
p
� · Erriso(Z)

�

1�
p

s?
s

.

Finally, since we proved above that kǔ� u?k2  kū� u?k2, this completes the proof.

25

A.1.1 Supporting lemmas

Lemma 5 (Liu & Barber 2018, Lemma 1). For any v 2 Rp
and s?-sparse w 2 Rp

, if

s � s?, then

hv � s(v), w � s(v)i 

p
s?

2
p
s
kw � s(v)k

2
2.

Lemma 6. For any vectors v, w 2 Rn
and any L-Lipschitz monotone nondecreasing

function g,

hv, g(v)� isow(g(v))i � L
�1

kg(v)� isow(g(v))k
2
2.

Proof of Lemma 6. Let a1 < · · · < aK be the unique values of the vector isow(g(v)),
and for each k = 1, . . . ,K let

Ik =
n
i :
�
isow(g(v))

�
i
= ak

o
.

By definition of isotonic regression, we have

1

|Ik|

X

i2Ik

g(v) = ak. (25)

For each k, let bk 2 R satisfy
g(bk) = ak,

which must exist since g : R ! R is continuous (due to being Lipschitz) and ak is a
convex combination of values taken by g. We then have

hv, g(v)� isow(g(v))i =
nX

i=1

vi ·
�
g(vi)� isow(g(v))i

�

=
KX

k=1

X

i2Ik

vi ·
�
g(vi)� ak

�

=
KX

k=1

0

@
X

i2Ik

vi ·
�
g(vi)� ak

�
� bk ·

X

i2Ik

�
g(vi)� ak

�
1

A by (25)

=
KX

k=1

X

i2Ik

(vi � bk) ·
�
g(vi)� g(bk)

�
by definition of bk

�

KX

k=1

X

i2Ik

L
�1
�
g(vi)� ak

�2
since g is L-Lipschitz and monotone

=
KX

k=1

X

i2Ik

L
�1
⇣
g(vi)�

�
isow(g(v))

�
i

⌘2
by definition of ak

= L
�1

kg(v)� isow(g(v))k
2
2.

26

A.2 Proof of Lemma 4

First we bound Err1(Z). By the sparse eigenvalue bound (7) on X, we have kXjk2 =
kXejk2 

p
�n for all j = 1, . . . , p. Since Z = Y � µ?, Z � Z̄1n is zero-mean and

�-subgaussian, we therefore see that X>
j (Z � Z̄1n) is also zero-mean and is �

p
�n-

subgaussian. Therefore, for each j,

P
(
n
�1
��X>

j (Z� Z̄1n)
�� > �

r
2� log(4p/�)

n

)


�

2p
,

and so taking a union bound, we have shown that

P
(
Err1(Z)  �

r
2� log(4p/�)

n

)
� 1�

�

2
.

Next we turn to Erriso(Z). First, for any vector v 2 Rn, define ⇡v to be a permu-
tation of {1, . . . , n} such that v⇡v(1)  · · ·  v⇡v(n), i.e., we rearrange the indices into
the ordering of v. (If v has some repeated entries then ⇡v will not be unique but we
can arbitrarily choose one such permutation for each v.)

First, for any fixed v, we will compute a deterministic bound on kisov(Y)� isov(µ?)k2.
We know that µ? 2 [�B,B]n and therefore isov(µ?) 2 [�B,B]n, and is monotone non-
decreasing by definition. By Lemma 11.1 in [7], we can find some partition

{1, . . . , n} = {⇡v(1), . . . ,⇡v(k1)}| {z }
=:S1

[{⇡v(k1 + 1), . . . ,⇡v(k2)}| {z }
=:S2

[· · ·[{⇡v(kM�1 + 1), . . . ,⇡v(n)}| {z }
=:SM

,

with M  dn
1/3

e, such that

max
i2Sm

isov(µ?)� min
i2Sm

isov(µ?)  2Bn
�1/3 for all m = 1, . . . ,M.

In other words, this condition ensures isov(µ?) has little variation within each index
subset Sm. We define k0 = 0 and kM = n below, so that we can write Sm = {⇡v(km�1+
1), . . . ,⇡v(km)} for each m = 1, . . . ,M .

Next for any permutation ⇡ of {1, . . . , n}, define a seminorm

kwkSW,⇡ = max
1jkn

���
Pk

`=j w⇡(`)

���
p
k � j + 1

.

This is the “sliding window” norm of [36], defined according to the ordering of the
vector v. By Theorem 1 and Lemma 2 of [36], it holds that

kisov(x)� isov(x
0)kSW,⇡v  kx� x

0
kSW,⇡v

for all x, x0 2 Rn. Therefore, for all 1  j  k  n,
���
Pk

`=j

�
isov(Y)⇡v(`) � isov(µ?)⇡v(`)

����
p
k � j + 1

 kisov(Y)� isov(µ?)kSW,⇡v  kY � µ?kSW,⇡v = kZkSW,⇡v .

27

Now fix any ` 2 {1, . . . , n} and let m` be the index such that ` 2 Sm` . We have

isov(Y)⇡v(`) 

Pkm`
j=` isov(Y)⇡v(j)

km` � `+ 1
since isov(Y) is monotone nondecreasing



Pkm`
j=` isov(µ?)⇡v(j)

km` � `+ 1
+

kZkSW,⇡v
p
km � `+ 1

by the bound above

 isov(µ?)⇡v(`) + 2Bn
�1/3 +

kZkSW,⇡vp
km` � `+ 1

by construction of the partition.

Similarly,

isov(Y)⇡v(`) � isov(µ?)⇡v(`) � 2Bn
�1/3

�
kZkSW,⇡vp
`� km`�1

.

Therefore,

��isov(Y)⇡v(`) � isov(µ?)⇡v(`)

��  2Bn
�1/3 +

kZkSW,⇡vp
min{`� km`�1, km` � `+ 1}

,

and so

kisov(Y)� isov(µ?)k2 
p
n · 2Bn

�1/3 + kZkSW,⇡v ·

vuut
nX

`=1

1

min{`� km`�1, km` � `+ 1}

= 2Bn
1/6 + kZkSW,⇡v ·

vuut
MX

m=1

km�km�1X

`=1

1

min{`, km � km�1 � `+ 1}

 2Bn
1/6 + kZkSW,⇡v

vuut
MX

m=1

2 log
�
2(km � km�1)

�

= 2Bn
1/6 + kZkSW,⇡v

q
2 log

�
2M (k1 � k0)(k2 � k1) . . . (kM � kM�1)

�
.

Since 0 = k0 < k1 < · · · < kM = n, it holds that (k1 � k0)(k2 � k1) . . . (kM � kM�1) 
(n/M)M , and therefore,

kisov(Y)� isov(µ?)k2  2Bn
1/6 + kZkSW,⇡v

p
2M log(2n/M).

Since M = dn
1/3

e, as long as n � 2 we can relax this to

kisov(Y)� isov(µ?)k2  2Bn
1/6 + kZkSW,⇡v2n

1/6
p
log n.

Since this holds deterministically for any v, by considering v = Xu we see that

Erriso(Z) = sup
u2Sp�1

s

n
n
�1/2

kisoXu(Y)� isoXu(µ?)k2
o

 2Bn
�1/3 + 2n�1/3

p
log n · sup

u2Sp�1
s

{kZkSW,⇡Xu} .

Next define

S
s-sparse
n,p (X1, . . . , Xn) =

�
⇡ 2 Sn : ⇡ = ⇡Xu for some u 2 Sp�1

s

.

28

In other words, this is the set of possible orderings of the entries of Xu, under any u 2

Sp�1
s . Write S

s-sparse
n,p (X1, . . . , Xn) = {⇡1, . . . ,⇡K} where K = |S

s-sparse
n,p (X1, . . . , Xn)|.

This means that for every s-sparse u,

kZkSW,⇡Xu = kZkSW,⇡k for some k 2 {1, . . . ,K},

and so we can write

Erriso(Z)  2Bn
�1/3 + 2n�1/3

p
log n · max

k=1,...,K
kZkSW,⇡k .

Finally, for �-subgaussian zero-mean Z and any fixed permutation ⇡, Lemma 3 of [36]
proves that

kZkSW,⇡ 

s

2�2 log

✓
n2 + n

�0

◆

with probability at least 1� �
0, for any �0 > 0. Setting �0 = �

2K , then,

max
k=1,...,K

kZkSW,⇡k 

s

2�2 log

✓
(n2 + n) · 2K

�

◆

with probability at least 1� �
2 . Finally, Lemma 7 below proves that, deterministically,

K =
��Ss-sparse

n,p (X1, . . . , Xn)
��  n

2s�1
p
s
.

Therefore, with probability at least 1� �
2 ,

max
k=1,...,K

kZkSW,⇡k 

s

2�2 log

✓
(n2 + n) · 2n2s�1ps

�

◆
,

which completes the proof.

A.2.1 Supporting lemma

Lemma 7. For any sample size n, dimension p, sparsity level s, and points x1, . . . , xn 2

Rp
, define the set

S
s-sparse
n,p (x1, . . . , xn) =

n
⇡ 2 Sn : x>⇡(1)u  x

>
⇡(2)u  · · ·  x

>
⇡(n)u for some s-sparse u 2 Rp

o
.

Then we have ��Sx-sparse
n,p (x1, . . . , xn)

��  n
2s�1

p
s
.

Proof. Define

Sn,s(x1, . . . , xn) =
n
⇡ 2 Sn : x>⇡(1)u  x

>
⇡(2)u  · · ·  x

>
⇡(n)u for some u 2 Rs

o
.

First, for any s-sparse u 2 Rp, let A ✓ [p] be some subset of size |A| = s containing
the support of u. Denote the permutation ⇡ such that x>⇡(1)u  x

>
⇡(2)u  · · ·  x

>
⇡(n)u

as ⇡u(x1, . . . , xn). Then it’s clear that

⇡u(x1, . . . , xn) 2 Sn,s(x1A, . . . , xnA).

29

where we write xiA 2 Rs as the subvector of xi with entries indexed by A. Therefore
we have

��Ss-sparse
n,p (x1, . . . , xn)

�� 
X

A⇢[p],|A|s

|Sn,s(x1A, . . . , xnA)|  p
s
· max
y1,...,yn2Rs

|Sn,s(y1, . . . , yn)| ,

since the number of subsets A is bounded by
�p
s

�
 p

s. Therefore, it su�ces to compute
a bound for the non-sparse case, i.e. to bound |Sn,s(y1, . . . , yn)|. Cover (1967) proves
that for points y1, . . . , yn in generic position, this is exactly equal to Q(n, s) which is
defined by the recursive relation

Q(n+ 1, s) =

8
><

>:

1, n = 0,

Q(n, s) + nQ(n, s� 1), s � 2, and n � 1

2, s = 1 and n � 1.

If y1, . . . , yn are not in generic position, then the cardinality is instead bounded by
Q(n, s). Finally, using this recursive relation, we check that for the case n = 1, trivially
Q(1, s) = 1  12s�1 for any s � 1, and for the case s = 1 and n � 2, Q(n, 1) = 2 

n
2·1�1. Then for n � 2 and s � 2, we inductively have

Q(n+1, s) = Q(n, s)+nQ(n, s�1)  n
2s�1+n·n

2(s�1)�1 = (n+1)·n2s�2
 (n+1)2s�1

,

proving the desired bound.

A.3 Proof of Lemma 1

Define ũ0 =
1
nX

>(Y � Ȳ 1n). First, writing ḡ?(Xu?) =
1
n

Pn
i=1 g?(X

>
i u?), we have

hũ0, u?i =
1

n
hu?,X

>(Y � Ȳ 1n)i

=
1

n
hXu?, g?(Xu?)� ḡ?(Xu?)1ni+

1

n
hu?,X

>(Z� Z̄1n)i

�
1

n
hXu?, g?(Xu?)� ḡ?(Xu?)1ni �

p
s?kn

�1X>(Z� Z̄1n)k1

�
1

nL
kg?(Xu?)� ḡ?(Xu?)1nk

2
2 �

p
s?kn

�1X>(Z� Z̄1n)k1,

where the first inequality holds since

hu?,X
>(Z� Z̄1n)i  ku?k1kX

>(Z� Z̄1n)k1

and ku?k1 
p
s?ku?k2 =

p
s? since u? is a s?-sparse unit vector, while the second

inequality can be seen by applying Lemma 6 with w = 1n and g = g?. Next, we have

1

L2n
kg?(Xu?)� ḡ?(Xu?)1nk

2
2 �

1

L2n
kg?(Xu?)� iso�Xu(g?(Xu?))k

2
2

� ↵ku? � (�u?)k
2
2 = 4↵,

where the first step holds since trivially, the constant vector ḡ?(Xu?)1n agrees with
the ordering of �Xu?, while the second step holds by assumption (8) applied with

30

u = �u?. In particular, by the assumption of the lemma, we see that hũ0, u?i > 0,
verifying that ũ0 6= 0. Note that, by definition, we have

u0 =
 s(ũ0)

k s(ũ0)k2
.

Next, we apply Lemma 5 with v = ũ0
k s(ũ0)k2 and w = u?. Noting that s(v) =

 s(ũ0)
k s(ũ0)k2 = u0, this lemma yields

⌧
ũ0

k s(ũ0)k2
� u0, u? � u0

�


p
s?

2
p
s
ku? � u0k

2
2 =

r
s?

s
(1� hu0, u?i) ,

where the last step holds since u0 and u? are both unit vectors. We also have
⌧

ũ0

k s(ũ0)k2
� u0, u0

�
= 0,

since these two vectors have disjoint support by definition. Therefore,
⌧

ũ0

k s(ũ0)k2
� u0, u?

�


r
s?

s
(1� hu0, u?i) ,

and after rearranging terms, we have

1

k s(ũ0)k2
hũ0, u?i 

r
s?

s
+

✓
1�

r
s?

s

◆
hu0, u?i.

Combining this with the calculations above, we have proved that

hu0, u?i �

✓
1�

r
s?

s

◆�1✓
1

k s(ũ0)k2
hũ0, u?i �

r
s?

s

◆
.

Combining this with our lower bound on hũ0, u?i calculated above, we now have

hu0, u?i �
1

k s(ũ0)k2
·

✓
1�

r
s?

s

◆�1

·

✓
1

nL
kg?(Xu?)� ḡ?(Xu?)1nk

2
2 �

p
s?kn

�1X>(Z� Z̄1n)k1 �

r
s?

s
· k s(ũ0)k2

◆
.

Next, writing S ✓ {1, . . . , p} to denote the support of u0 (with |S|  s), we calculate

k s(ũ0)k2 = kn
�1X>

S (Y � Ȳ 1n)k2

 kn
�1X>

S (g?(Xu?)� ḡ?(Xu?))k2 + kn
�1X>

S (Z� Z̄1n)k2

 kn
�1X>

S (g?(Xu?)� ḡ?(Xu?))k2 +
p
s · kn

�1X>(Z� Z̄1n)k1,

and so we now have

hu0, u?i �
1

k s(ũ0)k2
·

✓
1�

r
s?

s

◆�1

·

✓
1

nL
kg?(Xu?)� ḡ?(Xu?)1nk

2
2 � 2

p
s?kn

�1X>(Z� Z̄1n)k1

�

r
s?

s
· kn

�1X>
S (g?(Xu?)� ḡ?(Xu?)1n)k2

◆
.

31

Furthermore,

kn
�1X>

S (g?(Xu?)� ḡ?(Xu?)1n)k2 = sup
u2Rp:kuk21,support(u)✓S

���n�1
u
>X>(g?(Xu?)� ḡ?(Xu?)1n)

���

 sup
u2Rp:kuk21,support(u)✓S

kn
�1Xuk2k(g?(Xu?)� ḡ?(Xu?)1n)k2



r
�

n
· kg?(Xu?)� ḡ?(Xu?)1nk2,

where the last step holds by assumption (7). Combining everything, we have shown
that

hu0, u?i �
1

k s(ũ0)k2
·

✓
1�

r
s?

s

◆�1

·

✓
1

nL
kg?(Xu?)� ḡ?(Xu?)1nk

2
2 � 2

p
s?kn

�1X>(Z� Z̄ · 1)k1

�

r
�s?

sn
· kg?(Xu?)� ḡ?(Xu?)1nk2

◆
.

Next, recalling that we have shown 1
L2nkg?(Xu?)� ḡ?(Xu?)1nk22 � 4↵, since we’ve

assumed that s � s? ·
�
↵ we have

1

nL
kg?(Xu?)� ḡ?(Xu?)1nk

2
2 �

r
�s?

sn
· kg?(Xu?)� ḡ?(Xu?)1nk2

�
1

nL
kg?(Xu?)� ḡ?(Xu?)1nk

2
2 �

r
↵

n
· kg?(Xu?)� ḡ?(Xu?)1nk2 � 2↵L.

Therefore,

hu0, u?i �
1

k s(ũ0)k2
·

✓
1�

r
s?

s

◆�1

·

⇣
2↵L� 2

p
s?kn

�1X>(Z� Z̄1n)k1
⌘
.

This completes the proof.

A.4 Proofs for Proposition 1

By definition of isotonic regression,

n
�1/2

kisoXutY � g?(Xu?)k2

 n
�1/2

kisoXutY � isoXutg?(Xu?)k2 + n
�1/2

kisoXutg?(Xu?)� g?(Xu?)k2

 n
�1/2

kisoXutY � isoXutg?(Xu?)k2 + n
�1/2

kg?(Xut)� g?(Xu?)k2

 Erriso(Z) + L

p
�kut � u?k2,

where the second inequality is from the contractive property of isotonic regression in `2-
norm (see Yang and Barber [36]), and Erriso(Z) is defined as in the proof of Theorem 1.
We finish the proof by plugging in the results from Lemma 4 and Theorem 1:

n
�1/2

kisoXutY � g?(Xu?)k2

L

p
2� · r

t + C(L
p
� + 4�)

✏n +

s
1/2 log(np/�)

n1/3

!
with probability at least 1� �.

32

A.5 Proofs for the normal mixture X (Proposition 2)

In this section we provide the proof for Proposition 2. The main body of the proof is to
verify that under the assumptions in section 2.3.1, conditions (7) and (8) are satisfied
with high probability. We show this in the following two lemmas.

For the upper bound on sparse eigenvalue condition, we have the following result:

Lemma 8. Assuming that the rows of X are i.i.d. draws from a distribution on X 2 Rp
,

with second moment ⌃ = E
⇥
XX

>⇤
satisfying

c0Ip � ⌃ � c1Ip for some constants c1 � c0 > 0,

then for all � > 0, as n is large enough, (7) is satisfied with probability at least 1� �/2
with � = 2c1.

For the lower bound on sparse monotone single index eigenvalues, we have the
following lemma:

Lemma 9. Under assumptions (5), (14), (15), for all � > 0, as n is su�ciently large,

there exists ✏n � C↵ ·

q
s log(np/�)

n that (8) is satisfied with probability at least 1� �/2,
with ↵ > 0 and C↵ > 0 being constants depending on L, c0, c1, B, ⌫, V but not on

n, p, s, �.

Combining Lemmas 8 and 9 we finish the proof of Proposition 2. The proof of
Lemmas 8 and 9 are deferred in section A.5.1.

A.5.1 Proof of Lemmas 8 and 9

Proof of Lemma 8. For any fixed support S ⇢ [p] with |S| = 2s+ s?, by 5.40 of [34],

P
(
k
1

n
X>

SXS � Cov(XS)k  �
2
C

 r
2s+ s? + log(1/�)

n
+

2s+ s? + log(1/�)

n

!)
� 1��/2,

for a universal constant C. Taking a union bound over all
� p
2s+s?

�
possible supports S

of size |S| = 2s+ s?,

P
⇢
sup
S

k
1

n
X>

SXS � Cov(XS)k

 �
2
C

 r
2s+ s? + (2s+ s?) log(p/�)

n
+

2s+ s? + (2s+ s?) log(p/�)

n

!)
� 1��/2.

Simplifying,

P
(
sup
S

k
1

n
X>

SXS � Cov(XS)k  6�2C

 r
s log(p/�)

n
+

s log(p/�)

n

!)
� 1� �/2.

We can rewrite this as

P
(

sup
u2Sp�1

s

1

n
kXuk

2
2  c1 + 6�2C

 r
s log(p/�)

n
+

s log(p/�)

n

!)
� 1� �/2,

33

where
Sp�1
s = {u 2 Rp : kuk2 = 1, u is s-sparse}

is the set of s-sparse unit vectors in Rp. Let � = 2c1, then with n su�ciently large,

P
(

sup
u2Sp�1

s

1

n
kXuk

2
2  �

)
� 1� �/2.

This concludes the proof of Lemma 8.

Proof of Lemma 9. We would like to place a lower bound on 1
L2nkg(Xu)� g?(Xu?)k22

for all u 2 Sp�1
s with ku� u?k2 � ✏n and all monotone non-decreasing functions g :

R ! [�B,B], where [�B,B] is the range of g?. For ↵ > 0 (we will specify ↵ later in
the proof), we have

inf
u2Sp�1

s ,ku�u?k2�✏n
non-decr. g : R ! [�B,B]

 r
1

L2n
kg(Xu)� g?(Xu?)k22 �

p
↵ku� u?k2

!

= inf
u2Sp�1

s ,ku�u?k2�✏n
non-decr. g : R ! [�B,B]

 s
1

L2n

X

i

�
g(X>

i u)� g?(X>
i u?)

�2
�
p
↵ku� u?k2

!

� inf
u2Sp�1

s ,ku�u?k2�✏n
non-decr. g : R ! [�B,B]

1

Ln

X

i

��g(X>
i u)� g?(X

>
i u?)

���
p
↵ku� u?k2

!
,

where the last step holds by the standard inequality relating the `1 and `2 norms. We
can further decompose this as

inf
u2Sp�1

s ,ku�u?k2�✏n
non-decr. g : R ! [�B,B]

 r
1

L2n
kg(Xu)� g?(Xu?)k22�

p
↵ku� u?k2

!
� Term 1�Term 2

where

Term 1 = inf
u2Sp�1

s ,ku�u?k2�✏n
non-decr. g : R ! [�B,B]

1

L
E
h��g(X>

u)� g?(X
>
u?)
��
i
�
p
↵ku� u?k2

!

and

Term 2 = sup
u2Sp�1

s ,ku�u?k2�✏n
non-decr. g : R ! [�B,B]

✓
1

L
E
h��g(X>

u)� g?(X
>
u?)
��
i
�

1

Ln

X

i

��g(X>
i u)�g?(X

>
i u?)

��
◆
.

For Term 1, by Lemma 10 (26), which states that for all s-sparse unit u and any
non-decreasing function g : R ! [�B,B] we have

E
h��g(X>

u)� g?(X
>
u?)
��
i2

� ↵?ku� u?k
2
2,

34

where ↵? > 0 is a constant which does not depend on n, p, s, ✏n. Therefore, let ↵ = ↵?
2L2 ,

Term 1 �
p
↵ · ✏n.

For Term 2, we will use concentration bounds to control Term 2. First, since both
g and g? take values in [�B,B], and therefore

��g(X>
i u)� g?(X>

i u?)
�� 2 [0, 2B] for any

Xi and any non-decreasing g : R ! [�B,B] and u 2 Sp�1
s , we can see that replacing

a single Xi with a di↵erent vector X 0
i can perturb the value of Term 2 by at most 2B

n .
Therefore by McDiarmid’s inequality [31], for any �1 > 0,

P
(
Term 2 > E [Term 2] + 2B ·

r
log(1/�1)

2n

)
 �1.

Next, by the symmetrization lemma [32], we have

E [Term 2]  2E

2

664 sup
s2Sp�1

s
non-decr. g : R ! [�B,B]

1

n

X

i

⇠i

��g(X>
i u)� g?(X

>
i u?)

��

3

775 ,

where ⇠i
iid
⇠ Unif{±1} are i.i.d. Rademacher variables, drawn independently from the

Xi’s. Next, consider the composition

X 7!
�
g(X>

i u)� g?(X
>
i u?)

�
7!
��g(X>

i u)� g?(X
>
i u?)

��.

The second map is the absolute value function, which is 1-Lipschitz. By the Lipschitz
inequality for Rademacher complexity, therefore,

E [Term 2]  4E

2

664 sup
s2Sp�1

s
non-decr. g : R ! [�B,B]

1

n

X

i

⇠i
�
g(X>

i u)� g?(X
>
i u?)

�

3

775  16B

r
s log(np)

n
.

The last inequality is because of Lemma 11.
Therefore, combining everything, with probability at least 1� �/2,

Term 2  B

16

r
s log(np)

n
+

r
2 log(2/�)

n

!
.

With n su�ciently large, let ✏n �
16Bp

↵

q
s log(np/�)

n , Term 2  16B
q

s log(np/�)
n 

p
↵ ·✏n.

This concludes the proof of Lemma 9.

A.5.2 Supporting lemmas

Lemma 10. Suppose assumptions (5), (14), and (15) hold, then

E
h��g(X>

u)� g?(X
>
u?)
��
i2

� ↵?ku� u?k
2
2 (26)

holds for all s-sparse unit vectors u, and any non-decreasing function g : R ! [�B,B].
where ↵? > 0 is a constant depending on L, c0, c1, B, ⌫, V but not on n, p, s.

35

Proof. Let A 2 {1, . . . ,K} be the latent variable indicating which component X was
drawn from. Fix any u 2 Sp�1

s . Then for any g,

E
h��g(X>

u)� g?(X
>
u?)
��
i

=
KX

k=1

akE
h��g(X>

u)� g?(X
>
u?)
��
��� A = k

i
=

KX

k=1

akE
⇥��g(Rk)� g?(Sk)

��⇤ ,

where (Rk, Sk) is bivariate normal with mean

✓
µ
>
k u

µ
>
k u?

◆
=: m,

and covariance ✓
u
>⌃ku u

>⌃ku?

u
>
? ⌃ku u

>
? ⌃ku?

◆
.

Here we can calculate

⇢ =
u
>
? ⌃kup

u>⌃ku · u>? ⌃ku?

=
c
2u

>⌃ku+ 1
2cu

>
? ⌃ku? �

1
2(c

1/2
u� c

�1/2
u?)>⌃k(c1/2u� c

�1/2
u?)p

u>⌃ku · u>? ⌃ku?

,

for any c > 0. Choosing c =
q

u>
? ⌃ku?

u>⌃ku
, we obtain

⇢ = 1�
(c1/2u� c

�1/2
u?)>⌃k(c1/2u� c

�1/2
u?)

2
p

u>⌃ku · u>? ⌃ku?

 1�
c0

2c1
kc

1/2
u� c

�1/2
u?k

2
2,

where c0 and c1 are the smallest and largest restricted eigenvalues of ⌃k. Next,

kc
1/2

u� c
�1/2

u?k
2
2 = ckuk

2
2+c

�1
ku?k

2
2�2hu, u?i = c+c

�1
�2hu, u?i � 2�2hu, u?i = ku� u?k

2
2,

since u and u? are both unit vectors. Combining everything,

⇢  1�
c0

2c1
ku� u?k

2
2.

Note that |m2|  V since kµkk2  V , and u
>⌃ku, u

>
? ⌃ku? � c0 since ⌃k ⌫ c0Ip. Now

suppose for the moment that g?(T)�g?(�T) � C for some T > 0 and C > 0. Applying
Lemma 12 in the Appendix, we see that

E
⇥��g(Rk)� g?(Sk)

��⇤ � C0

p
1� (⇢ _ 0)2,

where C0 > 0 depends only on L,C, T, c0, V , for each k = 1, . . . ,K. Plugging in our
bound on ⇢, we see that

⇢ _ 0  1�
c0

4c1
ku� u?k

2
2

must hold, since c0  c1 and ku� u?k
2
2  4 (since u and u? are unit vectors).

E
⇥��g(Rk)� g?(Sk)

��⇤ � C0

s

1�

✓
1�

c0

4c1
ku� u?k

2
2

◆2

� C0

r
c0

2c1
ku� u?k2.

36

Since this is true for each k, therefore we have

E
h��g(X>

u)� g?(X
>
u?)
��
i
� C0

r
c0

2c1
ku� u?k2.

Finally, we just need to find T,C > 0 such that g?(T) � g?(�T) � C. Recall that
Var

�
g?(X>

u?)
�
� ⌫

2
> 0 by assumption. Recall also that g? takes values in [�B,B].

Define

T = V +
p
c1 · �

�1

✓
1�

⌫
2

16B2

◆
.

Then

P
n
|X

>
u?| > T

o
= max

k
P
n��N (u>? µk, u

>
? ⌃ku?)

�� > T

o

 max
k

P
(
|N (0, 1)| >

T � |u
>
? µk|p

u>? ⌃ku?

)


⌫
2

8B2
,

by our bounds on µk and ⌃k and our definition of T . Now let C = g?(T) � g?(�T).
Then

⌫
2 = Var

⇣
g?(X

>
u?)
⌘

 E
h
(g?(X

>
u?)� g?(0))

2
i

= E
h
(g?(X

>
u?)� g?(0))

2
·

n
|X

>
u?| > T

oi
+ E

h
(g?(X

>
u?)� g?(0))

2
·

n
|X

>
u?|  T

oi

 E
h
4B2

·

n
|X

>
u?| > T

oi
+ E

⇥
C

2
⇤

= 4B2P
n
|X

>
u?| > T

o
+ C

2

 4B2
·
⌫
2

8B2
+ C

2

= ⌫
2
/2 + C

2
,

and therefore, we must have C � ⌫/
p
2. Combining everything,

E
h��g(X>

u)� g?(X
>
u?)
��
i
�

p
↵?ku� u?k2

for all u 2 Sp�1
s , where ↵? > 0 is a constant depending on L, c0, c1, B, ⌫, V .

Lemma 11. With g? : R ! [a, b], and b� a  2B,

E

2

64 sup
s-sparse unit u

non-decr. g : R ! [a, b]

1

n

X

i

⇠i
�
g(X>

i u)� g?(X
>
i u?)

�
3

75  4B

r
s log(np)

n

37

Proof of Lemma 11. The expectation can be simplified as follows:

E

2

64 sup
s-sparse unit u

non-decr. g : R ! [a, b]

1

n

X

i

⇠i
�
g(X>

i u)� g?(X
>
i u?)

�
3

75

=E

2

64 sup
s-sparse unit u

non-decr. g : R ! [a, b]

1

n

X

i

⇠i ·
�
g(X>

i u)� a
�
3

75� 4E
"
1

n

X

i

⇠i ·
�
g?(X

>
i u?)� a

�
#

=E

2

64 sup
s-sparse unit u

non-decr. g : R ! [a, b]

1

n

X

i

⇠i ·
�
g(X>

i u)� a
�
3

75

=2B · E

2

64 sup
s-sparse unit u

non-decr. g : R ! [0, 1]

1

n

X

i

⇠i · g(X
>
i u)

3

75 .

where the next-to-last step holds since E [⇠i] = 0. Next, any non-decreasing function
g : R ! [0, 1] can be written as a (possibly infinite) convex combination of step
functions. This means that for any u, the supremum over g is attained at some step
function, in other words, we can write

E

2

64 sup
s-sparse unit u

non-decr. g : R ! [a, b]

1

n

X

i

⇠i
�
g(X>

i u)� g?(X
>
i u?)

�
3

75

 2B · E

2

4 sup
s-sparse unit u

t2R

1

n

X

i

⇠i ·

n
X

>
i u � t

o
3

5 .

Now let ⇡u;X1,...,Xn be the permutation of {1, . . . , n} induced by the ordering of the
X

>
i u’s, that is, the permutation ⇡ 2 Sn that satisfies

X
>
⇡(1)u  X

>
⇡(2)u  · · ·  X

>
⇡(n)u.

To handle the possibility that this might not define a unique permutation, i.e. since
it might be the case that hXi, ui = hXi0 , ui for some i 6= i

0, we place an arbitrary
total ordering on Sn and then, in the case of ties, we define ⇡u;X1,...,Xn as the minimal
permutation satisfying the ordering above.

Then the above can be rewritten as

E

2

64 sup
s-sparse unit u

non-decr. g : R ! [a, b]

1

n

X

i

⇠i
�
g(X>

i u)� g?(X
>
i u?)

�
3

75

 2B · E

2

64max

8
><

>:
0, sup

s-sparse unit u
k2[n]

1

n

X

i�k

⇠⇡u;X1,...,Xn (i)

9
>=

>;

3

75 .

38

Now define

⇧p,s(X1, . . . , Xn) =
�
⇡u;X1,...,Xn : s-sparse unit u 2 Rp

✓ Sn,

i.e. the set of all permutations attained by any sparse vector u (using the given feature
vectors X1, . . . , Xn). The above can therefore be rewritten as

E

2

64 sup
s-sparse unit u

non-decr. g : R ! [a, b]

1

n

X

i

⇠i
�
g(X>

i u)� g?(X
>
i u?)

�
3

75

 2B · E

2

64max

8
><

>:
0, sup

⇡2⇧p,s(X1,...,Xn)
k2[n]

1

n

X

i�k

⇠⇡(i)

9
>=

>;

3

75 .

By Lemma 7 in the Appendix, for any X1, . . . , Xn we have |⇧p,s(X1, . . . , Xn)| 

n
2s�1

p
s. Now, for each ⇡ and each k, 1

n

P
i�k ⇠⇡(i) is a zero-mean subgaussian ran-

dom variable at the scale
p
n�k+1
n  n

�1/2, and we are taking a supremum over
n
2s�1

p
s
· n = n

2s
p
s such variables. This expected value is therefore bounded asq

2 log(2n2sps)
n  2

q
s log(np)

n (where the last step holds as long as p � 2).

Lemma 12. Let ✓
R

S

◆
⇠ N

✓
m,

✓
r
2

rs · ⇢

rs · ⇢ s
2

◆◆
,

and let g, g? : R ! R be any non-decreasing functions, such that g? is L-Lipschitz and

satisfies g?(T)� g?(�T) � C > 0 for some T > 0. Then

E
⇥��g(R)� g?(S)

��⇤ � C0

p
1� (⇢ _ 0)2,

where C0 > 0 is a function of L, T,C, s, |m2| (not dependent on ⇢), and is defined in

the proof.

Proof of Lemma 12. First, we will replace R with R̃ = R�m1
r and S with S̃ = S�m2

s ,
to obtain ✓

R̃

S̃

◆
⇠ N

✓
0,

✓
1 ⇢

⇢ 1

◆◆
.

Define non-decreasing functions g̃(t) = g(m1 + r · t) and g̃?(t) = g?(m2 + s · t). Then
we are looking to lower bound

E
⇥��g(R)� g?(S)

��⇤ = E
h��g̃(R̃)� g̃?(S̃)

��
i
.

Note that g̃? is L̃-Lipschitz for L̃ = Ls, and

g̃?

✓
T �m2

s

◆
� g̃?

✓
�T �m2

s

◆
= g?(T)� g?(�T) � C,

and since g̃? is nondecreasing, we can weaken this bound to

g̃?(T̃)� g̃?(�T̃) � C where T̃ =
T + |m2|

s
.

39

First consider the case that ⇢  ⇢0, where ⇢0 2 [0, 1) is defined to satisfy 2Ls
p

1� ⇢20 <

1
2C
p

2/⇡. In this case, define c = g̃?(T̃)+g̃?(�T̃)
2 , then g̃?(T̃)�c �

C
2 and c�g̃?(�T̃) � C

2 .
First suppose that g̃(0)  c. Then g̃(r)  c for any r  0 since g̃ is non-decreasing.
Now, if S̃ � T and R̃  0, this means that

g̃?(S̃) � g̃?(T) �
C

2
+ c �

C

2
+ g̃(R̃),

and so
��g̃(R̃)� g̃?(S̃)

�� � C
2 . In other words,

E
h��g̃(R̃)� g̃?(S̃)

��
i
�

C

2
· P
n
S̃ � T, R̃  0

o
.

Finally,

P
n
S̃ � T, R̃  0

o
� P

⇢
N

✓✓
0
0

◆
,

✓
1 ⇢0

⇢0 1

◆◆
2 [T,1)⇥ (�1, 0]

�
=: P0(⇢0, T) > 0,

since for the first inequality, the probability is minimized at ⇢ = ⇢0 (under the assump-
tion ⇢  ⇢0), and is therefore lower bounded by some positive value P0 = P0(T, ⇢0).
Therefore, the conclusion of the lemma holds in this case, as long as we set C0 
C
2 · P0(T, ⇢0).

Next we will work on the case that ⇢ � ⇢0. Let

Š = ⇢ · R̃�

⇣
S̃ � ⇢ · R̃

⌘
,

so that (R̃, Š) is equal in distribution to (R̃, S̃). Then

E
h��g̃(R̃)� g̃?(S̃)

��
i
= E

h��g̃(R̃)� g̃?(Š)
��
i
,

and so

E
h��g̃(R̃)� g̃?(S̃)

��
i
=

1

2
E
h⇣��g̃(R̃)� g̃?(S̃)

��+
��g̃(R̃)� g̃?(Š)

��
⌘i

�
1

2
E
h��g̃?(S̃)� g̃?(Š)

��
i

=
1

2
E
"���g̃?

�
S̃
�
� g̃?

S̃ + Š

2

!���+
���g̃?

S̃ + Š

2

!
� g̃?

�
Š
����

#

=
1

2
E
h���g̃?

�
S̃
�
� g̃?

�
⇢ · R̃

����+
���g̃?
�
⇢ · R̃

�
� g̃?

�
Š
����
i
,

where the third step holds since since g? is non-decreasing. Now let W = S̃ � ⇢ · R̃ ⇠

40

N (0, 1� ⇢
2), and note W ?? R̃. Then we can rewrite this as

1

2
E
h���g̃?

�
S̃
�
� g̃?

�
⇢ · R̃

����+
���g̃?
�
⇢ · R̃

�
� g̃?

�
Š
����
i

=
1

2
E
h���g̃?

�
⇢ · R̃+W

�
� g̃?

�
⇢ · R̃�W

����
i

=
1

2
EW

Z 1

t=�1
�(t) ·

���g̃?
�
⇢ · t+W

�
� g̃?

�
⇢ · t�W

����dt
�

since R̃ ⇠ N (0, 1) is independent of W

�
1

2
EW

"Z T̃ /⇢

t=�T̃ /⇢
�(t) ·

���g̃?
�
⇢ · t+W

�
� g̃?

�
⇢ · t�W

����dt
#

since the integrand is nonnegative

=
1

2
EW

"Z T̃ /⇢

t=�T̃ /⇢
�(t) ·

⇣
g̃?
�
⇢ · t+ |W |

�
� g̃?

�
⇢ · t� |W |

�⌘
dt

#
since g̃? is non-decreasing

=
�(T̃ /⇢)

2
EW

"Z T̃ /⇢

t=�T̃ /⇢

⇣
g̃?
�
⇢ · t+ |W |

�
� g̃?

�
⇢ · t� |W |

�⌘
dt

#
since �(t) � �(T̃ /⇢) for all |t|  T̃ /⇢

=
�(T̃ /⇢)

2
EW

"Z T̃ /⇢

t=�T̃ /⇢
g̃?
�
⇢ · t+ |W |

�
dt�

Z T̃ /⇢

t=�T̃ /⇢
g̃?
�
⇢ · t� |W |

�
dt

#

=
�(T̃ /⇢)

2
EW

"Z T̃ /⇢+|W |/⇢

t=�T̃ /⇢+|W |/⇢
g̃?
�
⇢ · t

�
dt�

Z T̃ /⇢�|W |/⇢

t=�T̃ /⇢�|W |/⇢
g̃?
�
⇢ · t

�
dt

#

by a change of variables in each integral

=
�(T̃ /⇢)

2
EW

"Z T̃ /⇢+|W |/⇢

t=T̃ /⇢�|W |/⇢
g̃?
�
⇢ · t

�
dt�

Z �T̃ /⇢+|W |/⇢

t=�T̃ /⇢�|W |/⇢
g̃?
�
⇢ · t

�
dt

#

by cancellation of the overlapping regions of integration

�
�(T̃ /⇢)

2
EW


2|W |

⇢

⇣
g̃?(T̃ � |W |)� g̃?(�T̃ + |W |)

⌘�
since g̃? is non-decreasing

�
�(T̃ /⇢)

2
EW


2|W |

⇢

⇣
g̃?(T̃)� g̃?(�T̃)� 2|W |L̃

⌘�
since g̃? is L̃-Lipschitz

�
�(T̃ /⇢)

2
EW


2|W |

⇢

⇣
C � 2|W |L̃

⌘�
since g̃?(T̃)� g̃?(�T̃) � C

=
1

⇢
�(T̃ /⇢)

⇣
CE [|W |]� 2L̃E

⇥
W

2
⇤⌘

=
1

⇢
�(T̃ /⇢)

⇣
C

p
2/⇡

p
1� ⇢2 � 2L̃(1� ⇢

2)
⌘

since W ⇠ N (0, 1� ⇢
2).

Plugging in our definitions of T̃ and L̃ and combining everything,

E
⇥��g(R)� g?(S)

��⇤ � 1

⇢
· �

✓
T + |m2|

s⇢

◆
·

⇣
C

p
2/⇡

p
1� ⇢2 � 2Ls(1� ⇢

2)
⌘
.

Now, recall that ⇢0 satisfies 2Ls
p

1� ⇢20 <
1
2C
p
2/⇡. Then since 1

⇢ � 1 � ⇢0,

E
⇥��g(R)� g?(S)

��⇤ �
p

1� ⇢2 · ⇢0 · �

✓
T + |m2|

s⇢0

◆
·

✓
C

p
2/⇡ � 2Ls

q
1� ⇢20

◆
.

41

Therefore, as long as C0  ⇢0 · �

⇣
T+|m2|

s⇢0

⌘
·

⇣
C
p
2/⇡ � 2Ls

p
1� ⇢20

⌘
, in both cases

(⇢ � ⇢0 and ⇢ < ⇢0), we have proved that E
⇥��g(R)� g?(S)

��⇤ � C0

p
1� ⇢2 in the case

that ⇢ � ⇢0, as desired.

42

	1 Introduction
	1.1 Examples
	1.1.1 Example 1: Mis-specified generalized linear models (GLMs)
	1.1.2 Example 2: Classification with corrupted labels
	1.1.3 Example 3: Classification with positive-unlabeled (PU) data and unknown prevalence

	1.2 Prior work
	1.3 Our contributions

	2 Main results
	2.1 Algorithm
	2.2 Convergence guarantees for fixed design X
	2.2.1 Assumptions
	2.2.2 Convergence guarantee for the estimation of u
	2.2.3 Convergence guarantee for the estimation of g

	2.3 Convergence guarantees with random design X
	2.3.1 Assumptions
	2.3.2 Convergence guarantees

	2.4 Proof of Theorem 1

	3 Experiments
	3.1 Simulation studies
	3.1.1 Performance in estimating u for PU data
	3.1.2 Lower bound exploration

	3.2 Application to rocker protein data

	4 Discussion
	A Additional proofs
	A.1 Proof of Lemma 2
	A.1.1 Supporting lemmas

	A.2 Proof of Lemma 4
	A.2.1 Supporting lemma

	A.3 Proof of Lemma 1
	A.4 Proofs for Proposition 1
	A.5 Proofs for the normal mixture X (Proposition 2)
	A.5.1 Proof of Lemmas 8 and 9
	A.5.2 Supporting lemmas

