
Testing goodness-of-fit and conditional independence
with approximate co-su�cient sampling

Rina Foygel Barber∗ and Lucas Janson†

Abstract

Goodness-of-fit (GoF) testing is ubiquitous in statistics, with direct ties to model

selection, confidence interval construction, conditional independence testing, and mul-

tiple testing, just to name a few applications. While testing the GoF of a simple (point)

null hypothesis provides an analyst great flexibility in the choice of test statistic while

still ensuring validity, most GoF tests for composite null hypotheses are far more con-

strained, as the test statistic must have a tractable distribution over the entire null

model space. A notable exception is co-su�cient sampling (CSS): resampling the data

conditional on a su�cient statistic for the null model guarantees valid GoF testing

using any test statistic the analyst chooses. But CSS testing requires the null model

to have a compact (in an information-theoretic sense) su�cient statistic, which only

holds for a very limited class of models; even for a null model as simple as logistic

regression, CSS testing is powerless. In this paper, we leverage the concept of approxi-
mate su�ciency to generalize CSS testing to essentially any parametric model with an

asymptotically-e�cient estimator; we call our extension “approximate CSS” (aCSS)

testing. We quantify the finite-sample Type I error inflation of aCSS testing and show

that it is vanishing under standard maximum likelihood asymptotics, for any choice of

test statistic. We apply our proposed procedure both theoretically and in simulation

to a number of models of interest to demonstrate its finite-sample Type I error and

power.

Keywords: Goodness-of-fit test, approximate su�ciency, co-su�ciency, conditional ran-
domization test, model-X, conditional independence testing, high-dimensional inference.

1 Introduction

Suppose we observe data X belonging to some sample space X , and would like to test
whether it comes from some parametric null model {P✓ : ✓ 2 ⇥}, where ⇥ ✓ Rd, versus
a more complex (usually higher-dimensional) model. This problem of so-called “goodness-
of-fit” (GoF) testing is one of the most fundamental in statistics, with a vast literature
exhibiting applications and theoretical and methodological development. We pause here to
highlight a few of the many areas of statistics to which GoF testing is directly applicable,
including some problems that are not obviously or commonly associated with GoF.

∗
Department of Statistics, University of Chicago

†
Department of Statistics, Harvard University

1

ar
X

iv
:2

00
7.

09
85

1v
3

 [s
ta

t.M
E]

 1
4

Se
p

20
21

Problem Domain 1 (Standard goodness-of-fit testing). GoF testing is commonly used
to test a postulated model or distributional property, often as a precursor to further sta-
tistical analysis that assumes the postulated model/property to be correct. Such null mod-
els/properties include standard distributional families, nonparametric properties such as sym-
metry or log-concavity, time-series properties such as stationarity, and relational properties
such as independence.

Problem Domain 2 (Model selection). GoF testing can also be used to select a best-fitting
model through simultaneously testing a family of models. For instance, this could be choosing
a sparse model in regression, selecting the number of clusters or principle components in
unsupervised learning, or identifying change points in a time series.

Problem Domain 3 (Confidence interval construction). Suppose the data X is distributed
according to a known model {P�,✓ : (�, ✓) 2 �⇥⇥}, where � ✓ Rm and ⇥ ✓ Rd, and the goal
is to construct a confidence region for � in the presence of the nuisance parameter ✓. If for
any �0, we can construct a GoF test for the null model {P�0,✓ : ✓ 2 ⇥}, then the set of �0 at
which we fail to reject the test constitutes a valid confidence region.

Problem Domain 4 (Conditional independence testing). In many regression and graphical
modeling problems, the primary question of interest is whether a given triple of random
variables (X, Y, Z) satisfies conditional independence, i.e., Y ?? X |Z. If X |Z is distributed
according to a known model {P✓(· |Z) : ✓ 2 ⇥}, then testing conditional independence can be
formulated as a GoF test where {P✓(· |Z) : ✓ 2 ⇥} is the null model for X |Z, Y . (Note that,
when we apply a GoF test to the conditional independence problem in this way, we implicitly
treat Y and Z as fixed, and check for goodness-of-fit of X’s conditional model.)

Problem Domain 5 (Multiple testing). In multiple testing, the goal is to reject a subset
of a fixed family of null hypotheses. When each hypothesis test is a GoF test (i.e., its null
is lower-dimensional than its alternative), testing any intersection of null hypotheses (i.e.,
testing the “global null” for any subset of hypotheses) constitutes a GoF test as well, and
combining such intersection GoF tests through a closed testing procedure [Marcus et al., 1976]
produces a subset to reject that controls the familywise error rate.

The key challenges of any GoF testing problem are to find a test that is valid, in that it
controls the Type I error at a prespecified significance level, and that is powerful, in that it
rejects the null model as often as possible when it does not hold. For parametric null models
(the focus of this paper), there are many existing methods for testing GoF, with canonical
choices including the popular score, likelihood ratio, and Wald tests. The standard approach
for these tests and many others is to prescribe a test statistic (chosen to be powerful under
a given alternative model) and derive a (often asymptotic) null distribution for it. Such
tests require certain regularity conditions on the alternative model (in order to construct a
well-behaved test statistic) and on the null model (in order to establish the validity of the
null distribution for the test statistic) that are generally quite similar to those needed for
the maximum likelihood estimator under both the null and alternative to be asymptotically
normal. While these tests are extremely popular and have been fruitfully applied through
much of the history of statistics to many problems, the regularity assumptions placed on the
alternative distribution in particular limit the ability to fully leverage domain knowledge to

2

maximize the statistical power. To elaborate, consider the following cases which often arise
in practice when applying parametric GoF tests.

• Some prior information is available about the relative plausibility of di↵er-
ent regions of the alternative model. Ideally we would like to incorporate this
prior information into our test statistic in order to maximize power (e.g., through a
test statistic derived from Bayesian inference), but standard GoF tests only provide the
null distribution for a test statistic which is determined by the entire alternative space,
and give little flexibility to incorporate prior knowledge into that test statistic while
still retaining a valid null distribution. An extreme case would be when certain regions
of the alternative are known to be completely implausible, i.e., we would like to remove
them from the alternative model entirely, yet removing them from the model would
violate the regularity conditions required for the alternative model. For example, we
may know that under the alternative some k-dimensional parameter has at most d < k

non-zero entries, but we do not know which ones. Such a sparse alternative model
would violate the usual assumption that the parameter space is convex, forcing one to
ignore the sparsity and instead operate under (and hence derive a test statistic from)
the larger, mostly implausible, k-dimensional alternative model. As we see in the next
scenario, if k is too large, even this route is not feasible.

• The alternative model is high- or even infinite-dimensional. Since standard
GoF tests treat their prescribed test statistics as fixed in the asymptotic regime in
which they prove validity, those test statistics can only be designed to be powerful
against fixed- (and finite-) dimensional alternatives. If we have a high-dimensional
alternative (i.e., whose dimension is not assumed negligible relative to the sample
size, which includes any nonparametric alternative), we would ideally like to choose
a test statistic which changes with the sample size to be powerful against a sequence
of alternatives which changes as the sample size grows asymptotically. But standard
GoF tests cannot accommodate such a choice, forcing one to instead operate under
a fixed-dimensional alternative that may represent a vanishing fraction of plausible
alternatives, or a very coarse approximation to the space of realistic alternatives.

The common thread in these cases is that the test statistic that would be most powerful to
use given the domain knowledge at hand is not accompanied by theoretical guarantees or
any known (exact or approximate) null distribution. In our simulations in Section 4, we will
study some examples where standard tests can be applied (and will compare aCSS to the
score test for those examples), and others where, as in the scenarios above, standard tests
cannot be applied and thus a more flexible method like aCSS is necessary.

However, constructing a valid test around an arbitrary test statistic T (X) is possible
only in very limited settings. In particular, if ⇥ is simple, i.e., it contains only a single
point so that there are no unknown/nuisance parameters in the null model, then any test
statistic T (X)’s null distribution can be arbitrarily-well approximated computationally by
repeatedly independently sampling copies eX ofX from the null distribution and recomputing
the same test statistic on the copies. To be concrete, if the statistic T (X) is chosen such that
larger (positive) values are seen as evidence against the null, we can draw M i.i.d. copies

3

eX(1)
, . . . , eX(M) from the null distribution, and define a (discretized) p-value

pval = pval
T
(X, eX(1)

, . . . , eX(M)) =
1

M + 1

1 +

MX

m=1

n
T (eX(m)) � T (X)

o!
, (1.1)

which is guaranteed to satisfy P (pval  ↵)  ↵ under the null, for any predefined rejection
level ↵.

More generally, when ⇥ is not a singleton set (i.e., the null hypothesis is composite), in
principle we can still construct a p-value of the form (1.1) as long as we are able to sample a
set of copies eX(1)

, . . . , eX(M) of X so that X, eX(1)
, . . . , eX(M) are exchangeable under the null.

We emphasize that this exchangeability property continues to enable the analyst to use any
desired test statistic T (X), as the validity of the p-value is una↵ected. Of course, to achieve
high power, we should aim to choose a function T (X) that is likely to be large under the
alternative hypothesis. Note that we absorb everything that is not X into the definition of
the function T , e.g., for testing conditional independenceX ?? Y |Z as in Problem Domain 4,
T can depend arbitrarily on Y and Z as well (since, after conditioning on Y and Z, they are
treated as fixed and nonrandom).

To summarize, we have seen that

The problem of GoF testing with arbitrary test statistics can be reduced to
one of sampling copies of X that are exchangeable under the null.

These copies eX(1)
, . . . , eX(M) then act as a “control group” for the real data X, and we

can compare the real statistic T (X) against the “control group” values T (eX(m)) to test the
null. Of course, aside from the setting of a simple null, sampling exchangeable copies is not
necessarily a straightforward task. In particular, in order to have power, we must ensure
our null-exchangeable copies do not remain exchangeable under the alternative; for instance
sampling eX(1) = · · · = eX(M) = X trivially satisfies the exchangeability property under the
null, but also under any alternative, and hence clearly equation (1.1) produces a useless
p-value of 1 with probability 1 (for any choice of T).

One way to sample exchangeable copies when ⇥ is composite is by conditioning on a
su�cient statistic S(X) for ✓, since then by definition the conditional distribution X |S(X)
does not depend on ✓. By drawing the copies eX(m) from this conditional distribution, we
achieve exchangeability of X, eX(1)

, . . . , eX(M) (more concretely, X and its copies are i.i.d. con-
ditional on S(X)). This approach is known as co-su�cient sampling (CSS) [Stephens, 2012].
However, this approach is viable in only a limited range of settings. In particular, many
null models do not admit a compact (in an information-theoretic sense) su�cient statistic,
meaning any su�cient statistic for the null model will remain su�cient for many alternative
models as well. In such cases, which we term degenerate, CSS testing runs into the problem
described at the end of the preceding paragraph—the copies eX(m) will still be exchangeable
with X under the alternative, resulting in a powerless test. This situation arises quite often,
and we will give a number of common examples shortly in Section 1.2.

As an alternative approach, we might consider the parametric bootstrap [Efron and Tib-
shirani, 1994], where after estimating the true parameter ✓ via some estimator b✓ (e.g., the
maximum likelihood estimate), the copies eX(1)

, . . . , eX(M) are sampled from Pb✓. While this

4

Parametric bootstrap

p-value

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
20
0

40
0

60
0

80
0

Co-sufficient sampling

p-value

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
10
0

30
0

50
0

Figure 1: Comparison of the parametric bootstrap versus CSS, in a Gaussian linear model
example where the null hypothesis is true. We can see that CSS yields uniformly distributed
p-values, but the parametric bootstrap does not, resulting in an inflated Type I error rate.
(See Section 1 for details.)

widely-used approach often works well in practice, the parametric bootstrap does not create
exchangeable copies of the data, and is not guaranteed to achieve the desired Type I error
level when paired with an arbitrary test statistic T—in fact, it may even lead to substantial
error inflation. To take a simple example, consider a Gaussian linear regression setting where
P✓ is given by the distribution X ⇠ N (✓ ·Z, Id), where Z 2 Rn is a fixed covariate. Suppose
we are interested in testing whether X in fact has more dependence with another covariate
Y 2 Rn, and so our test statistic is given by

T (X) =
(X>

Y)2

(X>Z)2
.

Figure 1 compares the parametric bootstrap against co-su�cient sampling (full details for
this simulation are given in Appendix E). The results show that CSS results in a uniform
distribution of p-values, while the parametric bootstrap results in a highly non-uniform
distribution, and could lead to substantially inflated Type I error. Therefore, we would
instead prefer to extend the CSS framework in order to enjoy theoretically guaranteed error
control.

1.1 Our contribution

In this paper, we demonstrate how to escape the problem of zero power in the degenerate
setting, by introducing a new generalization of CSS testing that conditions only on an ap-
proximately su�cient statistic [Le Cam, 1960, Van der Vaart, 2000, Le Cam, 2012]. We

5

call such a test an “approximate co-su�cient sampling” test. This paper makes four main
contributions:

1. We propose approximate co-su�cient sampling (aCSS), which samples approximately
exchangeable copies of the data by conditioning on an approximately su�cient statistic
and plugging in a consistent estimator for the unknown parameter.

2. Under weak conditions closely resembling those for standard maximum likelihood
asymptotics, we provide a finite-sample upper-bound for the total variation (TV) dis-
tance from exchangeability of our aCSS samples.

3. We show that the aforementioned TV bound translates directly to a bound on the
Type I error inflation of an aCSS test that holds uniformly over the choice of test
statistic, and we apply this bound to a number of important models to prove the
inflation vanishes asymptotically as the sample size approaches infinity.

4. We provide general algorithms for aCSS and demonstrate their use in a series of sim-
ulations that exhibit the validity and power of aCSS testing.

1.2 Applications

The problem of zero power for CSS testing arises surprisingly often—while we call such
settings “degenerate”, they are not extreme cases but rather constitute a large portion of
common statistical models of interest. To illustrate this, we will consider the following
settings in which CSS testing is powerless, while aCSS testing can still be quite powerful
and remains asymptotically valid for any test statistic. (Our theoretical results later on will
quantify its finite-sample Type I error).

Model Class 1 (Data with associated covariates). Suppose X = (X1, . . . , Xn) where the
Xi’s are independent, and each Xi has an associated covariate Zi (i.e., the null distribution of
each Xi depends on this Zi). In this setting, the distribution of X (i.e., the joint distribution
of X1, . . . , Xn) will often have the data X itself as a minimal su�cient statistic. This is
even true when Xi |Zi follows logistic regression: for generic values of the Zi’s (e.g., if each
Zi 2 Rd is drawn from some continuous distribution), the minimal su�cient statistic is
equivalent to X itself because the value of Z>

X 2 Rd determines X 2 {0, 1}n uniquely, and
hence is su�cient under any alternative as well (and hence any CSS test must be powerless).
This problem class applies not just for GoF testing for conditional models for X (including
the logistic model), but also for conditional independence testing as described in Problem
Domain 4.

Model Class 2 (Curved exponential families). Consider a null model that is a curved
exponential family, i.e., a full-rank k-parameter exponential family with an added constraint
that reduces the dimension of the parameter space to some d < k and is nonlinear in the
canonical parameters. In this setting, the minimal su�cient statistic is generally the same as
that for the unconstrained (full-rank) exponential family. This means that any CSS test must
be powerless against any alternative that lies in the larger exponential family, for example,
if we want to test whether the parameter constraint holds or not. A classical example is

6

the Behrens–Fisher problem of testing equality of (unknown) means between independent
normal samples having di↵erent (unknown) variances: any CSS test will be powerless for
every alternative pair of means and variances. The same issue arises in, e.g., the study
of contingency tables (where the canonical family is multinomial and the null hypothesis
imposes a constraint on its probabilities), and spatial and time-series models (where the
null hypothesis imposes a spatial or temporal structure on the canonical parameters of an
exponential family).

Model Class 3 (Heavy-tailed models). Many heavy-tailed models are not exponential fami-
lies and do not admit compact su�cient statistics. For instance, the Cauchy location family’s
minimal su�cient statistic is given by the order statistics. Any CSS test of this null is there-
fore powerless against any i.i.d. alternative, since the order statistics are su�cient for this
alternative as well. As another example, the Student’s t scale family’s minimal su�cient
statistic is the order statistics of the absolute values, so any CSS test for it must be powerless
against any i.i.d. symmetrical alternative.

Model Class 4 (Models with latent variables). Many popular models capture domain-
specific properties through latent variables. In such models, if we condition on the latent
variable, then the data often comes from a well-behaved distribution with compact minimal
su�cient statistic. However, when the latent variable is unobserved, we are forced to per-
form inference unconditionally, and the unconditional model rarely has a compact minimal
su�cient statistic. Examples include hidden Markov models, mixture distributions, data with
missing values, errors-in-variables models, and factor models.

Later on in Section 4, we will return to Model Classes 1, 2, and 3 and give concrete examples
of models where aCSS can be applied. We leave Model Class 4 for future work.

1.3 Related work

GoF testing dates back to the very early days of the field of statistics, and the literature
even on just parametric GoF is far too numerous to cite. Instead, we focus our literature
review on the subfield of CSS testing, which distinguishes itself within the broader field of
parametric GoF testing by guaranteeing Type I error control with any test statistic under
a parametric null model, the potential advantages of which have been described earlier in
this section. In fact, some of the most foundational nonparametric tests can be thought of
as CSS tests, including the permutation test (conditions on the order statistics for an i.i.d.
null). The formal idea of a CSS test seems to date back to at least Bartlett [1937], although
the value of su�cient statistics for GoF testing in the presence of nuisance parameters has
also been used in many other ways, e.g., Durbin [1961], Kumar and Pathak [1977], Bell
[1984] decompose the data into a minimal su�cient statistic and an ancillary statistic and
construct a GoF test based on the parameter-free distribution of the ancillary statistic.

CSS testing has gained substantial interest in the last 30 years, though with a focus
on non-degenerate hypothesis testing settings [Agresti, 1992, Engen and Lilleg̊ard, 1997,
Agresti, 2001, O’Reilly and Gracia-Medrano, 2006, Lockhart et al., 2007, 2009, Lindqvist and
Rannestad, 2011, Broniatowski and Caron, 2012, Lockhart, 2012, Stephens, 2012, Lindqvist
and Taraldsen, 2013, Hazra, 2013, Beltrán-Beltrán and O’Reilly, 2019, Santos and Filho,

7

2019, Contreras-Cristán et al., 2019]. Our work di↵ers from the existing work in CSS test-
ing by allowing for degenerate (and non-degenerate) models by conditioning only on an
approximately su�cient statistic. Similar techniques have been used to obtain exact con-
fidence intervals in the presence of nuisance parameters [Lilleg̊ard and Engen, 1999], again
in non-degenerate settings. As an example, Rosenbaum [1984], Kolassa [2003] study con-
ditional independence testing of X ?? Y |Z where X |Z follows a logistic regression model
and Z is discrete; logistic regression is degenerate when Z has a continuous distribution but
non-degenerate when Z is discrete.

For conditional independence testing (Problem Class 4), in the setting where H0 is a
simple null hypothesis (i.e., X |Z has a known distribution), Candès et al. [2018] study pro-
cedures of the form (1.1) under the name “conditional randomization test”; their work also
constructs the model-X knocko↵s framework for simultaneously testing multiple conditional
independence hypotheses (i.e., variable selection in a multivariate regression). This construc-
tion provides an exact “swap-exchangeability” property that enables variable selection, i.e.,
simultaneous conditional independence testing of many covariates when the multivariate co-
variates X come from a non-degenerate model, and leads to exact false discovery rate control
[Barber and Candès, 2015]. Generalizing to the setting where H0 is not simple, Huang and
Janson [2020+] construct model-X knocko↵s [Candès et al., 2018] conditional on a su�cient
statistic, retaining the exact “swap-exchangeability” property and exact false discovery rate
control; we can think of this as a knocko↵s-analogue of CSS testing.

Moving beyond CSS testing, we are only aware of a few works which take a similarly
approximate approach to that of the present paper. First, the most related to our approach
is the work of Lilleg̊ard [2001], where they mention the possibility of an aCSS-type test to
solve the Behrens–Fisher problem (i.e., testing for a di↵erence of means between two Gaus-
sian samples, described above in Model Class 2), but conclude that such an approach would
be computationally intractable; they instead propose a heuristic sampling procedure which
they support with simulations but no theory. Second, Kalbfleisch and Sprott [1970], Cox and
Reid [1987] focus on parametric likelihood-based testing in the presence of nuisance param-
eters, but study the case where the nuisance parameters are orthogonal or asymptotically
orthogonal to the parameter of interest. Finally, approximate Bayesian computation, also
known as likelihood-free inference, conducts Bayesian inference conditional on a compact
non-su�cient statistic, but for computational, as opposed to statistical reasons, since in the
Bayesian framework there is no statistical downside to conditioning on as much as possible
(see, e.g., Kousathanas et al. [2016] for such a paper that explicitly addresses the role of
su�ciency).

1.4 Notation

We will write k ·k to denote the usual Euclidean (`2) norm on vectors, and to denote the
operator norm (i.e., spectral norm) on matrices. For a matrix M , �max(M) denotes its
largest eigenvalue in the positive direction. We write (x)+ to denote max{x, 0}. We will
write E✓ and P✓ to denote expectation or probability taken with respect to X ⇠ P✓, where
the parametric family {P✓ : ✓ 2 ⇥} is our null model.

8

2 Method

The goal of approximate co-su�cient sampling is to generate copies eX(1)
, . . . , eX(M) of the

observed data X such that if the null hypothesis

H0 : X ⇠ P✓ for some ✓ 2 ⇥ (2.1)

is true, then the random variables X, eX(1)
, . . . , eX(M) are approximately exchangeable. Re-

calling the p-value defined in (1.1), we can then test the null hypothesis using any desired
test statistic T (X). The choice of statistic is completely unconstrained, and this flexibility
enables us to design very powerful tests in many settings. Note that, although this flexi-
bility allows us to design any form of function T , T itself (as a function, i.e., before seeing
its argument) cannot depend on X. For example, if T (X) uses X to tune parameters in
a neural network and then computes a statistic of that neural network applied to X, then
T (eX(m)) cannot compute a statistic on the same (X-tuned) neural network applied to eX(m),
but must use eX(m) to tune the parameters of a new neural network and compute a statistic
of that (eX(m)-tuned) neural network applied to eX(m).

To quantify our goal of generating approximately exchangeable copies of the data, we
begin by defining a “distance to exchangeability”:

Definition 1. For any integer k � 1 and any set of random variables A1, . . . , Ak with a
joint distribution, define

dexch(A1, . . . , Ak) = inf
�
dTV

�
(A1, . . . , Ak), (B1, . . . , Bk)

�
: B1, . . . , Bk are exchangeable

.

Here dTV denotes the total variation distance, and the infimum is taken over all sets of k
random variables B1, . . . , Bk with an exchangeable joint distribution.

Of course, if A1, . . . , Ak are exchangeable, then dexch(A1, . . . , Ak) = 0. When we say in-
formally that variables A1, . . . , Ak are “approximately exchangeable”, we mean that the
distance to exchangeability is small.

Now we will see how this distance dexch relates to the problem of testing the null hy-
pothesis (2.1) (Berrett et al. [2019] use a similar argument in a permutation test set-
ting). Fix a threshold ↵ 2 [0, 1] and a function T : X ! R (the test statistic). For
any exchangeable random variables (B0, . . . , BM), by definition of exchangeability we have
P (pval

T
(B0, B1, . . . , BM)  ↵)  ↵, and therefore,

P
⇣
pval

T
(X, eX(1)

, . . . , eX(M))  ↵

⌘
 ↵ + dTV

�
(X, eX(1)

, . . . , eX(M)), (B0, B1 . . . , BM)
�
.

Taking an infimum over all exchangeable distributions on (B0, B1 . . . , BM), we have shown
that

P
⇣
pval

T
(X, eX(1)

, . . . , eX(M))  ↵

⌘
 ↵ + dexch(X, eX(1)

, . . . , eX(M))

under the null hypothesis H0.
Therefore, we can see that, if we are able to construct copies of the data such that

dexch(X, eX(1)
, . . . , eX(M)) is small, then we can construct an approximately-valid test of H0

using any desired test statistic T . From this point on, then, our task is to determine how we
can use approximate su�ciency to generate such copies.

9

2.1 Overview

Consider any function S = S(X) of the data, which is su�cient under the null hypothesis
that X ⇠ P✓ for some ✓ 2 ⇥. Let P (· | s) be the conditional distribution of X given S = s

(su�ciency of S(X) ensures that this distribution does not depend on ✓). As described in
Section 1, the co-su�cient sampling (CSS) method operates by drawing copies from this
conditional distribution. That is, the joint distribution of the data and the copies, under the
CSS method, is given by:

8
><

>:

X ⇠ P✓0 ,

S = S(X),
eX(1)

, . . . , eX(M)
| X,S

iid
⇠ P (· |S),

where ✓0 is the unknown true parameter. Clearly, the real and fake data X, eX(1)
, . . . , eX(M)

are i.i.d. conditional on S, and are therefore exchangeable, meaning that the eX(m)’s provide
a valid “control group” for the real data X regardless of the unknown ✓0.

As discussed above, this framework is limited to only certain specific models, since many
common models are “degenerate” (such as the model classes described in Section 1.2), where
any su�cient statistic S = S(X) reveals so much information about X that it leads to
a completely powerless procedure against the alternative hypothesis of interest. We can
instead consider statistics S = S(X) that are not su�cient, but are approximately su�cient,
meaning that the distribution P✓(· |S) is approximately una↵ected by the value of ✓—more
concretely, if we can estimate ✓ with a consistent estimator b✓, then we only need to ensure
that Pb✓(· |S) ⇡ P✓(· |S). In fact, for many settings, maximum likelihood estimation is known
to provide an asymptotically su�cient statistic [Le Cam, 1960, Van der Vaart, 2000, Le Cam,
2012]. Thus, we can take S = S(X) to simply be b✓MLE(X), or more generally, any other
estimator of ✓0 that is asymptotically su�cient.

In this setting, we write P✓0(· | b✓) to denote the conditional distribution of X | b✓ when the
data is distributed as X ⇠ P✓0 and we calculate b✓ = b✓MLE(X). Of course, we cannot draw
the copies from this distribution since ✓0 is unknown, but if b✓ = b✓MLE(X) is approximately
su�cient, then the distribution P✓0(· | b✓) should depend only slightly on ✓0. In particular, we
will use b✓ itself as a plug-in estimate for ✓0, leading to the joint model

8
><

>:

X ⇠ P✓0 ,

b✓ = b✓MLE(X),
eX(1)

, . . . , eX(M)
| X, b✓ iid

⇠ Pb✓(· |
b✓).

These copies form an approximately-valid control group as long as Pb✓(· |
b✓) ⇡ P✓0(· | b✓).

In our aCSS algorithm, we will replace the deterministic step b✓ = b✓(X) with a randomized
estimator (essentially, adding a small random perturbation into the likelihood maximization
problem). Adding noise is beneficial for computational reasons, since the set of x 2 X whose
MLE is exactly equal to b✓MLE(X) may be a challenging set to sample from. For certain
examples, adding noise can also be beneficial from the statistical point of view, as for, e.g.,
the logistic regression setting, described in Model Class 1, where conditioning on the exact

10

MLE, b✓MLE(X), may lead to a zero-power scenario. (We will discuss the role of � further in
Section 3.3 below.) In addition, we will also allow adding a twice-di↵erentiable regularization
function R(✓) to the likelihood maximization problem, for instance R(✓) / k✓k

2 for ridge
regression, which may be beneficial in some applications.

Informally, our proposed aCSS algorithm takes the following form:
8
>>>><

>>>>:

X ⇠ P✓0 ,

W ⇠ N (0, 1

d
Id),

b✓ = b✓(X,W) = argmin
✓2⇥

�
� log f(X; ✓) +R(✓) + �W

>
✓

,

eX(1)
, . . . , eX(M)

| X, b✓ iid
⇠ Pb✓(· |

b✓),

where again P✓0(· | b✓) denotes the conditional distribution ofX | b✓ when the data is distributed
as X ⇠ P✓0 , and Pb✓(· |

b✓) is a plug-in estimate.
However, in many settings the penalized negative log-likelihood may not be strongly

convex, or might even be nonconvex, in which case we will need to modify this procedure—
while it is the case that, in many statistical problems, many tools exist that are likely to find
the (perturbed) MLE with high probability (e.g., by carefully choosing a good initialization
point), we will need to account for the fact that finding the global optimum is not guaranteed.
Furthermore, in order to construct the copies eX(1)

, . . . , eX(M), we are implicitly assuming that
we are able to generate i.i.d. samples from the conditional distribution of X | b✓. In practice,
sampling directly from this density may be impossible, so we may need to turn to techniques
such as Markov Chain Monte Carlo (MCMC), which can introduce dependence between the
samples. Our next task, then, is to develop a more general and rigorous form of this simple
algorithm, so that we can provide a practical method that can be deployed in a broad range
of settings.

2.2 Algorithm for approximate co-su�cient sampling

In this section, we will formally define our aCSS algorithm. Below, we define our noisy
estimator b✓ (Section 2.2.1), calculate the conditional distribution of X | b✓ (Section 2.2.2), and
describe how to sample the copies eX(1)

, . . . , eX(M) from the estimated conditional distribution
(Section 2.2.3).

2.2.1 Sampling the estimator

Recall that the estimator b✓ is intended to be approximately equal to the MLE, even though
it includes a regularization function and a random perturbation into the likelihood maxi-
mization problem. Writing

L(✓; x) = � log f(x; ✓) +R(✓),

consider the optimization problem

argmin
✓2⇥

L(✓;X,W) where L(✓; x, w) = L(✓; x) + �w
>
✓, (2.2)

11

where W ⇠ N (0, 1

d
Id) is independent Gaussian noise, � > 0 determines the noise level of

the random perturbation, and R : ⇥ ! R is a twice-di↵erentiable regularization function.
In order to accommodate the penalized and unpenalized estimators with a single unified
presentation, we can view the unpenalized version as a special case by simply taking R(✓) ⌘
0. (This type of randomly perturbed log-likelihood was previously studied by Tian and
Taylor [2018], with the di↵erent aim of enabling selective inference on a high-dimensional
parameter ✓. In their work, the object of interest is the distribution of b✓, to enable inference
on ✓0, whereas in our setting ✓0 is essentially a nuisance parameter.)

In the general setting where the negative log-likelihood might be nonconvex, the opti-
mization problem (2.2) may be challenging—in particular, in the presence of nonconvexity,
how would we find a global minimizer, and is a global minimizer even guaranteed to exist?
In many settings, any available algorithm would only be able to guarantee that we find a
first-order stationary point to (2.2) (if it even converges at all). To address this, we modify
our procedure to allow b✓ to only usually be a well-behaved local optimum of (2.2). This
enables aCSS to draw on the vast literature on optimizing penalized maximum likelihoods.
Although the random perturbation by W makes (2.2) slightly non-standard for penalized
maximum likelihood, the perturbation is linear in ✓ and hence has no impact on Hessians
or convexity and only adds a fixed, trivially-computable constant vector to the gradient.
Thus, although large linear perturbations can “tip over” an otherwise well-behaved basin
of attraction, our theory will ensure this never happens asymptotically and in practice one
can always choose � small enough to make this astronomically unlikely; see Appendix D.1
for a more detailed discussion. In summary, we expect that any algorithm that empirically-
often (it need not be provably-often) finds a local optimum for the unperturbed penalized
maximum likelihood problem will su�ce with almost no modification to solve (2.2) for the
purposes required by the theory in this paper.

In particular, we will define b✓ to be any measurable function mapping a (data, noise)
pair (x, w) to an estimate, i.e.,

b✓ : X ⇥ Rd
! ⇥,

and we will later assume this map is likely to return a strict second-order stationary point
(SSOSP) of the minimization problem (2.2). Here we say that ✓ is a SSOSP of L(✓; x, w) if
two conditions are satisfied:

• ✓ is a first-order stationary point (FOSP) of L(✓; x, w), meaning that r✓L(✓; x, w) = 0
or equivalently w = �

r✓L(✓;x)
�

.

• The objective function is strictly convex at ✓, i.e., r2

✓
L(✓; x, w) � 0 or equivalently

r
2

✓
L(✓; x) � 0.

We should think of b✓(x, w) as the output of some optimization algorithm, such as gradient
descent, being run to convergence on the minimization problem (2.2).

From this point on, abusing notation, depending on context we may write b✓ to denote the
map b✓ : X ⇥Rd

! ⇥, or may also write b✓ to denote b✓(X,W), the random variable obtained
by applying this map to the data.

12

2.2.2 Calculating the distribution conditioned on the estimator

Our next step is to calculate the conditional distribution of X | b✓, where b✓ = b✓(X,W) for
random Gaussian noise W ⇠ N (0, 1

d
Id). As it turns out, it is generally not possible to do

this exactly—in the rare degenerate case where b✓(X,W) may fail to find a SSOSP of the
optimization problem (2.2), we do not know the distribution of b✓ |X and therefore cannot
calculate the distribution of X | b✓. We will avoid this degeneracy by conditioning on the
event that b✓(X,W) returns a SSOSP.

First, we assume some standard conditions on the parametric family, and a di↵erentia-
bility condition on the model and the regularization function (we will also assume implicitly
that all the functions defined so far, namely, b✓, p, L and its derivatives, are measurable with
respect to ⌫X ⇥ Leb or ⌫X or Leb, as appropriate):

Assumption 1 (Regularity conditions). The family {P✓ : ✓ 2 ⇥} and regularization function
R(✓) satisfy:

• ⇥ ✓ Rd is a convex and open subset;

• For each ✓ 2 ⇥, P✓ has density f(x; ✓) > 0 with respect to the base measure ⌫X ;

• For each x 2 X , the function ✓ 7! L(✓; x) = � log f(x; ✓) +R(✓) is continuously twice
di↵erentiable.

We are now ready to calculate the conditional distribution of X | b✓.

Lemma 1. Suppose Assumption 1 holds. Fix any ✓0 2 ⇥, and let (X, b✓) be drawn from the
joint model 8

><

>:

X ⇠ P✓0 ,

W ⇠ N (0, 1

d
Id),

b✓ = b✓(X,W).

(2.3)

Suppose the event that b✓ is a SSOSP of L(✓;X,W) has positive probability.
Then, conditional on this event, the conditional distribution of X | b✓ has density

p✓0(· | b✓) / f(x; ✓0) · exp

(
�
kr✓L(b✓; x)k2

2�2/d

)
· det

⇣
r

2

✓
L(b✓; x)

⌘
· x2Xb✓

(2.4)

with respect to the base measure ⌫X , where

X✓ =
n
x 2 X : for some w 2 Rd, ✓ = b✓(x, w) is a SSOSP of L(✓; x, w)

o
. (2.5)

The proof of this lemma is given in Appendix A.2. For intuition, we can consider the terms
appearing in the calculation (2.4): the first term f(x; ✓0) expresses the original distribution
of X (before conditioning), the second term exp{. . . } comes from the density of the multi-
variate normal distribution of W , the third term det(. . .) arises from a change-of-variables
calculation when we move from the joint distribution of (X,W) to that of (X, b✓), and the

13

final term x2Xb✓
handles potential technical issues such as failure to find a SSOSP. In partic-

ular, the form of the second term is due to our choice of the multivariate normal distribution
for the noise W ; if we instead chose a di↵erent noise distribution, the results of this lemma
would still hold if we make the appropriate changes to this second term (and the method
would yield the same types of theoretical results as long as the distribution of W is contin-
uous, supported everywhere on Rd, and has similar concentration properties for kWk). In
this work, we choose a multivariate normal distribution since the outcome of the procedure
will therefore be invariant to rotations of the parameter space ⇥; in settings where the choice
of the basis for ⇥ is meaningful (e.g., we expect sparsity), it may be interesting to instead
consider a non-rotationally-invariant noise distribution.

2.2.3 Sampling the copies

We next need to specify how to sample the copies eX(1)
, . . . , eX(M). Below we describe several

di↵erent approaches—which one we use will depend on the computational complexity of the
problem at hand.

The i.i.d. sampling case In order to construct copies eX(1)
, . . . , eX(M) that are exchange-

able with the data X, we would like to sample the copies eX(1)
, . . . , eX(M) i.i.d. from the

density p✓0(· | b✓), which by Lemma 1 specifies the exact conditional distribution of X | b✓.
Since ✓0 is unknown we will use b✓ as a plug-in estimator. Our procedure is the following:
after observing the data X,

8
><

>:

Draw W ⇠ N (0, 1

d
Id) and define b✓ = b✓(X,W).

If b✓ is a SSOSP of L(✓;X,W), then draw eX(1)
, . . . , eX(M) iid

⇠ pb✓(· |
b✓),

otherwise return eX(1) = . . . eX(M) = X.

(2.6)

Here our estimated density for the conditional distribution of X | b✓ is given by

pb✓(x |
b✓) / f(x; b✓) · exp

(
�
kr✓L(b✓; x)k2

2�2/d

)
· det

⇣
r

2

✓
L(b✓; x)

⌘
· x2Xb✓

(2.7)

with respect to the base measure ⌫X . (Lemma 4, in Appendix B.3, will verify that this
expression indeed defines a valid density.)

Of course, in order to implement the sampling algorithm given in (2.6), we are implicitly
assuming that it is computationally feasible to generate i.i.d. samples from pb✓(·|

b✓). To avoid
making this assumption, we next consider a more general framework.

The MCMC sampling case In the general case where sampling directly from pb✓(· |
b✓)

may not be possible, we can instead use MCMC or any other strategy that ensures ex-
changeability. To be concrete, we will consider two schemes from Besag and Cli↵ord [1989]
for constructing the copies with MCMC sampling. Given b✓, let ⇧(·; x) be any collection
of transition distributions, such that the density pb✓(· |

b✓) defines a stationary distribution.
Assume that ⇧ defines a reversible Markov chain. Given ⇧, we define two di↵erent schemes
for generating the copies. (See Figure 2 for an illustration of these schemes.)

14

X eX⇤

eX(1)

eX(2)

eX(3)

. . .

eX(M�2)

eX(M�1)

eX(M)

latent hub

eX(2) X eX(1) . . . eX(M) eX(3)

Random permutation of M + 1 positions

Figure 2: Left: the hub-and-spoke sampler. Right: the permuted serial sampler. In both
diagrams, each thick black line represents running the reversible Markov chain for L steps.

• Hub-and-spoke sampler. Given X and b✓, we sample the copies as follows:

– Initialize at X, and run the Markov chain for L steps to define the “hub” eX⇤.

– Independently for m = 1, . . . ,M , initialize at eX⇤ and run the Markov chain for L
steps to define the “spoke” eX(m).

• Permuted serial sampler. Given X and b✓, we sample the copies as follows:

– Draw a uniform permutation ⇡ on {0, . . . ,M} and find m
⇤
2 {0, . . . ,M} such

that ⇡(m⇤) = 0.

– Initialize at X, and run the Markov chain for Lm⇤ steps, stopping every L-th step
to define the copies eX(⇡(m

⇤�1))
, . . . , eX(⇡(0)).

– Independently, initialize at X, and run the Markov chain for L(M � m
⇤) steps,

stopping every L-th step to define the copies eX(⇡(m
⇤
+1))

, . . . , eX(⇡(M)).

Later on, we will give concrete examples of how to implement these sampling schemes for
specific models.

A unified definition To generalize our various options (i.i.d. sampling, hub-and-spoke
MCMC sampling, and permuted serial MCMC sampling), we will write ePM(·;X, b✓) to denote
the distribution of the collection of copies (eX(1)

, . . . , eX(M)) conditional on X and b✓. For all
three cases, our aCSS procedure for sampling the copies is the following:

8
><

>:

Draw W ⇠ N (0, 1

d
Id) and define b✓ = b✓(X,W).

If b✓ is a SSOSP of L(✓;X,W), then draw (eX(1)
, . . . , eX(M)) ⇠ ePM(·;X, b✓),

otherwise return eX(1) = . . . eX(M) = X.

(2.8)

In the i.i.d. sampling case, ePM(·;X, b✓) is simply equal to sampling from the product den-
sity pb✓(·|

b✓)⇥ · · ·⇥pb✓(·|
b✓), and therefore depends on b✓ but not on X, while for the two MCMC

samplers, there is dependence between the data and the copies even after conditioning on

15

b✓ (although, if the chain length L is su�ciently long, we would expect this dependence to
be weak). Despite this dependence, all three of these sampling schemes satisfy the following
exchangeability condition: for all ✓ 2 ⇥ with ⌫X (X✓) > 0,

If X ⇠ p✓(· | ✓) and (eX(1)
, . . . , eX(M)) | X ⇠ ePM(·;X, ✓), then

the random vector (X, eX(1)
, . . . , eX(M)) is exchangeable.

(2.9)

Note that ePM(·;X, ✓) replaces all instances of b✓ in the definition of ePM(·;X, b✓) with ✓’s.
Of course, it may be of interest to examine other sampling schemes, aside from the three
described above. Our theoretical results below apply to any algorithm of the form (2.8) as
long as the distribution ePM for drawing the copies is chosen to satisfy (2.9).

3 Theoretical results

In this section, we present our main result, proving a bound on the excess Type I error of
any aCSS testing procedure.

3.1 Main result: Type I error bound

Before presenting the theorem, we will need a few more assumptions on the model and on
the noisy estimator b✓. First, we need to assume that b✓ is (typically) an accurate estimator
of the unknown true ✓0, and that b✓ will (typically) return a SSOSP for the optimization
problem (2.2):

Assumption 2. For any ✓0 2 ⇥, the estimator b✓ : X ⇥ Rd
! ⇥ satisfies

P
⇣
kb✓(X,W)� ✓0k  r(✓0), and b✓(X,W) is a SSOSP of L(✓;X,W)

⌘
� 1� �(✓0), (3.1)

where the probability is taken with respect to the distribution (X,W) ⇠ P✓0 ⇥N (0, 1

d
Id).

For many parametric families, the maximum likelihood estimator (or a penalized MLE) is
typically shown to satisfy this type of condition with r(✓0) = eO(n�1/2) (here eO(·) denotes
that the scaling holds up to powers of log n). This assumption has essentially the same flavor,
except that our estimator b✓ is a random perturbation of the penalized MLE. We discuss this
assumption in more detail in Appendix C.

Next, we place some assumptions on the derivatives of the log-likelihood. Let H(✓; x) =
�r

2

✓
log f(x; ✓) and let H(✓) = E✓0 [H(✓;X)] (in particular, H(✓0) is the Fisher information).

Assumption 3. For any ✓0 2 ⇥, the expectation H(✓) exists for all ✓ 2 B(✓0, r(✓0)) \ ⇥,
and furthermore

E✓0

"
sup

✓2B(✓0,r(✓0))\⇥
r(✓0)

2
·
�
�max(H(✓)�H(✓;X))

�
+

#
 "(✓0) (3.2)

and

E✓0

"
exp

(
sup

✓2B(✓0,r(✓0))\⇥
r(✓0)

2
·
�
�max(H(✓;X)�H(✓))

�
+

)#
 e

"(✓0). (3.3)

16

Here r(✓0) is the same constant as appears in Assumption 2 (which, as mentioned above,
will scale as r(✓0) = eO(n�1/2) in many settings). To interpret our assumption, we note that
assumptions of the form

kH(✓;X)�H(✓)k = OP(n
1/2)

are standard for establishing classical results such as asymptotic normality of the MLE; even
with a bound as weak as r(✓0) = o(n�1/4), this type of assumption will immediately imply
that the first bound (3.2) holds. However, this type of condition is not quite su�cient for the
theoretical arguments we need to establish, and we instead need the condition (3.3), which
implies the same rate of convergence but with stronger control of the tails.

With our assumptions in place, we state the main result, which bounds the distance to
exchangeability—and therefore, the Type I error—of any aCSS procedure.

Theorem 1. Suppose Assumptions 1, 2, and 3 all hold. After observing the data X, suppose
we run the aCSS algorithm (2.8), where the distribution ePM is chosen to satisfy (2.9). Then,
if X ⇠ P✓0 for some ✓0 2 ⇥, the copies eX(1)

, . . . , eX(M) are approximately exchangeable with
X, satisfying

dexch(X, eX(1)
, . . . , eX(M))  3� · r(✓0) + �(✓0) + "(✓0).

In particular, this implies that for any predefined test statistic T : X ! R and rejection
threshold ↵ 2 [0, 1], the p-value defined in (1.1) satisfies

P
⇣
pval

T
(X, eX(1)

, . . . , eX(M))  ↵

⌘
 ↵ + 3� · r(✓0) + �(✓0) + "(✓0).

The proof of this theorem is given in Appendix A.1.

3.2 The asymptotic view

The theoretical guarantee given in Theorem 1 is nonasymptotic, but it typically implies
asymptotic control of the Type I error. In particular, in many standard settings where the
observed data arises from an independent sample of size n, the terms r(✓0), �(✓0), and "(✓0)
are all vanishing, and in particular we will expect to see r(✓0) = eO(n�1/2). Thus, if we
choose noise level � ⇣ n

a for some a <
1

2
, this will lead to asymptotic Type I error control,

i.e., P (pval  ↵) = ↵ + o(1).
Furthermore, the Type I error bound in Theorem 1 gives insight into the role of ap-

proximate (or asymptotic) su�ciency in the method— b✓(X,W) is essentially a MLE (as-
suming � = o(n1/2) as before)—this is because the size of the perturbation of the negative
log-likelihood, kr✓L(✓;X,W) � r✓L(✓;X)k = �kWk = o(n1/2), is vanishing relative to
kr✓L(✓0;X)k ⇣ n

1/2. Thus under standard assumptions, b✓(X,W) is asymptotically e�-
cient, and inherits the asymptotic su�ciency properties of the MLE. At a high level, this
means that the distributions p✓0(· | b✓) of X | b✓ and pb✓(· |

b✓) of eX(m)
| b✓ are asymptotically

equal (i.e., the total variation distance between them is vanishing), leading to asymptotic
exchangeability between X and its copies, and consequently an asymptotic Type I error
bound at the nominal level ↵ as shown in Theorem 1.

17

3.3 Choosing �

It may seem odd that we have advocated for � > 0 and yet the Type 1 error bound in our
main result gets worse as � increases. Indeed, increasing � will generally degrade the Type 1
error of aCSS testing due to the fact that, as � is increased, the method moves farther from
conditioning on a su�cient statistic. And in fact, taking the limit as � ! 0 in Theorem
1 gives the tightest possible Type 1 error bound (only Assumption 2 depends on �, and in
general we would expect it to be even more plausible for smaller �). In addition, as discussed
in Section 2.2.1 and in Appendix D.1, increasing � can decrease the probability of finding
an SSOSP for the optimization (2.2), which will not negatively impact the Type 1 error, but
will decrease the power of the test by increasing the probability of returning a p-value of 1.
However, despite these two downsides, there are two critical reasons why it is advantageous,
and arguably necessary, to take � > 0, and this is why we allow for it in Theorem 1.

First, note that if we took � = 0, aCSS would need to sample from a distribution
supported on a level set of the MLE function of X. This level set is a low-dimensional (and
hence measure-zero) subset of X , and thus it is generally computationally intractable to
sample from exactly. There is some work on sampling a random variable conditional on the
value of a function of it (e.g., Diaconis et al. [2013]), but only in very limited settings. Thus
in most applications of aCSS, we are not aware of a computationally tractable approach
that does not take � > 0. Once we accept that � > 0 is computationally necessary, the
choice of its value represents a power-computation trade-o↵ within the MCMC samplers we
propose in this paper. This trade-o↵ is discussed more in Appendix D.2, but essentially as �
approaches zero, it will take increasingly many MCMC steps (and associated computation)
for the sampler to move “away” from the original X towards conditional independence. The
more the sampler can move “away” from X, the higher the power of aCSS testing will tend to
be, since a small p-value is obtained exactly when X stands out among the sampled copies.

Second, for models in which the MLE is su�cient for ✓ as well as for the parameters in a
higher-dimensional supermodel of {P✓ : ✓ 2 ⇥} (e.g., in the logistic regression example the
MLE is equivalent to X itself and thus is su�cient for all the parameters in any model),
taking � = 0 would lead to a completely powerless test for all alternatives in that supermodel.
Exactly how large � needs to be to break this degeneracy will likely need to be worked out
on a case-by-case basis, and we defer a general treatment to future work. However, we see
in Section 4 that for the logistic regression setting, described in Model Class 1, we can easily
achieve high power with a � value that is still su�ciently small to have no visible impact on
the Type 1 error.

4 Examples

To provide further insight into the generality and practicality of aCSS testing, we establish
that the necessary assumptions hold for four specific models. Example 1 (generalized linear
models with canonical parameters) is an example of a regression model containing data with
associated covariates, as discussed in Model Class 1. Example 2 (the Behrens–Fisher prob-
lem) and Example 3 (a Gaussian spatial process) are both examples of curved exponential
families, discussed earlier in Model Class 2. Example 4 (a multivariate t distribution) is a

18

heavy-tailed model, and is thus an instance of Model Class 3.
In each case, we will see that the assumptions of Theorem 1 are satisfied with r(✓0) =

eO(n�1/2), and with vanishing �(✓0) and "(✓0). In particular, choosing a noise level � ⇣ n
a

for any a <
1

2
is su�cient to ensure that the Type I error is asymptotically bounded by

the nominal level ↵. We will then show simulation results for each of the four examples in
Section 4.5 below.

4.1 Canonical generalized linear models (GLMs)

Example 1. We begin with the setting of a generalized linear model (GLM) with canonical
parameters. Consider a logistic regression model with covariates Zi 2 Rd associated with
each Xi 2 R, so that

f(x; ✓) =
nY

i=1

e
Z

>
i ✓

1 + eZ
>
i ✓

!xi

·

✓
1

1 + eZ
>
i ✓

◆1�xi

,

parametrized by ✓ 2 ⇥ = Rd. (We interpret f(x; ✓) as a density with respect to the base
measure ⌫X on X = Rn that places mass 1 on each point x 2 {0, 1}n.) We can rewrite this
in the notation of a generalized linear model (GLM),

f(x; ✓) = exp

(
x
>
Z✓ �

nX

i=1

log(1 + e
Z

>
i ✓)

)
,

where Z 2 Rn⇥d is the matrix with rows Zi. As discussed above, for X ⇠ P✓, the random
vector S(X) = Z

>
X 2 Rd provides a su�cient statistic; however, if the rows Zi are in

general position, then Z
>
X will determine X 2 {0, 1}n uniquely, meaning that X is no

longer random after we condition on S(X) = Z
>
X. In other words, co-su�cient sampling

(CSS) would lead to zero power, and we therefore need to turn to aCSS testing.
More generally, we can consider any canonical GLM, of the form

f(x; ✓) = exp

(
x
>
Z✓ �

nX

i=1

a(Z>
i
✓)

)
,

with respect to some base measure ⌫X = µ ⇥ · · · ⇥ µ on X = Rd, where µ is a measure on
R. The function a is known as the partition function, and is strictly convex on its domain,
which must be an open subset of R. As for logistic regression, Z>

X is a su�cient statistic
for X ⇠ P✓, but in the case of a discrete distribution (e.g., Poisson), CSS will again lead to
zero power and so we should instead consider aCSS.

Suppose that the sample size n tends to infinity, while the parameter ✓0 is held constant
(in particular, this implies that dimension d is held constant—we leave the high-dimensional
setting for future work). For this example, and all the others below, we will consider the
unpenalized version of the method, i.e., R(✓) ⌘ 0. Assume the covariates are entrywise
bounded, i.e., maxi,j kZijk1 is bounded by a constant, and 1

n
Z

>
Z ⌫ �0Id for a positive

constant �0. We treat the covariates as fixed (i.e., the theory holds conditional on the co-
variates). Then, as we will show in Appendix C, for an appropriately-chosen initial estimator
this example satisfies Assumptions 1, 2, and 3 with r(✓0) = eO(n�1/2), �(✓0) = O(n�1), and
"(✓0) = 0.

19

4.2 The Behrens–Fisher problem

Example 2. Next we consider the classical example of the Behrens–Fisher problem. Con-
sider data

X
(0)

1
, . . . , X

(0)

n(0)

iid
⇠ N (µ(0)

, �
(0)), X

(1)

1
, . . . , X

(1)

n(1)

iid
⇠ N (µ(1)

, �
(1)),

with the two samples drawn independently. We are interested in testing the null hypothesis
H0 : µ(0) = µ

(1), and therefore the family of distributions can be parameterized by ✓ =
(µ, �(0), �(1)) 2 ⇥ = R⇥R+ ⇥R+ ✓ R3, yielding a family {P✓ : ✓ 2 ⇥} where P✓ has density

f(x; ✓) = f(x; (µ, �(0), �(1))) =
n
(0)Y

i=1

1p
2⇡�(0)

e
�(X

(0)

i �µ)
2
/2�

(0)

·

n
(1)Y

i=1

1p
2⇡�(1)

e
�(X

(1)

i �µ)
2
/2�

(1)

with respect to the Lebesgue measure on X = Rn
(0)

+n
(1)

.
This problem is an example of a curved exponential family (Problem Domain 2), for

which the larger model is parametrized by (µ(0)
, �

(0)
, µ

(1)
, �

(1))—note that the constraint
µ
(0) = µ

(1) is a nonlinear constraint once we transform to the canonical parameters, which
are given by (�(`))�1

µ
(`), (�(`))�1 for each ` 2 {0, 1}. For this problem, under the null model

(i.e., parametrized by ✓ = (µ, �(0), �(1))), the minimal su�cient statistic is nonetheless four-

dimensional—for example, the sample means and sample standard deviations of {X(0)

i
} and

of {X(1)

i
} form a minimal su�cient statistic. Of course, this statistic is also su�cient for the

larger alternative model (where µ
(0)

6= µ
(1)); once we condition on this su�cient statistic,

the remaining randomness in the data carries no information about the parameters µ(0) and
µ
(1). Therefore, CSS would lead to a completely powerless procedure, and we instead turn

to aCSS. (As mentioned earlier in Section 1.3, Lilleg̊ard [2001] mention the possibility of,
but do not pursue, an aCSS-like procedure for this specific example.)

Suppose that the sample size n tends to infinity, while the parameter ✓0 is held constant

and the ratio max{n(0)
,n

(1)}
min{n(0),n(1)} is bounded by a constant. Then, as we will show in Appendix C,

for an appropriately-chosen initial estimator this example satisfies Assumptions 1, 2, and 3
with r(✓0) ⇣ eO(n�1/2), �(✓0) ⇣ O(n�1), and "(✓0) = eO(n�1).

4.3 A Gaussian spatial process

Example 3. For our next example, we will work in a dependent data setting—unlike the
other three examples, we do not have independent observations. Our model is a Gaussian
spatial process. Suppose that X 2 Rn is distributed according to a multivariate Gaussian,

X ⇠ N (0,⌃✓),

where the covariance matrix ⌃✓ is parametrized by a scalar ✓ 2 R. Specifically, we will
consider a spatial Gaussian process where

(⌃✓)ij = exp {�✓ ·Dij} ,

where (Dij) 2 Rn⇥n is a pairwise distance matrix among n spatial points. In other words,
we can think of the observation Xi as corresponding to a location zi 2 Rk for some ambient

20

dimension k, and the correlation between Xi and Xj is a decaying function of the distance
between locations zi and zj, i.e., Dij = kzi � zjk. We assume that the distances Dij are
known, and the parameter ✓ 2 ⇥ = (0,1) ✓ R is the only unknown. This example, like
Example 2, is an instance of a curved exponential family. In this case, the larger model is
given by X ⇠ N (0,⌦�1), where the inverse covariance ⌦ is the canonical parameter. The
nonlinear constraints introduced by the spatial model take the form

(Dij)
�1 log(⌦�1)ij = (Dk`)

�1 log(⌦�1)kl

for all indices i, j, k, ` (since the expression on each side of this equation should be equal to the
same value ✓). As in Example 4, the minimal su�cient statistic for our curved exponential
null model is the same as that for the larger exponential family—in this case, it is given by the
(uncentered) sample covariance—and therefore CSS would result in a powerless procedure
for testing against any mean-zero multivariate Gaussian alternative.

Now we turn to aCSS for this example. In this setting, the distribution P✓ has density

f(x; ✓) =
1

(2⇡)n/2 det(⌃✓)1/2
e
�x

>
⌃

�1

✓ x/2
,

with respect to the Lebesgue measure on Rn. The negative log-likelihood ✓ 7! � log f(x; ✓)
is therefore nonconvex, due to the nature of the map ✓ 7! ⌃✓.

It is known, however, that in the special case where the locations zi are on a regular
integer lattice, standard results such as asymptotic normality of the MLE can be obtained
[Bachoc, 2014], and so we will work in this setting. Consider the integer grid {z1, . . . , zn} =
{1, . . . , N}

k, where n = N
k. As above, the distances Dij are given by kzi � zjk. Suppose

that the grid size N tends to infinity, while the dimension k and the parameter ✓0 are held
constant. Then, as we will show in Appendix C, for an appropriately-chosen initial estimator
this example satisfies Assumptions 1, 2, and 3 with r(✓0) = eO(n�1/2), �(✓0) = O(n�1), and
"(✓0) = eO(n�1/2).

4.4 The multivariate t distribution with unknown covariance

Example 4. Our last example will demonstrate that our methodology can be applied even
in settings where the data is extremely heavy-tailed—specifically, the multivariate t distribu-
tion. We consider a setting with n i.i.d. draws from a zero-mean multivariate t distribution,

Xi

iid
⇠ t�(0, ✓

�1),

where ✓�1
2 Rk⇥k is an unknown covariance matrix while � > 0 is the known degrees-of-

freedom parameter. (Breaking with standard notation, we will use a lowercase ✓ to denote
a matrix parameter, to agree with our notation throughout this paper.) Our family of
distributions is therefore given by {P✓ : ✓ 2 ⇥}, where ⇥ ✓ Rk⇥k is the set of positive
definite k ⇥ k matrices. We can view ⇥ as a convex open subset of Rd with d = k(k+1)

2
, by

considering the upper triangle of a positive definite matrix ✓. The density is

f(x; ✓) =
nY

i=1

ck,� det(✓)
1/2

�
� + x

>
i
✓xi

�� �+k
2

,

21

with respect to the Lebesgue measure on X = (Rk)n, where ck,� depends only on the dimen-
sion k and the degrees-of-freedom parameter �, and not on the unknown parameter ✓. Unlike
a GLM, we cannot write the log-density log f(x; ✓) in the form (function of x)·(function of ✓).
In fact, we can see that, up to permutation and/or multiplication by �1 of the data points
i = 1, . . . , n, the data X itself is a minimal su�cient statistic for ✓, so there is no su�cient
statistic that would not essentially fully specify the data. Thus for instance, CSS testing
would be powerless against any i.i.d. alternative that is invariant to reflection through the
origin. However, the approximate su�ciency framework is well-suited for this example.

Suppose that the sample size n tends to infinity, while the degrees-of-freedom parameter
� and the unknown matrix parameter ✓0 are held constant (in particular, this implies that
the dimension k is held constant—we leave the high-dimensional setting for future work).
Then, as we will show in Appendix C, for an appropriately-chosen initial estimator this
example satisfies Assumptions 1, 2, and 3 with r(✓0) = eO(n�1/2), �(✓0) = O(n�1), and
"(✓0) = eO(n�1/2).

4.5 Simulations

We now demonstrate the performance of aCSS for each of the four examples described above;
code to reproduce the simulations is available at http://www.stat.uchicago.edu/~rina/
code/aCSS.zip. We will first show two examples in Section 4.5.1 with relatively simple
parametric alternative models, for which competing methods exist; in these examples, we
will see aCSS testing is as powerful as the most powerful established method, namely, the
score test. Then, in Section 4.5.2, we will consider two more complex examples exhibiting
alternative models which elude standard approaches, and for which we are unaware of any
existing test that would be powerful; we will see that aCSS testing can be powerful in such
settings through the choice of a relatively sophisticated test statistic that fully leverages the
particular alternative model.

For both types of examples, we will also see that the aCSS test is empirically valid (the
rejection probability is almost exactly the nominal level ↵ = 0.05 under the null hypothesis)
and that it has only slightly less power than an oracle method—this oracle method is given
extra information about the distribution that reduces the composite null to a simple null,
and computes a p-value (1.1) by applying the same statistic function T as aCSS to M copies
eX(m) drawn independently (unconditionally) from that simple null.

4.5.1 Simulations with a parametric alternative

We use Examples 2 (Behrens–Fisher) and 4 (multivariate t) to demonstrate similar power
between the aCSS test and the score test under parametric alternatives. The results, plotted
in Figure 3, show the aCSS tests have very similar power to both the oracle and score
tests. The simulation setups for the two examples are summarized below; the choice of the
proposal distributions for the MCMC samplers, and chain lengths L, are described in detail
in Appendix D.

Example 2 (Behrens–Fisher) For the Behrens–Fisher example, the alternative model
is as described in Section 4.2 but with (µ(0)

, µ
(1)
, �

(0)
, �

(1)) unconstrained in R⇥R⇥R+⇥R+.

22

http://www.stat.uchicago.edu/~rina/code/aCSS.zip
http://www.stat.uchicago.edu/~rina/code/aCSS.zip

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Behrens−Fisher

µ(1) − µ(0)

Po
we

r

aCSS
oracle
score

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multivariate t

True d.f. − Null d.f.

Po
we

r

aCSS
oracle
score

Figure 3: Power of the aCSS test compared to an unconditional oracle that knows the
(simple) null hypothesis, and compared also to the score test, for the two examples discussed
in Section 4.5.1. The aCSS test controls the Type I error at the nominal 5% level (dotted
line) under the null (represented by 0 on the x-axis in each plot), and has very similar power
to the oracle and score test under the alternatives. Each point represents 500 independent
replications, with the maximum standard error ⇡ 2% and the standard error at the left edge
of each plot (under the null) below 1%.

23

• To generate the data, we take n
(0) = n

(1) = 50, µ(0) = 0, �(0) = 1, �(1) = 2, and
µ
(1)

2 {0, 0.1, 0.2, . . . , 1} (with µ
(1) = 0 corresponding to the case where the null

hypothesis holds).

• The test statistic T (used both for aCSS and for the oracle) is given by the absolute
di↵erence in sample means between the two halves of the data.

• aCSS is run with the hub-and-spoke sampler with parameters �2 = 1 and M = 500.
The oracle method is given all parameter values except for µ(1), so that the null µ(1) = 0
is simple.

Example 4 (multivariate t) For the multivariate t example, the alternative model is as
described in Section 4.4 but with the degrees-of-freedom parameter � unknown and uncon-
strained (aside from being positive).

• To generate the data, we let n = 100, ✓0 =

✓
1 �0.5

�0.5 2

◆
, and � = 2 be the assumed

degrees of freedom under the null hypothesis (“d.f.null”). The distribution of the data
is given by td.f.(0, ✓

�1

0
), where the degrees of freedom “d.f.” is taken from {2, 4, 6, 8, 10}.

Therefore d.f. = 2 represents the case where the null is true, and d.f.�d.f.null measures
the deviation from the null hypothesis.

• The test statistic T (used both for aCSS and for the oracle) is chosen to be the same
as for the score test.

• aCSS is run with the hub-and-spoke sampler with parameters �2 = 1 and M = 100.
The oracle method is given all parameter values except for �, so that the null � = 2 is
simple.

4.5.2 Simulations without a parametric alternative

We use Examples 1 and 3 to demonstrate the power of aCSS testing under more complex
alternative models for which no existing methods (including the score test) are suitable. The
results, plotted in Figure 4, show the aCSS tests have very similar power to the oracle. For
the four examples, the settings of the simulation are as follows. In each case, the choice of
the proposal distribution for the MCMC sampler, and chain length L, are described in detail
in Appendix D.

Example 1 (logistic regression) For the logistic regression example, we use aCSS to
test a conditional independence hypothesis, so there is a response variable Y that, under the
alternative, changes the conditional distribution of X |Z given in Section 4.1. Y is drawn
from a nonparametric model which is well approximated by a single index model, but does
not exactly follow this model.

• To generate the data, we take n = 100, and X |Z follows 5-dimensional logistic re-
gression with coe�cient vector ✓0 = 0.2 · 1. Y ’s conditional distribution is given by:
Y | (Z,X = 0) = f0(g0(Z) + �

>
0
Z) +N (0, 1) and Y | (Z,X = 1) = f1(g1(Z) + �

>
1
Z) +

24

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic Regression

Coefficient on X

Po
we

r

aCSS
oracle

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gaussian Spatial

Anisotropy Parameter

Po
we

r

aCSS
oracle

Figure 4: Power of the aCSS test compared to an unconditional oracle that knows the
(simple) null hypothesis, for the two examples discussed in Section 4.5.1. The aCSS test
controls the Type I error at the nominal 5% level (dotted line) under the null (represented
by 0 on the x-axis in each plot), and has very similar power to the oracle and score test under
the alternatives. Each point represents 500 independent replications, with the maximum
standard error ⇡ 2% and the standard error at the left edge of each plot (under the null)
below 1%.

25

N (0, 1). We choose f0 = f1 = t 7! t+ 0.5t3, g0 = g1 = z 7! 0.5
P

5

j=1
(zj)+, �0 = c · e1,

and �1 = c · e5, where c 2 {0, 0.1, 0.2, . . . , 1} indicates the signal strength (with c = 0
corresponding to the null hypothesis). The nonlinearity of g0 and g1 means that the
single index model does not exactly describe the conditional distribution of Y .

• The test statistic T (used both for aCSS and for the oracle) is computed by estimating
the coe�cient vector on Z in a single index model via sliced inverse regression [Li, 1991]
separately on the data sets {(Yi, Zi) : Xi = 0} and {(Yi, Zi) : Xi = 1}, respectively
(though recall that the single index model does not strictly hold for either data set),
and then computing the angle between these estimated coe�cient vectors.

• aCSS is run with the hub-and-spoke sampler with parameters �2 = 10 and M = 500.
To implement the oracle method in this example, the oracle is given the distribution
of X |Z, i.e., the true coe�cient vector ✓0 for the logistic regression model; under the
null hypothesis, X |Z, Y follows the same distribution as X |Z, and thus the oracle is
given full knowledge of the distribution of X |Z, Y under the null.

Example 3 (Gaussian spatial) For the Gaussian spatial process example, we take a
2-dimensional 10⇥10 integer lattice {1, . . . , 10}2 for the spatial points.

• The distribution of the data is as described in Example 3 with the exception that there
exists a line L bisecting the lattice, and for two points i and j whose positions (zi
and zj, respectively) are on opposite sides of L, instead of their covariance being given
by e

�✓0kzi�zjk, it is instead given by (1 � c)e�✓0kzi�zjk. For instance, the data points
could come from soil samples, and L might be a possible geological ridge reducing the
dependence between points on either side of it. In our experiments, ✓0 = 0.2, L is
horizontal with intercept 5.5 so that 50 of the lattice points lie below it and the other
50 lie above it, and c 2 {0, 0.2, . . . , 1} is an anisotropy parameter, with c = 0 indicating
an isotropic spatial process so that the null hypothesis holds.

• The test statistic T (used both for aCSS and for the oracle) is computed as fol-
lows. We first compute a thresholded kernel matrix � 2 Rn⇥n with entries �i,j =
e
�|Xi�Xj | kzi�zjk=1 and then use � as the kernel matrix for spectral clustering with
two clusters. Denoting the two clusters as S and S

c, the value of T is then computed
as the normalized negative sum of kernel distances between the two groups:

�

1P

i2Sc,j2S[Sc �i,j

+
1P

i2S,j2S[Sc �i,j

!
X

i2S,j2Sc

�i,j.

• aCSS is run with the hub-and-spoke sampler with parameters �2 = 1 and M = 100.
The oracle method is given ✓0, L, and the functional form for ⌃ in terms of c, so that
the null c = 0 is simple.

26

5 Discussion

Approximate co-su�cient sampling o↵ers a new framework for inference on goodness-of-
fit and related problems such as conditional independence testing and inference on target
parameters, under mild assumptions on a composite null model. In this section, we will
first revisit the construction of aCSS to develop a deeper intuition for the ideas behind the
method, and will then examine some open questions and directions that remain.

5.1 The importance of conditioning: comparison to the paramet-
ric bootstrap

Here we return to the construction of the aCSS method, with new insights obtained from
the proof of our main result, Theorem 1. In particular, why is it important to condition on
b✓ when we sample the copies?

In the construction of aCSS, after conditioning on b✓, we sample copies eX(m) that are
approximately exchangeable with X as long as it holds that pb✓(· |

b✓) ⇡ p✓0(· | b✓). This is

because, conditional on b✓, the copies are sampled from the density pb✓(· |
b✓), while the unknown

true null density of X | b✓ is instead p✓0(· | b✓); we simply use b✓ as a plug-in estimator of ✓0 to
define the distribution from which we sample the copies. In our proofs, we saw that aCSS
leads to asymptotically valid tests as long as dTV(p✓0(· | b✓), pb✓(· | b✓)) is vanishing.

It is tempting to ask whether the same idea can be used without conditioning on b✓. That
is, since the true data is distributed as X ⇠ P✓0 under the null, can we plug in b✓ for ✓0
and sample the copies eX(m) from Pb✓? In fact, this non-conditional version of the procedure
is simply recovering the parametric bootstrap—and, as we observed in Section 1, the para-
metric bootstrap may result in inflated Type I error rates in certain settings, depending on
the test statistic T that we use. This is because, in general, it will not be the case that
dTV(P✓0 , Pb✓) is vanishing, even for b✓ chosen to be the MLE, and therefore, if we define the

copies eX(1)
, . . . , eX(M) by sampling (unconditionally) from Pb✓, rather than from the condi-

tional distribution estimate pb✓(· |
b✓), it will generally be the case that, for some adversarially

chosen test statistic T (X), we may have Type I error that exceeds the nominal level ↵ by a
nonvanishing amount.

5.2 Can we condition on less information?

More generally, what if we consider conditioning on a di↵erent statistic S = S(X) (or a
perturbed version S = S(X,W)), which contains strictly less information about the data
X than the (perturbed) MLE b✓? Of course, the above unconditional distribution is simply
the extreme case of this idea, since it conditions on no information at all. Can we choose S

so that it reveals less information about X and thus yields potentially higher power against
the alternative, while still retaining approximate validity of our test? To run such a test,
we would need to sample the copies from the plug-in estimated distribution Pb✓(· |S) rather
than the true conditional null distribution P✓0(· |S) of X |S, and in order for the copies to be
approximately exchangeable with X under the null, we will need this plug-in estimate to be
accurate, i.e., Pb✓(· |S) ⇡ P✓0(· |S)—in other words, S needs to be (approximately) su�cient.

27

As discussed earlier in Section 3.2, the perturbed MLE b✓ is asymptotically su�cient under
standard conditions; since b✓ has the same dimension d as the true parameter ✓0, it is clear
that it is also (asymptotically) a minimal su�cient statistic. Therefore, if we choose to
condition on any other statistic S, if S contains strictly less information about the data X

than b✓, the approximate validity of aCSS would no longer hold.

5.3 Open questions

Given our new framework for inference via approximate co-su�cient sampling, many open
questions remain regarding the properties of this framework, and the settings in which it can
be applied.

1. Power. How does the choice of statistic T interact with the aCSS framework, to o↵er
the best possible power? In particular, might it be the case that the choice of T that
is most powerful under an aCSS test is not the same as the T that is most powerful
for an oracle test (with a known point null hypothesis, i.e., ✓0 known)?

2. Computation. Are there particular algorithms that enable e�cient sampling of the
copies eX(m), or are there statistics T that allow us to calculate T (eX(m)) without needing
to fully observe eX(m)—for example, through leveraging symmetries in the model and
the conditional distribution?

3. Additional models. In addition to the examples described in this paper, can the aCSS
framework be applied to similar problems such as non-canonical generalized linear
models, low-rank regression, or rank-based data? Moving to more challenging settings,
does the aCSS framework extend to latent variable models, errors-in-variables models,
or models with missing data?

4. Broader settings. Can aCSS be applied in a nonparametric setting (perhaps with
constraints on the statistics T allowed)? Is aCSS robust to model misspecification?

5. Relaxing regularity conditions and extending to high dimensions. Can aCSS be applied
in settings where the null model is d-dimensional, but cannot be represented as a
convex and open subset of Rd? For instance, we may have sparsity constraints (with
the parameter space given by all s-sparse vectors in Rp) or rank constraints (with the
parameter space consisting of all matrices with rank at most r in Ra⇥b). It would appear
that any extension of aCSS testing to high dimensions would require incorporating some
such low-dimensional structure, in order to ensure the existence of a non-degenerate
approximately su�cient statistic, as well as a consistent estimator b✓.

A Proofs of main results

Before presenting the proofs of our theoretical results, we first establish some notation that
we will use throughout these proofs. Let

⌦SSOSP =
n
(x, w) 2 X ⇥ Rd : b✓(x, w) is a SSOSP of L(✓; x, w)

o
,

28

and let
 SSOSP = {(x, ✓) 2 X ⇥⇥ : x 2 X✓} ,

where X✓ is defined as in (2.5). The following lemma (proved in Appendix B.1) establishes
a bijection between these sets:

Lemma 2. Under Assumption 1, the map

 : (x, w) 7! (x, b✓(x, w))

defines a bijection between ⌦SSOSP and SSOSP, with inverse

�1 : (x, ✓) 7!

✓
x,�

r✓L(✓; x)

�

◆
.

A.1 Proof of Theorem 1

Define P
⇤
✓0

to be the distribution of (X,W) ⇠ P✓0 ⇥ N (0, 1

d
Id) conditional on the event

(X,W) 2 ⌦SSOSP. (If this event has probability 0 then the theorem holds trivially, so we can
ignore this case.) Consider the joint distribution

Distrib. (a):

8
><

>:

(X,W) ⇠ P
⇤
✓0
,

b✓ = b✓(X,W),
eX(1)

, . . . , eX(M)
|X, b✓ ⇠ ePM(·;X, b✓),

which is clearly equivalent to the aCSS procedure (2.8) if we condition on the event (X,W) 2
⌦SSOSP. On the other hand, on the event that (X,W) 62 ⌦SSOSP, then by definition we set
eX(1) = · · · = eX(M) = X, and so exchangeability can only be violated on the event ⌦SSOSP.
Therefore, we have

dexch(X, eX(1)
, . . . , eX(M))  dexch

�
Distribution of X, eX(1)

, . . . , eX(M) under Distrib. (a)
�
.

(A.1)
(We formalize this intuition in Lemma 3 in Appendix B.2.)

Next, let Q⇤
✓0

be the marginal distribution of b✓(X,W) under (X,W) ⇠ P
⇤
✓0
, and define

Distrib. (b):

8
><

>:

b✓ ⇠ Q
⇤
✓0
,

X | b✓ ⇠ p✓0(· | b✓),
eX(1)

, . . . , eX(M)
|X, b✓ ⇠ ePM(·;X, b✓).

where p✓0(· | b✓) is defined as in Lemma 1. By definition of Q⇤
✓0
, together with Lemma 1, we

can see that the joint distribution of (X, eX(1)
, . . . , eX(M)) under Distrib. (b), is equal to its

joint distribution under Distrib. (a), and therefore

dexch(X, eX(1)
, . . . , eX(M))  dexch

�
Distribution of X, eX(1)

, . . . , eX(M) under Distrib. (b)
�
.

29

Finally, we define another distribution,

Distrib. (c):

8
><

>:

b✓ ⇠ Q
⇤
✓0
,

X | b✓ ⇠ pb✓(· |
b✓),

eX(1)
, . . . , eX(M)

|X, b✓ ⇠ ePM(·;X, b✓).

(As mentioned earlier, Lemma 4 in Appendix B.3 will verify that the density pb✓(· |
b✓) exists

almost surely over b✓.) Since ePM(·;X, ✓) was constructed to satisfy (2.9), it holds that under
Distrib. (c), the random variables (X, eX(1)

, . . . , eX(M)) are exchangeable (in fact, they are
exchangeable conditional on b✓). Therefore, by definition of dexch, we have

dexch
�
Distribution of X, eX(1)

, . . . , eX(M) under Distrib. (b)
�
 dTV

�
Distrib. (b),Distrib. (c)

�
,

and comparing the definitions of Distrib. (b) and Distrib. (c), it is easy to verify that

dTV(Distrib. (b),Distrib. (c)) = EQ
⇤
✓0

h
dTV

�
p✓0(· | b✓), pb✓(· | b✓)

�i
.

Combining everything, we have shown that the aCSS procedure (2.8) satisfies

dexch(X, eX(1)
, . . . , eX(M))  EQ

⇤
✓0

h
dTV

�
p✓0(· | b✓), pb✓(· | b✓)

�i
. (A.2)

We next need to bound this expected total variation.
We begin with the well known expression for total variation distance between two densities

g, h, which is given by dTV(g, h) = Eg

⇣
1� h(X)

g(X)

⌘

+

�
. Therefore,

EQ
⇤
✓0

h
dTV

�
p✓0(· | b✓), pb✓(· | b✓)

�i
= EQ

⇤
✓0

"
E

p✓0
(· | b✓)

"
1�

pb✓(X | b✓)
p✓0(X | b✓)

!

+

##
. (A.3)

Recalling the definitions (2.4) and (2.7) (and noting in particular that these two densities
have the same support by definition), after calculating normalizing constants we can verify
that

pb✓(x |
b✓)

p✓0(x | b✓)
=

f(x;b✓)
f(x;✓0)

E
p✓0

(· | b✓)

h
f(X;b✓)
f(X;✓0)

i . (A.4)

Next we take a Taylor series for the function ✓ 7! log f(X; ✓). For any x, ✓ we can calculate

log

✓
f(x; ✓0)

f(x; ✓)

◆
= (✓0 � ✓)>r✓ log f(x; ✓) +

Z
1

t=0

(1� t) · (✓0 � ✓)>r2

✓
log f(x; ✓t)(✓0 � ✓) dt,

30

where we write ✓t = (1� t)✓0 + t✓. Therefore, for any x, x
0 we have

f(x
0
;✓)

f(x0;✓0)

f(x;✓)

f(x;✓0)

= exp

⇢
log

✓
f(x; ✓0)

f(x; ✓)

◆
� log

✓
f(x0; ✓0)

f(x0; ✓)

◆�

= exp

⇢
� (✓0 � ✓)> (r✓ log f(x

0; ✓)�r✓ log f(x; ✓))

�

Z
1

t=0

(1� t) · (✓0 � ✓)>
�
r

2

✓
log f(x0; ✓t)�r

2

✓
log f(x; ✓t)

�
(✓0 � ✓) dt

�

= exp

⇢
(✓0 � ✓)> (r✓L(✓; x

0)�r✓L(✓; x))

+

Z
1

t=0

(1� t) · (✓0 � ✓)> (H(✓t; x
0)�H(✓t; x)) (✓0 � ✓) dt

�

 exp

⇢
(✓0 � ✓)> (r✓L(✓; x

0)�r✓L(✓; x))

+
1

2
sup
t2[0,1]

(✓0 � ✓)> (H(✓t; x
0)�H(✓t; x)) (✓0 � ✓)

�
,

where the inequality holds since
R

1

t=0
(1 � t) · h(t) dt 

R
1

t=0
(1 � t) dt · sup

t2[0,1] h(t) =
1

2
sup

t2[0,1] h(t) for any function h : R ! R. For any ✓ 2 B(✓0, r(✓0)) \ ⇥, it therefore holds
that, for all x, x0,

f(x
0
;✓)

f(x0;✓0)

f(x;✓)

f(x;✓0)

 exp

⇢
r(✓0) (kr✓L(✓; x

0)k+ kr✓L(✓; x)k)

+
r(✓0)2

2
sup

✓02B(✓0,r(✓0))\⇥
�max (H(✓0; x0)�H(✓0; x))

�
 exp {�1(x, ✓) +�

0
1
(x0

, ✓)} ,

where we define

�1(x, ✓) = r(✓0)kr✓L(✓; x)k+
r(✓0)2

2
sup

✓02B(✓0,r(✓0))\⇥

�
�max(H(✓0)�H(✓0; x))

�
+
,

and

�0
1
(x, ✓) = r(✓0)kr✓L(✓; x)k+

r(✓0)2

2
sup

✓02B(✓0,r(✓0))\⇥

�
�max(H(✓0; x)�H(✓0))

�
+
.

Applying this calculation with x
0 = X, we obtain

f(x;✓)

f(x;✓0)

Ep✓0
(· | ✓)

h
f(X;✓)

f(X;✓0)

i =

Ep✓0

(· | ✓)

"
f(X;✓)

f(X;✓0)

f(x;✓)

f(x;✓0)

#!�1

�
1

Ep✓0
(· | ✓)

⇥
e�

0
1
(X,✓)

⇤
· e�1(x,✓)

31

for all x and for all ✓ 2 ⇥ such that k✓ � ✓0k  r(✓0). Returning to (A.3) and (A.4) above,
and defining Eball to be the event that kb✓ � ✓0k  r(✓0), we therefore have

EQ
⇤
✓0

h
dTV

�
p✓0(· | b✓), pb✓(· | b✓)

�i
= EQ

⇤
✓0

"
E

p✓0
(· | b✓)

"
1�

pb✓(X | b✓)
p✓0(X | b✓)

!

+

##

 PQ
⇤
✓0
(Ec

ball
) + EQ

⇤
✓0

"
E

p✓0
(· | b✓)

"

Eball ·

1�

pb✓(X | b✓)
p✓0(X | b✓)

!

+

##

 PQ
⇤
✓0
(Ec

ball
) + EQ

⇤
✓0

2

4E
p✓0

(· | b✓)

2

41� 1

E
p✓0

(· | b✓)

h
e�

0
1
(X,b✓)

i
· e�1(X,b✓)

3

5

3

5

 PQ
⇤
✓0
(Ec

ball
) + EQ

⇤
✓0

2

4E
p✓0

(· | b✓)

h
�1(X, b✓)

i
+ 1�

1

E
p✓0

(· | b✓)

h
e�

0
1
(X,b✓)

i

3

5 ,

where the last step holds since 1 � ab  (1 � a) + (1 � b)  log(1/a) + (1 � b) for any
a, b 2 (0, 1]. (Note that, in the next-to-last line, the two random variables X appearing in
the denominator are di↵erent—they are sampled independently conditional on b✓ from the
distribution p✓0(· | b✓).)

Next, recall that by Lemma 1 together with the definition of Q⇤
✓0
, the joint distribution

of (X, b✓) in this calculation above (i.e., b✓ ⇠ Q
⇤
✓0

and X | b✓ ⇠ p✓0(· | b✓)), is equivalent to the

joint distribution of (X, b✓(X,W)) when (X,W) ⇠ P
⇤
✓0
. Therefore, our calculation above can

be rewritten as follows (where we also apply Jensen’s inequality to the last term):

EQ
⇤
✓0

h
dTV

�
p✓0(· | b✓), pb✓(· | b✓)

�i
 PP

⇤
✓0
(Ec

ball
)+EP

⇤
✓0

h
�1(X, b✓(X,W))

i
+

0

@1�
1

EP
⇤
✓0

h
e�

0
1
(X,b✓(X,W))

i

1

A .

Next let

�2(x, w) = r(✓0)�kwk+
r(✓0)2

2
sup

✓2B(✓0,r(✓0))\⇥

�
�max(H(✓)�H(✓; x))

�
+
,

and

�0
2
(x, w) = r(✓0)�kwk+

r(✓0)2

2
sup

✓2B(✓0,r(✓0))\⇥

�
�max(H(✓; x)�H(✓))

�
+
,

and observe that �1(x, b✓(x, w)) = �2(x, w) and �0
1
(x, b✓(x, w)) = �0

2
(x, w) for all (x, w) 2

⌦SSOSP, since 0 = r✓L(b✓(x, w); x, w) = r✓L(b✓(x, w); x) + �w for all (x, w) in this set by
definition. Therefore, since (X,W) 2 ⌦SSOSP almost surely under P ⇤

✓0
by definition, we have

EQ
⇤
✓0

h
dTV

�
p✓0(· | b✓), pb✓(· | b✓)

�i
 PP

⇤
✓0
(Ec

ball
) + EP

⇤
✓0
[�2(X,W)] +

1�

1

EP
⇤
✓0

⇥
e�

0
2
(X,W)

⇤
!
.

Now let ESSOSP be the event that (X,W) 2 ⌦SSOSP. Recall that P ⇤
✓0
is the joint distribution of

(X,W) ⇠ P✓0⇥N (0, 1

d
Id) conditional on ESSOSP. Therefore, we can write this as follows where

32

we now take all probabilities and expectations with respect to (X,W) ⇠ P✓0 ⇥N (0, 1

d
Id):

EQ
⇤
✓0

h
dTV

�
p✓0(· | b✓), pb✓(· | b✓)

�i

 P (Ec

ball
| ESSOSP) + E [�2(X,W) | ESSOSP] +

1�

1

E
⇥
e�

0
2
(X,W)

�� ESSOSP

⇤
!


P (Ec

ball
\ ESSOSP) + E [�2(X,W)]

P (ESSOSP)
+

1�

P (ESSOSP)

E
⇥
e�

0
2
(X,W) · ESSOSP

⇤
!


P (Ec

ball
\ ESSOSP) + E [�2(X,W)]

P (ESSOSP)
+

1�

1� P (Ec

SSOSP
)

E
⇥
e�

0
2
(X,W)

⇤
� P (Ec

SSOSP
)

!


P (Ec

ball
\ ESSOSP) + E [�2(X,W)] + logE

⇥
e
�

0
2
(X,W)

⇤

P (ESSOSP)
,

where the next-to-last step holds since �0
2
(X,W) � 0 by definition, and the last step holds

since 1� 1�a

b�a


1�1/b

1�a


log(b)

1�a
for all a 2 [0, 1) and b � 1. Finally, we apply our assumptions.

By Assumption 2, we have P (Eball \ ESSOSP) � 1� �(✓0), and so

P (Ec

ball
\ ESSOSP)  �(✓0)� P (Ec

SSOSP
) .

Next,

E [�2(X,W)] = E [r(✓0)�kWk] + E
"
r(✓0)2

2
sup

✓2B(✓0,r(✓0))\⇥

�
�max(H(✓)�H(✓;X))

�
+

#


1

2
logE

⇥
e
2r(✓0)�kWk⇤+ "(✓0)

2
,

where the last step holds by Jensen’s inequality for the first term and by the bound (3.2) in
Assumption 3 for the second term. And, by Cauchy–Schwarz,

logE
h
e
�

0
2
(X,W)

i


1

2
logE

⇥
e
2r(✓0)�kWk⇤+ 1

2
logE


e
r(✓0)

2
sup✓2B(✓0,r(✓0))\⇥

�
�max(H(✓;X)�H(✓))

�
+

�


1

2
logE

⇥
e
2r(✓0)�kWk⇤+ "(✓0)

2
,

where the last step holds by the bound (3.3) in Assumption 3. Finally, since W ⇠ N (0, 1

d
Id)

we know that E
⇥
e
tkWk⇤

 e
t+t

2
/2d for any t > 0 (see, e.g., [Boucheron et al., 2013, Theorem

5.5]). Therefore,

logE
⇥
e
2r(✓0)�kWk⇤

 2� · r(✓0) +
2�2

· r(✓0)2

d
 3� · r(✓0),

where the last step holds since d � 1 and we can assume 2� · r(✓0)  1 (as otherwise, the
result of the theorem holds trivially). Combining everything, we have

EQ
⇤
✓0

h
dTV

�
p✓0(· | b✓), pb✓(· | b✓)

�i


3� · r(✓0) + �(✓0) + "(✓0)� P (Ec

SSOSP
)

1� P (Ec

SSOSP
)

.

33

Since total variation distance is bounded by 1, trivially we can relax this to

EQ
⇤
✓0

h
dTV

�
p✓0(· | b✓), pb✓(· | b✓)

�i
 3� · r(✓0) + �(✓0) + "(✓0).

Returning to (A.2), we see that the aCSS procedure (2.8) satisfies

dexch(X, eX(1)
, . . . , eX(M))  3� · r(✓0) + �(✓0) + "(✓0),

as desired.

A.2 Proof of Lemma 1

Consider the joint distribution (X,W) ⇠ P✓0 ⇥ N (0, 1

d
Id) conditioned on the event that

(X,W) 2 ⌦SSOSP, which is assumed to occur with positive probability. The joint density of
(X,W), after conditioning on this event, is therefore proportional to the function

g✓0(x, w) = f(x; ✓0) · exp
�
�

d

2
kwk

2

· (x,w)2⌦SSOSP

, (A.5)

with respect to the measure ⌫X ⇥ Leb. We will consider the induced joint distribution of
(X, b✓(X,W)), and will calculate its joint density.

Define and �1 as in Lemma 2. Fix any measurable subset A ✓ SSOSP. Then, writing

�1(A) = {(x, w) 2 ⌦SSOSP : (x, w) 2 A} ✓ ⌦SSOSP,

P
⇣
(X, b✓(X,W)) 2 A

⌘
= P

�
(X,W) 2

�1(A)
�
=

R
 �1(A)

g✓0(x, w) d⌫X (x)dwR
X⇥Rd g✓0(x0, w0) d⌫X (x0)dw0 ,

where the probability is taken with respect to (X,W) ⇠ P✓0 ⇥N (0, 1

d
Id) conditioned on the

event that (X,W) 2 ⌦SSOSP. (Note that, since g✓0 is proportional to a density on (X,W)
with respect to ⌫X ⇥ Leb, this implies that the denominator

R
X⇥Rd g✓0(x

0
, w

0) d⌫X (x0)dw0 in
the last expression above must be finite and positive.)

From this point on, the result essentially follows from a change-of-variables calculation,
under the transformation ✓ = b✓(x, w). However, with our weak assumptions, we cannot
assume standard conditions (such as, e.g., the support of b✓ |X being an open subset of
Rd—it may even be the case that this set does not contain any open subset), so we will
need to be careful. Fixing any x 2 X , a change-of-variables calculation, proved formally in
Appendix B.4 below, establishes that

Z

⇥

exp
�
�

d

2�2kr✓L(✓; x)k
2

· det(r2

✓
L(✓; x)) · (x,✓)2A\ SSOSP

d✓

= �
d

Z

Rd

exp
n
�

d

2�2kr✓L(b✓(x, w); x)k2
o
·

(x,b✓(x,w))2A · (x,w)2⌦SSOSP
dw (A.6)

= �
d

Z

Rd

exp
�
�

d

2
kwk

2

·

(x,b✓(x,w))2A · (x,w)2⌦SSOSP
dw

= �
d

Z

Rd

exp
�
�

d

2
kwk

2

· (x,w)2 �1(A)\⌦SSOSP

dw, (A.7)

34

where the second step uses the fact that w = �
r✓L(b✓(x,w);x)

�
for any (x, w) 2 ⌦SSOSP by the

SSOSP conditions, and the last step applies the definition of as in Lemma 2. Now define
the function

h✓0(x, ✓) :=
f(x; ✓0) exp

�
�

d

2�2kr✓L(✓; x)k2

· det(r2

✓
L(✓; x)) · x2X✓

�d
R
X⇥Rd g✓0(x0, w0) d⌫X (x0)dw0

on (x, ✓) 2 X ⇥⇥. We then have

P
⇣
(X, b✓(X,W)) 2 A

⌘
=

R
 �1(A)

g✓0(x, w) d⌫X (x)dwR
X⇥Rd g✓0(x0, w0) d⌫X (x0)dw0

=

R
X
R
Rd f(x; ✓0) · exp

�
�

d

2
kwk

2

· (x,w)2 �1(A)\⌦SSOSP

dw d⌫X (x)R
X⇥Rd g✓0(x0, w0) d⌫X (x0)dw0 by (A.5)

=

R
X f(x; ✓0)

R
⇥
exp

�
�

d

2�2kr✓L(✓; x)k2

· det(r2

✓
L(✓; x)) · (x,✓)2A\ SSOSP

d✓ d⌫X (x)

�d
R
X⇥Rd g✓0(x0, w0) d⌫X (x0)dw0 by (A.7)

=

Z

A

h✓0(x, ✓) d⌫X (x) d✓,

where the last step holds since x2X✓
= (x,✓)2 SSOSP

for all (x, ✓), by definition of SSOSP.

Therefore, this calculation establishes that, conditional on the event that b✓(X,W) is a SSOSP
of L(✓;X,W), the joint distribution of (X, b✓(X,W)) has density h✓0(x, ✓) with respect to
the base measure ⌫X ⇥ Leb.

Finally, since h✓0(x, ✓) is the joint density of (X, b✓) = (X, b✓(X,W)), we therefore see that
X | b✓ has conditional density equal to

h✓0(x, b✓)R
x0 h✓0(x0, b✓) d⌫X (x0)

/ f(x; ✓0) exp
n
�

d

2�2kr✓L(b✓; x)k2
o
· det(r2

✓
L(b✓; x)) · x2Xb✓

,

which verifies the desired expression (2.4).

B Additional proofs

B.1 Proof of Lemma 2

First we check that is injective on ⌦SSOSP, which holds since for any (x, ✓), if (x0
, w) =

(x, ✓) then we must have x = x
0 trivially and we must have w = �

r✓L(✓;x)
�

by definition of
the SSOSP conditions. This establishes that is injective and that the inverse function (on

the image of) is given by �1(x, ✓) =
⇣
x,�

r✓L(✓;x)
�

⌘
as claimed above.

Now we verify that SSOSP is the image of . Fix any (x, ✓) 2 X ⇥ ⇥. First, suppose
(x, ✓) 2 (⌦SSOSP), i.e., we have ✓ = b✓(x, w) for some w such that (x, w) 2 ⌦SSOSP. Then by
definition of ⌦SSOSP, ✓ is a SSOSP of L(✓; x, w), and so x 2 X✓ and therefore (x, ✓) 2 SSOSP.
Conversely suppose that (x, ✓) 2 SSOSP. Then by definition, x 2 X✓ and so there exists
some w such that ✓ = b✓(x, w) and ✓ is a SSOSP of L(✓; x, w). Therefore, for this choice of
w, we have (x, w) 2 ⌦SSOSP and so (x, ✓) = (x, w) 2 (⌦SSOSP).

35

B.2 Distance to exchangeability for mixture distributions

In this section, we verify the claim (A.1) that appears in the proof of Theorem 1. Specifically,
we need to show that the distance-to-exchangeability dexch introduced in Definition 1 is convex
on the space of distributions.

Lemma 3. Consider any distributions P0, P1 on (A1, . . . , Ak), and any c 2 [0, 1]. Let P =
(1� c) · P0 + c · P1 be the mixture distribution. Then

dexch(P)  (1� c) · dexch(P0) + c · dexch(P1).

With this lemma in place, we have

dexch(X, eX(1)
, . . . , eX(M))  P ((X,W) 2 ⌦SSOSP) · dexch

✓
Distrib. of X, eX(1)

, . . . , eX(M)

condl. on (X,W) 2 ⌦SSOSP

◆

+ P ((X,W) 62 ⌦SSOSP) · dexch

✓
Distrib. of X, eX(1)

, . . . , eX(M)

condl. on (X,W) 62 ⌦SSOSP

◆
.

Furthermore, we know that

dexch

✓
Distrib. of X, eX(1)

, . . . , eX(M)

condl. on (X,W) 62 ⌦SSOSP

◆
= 0

since, on the event that (X,W) 62 ⌦SSOSP, we set eX(1) = · · · = eX(M) = X by definition of
the method. Therefore, the claim (A.1) must hold.

Proof of Lemma 3. Fix any " > 0. By definition of dexch, for each ` = 0, 1 we can find some
exchangeable distribution Q` on (B1, . . . , Bk) such that

dTV(P`, Q`)  dexch(P`) + ".

Next define the mixture distribution Q = (1 � c) · Q0 + c · Q1. Clearly Q is exchangeable,
inheriting this property from Q0 and Q1, and therefore dexch(P)  dTV(P,Q). Furthermore,
for any measurable subset A, we have

��P (A)�Q(A)
�� =

���(1� c) · P0(A) + c · P1(A)
�
�
�
(1� c) ·Q0(A) + c ·Q1(A)

���
 (1� c) · |P0(A)�Q0(A)|+ c · |P1(A)�Q1(A)|  (1� c) · dTV(P0, Q0) + c · dTV(P1, Q1).

This establishes that dTV(P,Q)  (1� c) · dTV(P0, Q0) + c · dTV(P1, Q1), and therefore,

dexch(P)  (1� c) · (dexch(P0) + ") + c · (dexch(P1) + ").

Since " > 0 can be taken to be arbitrarily small, this proves the lemma.

36

B.3 Verifying that (2.7) defines a density

To ensure that our procedure is well defined, we need to check that

pb✓(x |
b✓) / p

un

b✓ (x)

defines a valid density with respect to ⌫X , where the unnormalized function is given by

p
un

✓
(x) := f(x; ✓) · exp

⇢
�
kr✓L(✓; x)k2

2�2/d

�
· det

�
r

2

✓
L(✓; x)

�
· x2X✓

.

The following lemma verifies all the necessary conditions:

Lemma 4. If Assumptions 1 and 3 hold, then for all ✓ 2 ⇥ the function x 7! p
un

✓
(x) is

nonnegative and integrable with respect to ⌫X . Furthermore, if the event that b✓ = b✓(X,W)
is a SSOSP of L(✓;X,W) has positive probability, then conditional on this event,

Z

X
p
un

b✓ (x) d⌫X (x) > 0.

holds almost surely.

Proof. First we check nonnegativity. For any ✓ and any x, f(x; ✓) > 0 by Assumption 1.
Furthermore, if x 2 X✓ then r

2

✓
L(✓; x) � 0 and so det(r2

✓
L(✓; x)) > 0 by definition of the

SSOSP conditions. This verifies that pun
✓
(x) � 0 for all (x, ✓). Next we check integrability.

We have
Z

X
p
un

b✓ (x) d⌫X (x) 

Z

X
f(x; ✓) · det

�
r

2

✓
L(✓; x)

�
· r2

✓L(✓;x)�0 d⌫X (x)



Z

X
f(x; ✓) ·

�
�max(r

2

✓
L(✓; x))

�d
+
d⌫X (x)


d!

r(✓)2d

Z

X
f(x; ✓) · exp

n
r(✓)2

�
�max(r

2

✓
L(✓; x))

�
+

o
d⌫X (x)


d!

r(✓)2d

Z

X
f(x; ✓) · exp

n
r(✓)2

�
�max(H(✓; x)�H(✓)

�
+
+ r(✓)2

�
�max(H(✓) +r

2

✓
R(✓)

�
+

o
d⌫X (x)


d!

r(✓)2d
· e

"(✓)
· exp

n
r(✓)2

�
�max(H(✓) +r

2

✓
R(✓)

�
+

o
,

where the last step holds by Assumption 3. This proves that
R
X p

un

b✓ (x) d⌫X (x) is finite.

Finally we check that
R
X p

un

b✓ (x) d⌫X (x) > 0 almost surely. Since f(x; ✓) > 0 for all x, ✓

by Assumption 1, it is equivalent to verify that
R
X

f(x;✓0)

f(x;b✓)
p
un

b✓ (x) d⌫X (x) > 0 almost surely.

Recalling from (2.4) that p✓0(x|b✓) /
f(x;✓0)

f(x;b✓)
· p

un

b✓ (x) is the conditional density of X | b✓, this
must be true.

37

B.4 Change of variables calculation

In this section, we verify the change-of-variables calculation needed in the proof of Lemma 1.
Specifically, the step (A.6) follows by applying the lemma below to the function

⇢(x, ✓) = exp
n
�

d

2�2kr✓L(b✓(x, w); x)k2
o
· (x,✓)2A.

Lemma 5. Suppose Assumption 1 holds. For all nonnegative measurable functions ⇢ :
X ⇥⇥! R, it holds for all x 2 X that

Z

⇥

⇢(x, ✓) · det(r2

✓
L(✓; x)) · (x,✓)2 SSOSP

d✓ = �
d

Z

Rd

⇢(x, b✓(x, w)) · (x,w)2⌦SSOSP
dw.

Proof of Lemma 5. Define

Ax = {✓ 2 ⇥ : r2
L(✓; x) � 0},

which is an open set since L(✓; x) is continuously twice di↵erentiable in ✓. If this set is empty
then the lemma is trivial (since the left- and right-hand side are both equal to zero), so from
this point on we will assume Ax is nonempty. Let

Bx = {w 2 Rd : b✓(x, w) 2 Ax}.

By definition, if (x, ✓) 2 SSOSP then we must have ✓ 2 Ax, and similarly if (x, w) 2 ⌦SSOSP

then we must have b✓(x, w) 2 Ax and so w 2 Bx. Therefore, to prove the lemma, it is
su�cient to show that
Z

Ax

⇢(x, ✓) · det(r2

✓
L(✓; x)) · (x,✓)2 SSOSP

d✓ = �
d

Z

Bx

⇢(x, b✓(x, w)) · (x,w)2⌦SSOSP
dw. (B.1)

Next define nested sets

Ax,� = {✓ 2 Ax : B(✓,�) ✓ ⇥ and r
2
L(✓0; x) � 0 for all ✓0 2 B(✓,�)}

indexed by � > 0. Since ⇥ is an open subset of Rd, and L(✓; x) is continuously twice
di↵erentiable in ✓, we see that Ax = [�>0Ax,�. Similarly we have Bx = [�>0Bx,� where

Bx,� = {w 2 Rd : b✓(x, w) 2 Ax,�}.

By the monotone convergence theorem, this implies that
Z

Ax

⇢(x, ✓)·det(r2

✓
L(✓; x))· (x,✓)2 SSOSP

d✓ = lim
�!0

Z

Ax,�

⇢(x, ✓)·det(r2

✓
L(✓; x))· (x,✓)2 SSOSP

d✓,

and similarly,
Z

Bx

⇢(x, b✓(x, w)) · (x,w)2⌦SSOSP
dw = lim

�!0

Z

Bx,�

⇢(x, b✓(x, w)) · (x,w)2⌦SSOSP
dw.

38

Therefore, to prove (B.1), it is su�cient to show that, for each � > 0,
Z

Ax,�

⇢(x, ✓)·det(r2

✓
L(✓; x))· (x,✓)2 SSOSP

d✓ = �
d

Z

Bx,�

⇢(x, b✓(x, w))· (x,w)2⌦SSOSP
dw. (B.2)

From this point on we will treat � > 0 as fixed. Let S1, S2, . . . be a countable collection
of disjoint open sets, each of diameter  �, such that Leb

�
Rd

\([k�1Sk)
�
= 0 (for example,

we can partition Rd into countably many su�ciently small hypercubes). Then
Z

Ax,�

⇢(x, ✓)·det(r2

✓
L(✓; x))· (x,✓)2 SSOSP

d✓ =
X

k�1

Z

Ax,�,k

⇢(x, ✓)·det(r2

✓
L(✓; x))· (x,✓)2 SSOSP

d✓,

where Ax,�,k = Ax,� \ Sk, and similarly

Z

Bx,�

⇢(x, b✓(x, w)) · (x,w)2⌦SSOSP
dw =

X

k�1

Z

Bx,�,k

⇢(x, b✓(x, w)) · (x,w)2⌦SSOSP
dw,

where
Bx,�,k = {w 2 Rd : b✓(x, w) 2 Ax,�,k}.

Therefore, to prove (B.2), it is su�cient to show that, for each � > 0 and each k � 1,

Z

Ax,�,k

⇢(x, ✓) · det(r2

✓
L(✓; x)) · (x,✓)2 SSOSP

d✓

= �
d

Z

Bx,�,k

⇢(x, b✓(x, w)) · (x,w)2⌦SSOSP
dw. (B.3)

From this point on we will treat both � > 0 and k � 1 as fixed, and will prove (B.3).
First, by definition of the SSOSP conditions, if (x, ✓) 2 SSOSP then we must have

✓ = b✓(x,�x(✓)) where �x(✓) := �
r✓L(✓; x)

�
,

and furthermore, r2

✓
L(✓; x) � 0 and so det(r2

✓
L(✓; x)) > 0. Therefore, we can calculate that

⇢(x, ✓) · det(r2

✓
L(✓; x)) = ⇢(x, b✓(x,�x(✓))) · �

d
| det(r✓�x(✓))|

for all (x, ✓) 2 SSOSP, and so (B.3) is equivalent to the claim that

Z

Ax,�,k

⇢(x, b✓(x,�x(✓))) · | det(r✓�x(✓))| · (x,b✓(x,�x(✓)))2 SSOSP
d✓

=

Z

Bx,�,k

⇢(x, b✓(x, w)) · (x,w)2⌦SSOSP
dw. (B.4)

Next, we show that �x : Ax,�,k ! �x(Ax,�,k) is a di↵eomorphism. �x is clearly di↵eren-
tiable, and its derivative is invertible since r✓�x(✓) = (��)�d

r
2

✓
L(✓; x), and r

2

✓
L(✓; x) � 0

on Ax,�,k by definition. To check injectivity, if �x(✓) = �x(✓0) for some ✓, ✓0 2 Ax,�,k, then by

39

Taylor’s theorem we must have r2

✓
L((1� t)✓ + t✓

0; x) · (✓0 � ✓) = 0 for some t 2 [0, 1]. Since
the diameter of Sk (and therefore, of Ax,�,k) is  �, we must have k✓� ✓

0
k  � and therefore

(1� t)✓+ t✓
0
2 B(✓,�). By definition of Ax,�, this implies that r2

✓
L((1� t)✓+ t✓

0; x) � 0, and
we conclude that ✓0� ✓ = 0, thus establishing injectivity. Therefore, �x : Ax,�,k ! �x(Ax,�,k)
is a di↵eomorphism. Since Ax,�,k ✓ Rd is an open set, by the change-of-variables formula we
therefore have
Z

Ax,�,k

⇢(x, b✓(x,�x(✓))) · | det(r✓�x(✓))| · (x,b✓(x,�x(✓)))2 SSOSP
d✓

=

Z

�x(Ax,�,k)

⇢(x, b✓(x, w)) ·
(x,b✓(x,w))2 SSOSP

dw,

Therefore, to prove (B.4), we now only need to check that
n
w 2 �x(Ax,�,k), (x, b✓(x, w)) 2 SSOSP

o
= {w 2 Bx,�,k, (x, w) 2 ⌦SSOSP}

for all (x, w). First suppose w 2 �x(Ax,�,k) and (x, b✓(x, w)) 2 SSOSP. Then we have
w = �x(✓) for some ✓ 2 Ax,�,k. By definition, this means (x, ✓) 2 SSOSP, and so we

must have some w
0 such that ✓ = b✓(x, w0) and ✓ is a SSOSP of L(✓; x, w0). By the SSOSP

conditions, this implies that 0 = r✓L(✓; x, w0) and so w
0 = �x(✓), and therefore w = w

0.
Therefore, (x, w) 2 ⌦SSOSP, and b✓(x, w) 2 Ax,�,k which implies w 2 Bx,�,k. Conversely,

suppose that w 2 Bx,�,k and (x, w) 2 ⌦SSOSP. Then by definition of Bx,�,k, we have b✓(x, w) 2
Ax,�,k. Furthermore, by the SSOSP conditions we must have 0 = r✓L(b✓(x, w); x, w) and so

w = �x(b✓(x, w)), and therefore, w 2 �x(Ax,�,k) and (x, b✓(x, w)) 2 SSOSP. This completes
the proof of (B.4), and therefore proves the lemma.

C Proofs for examples

We now turn to establishing that our examples all satisfy the assumptions needed for aCSS
to control Type I error. The regularity conditions (Assumption 1) hold by definition for all
of our examples, so we only need to verify the properties of the estimator b✓ (Assumption 2)
and the Hessian conditions (Assumption 3).

C.1 Checking Assumption 3

The Hessian conditions (3.2) and (3.3) are immediately implied by the stronger condition

E✓0

"
exp

(
sup

✓2B(✓0,r(✓0))\⇥
r(✓0)

2
· kH(✓;X)�H(✓)k

)#
 e

"(✓0). (C.1)

We will check that this stronger condition holds for each of our examples. Specifically, fixing
✓0 2 ⇥ we will prove that, for any c > 0 we can find c

0
> 0 such that

E✓0

2

4exp

8
<

: sup
✓2B(✓0,c

p
logn
n)\⇥

c
2
logn

n
· kH(✓;X)�H(✓)k

9
=

;

3

5  e
c
0
"n (C.2)

40

for all su�ciently large n, where "n is some vanishing term (specified below for each example)
that does not depend on our choice of c. Since later on we will verify that Assumption 2

holds with r(✓0) ⇣
q

logn

n
, this will be su�cient to verify that (C.1) holds.

C.1.1 Checking Assumption 3 for Example 1

For the canonical GLM setting (Example 1), we can calculate

H(✓; x) =
nX

i=1

ZiZ
>
i
· a

00(Z>
i
✓),

which does not depend on x. Therefore, H(✓) = H(✓; x) for all x, or in other words,
kH(✓;X)�H(✓)k = 0 almost surely. Therefore (C.2) holds trivially with "n = 0.

C.1.2 Checking Assumption 3 for Example 2

For the Behrens–Fisher problem (Example 2), we can calculate

H(✓; x) =

0

BBBB@

n
(0)

�(0)
+ n

(1)

�(1)

Pn(0)

i=1
(x

(0)

i �µ)

(�(0))2

Pn(1)

i=1
(x

(1)

i �µ)

(�(1))2

Pn(0)

i=1
(x

(0)

i �µ)

(�(0))2
�

n
(0)

2(�(0))2
+
P

n
(0)

i=1

(x
(0)

i �µ)
2

(�(0))3
0

Pn(1)

i=1
(x

(1)

i �µ)

(�(1))2
0 �

n
(1)

2(�(1))2
+
P

n
(1)

i=1

(x
(1)

i �µ)
2

(�(1))3

1

CCCCA
,

which we can rewrite in the form

H(✓; x) = A(✓) +
X

k=0,1

X

`=1,2

0

@
n
(k)X

i=1

(x(k)

i
� µ)`

1

A · Ak,`(✓),

where A(✓) 2 R3⇥3 and each Ak,`(✓) 2 R3⇥3 are all continuous matrix-valued functions of ✓.
Therefore, we can calculate

H(✓; x)�H(✓) =
X

k=0,1

0

@
n
(k)X

i=1

(x(k)

i
� µ)

1

A ·Ak,1(✓) +
X

k=0,1

0

@
n
(k)X

i=1

((x(k)

i
� µ)2 � �

(k))

1

A ·Ak,2(✓),

and so

kH(✓; x)�H(✓)k 

X

k=0,1

������

n
(k)X

i=1

(x(k)

i
� µ)

������
·kAk,1(✓)k+

X

k=0,1

������

n
(k)X

i=1

((x(k)

i
� µ)2 � �

(k))

������
·kAk,2(✓)k.

Now let r > 0 be any constant so that B(✓0, r) ✓ ⇥, and let

cr = sup
✓2B(✓0,r)

max
k=0,1

max
`=1,2

kAk,`(✓)k,

41

which is finite since the Ak,`’s are continuous functions of ✓. Then

sup
✓2B(✓0,r)\⇥

kH(✓; x)�H(✓)k  cr

0

@
X

k=0,1

������

n
(k)X

i=1

(x(k)

i
� µ)

������
+

X

k=0,1

������

n
(k)X

i=1

((x(k)

i
� µ)2 � �

(k))

������

1

A .

By definition of the distribution of the data we see that the terms (x(k)

i
�µ) are independent

and Gaussian, while the terms ((x(k)

i
� µ)2 � �

(k)) are independent centered and scaled �2

(and therefore subexponential). An elementary calculation then verifies that

E✓0

"
exp

(
sup

✓2B(✓0,r)\⇥
t · kH(✓;X)�H(✓)k

)#
 e

c
00
t
2
n for all |t|  c

000,

where c
00 is chosen to be su�ciently large and c

000
> 0 is chosen to be su�ciently small.

Taking t = c
2
logn

n
, and choosing n su�ciently large so that c

q
logn

n
 r and t  c

000, we have

established the desired bound (C.2) with "n = log
2
n

n
and c

0 chosen appropriately.

C.1.3 Checking Assumption 3 for Example 3

For the Gaussian spatial process (Example 3), we can calculate

H(✓; x) =
1

2
x
>
✓
@
2

@✓2
⌃�1

✓

◆
x+

1

2

@
2

@✓2
log det(⌃✓),

and therefore writing x̃ = ⌃�1/2

✓0
x, we have

kH(✓; x)�H(✓)k =
1

2

⌧
xx

>
� ⌃✓0 ,

@
2

@✓2
⌃�1

✓

�

=
1

2

⌧
x̃x̃

>
� Id,⌃

1/2

✓0
·
@
2

@✓2
⌃�1

✓
· ⌃1/2

✓0

�


1

2

⌧
x̃x̃

>
� Id,⌃

1/2

✓0
·
@
2

@✓2
⌃�1

✓0
· ⌃1/2

✓0

�
+
��x̃x̃>

� Id
�� ·

1

2
k⌃✓0k

���
@
2

@✓2
⌃�1

✓
�

@
2

@✓2
⌃�1

✓0

���



⌧
x̃x̃

>
� Id,

1

2
⌃1/2

✓0
·
@
2

@✓2
⌃�1

✓0
· ⌃1/2

✓0

�
+
��x̃x̃>

� Id
�� ·

1

2
k⌃✓0k|✓ � ✓0| · sup

t2[0,1]

���
@
3

@✓3
⌃�1

(1�t)✓0+t✓

���.

Therefore, taking n su�ciently large so that B(✓0, c
q

logn

n
) ✓ ⇥,

sup
✓2B(✓0,c

p
logn
n)

kH(✓; x)�H(✓)k



⌧
x̃x̃

>
� Id,

1

2
⌃1/2

✓0
·
@
2

@✓2
⌃�1

✓0
· ⌃1/2

✓0

�
+
��x̃x̃>

�Id
��· c
2

r
log n

n
k⌃✓0k· sup

✓2B(✓0,c
p

logn
n)

���
@
3

@✓3
⌃�1

✓

���.

By [Bachoc, 2014, Proposition D.7], the eigenvalues of ⌃1/2

✓0
·
@
2

@✓2
⌃�1

✓0
·⌃1/2

✓0
are bounded above

by a constant not depending on n, and furthermore k⌃✓0k and (for su�ciently large n)

42

sup
✓2B(✓0,c

p
logn
n)

�� @
3

@✓3
⌃�1

✓

�� are bounded by constants not depending on n. Since x̃ ⇠ N (0, In),

standard tail bounds on the �2 distribution (e.g., [Laurent and Massart, 2000, Lemma 1])
establish that

E✓0

2

4exp

8
<

:t · sup
✓2B(✓0,c

p
logn
n)

kH(✓; x)�H(✓)k

9
=

;

3

5  exp

(
c
00
· t

2
n+ t ·

r
log n

n
· n

)
for all |t|  c

000
,

where c00 is chosen to be su�ciently large and c
000
> 0 is chosen to be su�ciently small. Taking

t = c
2
logn

n
, and choosing n su�ciently large, we have established the desired bound (C.2)

with "n ⇣

q
log

3
n

n
and c

0 chosen appropriately.

C.1.4 Checking Assumption 3 for Example 4

For the multivariate t distribution (Example 4), we first note that since ✓ 2 Rk⇥k is a matrix

parameter, the Euclidean norm is given by the matrix Frobenius norm, kMkF =
qP

ij
M

2

ij
.

To avoid confusion, when discussing Example 4 we will write kMkop for the operator norm
on matrices (both for a k ⇥ k matrix, such as the parameter ✓ itself, or for a k

2
⇥ k

2 linear
operator from Rk⇥k to Rk⇥k, such as the Hessian).

We can first calculate the Hessian, which in this setting will be a linear operator mapping
from Rk⇥k to Rk⇥k. We calculate H(✓; x) applied to any A,B 2 Rk⇥k as

⇥
H(✓; x)

⇤
(A,B) =

n

2

⌦
✓
�1/2

A✓
�1/2

, ✓
�1/2

B✓
�1/2

↵
�
� + k

2

nX

i=1

(x>
i
Axi) · (x>

i
Bxi)

(� + x
>
i
✓xi)2

.

For any ✓ and any a 2 (0, 1
2
), if (1� a)✓0 � ✓ � (1 + a)✓0, we can verify that

(1� a)2 · (� + z
>
✓z)2  (� + z

>
✓z)2  (1 + a)2 · (� + z

>
✓z)2

for all z 2 Rk, and therefore
�����

nX

i=1

(x>
i
Axi) · (x>

i
Bxi)

(� + x
>
i
✓xi)2

�

nX

i=1

(x>
i
Axi) · (x>

i
Bxi)

(� + x
>
i
✓0xi)2

�����  n ·
2a+ a

2

1� 2a
· �min(✓0)

�2
· kAkop · kBkop.

for all A,B, where �min(✓0) > 0 is the minimum eigenvalue of ✓0. Since kkop  kkF, we have

�����

nX

i=1

(x>
i
Axi) · (x>

i
Bxi)

(� + x
>
i
✓xi)2

�

nX

i=1

(x>
i
Axi) · (x>

i
Bxi)

(� + x
>
i
✓0xi)2

�����  n ·
2a+ a

2

1� 2a
· �min(✓0)

�2

for all A,B with kAkF, kBkF  1. This is su�cient to verify that

sup
✓2B(✓0,c

p
logn
n)

kH(✓; x)�H(✓)kop  kH(✓0; x)�H(✓0)kop +
p

n log n · 3c�min(✓0)
�2

43

for all su�ciently large n. Therefore, for su�ciently large n,

E✓0

2

4exp

8
<

: sup
✓2B(✓0,c

p
logn
n)\⇥

c
2
logn

n
· kH(✓;X)�H(✓)kop

9
=

;

3

5

 exp
n

c
2
logn

n
·

p
n log n · 3c�min(✓0)

�2

o
· E✓0

h
exp

n
c
2
logn

n
· kH(✓0;X)�H(✓0)kop

oi
.

Next, H(✓0;X) is equal to a constant plus a sum of n i.i.d. terms, with each term bounded
uniformly, since ����

� + k

2

(X>
i
AXi) · (X>

i
BXi)

(� +X
>
i
✓0Xi)2

���� 
� + k

2
· �min(✓0)

�2

holds for all A,B with kAkF, kBkF  1, almost surely over Xi. Therefore, by the matrix
Hoe↵ding inequality [Tropp, 2012, Theorem 1.3], we have

P✓0
�
n
�1/2

kH(✓0;X)�H(✓0)kop > t
�
 2k2 exp

(
�

t
2

8 · (�+k

2
)2 · �min(✓0)�4

)

for any t > 0. In other words, n�1/2
kH(✓0;X)�H(✓0)kop is subgaussian with parameter not

depending on n and therefore

E✓0
h
exp

n
c
2
logn

n
· kH(✓0;X)�H(✓0)kop

oi
 exp

⇢
c
00 log2 n

n

�

for an appropriately chosen c
00.

Combining everything, we have established that the bound (C.2) holds with "n ⇣

q
log

3
n

n

and c
0 chosen appropriately.

C.2 Checking Assumption 2

Before giving proofs for our specific examples, we pause to discuss Assumption 2 more
generally, to see that this assumption will be plausible for many common settings (beyond
the few that we study here). We consider the following general scenario. Suppose that
we have access to a consistent initial estimate b✓init(X) of ✓0. Then under some standard
conditions on the negative log-likelihood surface, by constraining b✓(X,W) to a neighborhood
of b✓init(X), we can ensure that b✓(X,W) will satisfy the needed assumptions.

Lemma 6. Let
b✓init : X ! ⇥ and brinit : X ! R+

be any maps such that B(b✓init(x), brinit(x)) ✓ ⇥ for all x 2 X . Suppose that, under the
distribution X ⇠ P✓0, the following statements all hold with probability at least 1� �init(✓0):

8
>>><

>>>:

kb✓init(X)� ✓0k  rinit(✓0),

L(✓;X) has a FOSP in B(✓0, rinit(✓0)),
r

2

✓
L(✓;X) ⌫ �cvx(✓0)Id for all ✓ 2 B(✓0, rcvx(✓0)),

3rinit(✓0)  brinit(X)  rcvx(✓0)� rinit(✓0),

(C.3)

44

for some constants rinit(✓0), rcvx(✓0),�cvx(✓0) > 0. If b✓ : X ⇥ Rd
7! ⇥ is any function that

maps each point (x, w) to some FOSP of the constrained optimization problem

argmin
✓2B(b✓init(x),r(b✓init(x)))

L(✓; x, w),

then Assumption 2 is satisfied with

r(✓0) = 2rinit(✓0) and �(✓0) = �init(✓0) + exp

(
�
1

2
max

⇢
rinit(✓0)�cvx(✓0)

�
� 1, 0

�2
)
.

With this lemma in place, we will now turn to verifying that its conditions hold for each of
our four examples. Specifically, for each example, we will propose an initial estimator b✓init(X)

such that the conditions of the lemma are satisfied with rinit(✓0) ⇣
q

logn

n
and rcvx(✓0) ⇣ 1

and �cvx(✓0) ⇣ n.

C.2.1 Checking the conditions of Lemma 6: general recipe

After fixing some ✓0 2 ⇥, each proof will follow the same general recipe:

• We will verify that
H(✓0) ⌫ C1nId, (C.4)

where C1 > 0 does not depend on n. Combined with Assumption 3 (which we verified
above for each of our examples), this means that for su�ciently large n it holds that
r

2

✓
L(✓;X) = H(✓;X) ⌫ C2nI3 for all ✓ 2 B(✓0, C3) for appropriately chosen C2, C3 >

0, with probability at least 1� n
�1. Thus we can take �cvx = C2 and rcvx = C3.

• We will define an initial estimator b✓init(x) and will prove that we can find a constant
C4 not depending on n such that

P✓0

kb✓init(X)� ✓0k  C4

r
log n

n

!
� 1� n

�1 (C.5)

for all su�ciently large n. Thus we can take rinit = C4

q
logn

n
. Furthermore, choosing

brinit(x) to be any function of n that vanishes slower than
q

logn

n
(e.g., brinit(x) ⌘ n

�1/4),

we have verified that 3rinit(✓0)  brinit(X)  rcvx(✓0)� rinit(✓0) holds.

• Finally we will show that we can find a constant C5 not depending on n such that

P✓0
⇣
kr✓ log f(X; ✓0)k  C5

p
n log n

⌘
� 1� n

�1
, (C.6)

for all su�ciently large n. Combined with the bound r
2

✓
L(✓;X) ⌫ C2nI3 for all

✓ 2 B(✓0, C3) that is already established, this means that L(✓;X) = � log f(X; ✓) has

a FOSP in B(✓0, C5C
�1

2

q
logn

n
) and so we can take rinit(✓0) = C5C

�1

2

q
logn

n
.

45

C.2.2 Checking the conditions of Lemma 6 for Example 1

For the canonical GLM setting (Example 1), first we have

H(✓0; x) =
nX

i=1

ZiZ
>
i
· a

00(Z>
i
✓0) ⌫ n · C1 · I

for some C1 > 0 that does not depend on n, since we have assumed maxij |Zij| is bounded
by a constant and 1

n

P
i
ZiZ

>
i

⌫ �0Id. Thus (C.4) holds. Next we verify (C.5). Since the

negative log-likelihood is strictly convex everywhere, we can define b✓init(x) to equal a global
minimizer of � log f(x; ✓), if one exists (i.e., finding a global minimizer is computationally
feasible since it is a di↵erentiable and strictly convex minimization problem). Therefore, if

a FOSP exists in a O

⇣q
logn

n

⌘
neighborhood of ✓0 (as we will establish next), then (C.5) is

satisfied. Finally we check (C.6) to verify the existence of the FOSP. We calculate

r✓[� log f(x; ✓0)] =
nX

i=1

Zi

�
a
0(Z>

i
✓0)� xi

�
,

and by standard calculations for GLMs, X is subexponential with

E✓0
⇥
e
tXi
⇤
= e

a(Z
>
i ✓0+t)�a(Z

>
i ✓0)

for any t 2 R and for each i = 1, . . . , n. Since we have assumed maxij |Zij| is bounded by a
constant, proving (C.6) is a standard calculation.

C.2.3 Checking the conditions of Lemma 6 for Example 2

For the Behrens–Fisher problem (Example 2), write ✓0 = (µ0, �
(0)

0
, �

(1)

0
). We first calculate

H(✓0) = E✓0 [H(✓0;X)] =

0

BBB@

n
(0)

�
(0)

0

+ n
(1)

�(1) 0
0 0

0 n
(0)

2(�
(0)

0
)2

0

0 0 n
(1)

2(�
(1)

0
)2

1

CCCA
⌫ cn ·

min{n(0)
, n

(1)
}

max{n(0), n(1)}
· I3,

where the inequality holds for some c > 0 depending only on ✓0. Recalling that we have

assumed max{n(0)
,n

(1)}
min{n(0),n(1)} is bounded by a constant, this means that

H(✓0) ⌫ c
0
nI3

for some c
0
> 0 that does not depend on n, which verifies (C.4).

Next we define an initial estimator

b✓init(x) =
�
bµinit(x), b�(0)init

(x), b�(1)
init

(x)
�

where

bµinit(x) =
1

n

0

@
n
(0)X

i=1

x
(0)

i
+

n
(1)X

i=1

x
(1)

i

1

A

46

for n = n
(0) + n

(1), and

b�(k)
init

(x) =
1

n(k)

n
(k)X

i=1

(x(k)

i
� bµinit(x))

2

for each k = 0, 1. By standard Gaussian and �
2 tail bounds, we can easily see that for

su�ciently large c
00 (not depending on n) it holds that

P✓0

kb✓init(X)� ✓0k  c

00

r
log n

n

!
� 1� n

�1

for su�ciently large n, which verifies (C.5).
Finally, we calculate

r log f(x; ✓) = �

0

BBBB@

�
P

k=0,1

Pn(k)

i=1
(x

(k)
i �µ)

�(k)

n
(0)

2�
(0)

0

�
P

n
(0)

i=1

(x
(0)

i �µ0)
2

2(�
(0)

0
)2

n
(1)

2�
(1)

0

�
P

n
(1)

i=1

(x
(1)

i �µ0)
2

2(�
(1)

0
)2

1

CCCCA
,

and therefore each entry of r log f(X; ✓0) is a sum of n or n(0) or n(1) many i.i.d. zero-mean
subexponential terms. Therefore, we can find a constant c000 such that

P✓0
⇣
kr log f(X; ✓0)k  c

000
p
n log n

⌘
� 1� n

�1

for su�ciently large n, which verifies (C.6) and thus completes the proof.

C.2.4 Checking the conditions of Lemma 6 for Example 3

For the Gaussian spatial process (Example 3), first, recall our calculation

H(✓; x) =
1

2
x
>
✓
@
2

@✓2
⌃�1

✓0

◆
x+

1

2

@
2

@✓2
log det(⌃✓0),

which we can calculate explicitly as

H(✓;X) =
1

2
x
> �

�⌃�1

✓
(D �D � ⌃✓)⌃

�1

✓
+ 2⌃�1

✓
(D � ⌃✓)⌃

�1

✓
(D � ⌃✓)⌃

�1

✓

�
x

+
1

2
trace(⌃�1/2

✓
(D �D � ⌃✓)⌃

�1/2

✓
)�

1

2
k⌃�1/2

✓
(D � ⌃✓)⌃

�1/2

✓
k
2
,

and so since E✓0
⇥
XX

>⇤ = ⌃✓0 , we have

H(✓0) = E✓0 [H(✓0;X)] =
1

2
k⌃�1/2

✓0
(D � ⌃✓0)⌃

�1/2

✓0
k
2
�

1

2
�min(⌃✓0)

�2
kD � ⌃✓0k

2
.

We know from [Bachoc, 2014, Proposition D.7] that ⌃✓0 has eigenvalues bounded above and
below by positive constants. Furthermore,

kD � ⌃✓0k
2 =

nX

i=1

nX

j=1

D
2

ij
· (⌃✓0)

2

ij
�

X

(i,j)2E

D
2

ij
· (⌃✓0)

2

ij
=

X

(i,j)2E

1 · e�2✓0 = e
�2✓0 · |E|,

47

where E ✓ {1, . . . , n} ⇥ {1, . . . , n} be the set of all pairs (i, j) such that Dij = 1. Since
|E| � n, we have shown that (C.4) holds for some appropriately chosen C1 that does not
depend on n.

Next we need to define our initial estimator to satisfy (C.5). We will define a simple
choice for intuition (this choice is of course not necessarily optimal in any sense). Define

b✓init(x) = � log

0

@ 1

|E|

X

(i,j)2E

xixj

1

A .

We need to check that, with probability at least 1�n
�1, |b✓init(X)� ✓0|  C4

q
logn

n
for some

constant C4 not depending on n. Since ✓0 > 0, it is equivalent to check that, with probability
at least 1� n

�1, ������
1

|E|

X

(i,j)2E

XiXj � e
�✓0

������
 C

0

r
log n

n

for some constant C
0 not depending on n. Let A be the adjacency matrix, with entry

Aij = {(i, j) 2 E}, and let U⇤U> = ⌃1/2

✓0
A⌃1/2

✓0
be an eigendecomposition. Then

������
1

|E|

X

(i,j)2E

XiXj � e
�✓0

������
=

1

|E|

��⌦XX
>
� ⌃✓0 , A

↵�� = 1

|E|

���
D
(U>⌃�1/2

✓0
X)(U>⌃�1/2

✓0
X)> � In,⇤

E��� .

Since U
>⌃�1/2

✓0
X ⇠ N (0, In), while |E| � n, the desired bound holds as long as the values

⇤11, . . . ,⇤nn (i.e., the eigenvalues of ⌃1/2

✓0
A⌃1/2

✓0
) are bounded by some constant C 00 not de-

pending on n. Since the eigenvalues of ⌃✓0 are bounded by a constant not depending on n

by [Bachoc, 2014, Proposition D.7], equivalently we need to verify that kAk  C
000 for some

constant C 000 not depending on n—in fact, since A is the adjacency matrix of a graph where
each vertex has at most 2k many neighbors, we have kAk  2k. This establishes (C.5).

Finally we verify (C.6). We calculate

@

@✓
log f(x; ✓0) = �

1

2
x
>
✓
@

@✓
⌃�1

✓0

◆
x�

1

2

@

@✓
log det(⌃✓0)

= �
1

2
(⌃�1/2

✓0
x)> · ⌃1/2

✓0

✓
@

@✓
⌃�1

✓0

◆
⌃1/2

✓0
· (⌃�1/2

✓0
x)�

1

2

@

@✓
log det(⌃✓0)

We know that E✓0
⇥
@

@✓
log f(X; ✓0)

⇤
= 0, and moreover, ⌃�1/2

✓0
X ⇠ N (0, In) and so this

quantity has distribution equal to a weighted sum of centered �
2 random variables. By

[Bachoc, 2014, Proposition D.7] we know that the eigenvalues of the matrix ⌃1/2

✓0

�
@

@✓
⌃�1

✓0

�
⌃1/2

✓0

are bounded by a constant that does not depend on n, standard �
2 tail bounds (see, e.g.,

[Laurent and Massart, 2000, Lemma 1]) establish that (C.6) holds for an appropriately chosen
C5 not depending on n.

48

C.2.5 Checking the conditions of Lemma 6 for Example 4

For the multivariate t distribution (Example 4), calculations in [Lange et al., 1989, Appendix
B] show that

⇥
H(✓0)

⇤�
M,M

�
=

n

2

✓
� + k

� + k + 2
k✓

�1/2

0
M✓

�1/2

0
k
2

F
�

1

� + k + 2
trace(✓�1/2

0
M✓

�1/2

0
)2
◆
.

Since trace(A) 
p
kkAkF for any A 2 Rk⇥k, then we have

⇥
H(✓0)

⇤�
M,M

�
�

n

2
·

�

� + k + 2
k✓

�1/2

0
M✓

�1/2

0
k
2

F
,

and so (C.4) holds with C1 =
1

2
·

�

�+k+2
· k✓0k

�2

op
.

Next, we define our initial estimator. We will work with the Kendall’s ⌧ correlation:
given a data point x 2 (Rk)n, for each j, j

0
2 {1, . . . , k} define

Tjj0 =
1�
n

2

�
X

1i<i0n

sign ((xij � xi0j) · (xij0 � xi0j0)) ,

let S = S(x) 2 Rk⇥k be defined with entries Sjj0 = sin
�
⇡

2
· Tjj0

�
. It is well known that for a

continuous elliptical distribution (such as the multivariate t), this transformation yields an

unbiased estimate of the correlation matrix. We will also estimate Vj =
Median of |x1j |, . . . , |xnj |

0.75-quantile of t�
,

and let ⌃ = ⌃(x) have entries
⌃jj0 = Sjj0

p
VjVj0 .

Next let b✓init(x) = ⌃(x)�1 (or define it to take any value if ⌃(x) is not invertible).
By [Barber and Kolar, 2018, Corollary 4.8], if n � k log n, then with probability at least

1� n
�1,

kS(X)� S⇤kop  C

r
k log n

n

for a universal constant C, where S⇤ is the true correlation matrix, i.e.,

(S⇤)jj0 =
(✓�1

0
)jj0q

(✓0)
�1

jj
(✓�1

0
)j0j0

.

We also have Xij

iid
⇠

q
(✓�1

0
)jj · t� (a univariate t distribution) and so we can easily verify

that

max
j=1,...,k

|Vj � (✓�1

0
)jj|  C

0

r
log n

n

with probability at least 1� n
�1. Combining these bounds, this means that

kb✓init(X)� ✓0kop  C
00

r
k log n

n
.

49

Since this is a k ⇥ k matrix, therefore

kb✓init(X)� ✓0kF  C
00

r
k2 log n

n
= C

000

r
log n

n
,

which verifies (C.5).
Finally we check (C.6). We calculate

r log f(X; ✓0) =
n

2
✓
�1

0
�
� + k

2

nX

i=1

XiX
>
i

� +X
>
i
✓0Xi

,

which is a sum of n i.i.d. mean-zero terms. Observe also that for any z 2 Rk, k zz
>

�+z>✓0z
kop 

�min(✓0)�1, so the terms are uniformly bounded. By the matrix Hoe↵ding inequality [Tropp,
2012, Theorem 1.3] along with the bound kr log f(X; ✓0)kF 

p
kkr log f(X; ✓0)kop, we

therefore have

P✓0
⇣
krL(✓0;X)kF � t

p

k

⌘
 2k exp

(
�

t
2

8n · (�+k

2
)2 · �min(✓0)�2

)

for any t > 0. Taking t ⇣
p
n log n is su�cient to establish (C.6).

C.3 Proof of Lemma 6

Suppose that the statements (C.3) all hold, which is satisfied with probability at least 1 �
�init(✓0) by assumption. Suppose also that the random vector W satisfies

kWk <
rinit(✓0)�cvx(✓0)

�
.

Since kWk
2
⇠

1

d
�
2

d
by definition, using standard �

2 tail bounds (see, e.g., [Laurent and
Massart, 2000, Lemma 1]) we can calculate

P
✓
kWk <

rinit(✓0)�cvx(✓0)

�

◆
� 1� exp

(
�
1

2
max

⇢
rinit(✓0)�cvx(✓0)

�
� 1, 0

�2
)
.

Therefore, with probability at least 1 � �(✓0) (where �(✓0) is defined as in the statement of
the lemma), the bounds (C.3) all hold and kWk satisfies the bound above. From this point
on we will assume these bounds all hold.

Let ✓⇤ 2 B(✓0, rinit(✓0)) be a FOSP of L(✓;X), and let b✓ = b✓(X,W) 2 B(b✓init(X), brinit(X))
be a FOSP of the constrained problem

min
✓2B(b✓init(X),brinit(X))

L(✓;X,W).

Then
k✓⇤ � b✓init(X)k  kb✓init(X)� ✓0k+ k✓⇤ � ✓0k  2rinit(✓0)  brinit(X),

50

and so ✓⇤ also lies in the convex constraint set B(b✓init(X), brinit(X)). Since kb✓init(X)� ✓0k 

rinit(✓0)  rcvx(✓0)� brinit(X), this means that b✓ and ✓⇤ both lie in B(✓0, rcvx(✓0)), and so we
have �cvx(✓0)-strong convexity in this region. Therefore we have

0  (✓⇤ � b✓)>r✓L(b✓;X,W)

= (✓⇤ � b✓)>r✓L(b✓;X) + �(✓⇤ � b✓)>W
 (✓⇤ � b✓)>r✓L(✓⇤;X)� �cvx(✓0)k✓⇤ � b✓k2 + �k✓⇤ � b✓kkWk

 ��cvx(✓0)k✓⇤ � b✓k2 + �k✓⇤ � b✓kkWk

< ��cvx(✓0)k✓⇤ � b✓k2 + rinit(✓0)�cvx(✓0)k✓⇤ � b✓k,

where the next-to-last step holds since ✓⇤ is a FOSP of the unconstrained problem min✓ L(✓;X),
and the last step holds as long as k✓⇤ � b✓k > 0 by our bound on kWk. Therefore, we must
have

kb✓ � ✓⇤k < rinit(✓0).

In particular this implies

kb✓ � ✓0k  kb✓ � ✓⇤k+ k✓⇤ � ✓0k < 2rinit(✓0)  brinit(X).

Finally, we need to check that b✓ is a SSOSP. We have

kb✓ � b✓init(X)k  kb✓ � ✓0k+ kb✓init(X)� ✓0k < 3rinit(✓0)  brinit(X),

which means that b✓ is in the interior of the constraint set B(b✓init(X), brinit(X)). There-
fore, b✓ must be a FOSP of the unconstrained problem min✓ L(✓;X,W). Finally, since
b✓ 2 B(✓0, rcvx(✓0)) as calculated above, L(✓;X) (and therefore also L(✓;X,W)) has strong
convexity at ✓ = b✓. This completes the proof.

D Computational considerations

D.1 Optimization of (2.2)

If the unperturbed penalized maximum likelihood problem is (strongly) convex, then (2.2)
is also (strongly) convex. Since the linear perturbation only changes the gradient by a
fixed constant and does not a↵ect the Hessian, any convex solver that relies on first- and
second-order derivatives to solve the unperturbed problem can be immediately adapted to
run on (2.2). Note that even strong convexity does not guarantee the unperturbed penalized
maximum likelihood problem has any local optima, since ⇥ could be constrained to a region
with no minima. However, as long as the unperturbed problem is convex and has a local
optimum, the perturbation can only lead to a lack of local optima if there exists a direction
z 2 Rd such that

� �W
>
z � max

✓2⇥
{r✓L(✓;X)>z}. (D.1)

Since we control � in the aCSS algorithm, we can always choose it to be su�ciently small as
to make (D.1) very unlikely (and moreover, if ⇥ = Rd is unconstrained and the unperturbed

51

problem is strongly convex, then (D.1) cannot occur at any �). Indeed, when X is composed
of n i.i.d. samples, the right-hand side of (D.1) will grow at a rate of

p
n, while in Section 3.2,

we noted that Theorem 1 required �, and hence the left-hand side of (D.1), to grow at a rate
that is vanishing compared to

p
n. The same story holds for non-convex functions locally

for a well-behaved basin of attraction: the random perturbation can cause problems but not
if you choose it su�ciently small. Note that the cost of b✓ failing to return a SSOSP of (2.2)
is conservativeness of the aCSS test (but not loss of validity!), since when it fails to return
a SSOSP the test will return a p-value of 1.

Although � can always be chosen to be very small, this can incur a di↵erent computational
cost in terms of sampling the copies eX(m). In particular, as we will see in the next subsection,
reducing � leads to “smaller” MCMC steps, i.e., starting at some state X 0 and taking a single
step in the reversible Markov chain we will use for sampling will produce a state that is highly-
related to X

0 or may even be identical to it with high probability. One solution to this is
to simply take L, the number of steps we take in the Markov chain between samples, to be
very large, so at least with su�cient computational resources it should always be possible to
choose � su�ciently small so as to not adversely a↵ect the optimization of (2.2) relative to
the unperturbed maximum likelihood problem.

D.2 Sampling the conditional randomizations

Due to the conditioning on b✓, the solution to an optimization problem, we only expect to
be able to perform the exact sampling i.i.d. from Equation (2.7) in special cases when both
the conditional distribution of X is very simple and b✓ can be found in closed form. Aside
from very special cases, we expect almost any model and/or estimator to require one of the
MCMC samplers.

Recall the density we are targeting in Equation (2.7):

pb✓(x |
b✓) / f(x; b✓) · exp

(
�
kr✓L(b✓; x)k2

2�2/d

)
· det

⇣
r

2

✓
L(b✓; x)

⌘
· x2Xb✓

,

with respect to the base measure ⌫X . Both MCMC sampling schemes assume the ability
to take steps in a reversible Markov chain whose stationary distribution has the above den-
sity. We will now show that it is feasible to construct an e�cient sampling scheme using
Metropolis–Hastings (MH).

Given b✓, we first choose a proposal distribution qb✓(x | x
0)—we will discuss this choice

below. Fixing qb✓(x | x
0), we can write the MH acceptance probability for a proposal x from

a previous iteration x
0 as

Ab✓(x | x
0) := min

(
1,

pb✓(x |
b✓) qb✓(x0

| x)

pb✓(x
0 | b✓) qb✓(x | x0)

)
.

Our reversible MCMC is then given by the following:

• Starting at state x
0, generate a proposal x according to the proposal distribution

qb✓(· | x
0).

52

• With probability Ab✓(x | x
0), set the next state to equal x. Otherwise, the next state is

set to equal x0.

To verify that this yields a computationally feasible method, we need to check two things:
first, that the acceptance probabilityAb✓(x | x

0) is not too low (i.e., its average value is bounded
away from zero), in order to ensure that our chain length L does not need to be taken to be
too large, and second, that the acceptance probability Ab✓(x | x

0) can be calculated e�ciently.
The first consideration, ensuring that Ab✓(x | x

0) is not too low, will be specific to the problem
and will discuss this for specific examples below. To check that we can e�ciently calculate
the acceptance probability Ab✓(x | x

0), by definition of pb✓(· |
b✓) we see that Ab✓(x | x

0) can be
written as

Ab✓(x | x
0) = min

8
<

:1,
qb✓(x

0
| x)

qb✓(x | x
0)
·

f(x; b✓) exp
n
�

kr✓L(b✓;x)k2
2�2/d

o
det

⇣
r

2

✓
L(b✓; x)

⌘

f(x0; b✓) exp
n
�

kr✓L(b✓;x0)k2
2�2/d

o
det

⇣
r2

✓
L(b✓; x0)

⌘ ·
x2Xb✓

x02Xb✓

9
=

; .

We consider the three fractions appearing in this expression. The first two are generally
straightforward to calculate, but the last ratio, with the indicator variables, requires more
careful consideration. In the denominator, we will have x02Xb✓

= 1 always, since x
0 denotes

the current state which is therefore a draw from the density (2.7) supported on Xb✓. Turning
to the numerator, however, we see that we do need to verify that our proposed state x also
lies in Xb✓. To do so, we observe that for any ✓,

x2X✓
=

n
for some w 2 Rd, b✓(x, w) = ✓ and ✓ is a SSOSP of L(✓; x, w)

o

=

⇢
b✓
✓
x,�

r✓L(✓; x)

�

◆
= ✓, and ✓ is a SSOSP of L

✓
✓; x,�

r✓L(✓, x)

�

◆�

=

⇢
b✓
✓
x,�

r✓L(✓; x)

�

◆
= ✓, and r

2

✓
L(✓; x) � 0

�
.

In other words, given the proposed state x, we need only verify (1) that r2

✓
L(b✓; x) � 0, which

is a simple calculation, and (2) that the estimator (x, w) 7! b✓(x, w), when calculated with

this proposed x and with w = �
r✓L(b✓;x)

�
, indeed returns the observed value b✓. We note that,

in the special case that L is strictly convex, then this verification is trivial—if we take the
map (x, w) 7! b✓(x, w) to be the output of any solver guaranteed to return the unique FOSP
(if it exists), then (2) is automatically verified since we know that b✓ is a FOSP of L(✓; x, w)
by definition of w, while (1) holds by strict convexity of L.

D.2.1 Choosing the proposal distribution

To choose the proposal distribution qb✓(x | x
0), we will bear in mind the following considera-

tions. First, we need to be able to e�ciently draw a sample from qb✓(· | x
0). Second, we need

to trade o↵ between the following two goals: given our current state Xcurr and a proposed
state Xprop ⇠ qb✓(· |Xcurr),

• The acceptance probability Ab✓(Xprop |Xcurr) should not be too close to zero.

53

• There should not be too much similarity or dependence between Xcurr and Xprop.

To illustrate this tradeo↵, if we define qb✓(· |Xcurr) as the point mass at Xcurr (i.e., we never
move to a new state), then the acceptance probability Ab✓(Xprop |Xcurr) will be equal to 1

almost surely, but the algorithm will return copies eX(1) = · · · = eX(M) = X, leading to
a powerless procedure. On the other hand, if we define qb✓(· |Xcurr) to draw Xprop to be
independent or nearly independent of Xcurr (for example, Xprop ⇠ Pb✓), then it may be hard

to ensure that pb✓(Xprop |
b✓) is su�ciently large to bound Ab✓(Xprop |Xcurr) away from zero.

Given the well-known challenge of hyperparameter tuning in the field of MCMC [Roberts
and Rosenthal, 2009], we can expect that this will be highly non-trivial and problem-
dependent. But one appealing aspect of aCSS testing is that we can tune the MCMC
hyperparameters after looking at b✓ without violating any of our theory. We demonstrate
how we did so in our four examples below.

Examples 1, 2, and 4 First, we consider the three examples where our model P✓ for X
consists of n independent draws—that is, P✓ is a product distribution with density

f✓(x) =
nY

i=1

f
(i)

✓
(xi).

In this setting, we begin by fixing a parameter s 2 {1, . . . , n} (we will discuss the choice of
s shortly). Then the proposal distribution qb✓(x|x

0) is defined as follows:

• Draw a subset S ✓ {1, . . . , n} of size s, uniformly at random.

• For each i = 1, . . . , n,

– If i 2 S, draw xi ⇠ f
(i)

b✓
(·).

– If i 62 S, set xi = x
0
i
.

We can see that the parameter s controls the tradeo↵—a larger s ensures then the proposed
state x = Xprop will not be too similar to the previous state x

0 = Xcurr, but a smaller s

ensures that the acceptance ratio Ab✓(Xprop |Xcurr) will not be too low (since, when most

entries i = 1, . . . , n of Xprop coincide with those of Xcurr, the ratio
pb✓(Xprop | b✓)
pb✓(Xcurr | b✓)

should be close

to 1).
Next, how can we choose s to balance between these two considerations? For these

examples, we will choose s from the data itself. First, we observe that allowing s to depend
on b✓ does not violate the validity of our procedure. This is because the mechanism ePM(· |X, b✓)
for sampling the copies is only required to satisfy assumption (2.9); it is allowed to depend
arbitrarily on b✓, as long as exchangeability between X and eX(1)

, . . . , eX(M) is not violated.
(In particular, this means that we cannot use the data X itself to choose s.) We will choose
s by simulating the procedure with b✓ in place of ✓0:

• Let ✓sim
0

= b✓.

• Draw X
sim

⇠ P✓sim
0

.

54

• For each candidate choice of s, run Metropolis–Hastings initialized at Xsim, and com-
pute the average acceptance probability.

• Repeat for many draws of Xsim to get an average acceptance probability Ās for each
s, and among all values of s such that Ās � 0.2, choose the value of s that maximizes
sĀs (thus maximizing the expected number of elements that change at each MH step).

With this choice of s, we have completed our b✓-dependent definition of the proposal distri-
bution qb✓(x | x

0) for this setting. Then we choose L to be at least n

sĀs
to ensure that (most)

entries will be resampled within L steps; in our simulations we chose L to be min{500, 2n

sĀs
}

(rounded to an integer).

Example 3 Next we consider the Gaussian spatial process. Here we will again define a
parametrized proposal distribution, and will then choose the parameter by simulation. For
any ⇢ 2 (0, 1), define the proposal distribution qb✓(x|x

0) as follows:

• Draw xtmp ⇠ N (0,⌃b✓).

• Set x = ⇢ · x
0 +

p
1� ⇢2 · xtmp.

As for the examples above, the value of ⇢ governs the tradeo↵—in this case, a smaller ⇢
ensures then the proposed state x = Xprop will not be too similar to the previous state
x
0 = Xcurr, but a larger ⇢ ensures that the acceptance ratio Ab✓(Xprop |Xcurr) will not be too

low. In each trial, we will choose ⇢ with a simulation, analogous to the choice of s for the
other examples:

• Let ✓sim
0

= b✓.

• Draw X
sim

⇠ P✓sim
0

, W ⇠ N (0, 1

d
Id), and calculate b✓ = b✓(Xsim

,W).

• For each candidate choice of ⇢, run one step of Metropolis–Hastings initialized at Xsim,
to generate X

new.

• Repeat for 500 draws of Xsim (discarding any draws for which b✓(Xsim
,W) is not a

SSOSP). Among all values of ⇢ that achieve average acceptance probability � 0.05,
find the value of ⇢ that minimizes the average correlation between X

sim and X
new.

With this choice of ⇢, writing ⇢̂ to denote the average correlation between X
sim and X

new,
we then set L = min{500, 20

1�(⇢̂)+
} (rounded to an integer).

E Details for Figure 1

In this section we give details for the simulation that generated Figure 1, comparing the
parametric bootstrap versus co-su�cient sampling for a Gaussian linear model setting as
described in Section 1. Recall that the null hypothesis for this example is the model

X = ✓ · Z +N (0, In)

55

for some ✓ 2 R, where Z 2 Rn is a fixed covariate vector. We are interested in testing the
alternative hypothesis that X is in fact more strongly associated with some other covariate
Y 2 Rn, and so our test statistic is given by

T (X) =
(X>

Y)2

(X>Z)2
.

To generate the data, we choose sample size n = 100, and then independently for each
i = 1, . . . , n, we generate the triple (Xi, Yi, Zi) by taking

(Yi, Zi) ⇠ N

✓
0,

✓
1 ⇢

⇢ 1

◆◆
,

with correlation parameter ⇢ = 0.97, and define

Xi = ✓0 · Zi +N (0, 1),

where the true parameter is chosen as ✓0 = 0.
Next we run parametric bootstrap and CSS to generate copies eX(1)

, . . . , eX(M) of the data
X 2 Rn, for M = 500. For both methods, the MLE is given by b✓ = (Z>

Z)�1
Z

>
X. To

run the parametric bootstrap, we generate the copies from the distribution with parameter
✓ = b✓, that is, we define the copies as

eX(m)

boot
= b✓ · Z + Vm,

where Vm

iid
⇠ N (0, In). To run CSS, we instead condition on the MLE b✓, and the copies can

therefore be generated as
eX(m)

CSS
= b✓ · Z + Proj?

Z
· Vm,

where again Vm

iid
⇠ N (0, In).

Finally, we repeat the simulation for 10,000 independent trials to generate the histograms
of p-values for each method, as shown in Figure 1.

Acknowledgements

The authors would like to thank Michael Bian for help with some of the computation. The
first author was supported by the National Science Foundation via grant DMS–1654076, and
by the O�ce of Naval Research via grant N00014-20-1-2337.

References

Alan Agresti. A survey of exact inference for contingency tables. Statist. Sci., 7(1):131–153,
02 1992. doi: 10.1214/ss/1177011454. URL https://doi.org/10.1214/ss/1177011454.

Alan Agresti. Exact inference for categorical data: recent advances and continuing contro-
versies. Statistics in medicine, 20(17-18):2709–2722, 2001.

56

https://doi.org/10.1214/ss/1177011454

François Bachoc. Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes. Journal of Multivariate Analysis, 125:1–35, 2014.

Rina Foygel Barber and Emmanuel J Candès. Controlling the false discovery rate via knock-
o↵s. The Annals of Statistics, 43(5):2055–2085, 2015.

Rina Foygel Barber and Mladen Kolar. ROCKET: Robust confidence intervals via Kendall’s
tau for transelliptical graphical models. The Annals of Statistics, 46(6B):3422–3450, 2018.

Maurice Stevenson Bartlett. Properties of su�ciency and statistical tests. Proceedings of the
Royal Society of London. Series A-Mathematical and Physical Sciences, 160(901):268–282,
1937.

CB Bell. Inference for goodness-of-fit problems with nuisance parameters: (applications to
signal detection). Journal of statistical planning and inference, 9(3):273–284, 1984.

JI Beltrán-Beltrán and FJ O’Reilly. On goodness of fit tests for the Poisson, negative
binomial and binomial distributions. Statistical Papers, 60(1):1–18, 2019.

Thomas B Berrett, Yi Wang, Rina Foygel Barber, and Richard J Samworth. The conditional
permutation test for independence while controlling for confounders. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 2019.

Julian Besag and Peter Cli↵ord. Generalized Monte Carlo significance tests. Biometrika, 76
(4):633–642, 1989.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

Michel Broniatowski and Virgile Caron. Conditional inference in parametric models. arXiv
preprint arXiv:1202.0944, 2012.

Emmanuel Candès, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold: Model-X
knocko↵s for high-dimensional controlled variable selection. Journal of the Royal Statistical
Society: Series B, 80(3):551–577, 2018.

Alberto Contreras-Cristán, Richard A Lockhart, Michael A Stephens, and Shaun Z Sun. On
the use of priors in goodness-of-fit tests. Canadian Journal of Statistics, 47(4):560–579,
2019.

David Roxbee Cox and Nancy Reid. Parameter orthogonality and approximate conditional
inference. Journal of the Royal Statistical Society: Series B (Methodological), 49(1):1–18,
1987.

Persi Diaconis, Susan Holmes, Mehrdad Shahshahani, et al. Sampling from a manifold. In
Advances in modern statistical theory and applications: a Festschrift in honor of Morris
L. Eaton, pages 102–125. Institute of Mathematical Statistics, 2013.

James Durbin. Some methods of constructing exact tests. Biometrika, 48(1-2):41–65, 1961.

57

Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

Steinar Engen and Magnar Lilleg̊ard. Stochastic simulations conditioned on su�cient statis-
tics. Biometrika, 84(1):235–240, 1997.

Arnab Hazra. An exact Kolmogorov–Smirnov test for the negative Binomial distribution
with unknown probability of success. Research & Reviews: Journal of Statistics, 2(1):
1–13, 2013.

Dongming Huang and Lucas Janson. Relaxing the assumptions of knocko↵s by conditioning.
Annals of Statistics, 2020+. To Appear.

John D Kalbfleisch and David A Sprott. Application of likelihood methods to models in-
volving large numbers of parameters. Journal of the Royal Statistical Society: Series B
(methodological), 32(2):175–194, 1970.

John E Kolassa. Algorithms for approximate conditional inference. Statistics and Computing,
13(2):121–126, 2003.

Athanasios Kousathanas, Christoph Leuenberger, Jonas Helfer, Mathieu Quinodoz,
Matthieu Foll, and Daniel Wegmann. Likelihood-free inference in high-dimensional mod-
els. Genetics, 203(2):893–904, 2016.

A Kumar and PK Pathak. Su�ciency and tests of goodness of fit. Scandinavian Journal of
Statistics, pages 39–43, 1977.

Kenneth L Lange, Roderick JA Little, and Jeremy MG Taylor. Robust statistical modeling
using the t distribution. Journal of the American Statistical Association, 84(408):881–896,
1989.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by
model selection. Annals of Statistics, pages 1302–1338, 2000.

Lucien Le Cam. Locally asymptotically normal families of distributions. Univ. California
Publ. Statist., 3:37–98, 1960.

Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer Science &
Business Media, 2012.

Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the American Sta-
tistical Association, 86(414):316–327, 1991. doi: 10.1080/01621459.1991.10475035. URL
https://www.tandfonline.com/doi/abs/10.1080/01621459.1991.10475035.

Magnar Lilleg̊ard. Tests based on Monte Carlo simulations conditioned on maximum likeli-
hood estimates of nuisance parameters. Journal of statistical computation and simulation,
71(1):1–10, 2001.

Magnar Lilleg̊ard and Steinar Engen. Exact confidence intervals generated by conditional
parametric bootstrapping. Journal of Applied Statistics, 26(4):447–459, 1999.

58

https://www.tandfonline.com/doi/abs/10.1080/01621459.1991.10475035

Bo H Lindqvist and Bjarte Rannestad. Monte Carlo exact goodness-of-fit tests for nonho-
mogeneous Poisson processes. Applied Stochastic Models in Business and Industry, 27(3):
329–341, 2011.

Bo Henry Lindqvist and Gunnar Taraldsen. Exact statistical inference for some parametric
nonhomogeneous Poisson processes. Journal of The Iranian Statistical Society, 12(1):
113–126, 2013.

Richard A Lockhart. Conditional limit laws for goodness-of-fit tests. Bernoulli, 18(3):857–
882, 2012.

Richard A Lockhart, Federico J O’Reilly, and Michael A Stephens. Use of the Gibbs sampler
to obtain conditional tests, with applications. Biometrika, 94(4):992–998, 2007.

Richard A Lockhart, Federico O’Reilly, and Michael Stephens. Exact conditional tests and
approximate bootstrap tests for the von Mises distribution. Journal of Statistical Theory
and Practice, 3(3):543–554, 2009.

Ruth Marcus, Peritz Eric, and K Ruben Gabriel. On closed testing procedures with special
reference to ordered analysis of variance. Biometrika, 63(3):655–660, 1976.

Federico O’Reilly and Leticia Gracia-Medrano. On the conditional distribution of goodness-
of-fit tests. Communications in Statistics-Theory and Methods, 35(3):541–549, 2006.

Gareth O Roberts and Je↵rey S Rosenthal. Examples of adaptive mcmc. Journal of Com-
putational and Graphical Statistics, 18(2):349–367, 2009.

Paul R Rosenbaum. Conditional permutation tests and the propensity score in observational
studies. Journal of the American Statistical Association, 79(387):565–574, 1984.

James D Santos and Nelson L Souza Filho. A Metropolis algorithm to obtain co-su�cient
samples with applications in conditional tests. Communications in Statistics-Simulation
and Computation, 48(9):2655–2659, 2019.

Michael A Stephens. Goodness-of-fit and su�ciency: Exact and approximate tests. Method-
ology and Computing in Applied Probability, 14(3):785–791, 2012.

Xiaoying Tian and Jonathan Taylor. Selective inference with a randomized response. Ann.
Statist., 46(2):679–710, 04 2018. doi: 10.1214/17-AOS1564. URL https://doi.org/10.

1214/17-AOS1564.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
computational mathematics, 12(4):389–434, 2012.

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

59

https://doi.org/10.1214/17-AOS1564
https://doi.org/10.1214/17-AOS1564

	1 Introduction
	1.1 Our contribution
	1.2 Applications
	1.3 Related work
	1.4 Notation

	2 Method
	2.1 Overview
	2.2 Algorithm for approximate co-sufficient sampling
	2.2.1 Sampling the estimator
	2.2.2 Calculating the distribution conditioned on the estimator
	2.2.3 Sampling the copies

	3 Theoretical results
	3.1 Main result: Type I error bound
	3.2 The asymptotic view
	3.3 Choosing

	4 Examples
	4.1 Canonical generalized linear models (GLMs)
	4.2 The Behrens–Fisher problem
	4.3 A Gaussian spatial process
	4.4 The multivariate t distribution with unknown covariance
	4.5 Simulations
	4.5.1 Simulations with a parametric alternative
	4.5.2 Simulations without a parametric alternative

	5 Discussion
	5.1 The importance of conditioning: comparison to the parametric bootstrap
	5.2 Can we condition on less information?
	5.3 Open questions

	A Proofs of main results
	A.1 Proof of Theorem 1
	A.2 Proof of Lemma 1

	B Additional proofs
	B.1 Proof of Lemma 2
	B.2 Distance to exchangeability for mixture distributions
	B.3 Verifying that (2.7) defines a density
	B.4 Change of variables calculation

	C Proofs for examples
	C.1 Checking Assumption 3
	C.1.1 Checking Assumption 3 for Example 1
	C.1.2 Checking Assumption 3 for Example 2
	C.1.3 Checking Assumption 3 for Example 3
	C.1.4 Checking Assumption 3 for Example 4

	C.2 Checking Assumption 2
	C.2.1 Checking the conditions of Lemma 6: general recipe
	C.2.2 Checking the conditions of Lemma 6 for Example 1
	C.2.3 Checking the conditions of Lemma 6 for Example 2
	C.2.4 Checking the conditions of Lemma 6 for Example 3
	C.2.5 Checking the conditions of Lemma 6 for Example 4

	C.3 Proof of Lemma 6

	D Computational considerations
	D.1 Optimization of (2.2)
	D.2 Sampling the conditional randomizations
	D.2.1 Choosing the proposal distribution

	E Details for Figure 1

