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Abstract: We study the performance of CLAIRE—a diffeomorphic multi-node, multi-GPU image-
registration algorithm and software—in large-scale biomedical imaging applications with billions of
voxels. At such resolutions, most existing software packages for diffeomorphic image registration
are prohibitively expensive. As a result, practitioners first significantly downsample the original
images and then register them using existing tools. Our main contribution is an extensive analysis
of the impact of downsampling on registration performance. We study this impact by comparing
full-resolution registrations obtained with CLAIRE to lower resolution registrations for synthetic and
real-world imaging datasets. Our results suggest that registration at full resolution can yield a superior
registration quality—but not always. For example, downsampling a synthetic image from 10243 to
2563 decreases the Dice coefficient from 92% to 79%. However, the differences are less pronounced
for noisy or low contrast high resolution images. CLAIRE allows us not only to register images of
clinically relevant size in a few seconds but also to register images at unprecedented resolution in
reasonable time. The highest resolution considered are CLARITY images of size 2816× 3016× 1162.
To the best of our knowledge, this is the first study on image registration quality at such resolutions.

Keywords: large-scale biomedical image processing; diffeomorphic image registration; high-performance
computing; GPUs

1. Introduction

3D diffeomorphic image registration (also known as “image alignment” or “matching”)
is a critical task in biomedical image analysis [1,2]. For example, it enables the study of
morphological changes associated with the progression of neurodegenerative diseases
over time or in imaging studies of patient populations. The process of image registration
involves finding a spatial transformation which maps corresponding points in an image
to those in another [1]. In mathematical notation, we are given two images m0(x) (the
template/moving image) and m1(x) (the reference/fixed image; here x ∈ Ω ⊂ R3) and we
seek a spatial transformation y : R3 → R3, such that the deformed template image m0(y(x))
is similar to the reference image m1(x) for all x (see Figure 1 for an illustration) [3,4]. Image
registration methods can be categorized based on the parameterization for y [3]. We
seek a diffeomorphic map y, i.e., y is a differentiable bijection and has a differentiable
inverse. Approaches that parameterize y in terms of a smooth, time-varying velocity field
v : R3× [0, 1]→ R3 belong to a class of methods referred to as large-deformation diffeomorphic
metric mapping (LDDMM) [5–7]. In this study, we consider a related class of methods that
use stationary velocity fields v : R3 → R3. This diffeomorphic registration problem is
expensive to solve because the problem is infinite-dimensional, and upon discretization
results in a nonlinear system with millions of unknowns—even for stationary velocity fields.
For example, solving the registration problem for two images of resolution 2563 (a typical
size for clinical scans) requires solving for approximately 50 million unknowns in space
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(three vector components per image grid point). Furthermore, image registration is a highly
nonlinear, ill-posed inverse problem [8], resulting in ill-conditioned inversion operators.
Consequently, running registration on multi-core high-end CPUs can take several minutes.

There exist various algorithms and software packages for fast registration of images
at standard clinical resolution (e.g., 2563) [9–16]. This includes CLAIRE, which can execute
image registration in parallel on multi-node multi-core CPUs and GPUs [17–22]. We
note that there is little work on scalable image registration. One application that requires
this scalability is the registration of CLARITY images [23–25,25–27] with a resolution
in the order of 20 K × 20 K × 1 K. This corresponds to a problem with approximately
1.2 trillion unknowns. In [22], we extended CLAIRE to support GPU-accelerated scalable
image registration, which can process high resolution images using multiple GPUs. We
demonstrated the scalability of our solver using synthetic images with a resolution up to
20483 and CLARITY mouse brain images of size 768× 768× 1024. In this work, we scale
registration to an even higher resolution, e.g., CLARITY images of size 2816× 3016× 1162.
This corresponds to an increase of 16× in problem size. In our previous work [17,19,28–33],
we have extensively studied the algorithmic side of image registration within the framework
of CLAIRE. In this paper, we pay closer attention to the quality of the registration results.
We study the effect of different input parameters, including the quality and resolution of
the input images, on the accuracy of the registration.
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Figure 1. Illustration of the image registration problem. Panel (A): 3D rendering of an exemplary
set of input images. Panel (B): Image registration is the task of computing spatial correspondences
between two images of the same object. These correspondences, denoted as y, are indicated by the
red arrows for example points within a single axial slice of the template and reference image data
shown in panel (A). Before we execute CLAIRE, we compensate for the global mismatch between
the considered images by performing an affine registration. In panel (C), we show an axial slice
of the volume shown in panel (A) after an affine pre-registration step has been carried out; we
execute CLAIRE on these images. Panel (D): CLAIRE outputs a diffeomorphic deformation map y that
matches each point in the template image m0 to its corresponding point in the reference image m1.
We show a typical deformation map y in the leftmost image and the corresponding determinant of
the deformation gradient (encodes volume change) in the second and third image from the left (axial
and coronal slice). In CLAIRE, we invert for a stationary velocity field v that parameterizes y (second
and third figure from the right; color denotes orientation). The last figure in panel (D) shows the
point-wise residual after applying CLAIRE.

1.1. Contributions

We build on our prior work on scalable deformable image registration [17,19–22,28–31,33]
using CLAIRE and analyze the effect of image resolution on image registration accuracy.
The present work analyzes image registration performance. We do not propose any major
improvements in our methodology, with the exception of additional advice for hyperpa-
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rameter tuning. We outline our past contributions on formulations, algorithms, and their
parallel implementation below. Our major contributions in the present work are:

• We evaluate CLAIRE on high resolution synthetic and real image datasets. We demon-
strate that image registration when performed at native high resolution results in
higher accuracy (measured in terms of the Dice coefficient of the labeled structures
in the images). We conduct experiments to show that downsampling the images and
then registering them result in loss of registration accuracy.

• We design scalable image registration experiments to explore the effect of solver
parameters—the number of time steps nt in the semi-Lagrangian scheme, and regu-
larization parameters βv and βw—on the registration performance at different image
resolutions.

• We present an extension of the regularization parameter continuation scheme first
presented in [28] by searching for βw in addition to βv, thereby removing the need for
selecting an additional resolution-dependent solver parameter.

• We study the performance of our scalable registration solver CLAIRE for applica-
tions in high-resolution mouse and human neuroimage registration. We perform
image registration for two pairs of CLARITY mouse brain images at a resolution of
2816× 3016× 1162 voxels. To the best of our knowledge, images of this scale have not
been registered before at full resolution in under 30 min.

1.2. Related Work

The current work builds upon the open source framework CLAIRE [17,19–22,28–32,34].
Our formulation for diffeomorphic image registration has been described in [28,29]. Our
Newton–Krylov solver was originally developed in [28]. We proposed efficient numerical
implementations for evaluating forward and adjoint operators in [17,30,33]. We designed
various methods for preconditioning in [19,22,28,30]. The computational kernels of the
parallel CPU implementation of our solver were introduced in [17,19,32]. More recently,
we ported CLAIRE to GPU architectures [20,22]. In summary, our work paved the way
towards real-time applications of diffeomorphic image registration and its deployment to
a high-resolution medical imaging application. To the best of our knowledge, this is the
only existing software for diffeomorphic image registration with these capabilities. We
have integrated our framework with biophysical modeling in [31,32,35–37]. None of these
works explore registration performance in large-scale biomedical imaging applications.

Literature surveys of image registration and associated algorithmic developments
can be found in [2,3]. A recent overview of existing LDDMM methods can be found
in [19]. Related LDDMM software packages include Demons [9], ANTs [38–40], DARTEL [41],
deformetrica [42–45], FLASH [15], LDDMM [5,46], ARDENT [47], ITKNDReg [48], and PyCA [49].
Surveys of GPU-accelerated image registration solvers can be found in [50–52]; particular
examples for various formulations are [14,16,43,53–66]. Multi-GPU LDDMM implemen-
tations for atlas construction are described in [57,58,65,66]. Their setup is embarrassingly
parallel in the sense that they solve many small registration problems independently on
single GPUs. In [57–59], the computational bottlenecks are the repeated solution of a
Helmholtz-type PDE and trilinear scattered data interpolation to compute and apply the
deformation map. They use hardware acceleration for the trilinear interpolation kernel
with 3D texture volume support. The runtime for a single dataset of size 160× 192× 160 is
20 s on an NVIDIA Quadro FX 5600. CLAIRE uses a multi-node multi-GPU framework with
high computational throughput for single (large-scale) registration problems [22] which is
no longer an embarrassingly parallel problem. CLAIRE uses the Message Passing Interface
(MPI) to parallelize the implementation.

None of the GPU-accelerated LDDMM methods mentioned above, except for
CLAIRE [17,19–22,28–32,34], use second-order numerical optimization. Many of the avail-
able methods solve the registration problem by reducing the number of unknowns either
through a coarse parameterization or by using a coarse grid and use simplified algo-
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rithms. These crude approximations and simplifications can result in inferior registration
quality [19,20].

The work in [25] focuses on annotating CLARITY brain images by registering them
to the Allen Institute’s Mouse Reference Atlas (ARA). They use a “masked” LDDMM
approach. They also consider the registration of CLARITY-to-CLARITY brain images and
compare different mismatch terms for the registrations. However, they downscale the
images to a lower resolution for conducting all experiments. In [25], mutual information
is used for the registration of CLARITY to the ARA dataset but at an approximately one
hundred times downsampled resolution (at an original in-plane isotropic resolution of
0.58 µm). The authors in [67] analyze registration performance on high-resolution mouse
brain images of size 2560× 2160× 633 obtained using the CUBIC protocol [68]. They
report results using different software packages including ANTs and Elastix. They did
not observe a relationship between registration accuracy at different resolutions. For their
high-resolution runs using ANTs, they report a wall clock time of over 200 h on a single
compute node (2.66 GHz 64bit Intel Xeon processor with 256 GB RAM) while the same run
with elastix [69] took approximately 30 h. The authors in [70] register high-resolution
images of mouse brains to the ARA dataset [71]. They perform nonlinear registration using
ANTs at coarse resolution (10 µm for the ARA) and apply the deformation at high-resolution.
In the current work, we do not downsample high-resolution images but register them at
the original resolution. We can register CLARITY images of resolution 2816× 3016× 1162
in less than 30 min using 256 GPUs. In addition to that, we study the effect of resolution on
the registration quality.

1.3. Outline

We summarize the overall formulation in Section 2.1 and the algorithms in Section 2.2
for completeness. We note, that all of the material presented in Sections 2.1 and 2.2 has been
discussed in detail in [19,22]. In Section 3, we present our kernels and parallel algorithms
and discuss key solver parameters. We also introduce a new scheme to automatically
identify adequate parameters of our solver for unseen data. This scheme extends on
our prior work in [19]. We conclude with the main scalability experiments in Section 5,
and present conclusions in Section 6.

1.4. Limitations

CLAIRE currently only supports mono-modal similarity measures, which limits our
study to registrations for images acquired with the same imaging modality. Moreover,
CLAIRE only supports periodic boundary conditions, i.e., we require that the image data
be embedded in a larger background domain. In most medical imaging applications,
the images are embedded in a zero background and, therefore, naturally periodic. If the
images are not periodic, they can be zero-padded and mollified. CLAIRE uses stationary
velocities, which improves computational efficiency, but is suboptimal from a theoretical
point of view. In [28], we found no qualitative differences in registration mismatch when
registering two images using stationary velocities. This observation is in line with the
work of other groups using stationary velocity fields [72,73]. Regarding computational
performance, one issue is the memory requirement of our method. We have optimized
memory allocation for the core components of CLAIRE. Additional optimizations by reusing
and sharing memory across external libraries to further reduce the memory load remain
subject to future work.

2. Methods

Before discussing our enhancements in Section 3, we shortly introduce the underlying
mathematical formulation of the image registration problem utilized in CLAIRE as well
as the discretization and the numerical algorithms. The following exposition is only
included for completeness, and is based on material described in our prior work on efficient
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algorithms for diffeomorphic image registration [17,19,20,22,28–30,32,33]. Consequently,
we keep this section brief.

2.1. Formulation

We summarize our notation in Table 1. CLAIRE uses an optimal control formulation.
We parameterize the deformation map y(x) through a smooth, stationary velocity field
v(x). The optimization problem is: Given two images m0(x) (template image; image to be
deformed) and m1(x) (reference image), we seek a stationary velocity field v(x) by solving

minimize
v,m

1
2

∫
Ω
(m(x, 1)−m1(x))2dx +

βv

2
regv(v) +

βw

2
regw(w) (1)

subject to

∂tm(x, t) + v(x) ·∇m(x, t) = 0 in Ω× (0, 1], (2)

m(x, t) = m0(x) in Ω× {0}, (3)

∇ · v = w in Ω, (4)

on a rectangular domain Ω ⊂ R3 with periodic boundary conditions on ∂Ω. The first term
in Equation (1) is a squared L2 image similarity metric, which measures the distance between
the deformed template image m(x, t = 1) and the reference image m1(x). The objective
functional in Equation (1) additionally consists of two regularization models that act on
the controls v and w with regularization parameters βv > 0 and βw > 0, respectively.
The regularization operators are introduced to prescribe sufficient regularity requirements
on v and its divergence ∇ · v. Smoothness of the velocity guarantees that the computed
map is diffeomorphic [5–7]. We refer to [29] for details about our regularization scheme.
The default configuration of CLAIRE is an H1-Sobolev-seminorm for v and H1-Sobolev-
norm for w [19,29]. The transport equation in Equation (3) represents the geometrical
deformation of m0(x) by advecting the intensities forward in time.

To solve Equation (1) subject to Equations (2)–(4), we apply the method of Lagrange
multipliers to obtain the Lagrangian functional

L(φ) :=
1
2

∫
Ω
(m(x, 1)−m1(x))2dx +

βv

2
regv(v)

+
βw

2
regw(∇ · v) +

∫ 1

0

∫
Ω

λ(x, t)(∂tm + v · ∇m)dx dt

+
∫

Ω
λ(x, 0)(m(x, 0)−m0(x))dx +

∫
Ω

p(x)(∇ · v− w)dx

(5)

with state, adjoint, and control variables (m, λ, p, v, w) := φ, respectively.

Table 1. Notation and main symbols.

Symbol Description

Ω spatial domain; Ω := [0, 2π)3 ⊂ R3 with boundary ∂Ω
x spatial coordinate; x := (x1, x2, x3)

T ∈ R3

t (pseudo-)time variable; t ∈ [0, 1]
m1(x) reference image (fixed image)
m0(x) template image (moving image)
v(x) stationary velocity field
y(x) (diffeomorphic) deformation map
m(x, t) state variable (transported intensities of m0)
λ(x, t) adjoint variable
A regularization operator
βv > 0 regularization parameter for v
βw > 0 regularization parameter for ∇ · v
F deformation gradient
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Table 1. Cont.

Symbol Description

J determinant of deformation gradient (Jacobian determinant)
nt number of time steps in PDE solver

CFL Courant–Friedrichs–Lewy (number/condition)
FD finite differences
FFT Fast Fourier Transform
IP scattered data interpolation
LDDMM Large Deformation Diffeomorphic Metric Mapping
MPI Message Passing Interface
PCG Preconditioned Conjugate Gradient (method)

2.2. Discretization and Numerical Algorithms
2.2.1. Optimality Conditions & Reduced Space Approach

To derive the first order optimality conditions, we take the variations of L with respect
to the state variable m, the adjoint variables λ and p, and the control variable v. This results
in a set of coupled, hyperbolic-elliptic PDEs in 4D (space-time). CLAIRE uses a reduced-space
approach, in which one iterates only on the reduced-space of v. We require g(v?) = 0 for
an admissible solution v?, where

g(v) := βvAv(x) +K
∫ 1

0
λ(x, t)∇m(x, t)dt (6)

is the so-called reduced gradient. The operator A corresponds to the first variation of the
regularization model for v (i.e., regv in Equation (1)) and the operator K projects v onto the
space of near-incompressible velocity fields (see [29] for details). To evaluate Equation (6),
we first solve the forward problem in Equation (3) and then the adjoint problem given by

− ∂tλ(x, t)−∇ · λ(x, t)v(x) = 0 in Ω× [0, 1) (7)

with final condition λ(x, t) = m1(x)−m(x, t) in Ω×{1} and periodic boundary conditions
on ∂Ω.

2.2.2. Discretization

We discretize the forward and adjoint PDEs in the space-time interval Ω × [0, 1],
Ω := [0, 2π)3 ⊂ R3, with periodic boundary conditions on ∂Ω, on a regular grid with
N = N1N2N3 grid points xijk ∈ R3 in space and nt + 1 grid points in time. We use a
semi-Lagrangian time-stepping method to solve the transport equations that materialize
in the optimality system [17,30]. Key computational subcomponents of this scheme are
2nd-order Runge–Kutta time integrators and spatial interpolation kernels [17,19,22,30].

To solve the transport equation given by Equation (7) and to evaluate the reduced-
gradient g in Equation (6), we need to apply gradient and divergence operators. We use an
8th finite difference (FD) scheme for these first-order differential operators [20,22]. The re-
duced gradient in Equation (6) also involves the vector-Laplacian A and the Leray-like
operator K (see [29]). In spectral methods, inversion and application of higher-order differ-
ential operators come at the cost of two FFTs and one Hadamard product in Fourier space.

2.2.3. Gauss–Newton–Krylov Solver

CLAIRE uses a Gauss–Newton–Krylov method globalized with an Armijo line search
to solve the non-linear problem g(v?) = 0 [19,28]. The iterative scheme is given by

vk+1 = vk + αkṽk, Hṽk = −gk, k = 0, 1, 2, . . . , (8)

where H ∈ R3N,3N is the discretized reduced-space Hessian operator, ṽk ∈ R3N the search
direction, gk ∈ R3N a discrete version of the gradient in Equation (6), αk > 0 a line search
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parameter, and k ∈ N the Gauss–Newton iteration index. We have to solve the linear
system in Equation (8) at each Gauss–Newton step. We do not form or assemble H; we use
a matrix-free preconditioned conjugate gradient (PCG) method to solve Hṽk = −gk for ṽk.
This only requires an expression for applying H to a vector that we term Hessian matvec.
In continuous form, the Gauss–Newton approximation of this matvec is given by

Hṽ = βvAṽ(x) +K
∫ 1

0
λ̃(x, t)∇m(x, t)dt. (9)

Similarly to the evaluation of the reduced gradient in Equation (6), the application of
the Hessian to a vector in Equation (9) requires the solution of two PDEs to find the space-
time field λ̃ (see [19,28,29] for details). Consequently, solving the linear system with H in
Equation (8) is the most expensive part of CLAIRE. Preconditioning of the reduced-space
Hessian system can be used to alleviate these computational costs.

In [22], we have introduced a zero velocity approximation for H as a preconditioner.
This preconditioner can be applied at full resolution and through a two-level coarse grid
approximation (see [22] for details). The latter variant represents the default considered in
the present work.

3. Computational Kernels and Parallel Algorithms

At each Gauss–Newton step, we have to solve the forward and the adjoint equations
for the reduced gradient and the Hessian matvecs. The main computational cost in CLAIRE
constitute FFTs for (inverse) differential operators, scattered data interpolation (IP) for the
semi-Lagrangian solver, and FD for computing first order derivatives (see [17,20,22,30] for
a detailed description of these computational components). The distributed memory CPU
implementation of CLAIRE uses AccFFT [74,75] for spectral operations [17,32]. In the single
GPU setup, we use the highly optimized 3D FFT operations provided by NVIDIA’s cuFFT
library. In the multi-node multi-GPU setup, we use a 2D slab decomposition to leverage 2D
cuFFT functions. We decompose the spatial domain in x1 direction, which is the outer-most
dimension, and the spectral domain in the x2 direction. Let p be the number of MPI tasks.
Then, each MPI task gets (N1/p)× N2 × N3 grid points, where N1, N2, N3 are the image
dimensions. We have discussed the implementation details and shown scalability of the
FFT kernel in [22].

The parallel implementation of our IP kernel on CPUs was introduced in [17] and im-
proved in [32]. In [20], we explored linear, cubic Lagrange, and cubic B-spline interpolation
schemes for the interpolation kernel on a single GPU setup. In [22], we ported these kernels
to the multi-node multi-GPU setup and made several optimizations. In the present study,
we use linear interpolation to evaluate the image intensities at the off-grid points (also
called characteristic points) in our semi-Lagrangian scheme. Depending on the image data
layout and the velocity field, the IP kernel requires scattered peer-to-peer communication
of off-grid points between the owner and the worker processors.

The CPU version of CLAIRE uses FFTs for spatial derivatives [17,19,32]. In [20], we
introduced the 8th order FD kernel to evaluate first order derivatives, i.e., spatial gradients
and divergence operators on a single GPU. In [22], we ported the FD kernel to the multi-
GPU setup. We use the FD kernel for computing first-order derivatives throughout the
registrations performed in this paper.

CLAIRE uses CUDA-aware MPI in the multi-node multi-GPU setup, thereby avoiding
unnecessary CPU-GPU communication and automatically utilizing the high-speed on-node
NVLink interconnect bus between GPUs if it is available.

3.1. Compute Hardware and Libraries

All runs reported in this study were executed on TACC’s Longhorn system in single
precision. Longhorn hosts 96 NVIDIA Tesla V100 nodes. Each node is equipped with four
GPUs and 16 GB GPU RAM each (i.e., 64 GB per node) and two IBM Power 9 processors
with 20 cores (40 cores per node) at 2.3 GHz with 256 GB memory. Our implementation
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uses PETSc [76,77] for linear algebra, the PETSc TAO package for nonlinear optimization,
CUDA [78], thrust [79], cuFFT for FFTs [80], niftilib [81] for serial I/O for small images
and PnetCDF [82] for parallel I/O for large scale images, IBM Spectrum MPI [83], and the
IBM XL compiler [84].

3.2. Code Availability

CLAIRE [21,34] is available publicly for download on github at https://github.com/
andreasmang/claire (accessed on 5 January 2022) under the GNU General Public Li-
cense v3.0.

3.3. Key Solver Parameters

Here, we summarize the key parameters of CLAIRE and discuss their effect on the
solver and previous strategies to choose suitable values. In Section 3.4, we present our
algorithm to choose these parameters in a combined continuation approach.

• βv—regularization parameter for the velocity field v. Large values for βv result in
very smooth velocities and, thus, maps that are typically associated with a large final
image mismatch. Smaller values of βv allow complex deformations but lead to a
solution that might be close to being non-diffeomorphic due to discretization issues.
From a user application point of view, we are interested in computing velocity fields,
for which the Jacobian determinant, i.e., the determinant of the deformation gradient
F := ∇y, is strictly positive for every image voxel. This guarantees a locally diffeo-
morphic transformation (subject to numerical accuracy). In [28,85], we determined
the regularization parameter βv based on a binary search algorithm. The search is
constrained by the bounds on J = detF. That is, we choose βv such that J is bounded
from below by Jmin and bounded from above by 1/Jmin, where Jmin∈ (0, 1) is a user-
defined parameter. The binary search is expensive because we solve the inverse
problem repeatedly. For each trial βv, we iterate until the convergence criteria for the
Gauss–Newton–Krylov solver is met then use the previous velocity field as an initial
guess for the next trial βv.

• βw—regularization parameter for the divergence of the velocity field w = ∇ · v.
The choice of βw, along with βv, is equally critical. Small values can result in extreme
values of J and make the deformations locally non-diffeomorphic. As discussed above,
in our previous work [28], we do parameter continuation in βv and keep βw fixed.
This is sub-optimal for two reasons: (i) Both βv and βw depend on the resolution,
so keeping βw fixed for all resolutions can result in deformations with undesirable
properties, and (ii) doing continuation in βv alone does not ensure we get close enough
to the set Jacobian bounds. Therefore, adding continuation in βw, which also affects
the Jacobian, is necessary.

• Jmin—lower bound for the determinant J of the deformation gradient. The choice
of this parameter is typically driven by dataset requirements, i.e., one has to decide
how much volume change is acceptable. CLAIRE uses a default value of 0.25 [19].
Tighter bound on the Jacobian, i.e., Jmin close to unity, will result in large βv and βw
values leading to simple deformations and sub-par registration quality. Relaxing the
Jacobian bound in combination with our continuation schemes for βv and βw can
result in very small regularization parameters and extremely complex deformations.

• nt—number of time steps in the semi-Lagrangian scheme. The semi-Lagrangian
scheme is unconditionally stable and outperforms RK2 time integration schemes in
terms of runtime for a given accuracy tolerance [30]. The choice of nt is based on
the adjoint error, which is the error measured after solving Equation (3) forward and
then backward in time. In [30], we conducted detailed experiments for 2D image
registration and found, that even for problems of clinical resolution nx = 2562, nt = 3
(CFL = 10) did not cause issues in solver convergence. Increasing nt beyond a certain
value will introduce additional discretization errors from the interpolation scheme.

https://github.com/andreasmang/claire
https://github.com/andreasmang/claire
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• Resolution of v. We use the same spatial discretization for v as given for the input
images. There exist image registration algorithms that approximate the registration
deformation in a low-dimensional bandlimited space without sacrificing accuracy,
resulting in dramatic savings in computational cost [15]. We have not explored this
within the framework of CLAIRE. Note that [15] uses higher order regularization
operators, which leads to smoother velocities compared to the ones CLAIRE produces,
therefore enabling a representation on a coarser mesh. Moreover, CLAIRE uses a
stationary velocity field, i.e., v is constant in time. In our previous work [28], we have
demonstrated that stationary and time-varying velocity fields yield similar registration
accuracy for registration between two real medical images of different subjects. More
precisely, we did not observe any practically significant quantitative differences in
registration accuracy for a varying number of coefficient fields in the case of time-
varying velocity fields. Using a stationary velocity field is significantly cheaper and
has a smaller memory overhead from a computational cost perspective.

3.4. Parameter Identification

Our algorithm to choose solver parameters proceeds as follows:

3.4.1. Resolution-Dependent Choice of the Interpolation Order and nt

As our GPU implementation is only available in single precision (unlike the CPU
implementation [19], which is available both in single and double precision), we use cubic
interpolation (B-splines/Lagrange polynomials) with nt = 4 (nt = 8 for linear interpolation)
for resolutions up to nx = 2563. For higher resolutions, we use linear interpolation to save
computational cost and increase nt proportionately to nx to keep the CFL number fixed.

3.4.2. Parameter Search Scheme for βv and βw

We perform a two-stage search scheme:

(i) In the first part of the parameter search, we fix βw = βw,init (βw,init = 1× 10−5) and
search for βv. The registration problem is first solved for a large value of βv = βv,init
so that we under-fit the data. In our experiments, we set βv,init = 1. Subsequently, βv
is reduced by one order of magnitude in every continuation step and the registration
problem is solved again with the new βv. We repeat the reduction of βv until we breach
the Jacobian bounds [Jmin, 1/Jmin]. When this happens, we do a binary search for βv
between the last two values and terminate the binary search when the relative change
in βv is less than 10% of the previous valid βv. In addition, we put a lower bound
βv,min= 1× 10−5 on βv. This lower bound is set purely to minimize computational
cost. We denote the final value of βv as β∗v.

(ii) In the second part of the search, we do a simple reduction search for βw by fixing βv
= β∗v. Starting with a given value βw,init, we reduce βw by one order of magnitude
and repeat solving the registration problem with β∗v and the respective value for
βw until we reach Jmin. We put a lower bound βw,min= 1 × 10−7 on βw in order
to minimize computational cost. We take the last valid value of βw, for which the
Jacobian determinant was within bounds and denote it as β∗w. We fixed the value
of βw,init= 1× 10−5 for all experiments and resolutions. We determined this value
empirically by running image registration on a couple of image pairs at resolution
640× 880× 880 and 160× 220× 220 (see Section 5.4 for the images) for different
values of βw,init. We report these runs in Table A1 (see Appendix B).

We evaluate the parameter search scheme for real world brain images and report the
performance in Section 5.2. Furthermore, we use it as the default parameter search scheme
for all the experiments presented in this paper.

3.4.3. Parameter Continuation Scheme for βv and βw

If we want to use target β∗v and β∗w values for a new registration problem, we can
perform a parameter continuation which is exactly like the parameter search except that we
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neither perform the binary search for βv nor check for the bounds on J. In the first stage
of the continuation, we solve the registration problem for successively smaller values of βv
starting from βv = 1 and reducing it by one order of magnitude until we reach βv = 1ek
where k = dlog10(β∗v)e. Then we do an additional registration solve at βv = β∗v. We fix
βw= βw,init in the first stage. In the second stage, we fix βv = β∗v and reduce βw from βw,init
to β∗w in steps of one order of magnitude.

Whereas the expensive parameter search allows us to identify an optimal set of
regularization parameters for unseen data, we use the parameter continuation scheme to
speed up convergence. The combination of both is particularly efficient, for example in
cohort studies, where we identify optimal regularization parameters for one image pair in
the cohort and use the obtained parameters for all the other images.

4. Materials

We use publicly available image datasets for carrying out the image registration
experiments in this paper (see Section 5). We summarize these datasets in Table 2. We
discuss these datasets in detail.

Table 2. We list the image datasets we use in our scalable registration experiments (see Section 5). All
the datasets are accessible publicly and further discussed in Section 4. We list the dataset name tag
(which we use to refer to them throughout the rest of the paper), the imaging modality, the number
of images, the spatial resolution and the image resolution in voxels. For datasets with an isotropic
spatial resolution, we only provide a single value. For datasets with anisotropic spatial resolution,
we list the resolution in all three dimensions. For the SYN dataset, spatial resolution does not carry a
physical meaning, so we only list the image resolution.

Dataset Image Modality Number
of Images Spatial Resolution Image Resolution

MUSE T1-weighted MRI 5 1 mm (256,256,256)
NIREP T1-weighted MRI 16 1 mm (256,300,256)

SYN synthetic 4 – (1024,1024,1024)
MRI250 T1-weighted MRI 1 250 µm (640,880,880)

CLARITY CLARITY-optimized
light sheet microscopy

3 (4.68,4.68,5) µm (2816,3016,1162)

4.1. MUSE

This dataset consists of five real brain T1-weighted MRIs of different individuals.
These images were segmented into 149 functional brain regions in a semi-automated
manner, including manual corrections by expert radiologists [86]. We visualize this data
in Section 5.2. These images are part of a bigger set of template images that were used
for the development of the MUSE [87] segmentation algorithm. The original image size
is 256× 256× 256 at a spatial resolution of 1 mm. This dataset is available for download
through the neuromorphometrics website [86].

4.2. NIREP

Ref. [88] is a standardized repository for assessing registration accuracy that contains
16 T1-weighted MR neuroimaging datasets (na01–na16) of different individuals at an
isotropic resolution of 1 mm. The original image size is 256 × 300 × 256 voxels. We
resample these images to an isotropic image size of 256× 256× 256. We use the images
na01-na10 for our experiments. This dataset is available for download through the GitHub
link https://github.com/andreasmang/nirep (accessed on 5 January 2022).

4.3. SYN

We create four sets of synthetic template and reference images to assess image registra-
tion accuracy as a function of resolution. We create a set of synthetic reference images m1
by solving Equation (3) using a given synthetic template image m0 and a synthetic velocity

https://github.com/andreasmang/nirep
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field v. To construct the template image m0, we use a linear combination of high-frequency
spherical harmonics. To be precise, we define the template image m0(x) as

m0(x) =
10

∑
i=1

gi(x) with gi(x) =

{
1, if ‖x− x̂i‖2 ≤ |Ym

l (θ + θ̂i, φ + φ̂i)|,
0, otherwise,

(10)

and image coordinates x := (x, y, z) ∈ (−π, π]3. In Equation (10), Ym
l represents spherical

harmonics of the form

Ym
l (θ, φ) =

√
2l + 1

4π

(l −m)!
(l + m)!

eimθ Pm
l (cos(φ)) (11)

with parameters m, l, angular directions θ ∈ [0, π] and φ ∈ [0, 2π], and associated Legendre
functions Pm

l . We choose m = 6, l = 8 for our setup. θ̂i and φ̂i are random perturbations
in integer multiples of π/2 and x̂i ∈ [−0.4π, 0.4π]3 is a random offset from the origin.
The reference image m1(x) is generated by solving Equation (3) with initial condition m0(x)
and velocity field v(x) := (vx(x), vy(x), vz(x)), x = (x, y, z), defined as

vx =
K

∑
k=1

1
k0.5 cos(ky) cos(kx),

vy =
K

∑
k=1

1
k0.5 sin(kz) sin(ky),

vz =
K

∑
k=1

1
k0.5 cos(kx) cos(kz)

(12)

where K = {4, 8, 12, 16}. We set the template and the reference base image size to nx = n =
(1024, 1024, 1024). It is important to note that m0 and m1 possess only the discrete intensities
i ∈ {1, 2, . . . , 10}. This allow us to naturally define ten labels li

0 and li
1, corresponding to

m0 and m1, respectively, for all image voxels with intensity i for each i ∈ {1, 2, . . . , 10}. We
show a 2D slice of the template m0 and reference m1 images for the case K = 4 in Section 5.3.
The scripts for generating the template image m0 and the synthetic velocity field v can
be found at https://github.com/naveenaero/scala-claire (accessed on 5 January 2022).
The reference image m1 can be generated using CLAIRE [21,34].

4.4. MRI250

Ref. [89] is an in-vivo 250 µm human brain MRI image which consists of a T1-weighted
anatomical data acquired at an isotropic spatial resolution of 250 µm. The original image
size is 640× 880× 880 voxels. This image can be downloaded from [90]. We skull strip the
dataset by downsampling it to 128× 128× 128 using linear interpolation and then manually
create the brain mask in ITK-SNAP [91]. We upsample this brain mask back to the original
resolution and then apply it to the original image. We use the tool fast [92] from the FSL
toolkit [93–95] to segment the T1-weighted MRI into gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) to be able to evaluate the registration performance using Dice
score (see Equation (13)) between the image labels before and after registration.

4.5. CLARITY

We use the dataset from [27,96–98] which consists of 12 mouse brain images acquired
using CLARITY-Optimized Light-sheet Microscopy (COLM). This dataset is available for
download from [99]. These images have low contrast and are noisy. The in-plane resolution
is 0.585 µm × 0.585 µm and the cross-plane resolution is 5 to 8 µm. The images are stored
at eight different resolution levels with level zero being the full resolution and level seven
being the lowest resolution. We use the images at resolution levels three and six in our
experiments. These levels correspond to an in-plane resolution of 4.68 µm × 4.68 µm and

https://github.com/naveenaero/scala-claire
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37.44 µm × 37.44 µm, respectively, which translates to images of size n = (2816, 3016) and
n/8 = (328, 412) voxels. The cross-plane resolution is constant at all levels and corresponds
to 1162 voxels. We select Control182, Fear197, and Cocaine178 as the test images in
our experiments.

5. Results and Discussion

We test the image registration on real-world (see Sections 5.4 and 5.5) and synthetic reg-
istration problems (see Section 5.3). The measures to analyze the registration performance
are summarized in Section 5.1. We evaluate the parameter search scheme (see Section 3.4)
on a set of real brain images and present the results in Section 5.2. Furthermore, we explore
the following questions in the context of scalable image registration:

Question Q1: Do we need large-scale high-resolution image registration? Does the reg-
istration quality degrade when the registration is performed at a downsampled resolution
when compared to performing registration at the original high resolution?

Question Q2: How does registration perform and scale for real, noisy, and high-
resolution medical images of human and mouse brains?

5.1. Measures of Performance

In our experiments, we evaluate both runtime performance (in terms of solver wall
clock time) and the registration quality in terms of accuracy. For the latter, we use the
following metrics:

5.1.1. Dice Score Coefficient D

Let l0 and l1 be the binary label maps associated with the images m0 and m1, respec-
tively. Then, the Dice score D between the two label maps is given by

D(l0, l1) =
2|l0 ∩ l1|
|l0|+ |l1|

, (13)

where | · | denotes the cardinality of a set, and ∩ denotes the intersection of the two sets,
respectively. We define D(l0, l1) to be the Dice score pre-registration and D(l(t = 1), l1)
post-registration, where l(t = 1) is the label map that corresponds to the deformed template
image m(t = 1). Furthermore, for a set of discrete labels li, i = {1, 2, . . . , M}, where i
corresponds to the label index, we define the volume fraction

αi =
|li|

∑M
i=1 |li|

.

Using this definition, we compute the following statistics for the Dice coefficient: The
Dice coefficient average Da given by

Da =
1
M

M

∑
i=1

D(li
0, li

1), (14)

the volume weighted average of the Dice coefficient given by

Dvw =
1

∑M
i=1 |li

1|

M

∑
i=1
|li

1|D(li
0, li

1), (15)

and the inverse of the volume weighted average Dice coefficient given by

Divw =
1

∑M
i=1 1/|li

1|

M

∑
i=1

D(li
0, li

1)

|li
1|

(16)
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Note that Dvw gives more weight to labels with higher volume fractions while Divw
gives more weight to labels with smaller volume fractions.

5.1.2. Relative Residual r

This metric corresponds to the ratio of the image mismatch before and after the
registration. It is given by

r =
||m(t = 1)−m1||22
||m0 −m1||22

. (17)

5.1.3. Characteristic Parameters

For each image registration, we also report the regularization parameters and the
obtained minimum and maximum values of the determinant of the deformation gradient
J := det F, i.e., the determinant of the Jacobian of the deformation map.

5.1.4. Visual Analysis

We visually support this quantitative analysis with snapshots of the registration
results. The registration accuracy can be visually judged from the residual image, which
corresponds to the absolute value of the pointwise difference between m(t = 1) and
m1. The regularity of the deformations can be assessed from the pointwise maps of the
determinant of the deformation gradient.

5.2. Experiment 1: Evaluation of the Parameter Search Scheme

We evaluate the parameter search scheme on a set of real brain images and compare
the registration performance with a state-of-the-art SyN deformable registration tool in the
ANTs toolkit.

5.2.1. Dataset

We use the MUSE dataset (see Section 4) for this experiment. After registration of
the original T1-weighted images from this dataset, we use the image labels to evaluate the
registration performance in terms of the volume weighted average Dice score Dvw.

5.2.2. Procedure

Out of the five T1 images, we select Template27 as the reference image m1 and register
the other four images to m1. For the registration, we use the parameter search scheme
(see Section 3.4) to identify best regularization. We use linear interpolation and nt = 8 time
steps in the semi-Lagrangian solver. For the Jacobian bound, we select Jmin = 0.1.
In the parameter search, for each trial βv and βw, we drive the relative gradient norm
‖g‖2,rel = ‖g‖2/‖g0‖2 to 1× 10−2. Once we have found adequate βv and βw for each
image pair, we rerun the image registrations using only parameter continuation. For a
baseline performance comparison, we also perform registration on the same image pairs
using the SyN tool in ANTs [39]. For ANTs, we use the “MeanSquares” (i.e., squared L2-)
distance measure. We run CLAIRE on a single NVIDIA V100 GPU with 16GB of memory on
TACC’s Longhorn supercomputer. We run ANTs on a single node of the TACC Frontera su-
percomputer (system specs: Intel Xeon Platinum 8280 (“Cascade Lake”) processor with 56
cores on 2 sockets (base clock rate: 2.7 GHz)). We use all 56 cores. We report the parameters
used for ANTs in Appendix A.

5.2.3. Results

We report the obtained estimates for βv and βw as well as results for registration
quality in Table 3. In Figure 2, we provide a representative illustration of the obtained
registration results. We report baseline registration performance using ANTs in Table 4. We
compare the Dice scores obtained for CLAIRE and ANTs in Figure 3.
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Table 3. Experiment 1: Performance of the parameter search scheme implemented in CLAIRE. We
report results for the registration of four template images to the reference image Template27. We
consider the squared L2-distance measure as image similarity metric. We restrict the Jacobian
determinant J ∈ [0.1, 10] for these registrations. We report the following quantities of interest:
(i) optimal regularization parameters β∗v and β∗w, (ii) minimum Jmin and maximum Jmax Jacobian
determinant achieved, (iii) solver wall clock time in seconds, and (iv) label volume weighted Dice
average Dvw pre and post registration.

Template β∗v β∗w Jmin Jmax
Dvw Runtime (s)

Pre Post Search Continuation

4 7.75 × 10−5 1.00 × 10−4 4.53 × 10−1 5.36 × 100 5.53 × 10−1 6.99 × 10−1 5.90 × 102 4.04 × 101

16 7.89 × 10−5 1.00 × 10−5 2.62 × 10−1 4.23 × 100 5.51 × 10−1 6.95 × 10−1 4.39 × 102 5.82 × 101

22 1.14 × 10−5 1.00 × 10−4 1.19 × 10−1 1.74 × 100 5.39 × 10−1 7.04 × 10−1 7.05 × 102 9.79 × 101

31 2.83 × 10−5 1.00 × 10−4 2.40 × 10−1 1.86 × 100 5.27 × 10−1 7.00 × 10−1 6.19 × 102 6.07 × 101

Table 4. Experiment 1: Performance of ANTs. We report results for registration of four template im-
ages to the reference image Template27 using a squared L2-distance metric. We report the following
quantities of interest (i) minimum (Jmin) and maximum (Jmax) determinant of the deformation gradi-
ent obtained, (ii) label volume weighted Dice average Dvw pre and post registration, and (iii) solver
wall clock time in seconds.

Template Jmin Jmax
Dvw Runtime (s)Pre Post

4 1.40 × 10−1 3.10 × 100 5.53 × 10−1 6.86 × 10−1 1.98 × 10−2

16 2.50 × 10−1 4.59 × 100 5.51 × 10−1 6.87 × 10−1 2.00 × 10−2

22 3.11 × 10−1 9.73 × 100 5.39 × 10−1 6.62 × 10−1 1.99 × 10−2

31 2.07 × 10−1 4.76 × 100 5.27 × 10−1 6.85 × 10−1 2.10 × 10−2

Figure 2. Experiment 1: Exemplary registration results using the parameter search scheme imple-
mented in CLAIRE. We consider the datasets Template16 (template image) and Template27 (reference
image). We refer to Table 3 and the text for details about the setup. We show (from left to right) the
template, reference, deformed template image (top row), and their corresponding labels (bottom
row). We also visualize the residual before and after the registration along with the determinant of
the deformation gradient and an orientation map for the velocity field.
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Figure 3. Experiment 1: Comparison of Dice scores for CLAIRE and ANTs. The box plots show Dice
scores of the individual labels for the registration results reported for CLAIRE in Table 3 and ANTs
in Table 4.

5.2.4. Observations

CLAIRE allows us to precisely control the properties of the deformation without having
to tune any parameters manually. The only free parameters are the Jacobian bounds,
which depend on the overall workflow related to the dataset. The volume weighted Dice
scores Dvw obtained for CLAIRE (see Table 3) are competitive to those produced by ANTs
(see Table 4). The average runtime for ANTs for all the registrations reported in Table 4 is
201 s (≈3 min). For CLAIRE, the average wall clock time of CLAIRE in the parameter search
mode is 9.8 min (3× slower than ANTs; we search for adequate regularization parameters),
while, in the continuation mode, the runtime of CLAIRE is 64 s (3× faster than ANTs; we
apply the optimal regularization parameter and do not search for them).

5.3. Experiment 2A: High Resolution Synthetic Data Registration

In this experiment, we answer Q1. We attempt this by executing our registration
algorithm on synthetic imaging data. The advantages of using such images over real
datasets are as follows:

• They are noise-free, high contrast, and sharp, unlike real-world images.
• There is a scarcity of high resolution real image data because it is expensive and

time-consuming to acquire. We can control the resolution of synthetic data because
the images are created using analytically known functions.

• We can control the number of discrete image intensity levels, i.e., labels. Because these
labels are available as ground truth, we can use them to precisely quantify registration
accuracy through the Dice coefficient, avoiding inter- and intra-observer variabilities
and other issues associated with establishing ground truth labels in real imaging data.

By performing image registration at different resolutions (and applying the resulting
velocity to transform the high resolution original images), we want to check whether the
registration at higher resolutions is more accurate than performing the registration at a
lower resolution.

5.3.1. Dataset

We use the SYN dataset (see Section 4) for this experiment.
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5.3.2. Procedure

We execute registration at different resolutions for the original resolution images and
quantify the accuracy using the Dice coefficient for labels before and after the registration.
We compare the Dice statistics for different resolutions. More specifically, we take the
following steps:

1. We register the template image m0 to the reference image m1 at the base resolution n
to get the velocity field vn. We transport m0 using the velocity vn to get the deformed
template image m(t = 1) by solving Equation (3). Then, we compute the Dice score
between li(t = 1) and li

1, i ∈ 1, . . . , 10 which are discrete labels for m(t = 1) and m1,
respectively, using Equation (13).

2. We downsample m0 and m1 using nearest neighbor interpolation to half the base
resolution (for example, n/2 = (512, 512, 512). Notice that we treat nx = (N1, N2, N3)
as a tuple. When we say nx/2, we mean nx/2 = (N1/2, N2/2, N3/2)) and register
the downsampled images to get the velocity v̂n/2. We upsample v̂n/2 to the base
resolution n using spectral prolongation and call it vn/2. We transport m0 using
vn/2 by solving Equation (3) to get the deformed template image m(t = 1) and then
compute the Dice score for this new deformed template image.

3. We repeat the procedure in step 2 for resolutions n/4 and n/8 and compute the
corresponding Dice scores.

For the registration, we fix the determinant J of the deformation gradient to be within
[5 × 10−2, 20] and search for the regularization parameters using the proposed parameter
search scheme as described above in Section 2. Note that we perform a search for an
optimal regularization parameter for each individual dataset because we want to obtain the
best result for each pair of images. In practical applications, this is not necessary (see comments
below; we also refer to [19] for a discussion). We fix the tolerance for the reduction of
the gradient to 5 × 10−2, which we have found to be sufficiently accurate for most image
registration problems (see [19]). We use linear interpolation in the semi-Lagrangian scheme.
Another hyperparameter in our registration solver is the number of time steps nt for the
semi-Lagrangian (SL) scheme. We consider two cases for selecting nt:

1. nt changes with resolution: We use nt = 4 time steps for the coarsest resolution
nx = n/8 and double nt when we double the resolution in order to keep the CFL
number fixed. All other solver parameters, except for the regularization parameters,
are the same at each resolution.

2. nt fixed with resolution: In order to study the effect of nt on the Dice score we keep
nt fixed for each nx, instead of increasing nt proportionately to nx.

5.3.3. Results

In Figure 4, we visualize the template, reference and deformed template images for
the synthetic problem constructed with K = 4. We report quantitative results for CLAIRE
in Tables 5 and 6, respectively. In Figure 5, we compare the Dice score for individual labels
as a function of their volume fraction α. In Figure 6, we visualize box plots of the Dice score
for the registrations reported in Table 5.



J. Imaging 2022, 8, 251 17 of 33

Figure 4. Experiment 2A: Visualization of registration results for case 1. In column 1, from top
to bottom, we visualize the template, reference and deformed template images for registrations
done at different resolutions. These images correspond to the runs #1-4 in Table 5. The value in the
parentheses in column 1 indicates the resolution at which registration was done. The visualization
is done at the original resolution n = (1024, 1024, 1024). In columns 2 and 3, we visualize cropped
portions of the images shown in column 1 for specific label values. In column 2, we show label 1,
in column 3, we show the union of labels with intensity value ≥ 5. Note that higher label values have
smaller volumes and more fine-grained features. We plot the label boundaries for the reference image
in green to visualize the registration errors.
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Table 5. Experiment 2A: Registration performance for CLAIRE for case 1 (nt changes proportionally to the image resolution, see Section 5.3). Comparison
of registration accuracy based on the Dice score at different resolutions for the synthetic dataset SYN. K denotes the frequency of the synthetic velocity field
in Equation (12). n = (1024, 1024, 1024) is the base image resolution. We fix the tolerance for the reduction of the gradient to 5 × 10−2 and use linear interpolation.
The Jacobian bounds for the parameter search are [0.05, 20]. We report β∗v and β∗w (the optimal regularization parameters obtained with the proposed parameter
search scheme), and Jmin and Jmax (the minimum and maximum values for the determinant of the deformation gradient). For the Dice score, we report average Dice
(Da), the volume weighted average Dice (Dvw), and the inverse volume weighted average Dice (Divw), pre and post registration. We also report the wall clock time
for the parameter search.

Run K nx nt β∗v β∗w Jmin Jmax
Da Dvw Divw Runtime (s)

Pre Post Pre Post Pre Post Search

#1

4

n 32 1.1 × 10−5 1.0 × 10−7 1.7 × 10−1 7.4 × 100

3.1 × 10−1

9.2 × 10−1

5.8 × 10−1

9.8 × 10−1

3.9 × 10−2

8.5 × 10−1 2.9 × 103

#2 n/2 16 1.1 × 10−5 1.0 × 10−7 1.9 × 10−1 7.7 × 100 8.7 × 10−1 9.7 × 10−1 7.0 × 10−1 6.5 × 102

#3 n/4 8 1.1 × 10−5 1.0 × 10−7 2.6 × 10−1 1.4 × 101 7.9 × 10−1 9.5 × 10−1 5.0 × 10−1 1.1 × 102

#4 n/8 4 1.1 × 10−5 1.0 × 10−6 4.7 × 10−1 5.6 × 100 6.7 × 10−1 9.1 × 10−1 1.8 × 10−1 1.5 × 101

#5

8

n 32 1.1 × 10−5 1.0 × 10−7 5.1 × 10−2 1.0 × 101

3.2 × 10−1

9.0 × 10−1

5.3 × 10−1

9.8 × 10−1

7.4 × 10−2

7.6 × 10−1 2.7 × 103

#6 n/2 16 1.1 × 10−5 1.0 × 10−7 1.8 × 10−1 1.5 × 101 8.5 × 10−1 9.7 × 10−1 6.0 × 10−1 6.2 × 102

#7 n/4 8 1.1 × 10−5 1.0 × 10−6 3.0 × 10−1 7.8 × 100 7.6 × 10−1 9.4 × 10−1 4.1 × 10−1 1.0 × 102

#8 n/8 4 2.4 × 10−5 1.0 × 10−6 3.8 × 10−1 4.8 × 100 6.4 × 10−1 9.0 × 10−1 1.7 × 10−1 1.4 × 101

#9

12

n 32 1.1 × 10−5 1.0 × 10−7 1.7 × 10−1 1.2 × 101

3.1 × 10−1

9.2 × 10−1

5.2 × 10−1

9.8 × 10−1

9.5 × 10−2

8.5 × 10−1 2.6 × 103

#10 n/2 16 1.1 × 10−5 1.0 × 10−6 3.1 × 10−1 8.9 × 100 8.6 × 10−1 9.7 × 10−1 7.4 × 10−1 5.4 × 102

#11 n/4 8 1.1 × 10−5 1.0 × 10−6 2.9 × 10−1 1.2 × 101 7.5 × 10−1 9.4 × 10−1 4.5 × 10−1 9.4 × 101

#12 n/8 4 1.1 × 10−5 1.0 × 10−6 4.1 × 10−1 9.9 × 100 6.0 × 10−1 8.9 × 10−1 1.9 × 10−1 1.4 × 101

#13

16

n 32 1.1 × 10−5 1.0 × 10−7 1.6 × 10−1 9.5 × 100

2.9 × 10−1

9.1 × 10−1

5.1 × 10−1

9.8 × 10−1

9.0 × 10−2

8.1 × 10−1 2.4 × 103

#14 n/2 16 1.1 × 10−5 1.0 × 10−7 1.7 × 10−1 1.4 × 101 8.4 × 10−1 9.7 × 10−1 6.0 × 10−1 5.2 × 102

#15 n/4 8 1.4 × 10−5 1.0 × 10−6 3.0 × 10−1 8.8 × 100 7.4 × 10−1 9.4 × 10−1 4.7 × 10−1 9.5 × 101

#16 n/8 4 2.7 × 10−5 1.0 × 10−6 3.9 × 10−1 1.5 × 101 6.1 × 10−1 9.0 × 10−1 2.0 × 10−1 1.5 × 101
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Table 6. Experiment 2A: Registration performance for CLAIRE for case 2 (nt independent of the image resolution). Comparison of registration accuracy using
Dice at different resolutions for the synthetic dataset SYN. K denotes the frequency of the synthetic velocity field in Equation (12). n = (1024, 1024, 1024) is the
base image resolution. We fix the tolerance for the reduction of the gradient to 5 × 10−2 and use linear interpolation. The Jacobian bounds for parameter search is
[0.05, 20]. For each value of nt, we report results for different resolutions. We report β∗v and β∗w (the optimal regularization parameters obtained with the proposed
parameter search scheme), and Jmin and Jmax (the minimum and maximum values for the determinant of the deformation gradient). For the Dice score, we report
average Dice (Da), the volume weighted average Dice (Dvw), and the inverse volume weighted average Dice (Divw), pre and post the registration. We also report the
wall clock time for the parameter search. The missing cases for K = 8 failed to finish in a reasonable time frame. We only report a couple of cases for K = 16 and
expect a behavior similar to K = 8 for the rest.

Run K nx nt β∗v β∗w Jmin Jmax
Da Dvw Divw Runtime (s)

Pre Post Pre Post Pre Post Search

#1

8

4
n/2 1.4 × 10−5 1.0 × 10−7 9.7 × 10−2 1.1 × 101

3.2 × 10−1

8.8 × 10−1

5.3 × 10−1

9.8 × 10−1

7.4 × 10−2

7.4 × 10−1 3.9 × 102

#2 n/4 1.1 × 10−5 1.0 × 10−7 3.8 × 10−1 3.8 × 100 6.8 × 10−1 9.2 × 10−1 2.1 × 10−1 7.9 × 102

#3 n/8 2.4 × 10−5 1.0 × 10−6 3.8 × 10−1 4.8 × 100 6.2 × 10−1 8.9 × 10−1 1.6 × 10−1 1.4 × 101

#4 8 n/4 1.1 × 10−5 1.0 × 10−6 2.9 × 10−1 7.7 × 100 7.5 × 10−1 9.4 × 10−1 4.1 × 10−1 1.0 × 102

#5 n/8 1.7 × 10−5 1.0 × 10−6 3.9 × 10−1 6.4 × 100 5.9 × 10−1 8.7 × 10−1 1.6 × 10−1 1.6 × 101

#6
16

n/2 1.1 × 10−5 1.0 × 10−7 1.8 × 10−1 1.4 × 101 8.3 × 10−1 9.7 × 10−1 5.2 × 10−1 5.9 × 102

#7 n/4 1.1 × 10−5 1.0 × 10−6 3.1 × 10−1 8.2 × 100 7.1 × 10−1 9.2 × 10−1 3.4 × 10−1 1.2 × 102

#8 n/8 1.1 × 10−5 1.0 × 10−7 5.4 × 10−1 3.2 × 100 5.6 × 10−1 8.5 × 10−1 1.4 × 10−1 6.7 × 101

#9

32

n 1.1 × 10−5 1.0 × 10−7 5.1 × 10−2 1.0 × 101 9.0 × 10−1 9.8 × 10−1 7.6 × 10−1 2.7 × 103

#10 n/2 1.1 × 10−5 1.0 × 10−7 1.2 × 10−1 1.9 × 101 7.8 × 10−1 9.5 × 10−1 4.2 × 10−1 7.6 × 102

#11 n/4 1.1 × 10−5 1.0 × 10−6 3.1 × 10−1 1.0 × 101 6.8 × 10−1 9.0 × 10−1 3.3 × 10−1 1.9 × 102

#12 n/8 1.1 × 10−5 1.0 × 10−7 5.2 × 10−1 3.2 × 100 5.6 × 10−1 8.5 × 10−1 1.4 × 10−1 4.8 × 101

#13 16 4 n/2 1.3 × 10−5 1.0 × 10−6 2.0 × 10−1 6.9 × 100
2.9 × 10−1 8.6 × 10−1

5.1 × 10−1 9.7 × 10−1
9.0 × 10−2 7.8 × 10−1 3.7 × 102

#14 32 n 1.1 × 10−5 1.0 × 10−7 1.6 × 10−1 9.5 × 100 9.1 × 10−1 9.8 × 10−1 8.1 × 10−1 2.4 × 103
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Figure 5. Experiment 2A: Quantitative results for the registration results corresponding to case 1.
We show a plot of the Dice scores against the label volume fraction α for each label li, i = 1, . . . , 10 for
the registration of the synthetic data set SYN at different resolutions. This figure corresponds to the
registration runs #1-4 in Table 5 for K = 4.
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Figure 6. Experiment 2A: Quantitative results for the registration results corresponding to case 1.
We show box plots of the Dice scores for the individual labels before and after registration for different
resolutions. We consider the synthetic test problem SYN. This figure corresponds to the registration
results reported in Table 5.
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5.3.4. Observations

The most important observations are: (i) The Dice score averages are better for reg-
istrations performed at the base resolution n with progressively worse Dice scores for
registrations done at coarser resolutions; (ii) the difference between Dice scores for reg-
istrations done at successively coarser resolutions for K = 16 (rougher velocity field) is
higher than at K = 4 (smoother velocity field); (iii) keeping nt fixed for the base and coarser
resolutions does not affect the Dice score trend, i.e., the Dice decreases as nx is decreased.
In the following, we give more details for these general observations.

Regarding Dice score averages in Table 5, we observe that Da, the arithmetic mean
of the Dice scores of individual labels, drops by as much as 7% between run #13 and #14.
However, the percentage drop in volume weighted Dice average Dvw is smaller than in
Da. This indicates that labels with higher volume are still easier to register at coarser
resolutions. The inverse weighted Dice average Divw, which gives more weight to smaller
labels, features a more pronounced decrease because smaller regions contribute to the high
frequency content in the image; this information is lost when the images are downsampled.
We observe a 21.8% difference in Divw for the high frequency images in run #13 and #14
for K = 16. As we increase the frequency K of the synthetic ground truth velocity, we
see that the difference in all Dice score averages between successive resolutions increases.
As K increases, we get increasingly rougher velocity fields, which we can not recover by
registering the original images at coarser resolutions.

In Table 6, the Dice scores behave the same way even when nt is fixed for different
nx, indicating that the loss in accuracy is primarily because of the reduction in the spatial
resolution (and not the temporal resolution). We also observe that for the full resolution
of nx = n, using nt < 32 results in slow solver convergence; the run did not finish in
under 2 h. We attribute this slow convergence rate to the loss in numerical accuracy in
the computation of the reduced gradient in Equation (6). If we compare run #1 and #9 in
Table 6, we see that the difference in Da is marginal in comparison to the run time cost
overhead for run #9. However, the accuracy difference increases as K is increased, and the
images get less smooth (see runs #13 and #14).

These quantitative observations are confirmed by the visual analysis in the figures
shown: From Figure 4, we observe that at lower resolutions (top to bottom), the alignment
of the outlines (green lines; reference image) with the structures (white areas; deformed
template image) is less accurate. Figure 5: shows that the Dice score is worse for labels with
smaller volume fractions, i.e., fine structures are matched less accurately at coarse resolu-
tions. Looking at Figure 6, we observe that the average registration accuracy decreases as
we decrease the resolution.

We use 32 GPUs for registration at nx = (1024, 1024, 1024), 4 GPUs for nx = (512, 512, 512),
and a single GPU for nx = (256, 256, 256) and nx = (128, 128, 128). Registration for
nx = (1024, 1024, 1024) takes on average 44 min wall-clock time. It is important to note
that this includes the time spent in the search for optimal regularization parameters (i.e.,
we solve the inverse problem multiple times using warm starts; see Section 3.4 for details
regarding the scheme). For the large-scale runs that use multiple GPUs, the overall runtime
of the solver is dominated by communication between MPI processes [20]. Adding more
resources does not necessarily reduce the runtime because of this increase in communication
cost. Registrations for nx = (512, 512, 1512) and lower resolutions are much quicker and
run in the order of 10 min or less. In the present work, we perform the parameter search for
each individual case because we want to obtain the best result for each pair of images. However,
in practice where a medical imaging pipeline requires registrations for several similar
images, we suggest running the parameter search scheme on one pair of images and use the
obtained regularization parameters to run the cohort registration for all images, as we have
done in our previous work [19]. This strategy reduces the computational cost drastically.
One downside to this strategy is that some images in the cohort will not be registered as
accurately as others.
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Our experiment with synthetic images suggests that Dice scores are better when
registrations are done in the original high resolution at which the labels were created.
Registration accuracy is affected more significantly if high frequency velocity fields are
considered. The images used in this experiment are synthetic and free of noise. We
use these images for both registration and evaluation of performance using Dice scores.
Because the ground truth labels for these images at the highest resolution are known with
certainty, we have high confidence in our observations regarding registration accuracy: the
Dice scores become worse when registration is conducted at lower resolutions. However,
in practical applications, images have noise and low contrast. To evaluate the registration
accuracy for real images using Dice scores, we first evaluate their segmentation using
external segmentation tools. This segmentation step is prone to errors (not only due to
noise and a lack of contrast but also due to inherent limitations in segmentation software
themselves). These errors result in a misalignment between the structures present in the
original image and its segmentation, which complicates our analysis. Having said this, we
conduct experiments on real brain MRIs in the next section to explore if we can provide
experimental evidence that at least partially confirms the observations we have made in
this section.

5.4. Experiment 2B: High Resolution Real Data Registration

In this experiment, we aim at answering Q1 as well as Q2. We do this by registering
real human brain MRI datasets instead of synthetic images. Unlike synthetic images, these
images are not noise-free. Moreover, they lack high contrast.

5.4.1. Datasets

We use the NIREP and the MRI250 image datasets (see Section 4) for this experiment.

5.4.2. Procedure

We designate the MRI250 image as the template image m0. We generate the reference
images m1 from the images na01–na10 from the NIREP dataset since we do not have access
to other T1-weighted MRI from a different subject at the original resolution of 250 µm.
The acquired spatial resolution of the NIREP data is 1 mm, which is 4× larger than 250 µm.
Therefore, in order to generate a reference image m1 that are 250 µm in spatial resolution,
we take the following steps:

1. Upsample the respective NIREP image from 256× 300× 256 to 640× 880× 880 using
linear interpolation.

2. Register MRI250 to the upsampled NIREP image using CLAIRE and transport m0
(which corresponds to the MRI250 image) using the resulting velocity v and solv-
ing Equation (3) to obtain the deformed template image m1 = m(t = 1). We set the
tolerance for the relative gradient norm to gtol = 1 × 10−2. We lower the tolerance
compared to other runs to obtain a potentially more accurate registration result. We
use the default regularization parameters βv = 1 × 10−2 and βw = 1 × 10−4. Conse-
quently, we do not perform a parameter search to estimate an optimal regularization
parameter for this registration. We want to keep the downstream registration per-
formance analysis, where we will use parameter search, oblivious to the process of
generating the high-resolution reference image.

To generate a segmentation that we can use to compute Dice scores (not for the
registration itself, which is done on the original unsegmented images), we use the tool
fast from FSL [95] both on the template image m0 and on the reference image m1. We
generate labels WM, GM, and CSF. The remaining steps for this experiment are the same
as described in experiment 2A in Section 5.3 except that here we are registering real
T1-weighted images instead of noise-free synthetic images. The base resolution for this
experiment is nx = n = (640, 880, 880). We consider nx = n/2 and nx = n/4 for the
downsampled resolutions. We also consider the two sub-cases for selecting nt as we did
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in Section 5.3. For the case where nt changes with resolution, we use nt = 4 for nx = n/4,
nt = 8 for nx = n/2 and nt = 16 for nx = n.

5.4.3. Results

We report the solver parameters for our registration with CLAIRE along with the
relative residual r and Dice score averages for GM, WM, and CSF before and after the
registration in Table 7. The relative residual r and the Dice score are always computed at
the base resolution n = (640, 880, 880). The respective results with nt fixed independent of
the resolution are given in Table 8 for na01. We visualize the image registration results for
the reference image na01 in Figure 7.

Figure 7. Experiment 2B: Illustration of registration results for the multi-resolution registration
experiment on real brain images. The images shown here correspond to the runs #1, #2, and #3
in Table 7). The base resolution is nx = n = (640, 880, 880). In row 1, from left to right, we show the
T1-weighted MRI250 datasets (template image m0), the upsampled na01 dataset (reference image
m1) from the NIREP data repository, and the deformed template images obtained from registration
at resolutions nx, nx/2, and nx/4, respectively. In row 2, we show a cropped portion of the images
from row 1. In rows 3 and 4, we show the label maps consisting of white matter (WM; white),
gray matter (GM; light gray), and cerebro-spinal fluid (CSF; dark gray) and their cropped versions,
respectively. In row 5, we show the image residuals before and after registration with respect to each
resolution level.
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Table 7. Experiment 2B: Registration performance for CLAIRE for case 1 (nt changes proportional to the image resolution). Comparison of registration accuracy
using Dice and relative residual r at different resolutions for the registration of the MRI250 brain image to templates generated from ten real MRI scans from the
NIREP dataset. We consider three resolution levels nx = {n, n/2, n/4} where n = (640, 880, 880). We fix the tolerance for the relative gradient to 5× 10−2. We use
linear interpolation in the semi Lagrangian scheme. The bounds for the determinant of the deformation gradient for the parameter search are [0.05, 20]. We report
the regularization parameters β∗vand β∗w obtained through the proposed parameter search scheme, the minimum and maximum determinant of the deformation
gradient (Jmin and Jmax), the relative residual (r), the average Dice (Da), pre and post the registration, as well as the wall clock time for the parameter search.

Run NIREP nx nt β∗v β∗w Jmin Jmax r Da Runtime (s)
Pre Post Search

#1
na01

n 16 1.1 × 10−3 1.0 × 10−5 1.8 × 10−1 8.3 × 100 2.5 × 10−1

5.5 × 10−1
9.0 × 10−1 3.1 × 102

#2 n/2 8 1.1 × 10−5 1.0 × 10−6 1.8 × 10−1 6.5 × 100 3.5 × 10−1 8.5 × 10−1 3.4 × 102

#3 n/4 4 1.1 × 10−5 1.0 × 10−5 2.3 × 10−1 8.2 × 100 4.5 × 10−1 8.0 × 10−1 3.6 × 101

#4
na02

n 16 1.1 × 10−3 1.0 × 10−5 7.8 × 10−2 6.3 × 100 2.5 × 10−1

5.4 × 10−1
8.9 × 10−1 3.3 × 102

#5 n/2 8 1.1 × 10−5 1.0 × 10−6 1.2 × 10−1 4.3 × 100 3.6 × 10−1 8.3 × 10−1 3.0 × 102

#6 n/4 4 1.1 × 10−5 1.0 × 10−6 8.1 × 10−2 1.1 × 101 4.6 × 10−1 7.7 × 10−1 4.0 × 101

#7
na03

n 16 1.1 × 10−5 1.0 × 10−7 1.1 × 10−1 6.1 × 100 3.3 × 10−1

5.1 × 10−1
8.4 × 10−1 3.2 × 103

#8 n/2 8 1.1 × 10−5 1.0 × 10−6 1.1 × 10−1 1.8 × 101 3.9 × 10−1 8.0 × 10−1 2.9 × 102

#9 n/4 4 1.1 × 10−5 1.0 × 10−7 1.0 × 10−1 1.7 × 101 4.7 × 10−1 7.6 × 10−1 4.2 × 101

#10
na04

n 16 3.1 × 10−2 1.0 × 10−5 1.2 × 10−1 1.4 × 101 3.7 × 10−1

5.3 × 10−1
8.0 × 10−1 1.9 × 102

#11 n/2 8 1.1 × 10−3 1.0 × 10−5 6.8 × 10−2 8.9 × 100 2.9 × 10−1 8.7 × 10−1 5.1 × 101

#12 n/4 4 1.1 × 10−5 1.0 × 10−5 1.0 × 10−1 6.8 × 100 4.6 × 10−1 7.6 × 10−1 3.7 × 101

#13
na05

n 16 1.1 × 10−5 1.0 × 10−5 9.5 × 10−2 8.9 × 100 3.2 × 10−1

5.3 × 10−1
8.5 × 10−1 2.8 × 103

#14 n/2 8 1.1 × 10−5 1.0 × 10−5 1.6 × 10−1 1.1 × 101 3.6 × 10−1 8.3 × 10−1 2.5 × 102

#15 n/4 4 1.1 × 10−5 1.0 × 10−5 1.6 × 10−1 1.6 × 101 4.5 × 10−1 7.8 × 10−1 3.7 × 101

#16
na06

n 16 1.1 × 10−3 1.0 × 10−5 7.8 × 10−2 1.4 × 101 2.5 × 10−1

5.3 × 10−1
8.9 × 10−1 3.3 × 102

#17 n/2 8 1.1 × 10−5 1.0 × 10−6 2.0 × 10−1 5.6 × 100 3.5 × 10−1 8.3 × 10−1 3.0 × 102

#18 n/4 4 1.1 × 10−5 1.0 × 10−5 1.6 × 10−1 7.2 × 100 4.4 × 10−1 7.7 × 10−1 3.6 × 101

#19
na07

n 16 1.0 × 10−2 1.0 × 10−5 9.5 × 10−2 2.0 × 101 3.0 × 10−1

5.3 × 10−1
8.6 × 10−1 2.4 × 102

#20 n/2 8 1.1 × 10−5 1.0 × 10−5 1.6 × 10−1 1.6 × 101 3.5 × 10−1 8.4 × 10−1 3.9 × 102

#21 n/4 4 1.1 × 10−5 1.0 × 10−5 1.7 × 10−1 1.7 × 101 4.5 × 10−1 7.7 × 10−1 3.7 × 101

#22
na08

n 16 1.1 × 10−5 1.0 × 10−7 1.3 × 10−1 4.8 × 100 3.1 × 10−1

5.3 × 10−1
8.6 × 10−1 2.5 × 103

#23 n/2 8 1.1 × 10−5 1.0 × 10−6 1.0 × 10−1 1.3 × 101 3.8 × 10−1 8.1 × 10−1 3.0 × 102

#24 n/4 4 1.1 × 10−5 1.0 × 10−6 9.4 × 10−2 1.7 × 101 4.7 × 10−1 7.5 × 10−1 4.2 × 101

#25
na09

n 16 1.1 × 10−3 1.0 × 10−5 6.3 × 10−2 1.5 × 101 2.5 × 10−1

5.3 × 10−1
8.9 × 10−1 3.5 × 102

#26 n/2 8 1.1 × 10−5 1.0 × 10−5 1.2 × 10−1 5.1 × 100 3.5 × 10−1 8.3 × 10−1 2.3 × 102

#27 n/4 4 1.1 × 10−5 1.0 × 10−6 9.9 × 10−2 7.4 × 100 4.5 × 10−1 7.6 × 10−1 4.2 × 101

#28
na10

n 16 1.1 × 10−5 1.0 × 10−7 1.1 × 10−1 5.7 × 100 3.2 × 10−1

5.4 × 10−1
8.5 × 10−1 2.6 × 103

#29 n/2 8 1.1 × 10−5 1.0 × 10−5 1.2 × 10−1 4.5 × 100 3.5 × 10−1 8.3 × 10−1 2.7 × 102

#30 n/4 4 1.1 × 10−5 1.0 × 10−6 1.0 × 10−1 9.1 × 100 4.7 × 10−1 7.6 × 10−1 4.1 × 101



J. Imaging 2022, 8, 251 25 of 33

Table 8. Experiment 2B: Registration performance for CLAIRE for case 2 (nt independent of the
image resolution). Comparison of registration accuracy using Dice and relative residual r for a fixed
number of time steps nt at different resolutions for the registration of the real MRI datasets MRI250
and the reference image m1 generated from na01 from the NIREP repository. We consider three
resolution levels nx = {n, n/2, n/4} where n = (640, 880, 880). We fix the tolerance for the relative
gradient to 5 × 10−2. We use linear interpolation in the semi Lagrangian schreme. The bounds for
the determinant of the deformation gradient for the parameter search are [0.05, 20]. We keep the time
step nt fixed. We report the regularization parameters β∗v and β∗w obtained through the proposed
parameter search scheme, the minimum and maximum determinant of the deformation gradient
(Jmin and Jmax), the relative residual (r), the average Dice (Da), pre and post the registration, as well
as the wall clock time for the parameter search. The case with nx = n and nt = 4 failed to finish in
under 4 h.

Run NIREP nx nt β∗v β∗w Jmin Jmax r Da Runtime (s)
Pre Post Search

#1

na01

4 n/2 1.1 × 10−5 1.0 × 10−6 9.2 × 10−2 5.2 × 100 3.1 × 10−1

5.5 × 10−1

8.7 × 10−1 2.7 × 102

#2 n/4 1.1 × 10−5 1.0 × 10−5 2.3 × 10−1 8.2 × 100 4.5 × 10−1 8.0 × 10−1 3.6 × 101

#3
8

n 5.6 × 10−3 1.0 × 10−5 1.1 × 10−1 1.1 × 101 2.4 × 10−1 9.0 × 10−1 2.6 × 102

#4 n/2 1.1 × 10−5 1.0 × 10−6 1.9 × 10−1 6.6 × 100 3.5 × 10−1 8.5 × 10−1 3.1 × 102

#5 n/4 1.1 × 10−5 1.0 × 10−5 2.7 × 10−1 1.2 × 101 4.7 × 10−1 7.8 × 10−1 4.3 × 101

#6
16

n 1.1 × 10−3 1.0 × 10−5 1.8 × 10−1 8.4 × 100 2.5 × 10−1 9.0 × 10−1 3.2 × 102

#7 n/2 1.1 × 10−5 1.0 × 10−5 2.6 × 10−1 7.6 × 100 3.8 × 10−1 8.3 × 10−1 3.6 × 102

#8 n/4 1.1 × 10−5 1.0 × 10−5 2.8 × 10−1 1.6 × 101 4.8 × 10−1 7.7 × 10−1 5.5 × 101

5.4.4. Observations

The most important observation is that the relative residual r increases and Dice score
averages decrease for registrations done at coarser resolutions irrespective of whether we
increase nt proportionally to the resolution, see Table 7 or keep nt fixed for different nx,
see Table 8. This observation is in line with the experiment for the synthetic dataset SYN
in Section 5.3. Except for the case of na04 (see runs #10 and #11 in Table 7), all other cases
exhibit increasingly worse registration performance at coarser resolutions.

In Section 5.3, we used synthetic, noise-free, high-contrast images for assessing the
registration accuracy at different resolutions. Here, we repeat the same experiment with real
world images—T1-weighted MR images of the human brain. We used an external software
to segment these images to provide the necessary labels to be able to quantify registration
performance in terms of Dice score. Notice that this additional segmentation step will
inevitably introduce additional errors to our analysis. Due to these additional errors at
the native resolution, we expect that the improvement in registration performance at high
resolution may not be as pronounced as for the synthetic images considered in Section 5.3
(which did not require this additional segmentation step). This hypothesis is confirmed if
we compare the average Dice score Da across experiments. In particular, if we reduce the
resolution from n to n/4 in Sections 5.3 (see Table 5) and 5.4 (see Table 7), the Dice score
drops by 15.25% compared to 9.5%, respectively.

In Table 8, the case with nt = 4 and nx = n took very long to converge (>4 h). For this
case the CFL number is 15.66 during the inverse solve while for nt = 16, the CFL number
is 4. The larger CFL number for nt = 4 yields a higher adjoint error in the SL scheme. This
leads to higher errors in the computation of the reduced gradient, which results in worse
convergence of the inverse solver for nt = 4. The run time overhead associated with using
nt = 16 against nt = 4 is easily compensated by better solver convergence. We refer to [30]
for a thorough study on the effect of nt on the numerical accuracy of the reduced gradient.

5.5. Experiment 3: Registration of Mouse Brain CLARITY Images

This experiment aims to answer both Q1 and Q2 by examining the performance of our
scalable registration solver on ultra-high resolution mouse brain images acquired using the
CLARITY imaging technique [26,99]. As opposed to the previous datasets, the dataset in
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this experiment does not provide any real metrics for its assessment other than the relative
residual (nor are we aware of any segmentation software that would work on these data).

5.5.1. Dataset

We use the CLARITY dataset (see Section 4) for this experiment.

5.5.2. Procedure.

Preprocessing: For all unprocessed images, the background intensity is non-zero. We
normalize the image intensities such that they lie in the range [0,1] with the background
intensity re-scaled to zero. Next, we affine register all images to Control182 at 8× down-
sampled resolution using the SyN tool in ANTs. We report the parameter settings for the
affine registration in the appendix. Subsequently, we zero-pad the images to ensure that
periodic boundary conditions are satisfied for CLAIRE. After preprocessing, the base image
resolution is nx = n where n = (2816, 3016, 1162) and n/8 = (328, 412, 1162), respectively.
We only conduct the parameter search for a single pair of images (at both resolutions
independently) for these sets of images and then perform the parameter continuation on
the entire dataset. We only report wall clock times for the parameter continuation and not
for the parameter search.

Deformable Registration: We register all images to the reference image Control182
using CLAIRE. We use the proposed parameter continuation scheme. We set Jmin to 0.05.
We do this for both resolution levels. To compare the registration accuracy between each
resolution level, we follow the same steps from Section 5.4. We compare the registration
performance using the relative residual r. We do not have access to image segmentation for
this dataset and, therefore, we cannot evaluate accuracy using Dice scores.

5.5.3. Results

We report the quantitative results for the registration of the CLARITY data in Table 9.
We showcase exemplary registration results in Figure 8.

Table 9. Experiment 3: Registration performance for CLAIRE for the CLARITY imaging data at
resolutions n = (2816, 3016, 1162) and n/8 = (328, 412, 1162). Control182 is the fixed (reference)
image. All other images selected from the CLARITY dataset are registered to Control182 using a pa-
rameter continuation scheme. We fix the tolerance for the relative gradient to 5 × 10−2. We use linear
interpolation for the semi Langrangian scheme. The bounds on the determinant J of the deformation
gradient for the parameter search are [0.05, 20]. We report the estimated regularization parameters
β∗vand β∗w, the minimum and maximum values for the determinant of the deformation gradient (Jmin

and Jmax), the relative residual (r), as well as the wall clock time for the parameter continuation.

Run Image #GPU nx nt β∗v β∗w Jmin Jmax r Runtime (s)

#1 Fear197 256 n 16 1.1 × 10−2 1.0 × 10−5 5.5 × 10−2 2.2 × 101 3.4 × 10−1 1.4 × 103

#2 8 n/8 16 1.0 × 10−3 1.0 × 10−5 5.8 × 10−2 1.5 × 101 6.3 × 10−1 9.6 × 101

#3 Cocain178 256 n 16 1.1 × 10−2 1.0 × 10−5 3.1 × 10−2 1.2 × 101 4.1 × 10−1 6.2 × 103

#4 8 n/8 16 5.6 × 10−3 1.0 × 10−5 3.5 × 10−2 4.7 × 100 6.8 × 10−1 6.1 × 101



J. Imaging 2022, 8, 251 27 of 33

Figure 8. Experiment 3: Illustration of the registration performance for CLAIRE for the CLARITY
mouse brain imaging data. We report registration results for the Cocaine178 dataset registered to
the Control182 dataset. In row 1 (from left to right), we have the template image m0 (Cocaine178),
the reference image m1 (Control182) and the deformed template image. The resolution of the images
is n = (2816, 3015, 1162). In row 2, we show the determinant of the deformation gradient and the
image residuals before and after registration.

5.5.4. Observations

The most important observation is that we can register high resolution real medical
images reasonably well in under 2 h (see run #1 and #3 in Table 9). Unlike the previous
experiments in Sections 5.3 and 5.4, the reported wall clock time in Table 9 is for perform-
ing the parameter continuation and not the parameter search. The average time spent
for the regularization parameter search for resolution nx = n is ∼2 h. Another observa-
tion, which is in agreement with the results reported for the experiments carried out in
Sections 5.3 and 5.4, is that the registration performed at downsampled resolution (see
Table 9) results in a larger relative residual and, therefore, worse registration accuracy. We
had a maximum of 256 GPUs (64 nodes, 4 GPUs per node) available to us at the TACC
Longhorn supercomputer. Because of this resource constraint, our solver ran out of mem-
ory for certain parameter configurations (for example, for run #1 and #3, we could not
use nt > 16 time steps). Moreover, for all the runs in Table 9, we used the zero velocity
approximation of H as the preconditioner and applied it at full resolution. We did not use
the two-level coarse grid approximation to apply the preconditioner because it requires
additional memory for the coarse grid spectral operations.

6. Conclusions

In this publication, we apply our previously developed multi-node, multi-GPU 3D
image registration solver [22] to study and analyze large-scale image registration. This
work builds upon our former contributions on constrained large deformation diffeomor-
phic image registration [17,19,28,30,34]. The main observations are: (i) We are able to
register CLARITY mouse brain images of unprecedented ultra-high spatial resolution
(2816× 3016× 1162) in 23 min using parameter continuation. To the best of our knowledge,
images of this scale have not been registered in previous work [22,97,98]. (ii) We conduct
detailed experiments to compare image registration performance at full and downsampled
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resolutions using synthetic and real images. We find that image registration at higher
(native) image resolution is more accurate. To quantify the accuracy, we use Dice coef-
ficients wherever image segmentation is available and relative residuals otherwise. We
also do a sensitivity analysis for the overall solver accuracy with respect to the number of
time steps nt in the SL scheme. Overall, CLAIRE performed as expected; fully automatic
parameter tuning works well, and higher image resolutions result in improved image
similarity compared to the registration results in lower resolution. We note that these im-
provements in registration accuracy are less pronounced for real imaging data compared to
synthetic data for the experiments conducted in this study. We attribute these observations
to uncertainties and errors introduced during the registration and segmentation steps due
to noise and low contrast. We discuss this in more detail in Section 5.
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Appendix A. Deformable Registration Parameters for ANTs

We report the deformable registration parameters for ANTs which were used for
comparison with CLAIRE in the parameter search experiment Section 5.2.

Listing A1. ANTs registration script.

#!/bin/bash
antsRegistration --dimensionality 3
--float 1
--output [$output_directory/,$output_directory/deformed -template.nii.gz]
--interpolation Linear
--winsorize -image -intensities [0.005 ,0.995]
--use -histogram -matching 1
--initial -moving -transform [$moving_image ,$template_image ,1]
--transform Rigid [0.1]
--metric MI[$reference_image ,$template_image ,1,32,Regular ,0.25]
--convergence [1000 x500x250x100 ,1e-6,10]
--shrink -factors 8x4x2x1
--smoothing -sigmas 3x2x1x0vox
--transform Affine [0.1]
--metric MI[$reference_image ,$template_image ,1,32,Regular ,0.25]
--convergence [1000 x500x250x100 ,1e-6,10]
--shrink -factors 8x4x2x1
--smoothing -sigmas 3x2x1x0vox
--transform SyN[0.1 ,3 ,0]
--metric MeanSquares[$reference_image ,$template_image ,1]
--convergence [100 x70x50x20 ,1e-6,10]
--shrink -factors 8x4x2x1
--smoothing -sigmas 3x2x1x0vox

Appendix B. Determining βw,init

We report the runs for comparison of runtime and Dice scores for different values of
βw,init for the experiment conducted in Section 5.4.

https://github.com/andreasmang/claire


J. Imaging 2022, 8, 251 30 of 33

Table A1. Experiment 1b: effect of βw,init on registration performance for real brain images: Com-
parison of registration accuracy using Dice and relative residual r for different values of βw,init at
different resolutions for registration of MRI250 brain image to na01 and na02 from NIREP dataset.
We fix βw,min = 1 × 10−9. We consider nx = {N, N/4} where N = 640× 880× 880. We fix the
tolerance for the relative gradient to 5 × 10−2. We use linear interpolation. The Jacobian bounds for
parameter search are [0.05, 20]. We increase the number of time steps nt proportionately with increase
in resolution. We report β∗v and β∗w, the regularization parameters from the parameter search scheme,
Jmin and Jmax, the minimum and maximum Jacobian determinant the relative residual r, average Dice
Da pre and post the registration and the wall clock time for the parameter search for the registration.
We highlight the best Dice scores for each resolution and for each NIREP image.

Run NIREP βw,init nx β∗v β∗w Jmin Jmax r
Da Runtime (s)

Pre Post Search

#1

na01

1 × 10−4 N 1.1 × 10−5 1.0 × 10−9 2.8 × 10−1 2.7 × 100 3.4 × 10−1

5.5 × 10−1

8.6 × 10−1 5.0 × 103

#2 N/4 2.3 × 10−5 1.0 × 10−5 3.5 × 10−1 2.8 × 100 4.6 × 10−1 7.9 × 10−1 3.5 × 101

#3
1 × 10−5 N 1.1 × 10−3 1.0 × 10−5 1.8 × 10−1 8.3 × 100 2.5 × 10−1 9.0 × 10−1 3.1 × 102

#4 N/4 1.1 × 10−5 1.0 × 10−5 2.3 × 10−1 8.2 × 100 4.5 × 10−1 8.0 × 10−1 3.6 × 101

#5
1 × 10−6 N 2.0 × 10−2 1.0 × 10−6 5.2 × 10−2 1.6 × 101 3.0 × 10−1 8.6 × 10−1 2.1 × 102

#6 N/4 1.0 × 10−3 1.0 × 10−6 1.2 × 10−1 1.6 × 101 3.7 × 10−1 8.5 × 10−1 1.2 × 101

#7
1 × 10−7 N 5.1 × 10−2 1.0 × 10−9 1.8 × 10−1 1.0 × 101 4.1 × 10−1 7.9 × 10−1 2.1 × 102

#8 N/4 6.6 × 10−3 1.0 × 10−7 1.1 × 10−1 1.8 × 101 4.0 × 10−1 8.2 × 10−1 7.7 × 100

#9

na02

1 × 10−4 N 1.1 × 10−5 1.0 × 10−9 2.1 × 10−1 2.7 × 100 3.4 × 10−1

5.4 × 10−1

8.4 × 10−1 5.7 × 103

#10 N/4 1.1 × 10−5 1.0 × 10−6 8.7 × 10−2 9.9 × 100 4.7 × 10−1 7.7 × 10−1 4.0 × 101

#11
1 × 10−5 N 1.1 × 10−3 1.0 × 10−5 7.7 × 10−2 6.3 × 100 2.5 × 10−1 8.9 × 10−1 3.4 × 102

#12 N/4 1.1 × 10−5 1.0 × 10−6 8.1 × 10−2 1.1 × 101 4.6 × 10−1 7.7 × 10−1 3.9 × 101

#13
1 × 10−6 N 4.1 × 10−2 1.0 × 10−7 1.4 × 10−1 2.0 × 101 3.8 × 10−1 8.0 × 10−1 2.4 × 102

#14 N/4 1.1 × 10−4 1.0 × 10−6 8.2 × 10−2 1.2 × 101 4.1 × 10−1 8.1 × 10−1 1.4 × 101

#15
1 × 10−7 N 4.0 × 10−2 1.0 × 10−9 1.2 × 10−1 1.8 × 101 3.8 × 10−1 8.0 × 10−1 2.5 × 102

#16 N/4 1.0 × 10−3 1.0 × 10−7 8.8 × 10−2 2.0 × 101 3.8 × 10−1 8.3 × 10−1 1.4 × 101
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