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Abstract

Conformal prediction is a popular, modern technique for providing valid
predictive inference for arbitrary machine learning models. Its validity relies
on the assumptions of exchangeability of the data, and symmetry of the given
model fitting algorithm as a function of the data. However, exchangeabil-
ity is often violated when predictive models are deployed in practice. For
example, if the data distribution drifts over time, then the data points are
no longer exchangeable; moreover, in such settings, we might want to use
a nonsymmetric algorithm that treats recent observations as more relevant.
This paper generalizes conformal prediction to deal with both aspects: we
employ weighted quantiles to introduce robustness against distribution drift,
and design a new randomization technique to allow for algorithms that do
not treat data points symmetrically. Our new methods are provably robust,
with substantially less loss of coverage when exchangeability is violated due to
distribution drift or other challenging features of real data, while also achieving
the same coverage guarantees as existing conformal prediction methods if the
data points are in fact exchangeable. We demonstrate the practical utility of
these new tools with simulations and real-data experiments on electricity and
election forecasting.
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1 Introduction

The field of conformal prediction addresses a challenging modern problem: given a
“black box” algorithm that fits a predictive model to available training data, how
can we calibrate prediction intervals around the output of the model so that these
intervals are guaranteed to achieve some desired coverage level?

As an example, consider a holdout set approach. Suppose we have a pre-fitted
model bµ mapping features X to a prediction of a real-valued variable Y (e.g., bµ is
the output of some machine learning algorithm trained on a prior data set), and a
fresh holdout set of data (X1, Y1), . . . , (Xn, Yn) not used for training. We can then
use the empirical quantiles of the errors |Yi � bµ(Xi)| on the holdout set to compute
a prediction interval around our prediction bµ(Xn+1) that aims to cover the unseen
response Yn+1. Split conformal prediction [Vovk et al., 2005] formalizes this method,
and gives guaranteed predictive coverage when the data points (Xi, Yi) are drawn i.i.d.
from any distribution (see Section 2). However, the validity of this method hinges
on the assumption that the data points are drawn independently from the same
distribution, or more generally, that (X1, Y1), . . . , (Xn+1, Yn+1) are exchangeable.

In many applied domains, this assumption is often substantially violated, due
to distribution drift, correlations between data points, or other phenomena. As an
example, Figure 1 shows results from an experiment on a real data set monitoring
electricity usage in Australia (the ELEC2 data set [Harries, 1999], which we return to
in Section 5.2). We see that over a substantial stretch of time, conformal prediction
loses coverage, its intervals decreasing far below the target 90% coverage level, while
our proposed method, nonexchangeable conformal prediction, is able to maintain
approximately the desired coverage level. In this paper, we will see how to quantify
the loss of coverage due to violations of exchangeability, and how we can modify the
conformal prediction methodology to regain predictive coverage even in the presence
of distribution drift or other violations of exchangeability.
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Figure 1: Empirical results from a real data set (details will be given in Section 5.2).
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1.1 Beyond exchangeability

In this paper, we will consider three important classes of methods for distribution-free
prediction: split conformal, full conformal, and the jackknife+. (We give background
on split and full conformal in Section 2, and on jackknife+ in Appendix B.) These
methods rely on exchangeability in two di↵erent ways:

• The data Zi = (Xi, Yi) are assumed to be exchangeable (for example, i.i.d.).

• The algorithm A, which maps data to a fitted model bµ : X ! R, is assumed
to treat the data points symmetrically, to ensure that exchangeability of the
data points Zi still holds even after we observe the fitted model(s).

In this work, we aim to provide distribution-free prediction guarantees when we
drop both of these assumptions:

• We may have data points Zi that are not exchangeable—for instance, they may
be independent but nonidentically distributed (e.g., due to distribution drift),
or there may be dependence among them that creates nonexchangeability (e.g.,
correlation over space or time).

• We may wish to use an algorithm A that does not treat the input data points
symmetrically—for example, if Zi denotes data collected at time i, we may
prefer to fit a model bµ that places higher weight on more recent data points.

1.2 Our contributions

We generalize the split conformal, full conformal, and jackknife+ methods (detailed
later) to allow for both of these sources of nonexchangeability. Our procedures can
recover the original variants if a symmetric algorithm is employed. We will provide
coverage guarantees that are identical to existing guarantees if the data points are in
fact exchangeable, and only slightly lower if the deviation from exchangeability is
mild.

To elaborate, let us define the coverage gap as the loss in coverage compared to
what is achieved under exchangeability. For example, in split conformal prediction
run with a desired coverage level 1� ↵, we have

Coverage gap = (1� ↵)� P
n
Yn+1 2 bCn(Xn+1)

o
,

since, under exchangeability, the method guarantees coverage with probability 1� ↵.
To give an informal preview of our results, we write Zi = (Xi, Yi) to denote the ith
data point and

Z = (Z1, . . . , Zn+1) (1)
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to denote the full (training and test) data sequence, and let Zi denote this sequence
after swapping the test point (Xn+1, Yn+1) with the ith training point (Xi, Yi):

Zi = (Z1, . . . , Zi�1, Zn+1, Zi+1, . . . , Zn, Zi). (2)

To enable robustness, our methods will allow for weights: let wi 2 [0, 1] denote a
prespecified weight placed on data point i. We will see that the coverage gap can be
bounded as

Coverage gap 
Pn

i=1
wi · dTV(Z,Zi)

1 +
Pn

i=1
wi

, (3)

where dTV denotes the total variation distance between distributions. Notably, we
do not make any assumption on the joint distribution of the n+ 1 points. Of course,
the result will only be meaningful if we are able to select fixed (non-data-dependent)
weights wi such that this upper bound is likely to be small. In particular, if we use
these methods, we are implicitly assuming that this weighted sum of total variation
terms is small. In contrast, past work on conformal prediction in a model-free setting
has relied on the assumption that the data are exactly exchangeable, since no prior
results o↵ered an analysis of the coverage gap under violations of exchangeability.
See Section 4.3 for further discussion.

Note that the upper bound in (3) is a far stronger result than simply asking
whether the data is “nearly exchangeable”. For instance, in a time series, it might be
the case that dTV(Z,Zi) is quite small but dTV(Z,Z⇡) ⇡ 1 for most permutations ⇡.
In words, if the observations are noisy, then permuting only two data points might
not be detectable—but if there is nonstationarity or dependence over time then Z is
likely to be far from exchangeable.

Several further remarks are in order. First, for wi ⌘ 1 and a symmetric algorithm,
the proposed weighted methods will reduce to the usual conformal (or jackknife+)
methods. Thus, the result (3) also quantifies the degradation in coverage of standard
methods in nonexchangeable settings. Second, this result has new implications in
exchangeable settings: if the data points are in fact exchangeable (with i.i.d. as a
special case), then Z

d
= Zi and the coverage gap bound in (3) is equal to zero (here

we use
d
= for equality in distribution). Therefore, our use of a weighted conformal

procedure (rather than choosing wi ⌘ 1, which is the original unweighted procedure)
does not hurt coverage if the data are exchangeable. Finally, the result provides
insights on why one might prefer to use our new weighted procedures in (possibly)
nonexchangeable settings: it can provide robustness in the case of distribution shift.
To elaborate, consider a setting where the data points Zi are independent, but are
not identically distributed due to distribution drift. The following result relates
dTV(Z,Zi) to the distributions of the individual data points.

Lemma 1. If Z1, . . . , Zn+1 are independent, then

dTV(Z,Z
i)  2dTV(Zi, Zn+1)� dTV(Zi, Zn+1)

2  2dTV(Zi, Zn+1).
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Combining this lemma with (3), we can see that if we are able to place small weights
wi on data points Zi with large total variation distance dTV(Zi, Zn+1), then the
coverage gap will be low. For example, under distribution drift, we might have
dTV(Zi, Zn+1) decreasing with i; we can achieve a low coverage gap by using, say,
weights wi = ⇢n+1�i for some ⇢ < 1. We will return to this example in Section 4.4.

We will also see that the result in (3) actually stems from a stronger result:

Coverage gap 
Pn

i=1
wi · dTV(R(Z), R(Zi))

1 +
Pn

i=1
wi

. (4)

Here R(Z) denotes a vector of residuals: for split conformal prediction, this is the
vector with entries R(Z)i = |Yi � bµ(Xi)|, where bµ is a pre-fitted model, while for
full conformal the entries are again given by R(Z)i = |Yi � bµ(Xi)| but now bµ is the
model obtained by running A on the entire data sequence Z. Now R(Zi) is simply
the same function applied to the swapped data Zi instead of Z—that is, the residuals
are computed after swapping data points i and n+ 1 in the data set. (We also later
generalize to any outcome space Y and to other definitions of residuals.)

Clearly, the bound in (4) is strictly stronger than (3), because the total variation
distance between any function applied to each of Z and Zi, cannot be larger than
dTV(Z,Zi) itself—and in many cases, the bound in (4) may be substantially tighter.
For example, if the data is high dimensional, with Zi = (Xi, Yi) 2 Rp ⇥R for large p,
then the distance dTV(Z,Zi) may be extremely large since Z and Zi each contain
p+1 dimensions of information about each data point. On the other hand, if we only
observe the residuals (e.g., R(Z)i = |Yi � bµ(Xi)| for each i), then this reveals only
a one-dimensional summary of each data point; this typically reduces the distance
between the two distributions, and by a considerable amount if the distribution drift
occurs in features that happen to be irrelevant for prediction and are thus ignored
by bµ. In Section 4.4, we will see a specific example demonstrating the potentially
large gap between these two upper bounds.

2 Background and related work

We briefly review several distribution-free prediction methods that o↵er guarantees
under an exchangeability assumption on the data and symmetry of the underlying
algorithm. We also set up notation that will be useful later in the paper.

Split conformal prediction. Split conformal prediction [Vovk et al., 2005] (also
called inductive conformal prediction) is a holdout method for constructing predic-
tion intervals around a pre-trained model. Specifically, given a model bµ : X ! R
that was fitted on an initial training data set, and given n additional data points
(X1, Y1), . . . , (Xn, Yn) (the holdout set), we define residuals

Ri = |Yi � bµ(Xi)|, i = 1, . . . , n,
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and then compute the prediction interval at the new feature vector Xn+1 as

bCn(Xn+1) = bµ(Xn+1)± (the d(1� ↵)(n+ 1)e-th smallest of R1, . . . , Rn).

Equivalently, we can write

bCn(Xn+1) = bµ(Xn+1)± Q1�↵

 
nX

i=1

1

n+1
· �Ri +

1

n+1
· �+1

!
, (5)

where Q⌧ (·) denotes the ⌧ -quantile of its argument,1 and �a denotes the point mass
at a. This method is well-known to guarantee distribution-free predictive coverage
at the target level 1� ↵.

A drawback of the split conformal method is the loss of accuracy due to sample
splitting, since the pre-trained model bµ needs to be independent from the holdout
set—in practice, if only n labeled data points are available in total, we might use
n/2 data points for training bµ, and then the procedure defined in (5) above would
actually be run with a holdout set of size n/2 in place of n. In this paper, however,
we will continue to write n to denote the holdout set size for the split conformal
method, in order to allow for universal notation across di↵erent methods.

Full conformal prediction. To avoid the cost of data splitting, an alternative
is the full conformal method [Vovk et al., 2005], also referred to as transductive
conformal prediction. Fix any regression algorithm

A : [n�0 (X ⇥ R)n ! {measurable functions bµ : X ! R} ,

which maps a data set containing any number of pairs (Xi, Yi), to a fitted regression
function bµ. The algorithm A is required to treat data points symmetrically, i.e.,2

A
�
(x⇡(1), y⇡(1)), . . . , (x⇡(n), y⇡(n))

�
= A

�
(x1, y1), . . . , (xn, yn)

�
(6)

for all n � 1, all permutations ⇡ on [n] := {1, . . . , n}, and all {(xi, yi)}i=1,...,n. Next,
for each y 2 R, let

bµy = A
�
(X1, Y1), . . . , (Xn, Yn), (Xn+1, y)

�

denote the trained model, fitted to the training data together with a hypothesized
test point (Xn+1, y), and let

Ry
i =

(
|Yi � bµy(Xi)|, i = 1, . . . , n,

|y � bµy(Xn+1)|, i = n+ 1.
(7)

1If the quantile is not unique, then Q⌧ (·) denotes the smallest possible ⌧ -quantile, throughout this
paper.

2If A is a randomized algorithm, then this equality is only required to hold in a distributional sense.
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The prediction set (which might or might not be an interval) for feature vector Xn+1

is then defined as

bCn(Xn+1) =

(
y 2 R : Ry

n+1
 Q1�↵

 
n+1X

i=1

1

n+1
· �Ry

i

!)
. (8)

The full conformal method is known to guarantee distribution-free predictive coverage
at the target level 1� ↵:

Theorem 1 (Full conformal prediction [Vovk et al., 2005]). If the data points
(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are i.i.d. (or more generally, exchangeable), and
the algorithm A treats the input data points symmetrically as in (6), then the full
conformal prediction set defined in (8) satisfies

P
n
Yn+1 2 bCn(Xn+1)

o
� 1� ↵.

The same result holds true for split conformal.

Indeed, since split conformal can be viewed as a special case of full conformal (by
considering a trivial algorithm A that returns the same fixed pre-fitted function bµ
regardless of the input data), this theorem also implies that the same coverage result
holds for the split conformal method (5). For completeness, and to set up our proof
strategy, we will give a succinct proof of this theorem in Section 6.1.

By avoiding data splitting, full conformal often (but not always) yields more
precise prediction intervals than split conformal. This potential benefit comes at a
steep computational cost, since in order to compute the prediction set (8) we need
to rerun the model training algorithm A for each y 2 R (or in practice, for each y in
a fine grid). Luckily, in certain special cases such as ordinary least squares, kernel
ridge regression [Burnaev and Vovk, 2014], or the Lasso [Lei, 2019], the prediction
set (8) can be computed more e�ciently using specialized techniques.

As a compromise between the greater computational e�ciency of split conformal
and the greater statistical e�ciency of full conformal, the jackknife+ and CV+
methods [Barber et al., 2021] (closely related to cross-conformal prediction [Vovk,
2015]) use a cross-validation-style approach for distribution-free predictive inference.
For example, for jackknife+, the procedure requires fitting n leave-one-out models
bµ�i. Later, in Appendix B, we will give more detailed background on these methods,
and provide a nonexchangeable version of the jackknife+.

General nonconformity scores. In the exchangeable setting, conformal predic-
tion (both split and full) was initially proposed in terms of “nonconformity scores”
bS(Xi, Yi), where bS is a fitted function that measure the extent to which a data
point (Xi, Yi) is unusual relative to a training data set [Vovk et al., 2005] (whose
dependence we make implicit in the notation). For simplicity, so far we have only
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presented the most commonly used nonconformity score, which is the residual from
the fitted model

bS(Xi, Yi) := |Yi � bµ(Xi)| (9)

(where bµ is pre-trained for split conformal, and bµ = A((Xj, Yj) : j 2 [n+ 1]) for full
conformal). We will also present our new methods with this particular form of score.
In many settings, other nonconformity scores can be more e↵ective—for example,
Romano et al. [2019], Kivaranovic et al. [2020] propose scores based on quantile
regression that often lead to tighter prediction intervals in practice. Our proposed
nonexchangeable conformal prediction procedures can also be extended to allow for
general nonconformity scores—we will return to this generalization in Appendix A.

Further related work. Conformal prediction was pioneered by Vladimir Vovk
and various collaborators in the early 2000s; the book by Vovk et al. [2005] details
their advances and remains a critical resource. The recent spurt of interest in these
ideas in the field of statistics was catalyzed by Jing Lei, Larry Wasserman, and
colleagues (see, e.g., Lei et al. [2013], Lei and Wasserman [2014], Lei et al. [2018]).
For gentle introduction and more history, we refer to the tutorials by Shafer and
Vovk [2008] and Angelopoulos and Bates [2021].

Tibshirani et al. [2019] extended conformal prediction to handle nonexchangeable
data under an assumption called covariate shift, where training and test data can
have a di↵erent X distribution, but are assumed to have an identical distribution of
Y given X. The data is reweighted using the likelihood ratio to compare the test
and training covariate distributions (with this likelihood ratio assumed to be known
or accurately approximable), coverage can be guaranteed via an argument based on
a concept that they called weighted exchangeability.

Our current work di↵ers from Tibshirani et al. [2019] in several fundamental
ways, such that neither work subsumes the other in terms of methodology or theory.
In their work, the covariate shift assumption must hold, and the aforementioned
high-dimensional likelihood ratio must be known exactly or well approximated for
correct coverage. Furthermore, the weights on the data points are then calculated
as a function of the data point (Xi, Yi) to compensate for the known distribution
shift. In the present work, on the other hand, the weights are required to be fixed
rather than data-dependent, and can compensate for unknown violations of the
exchangeability assumption, as long as the violations are small (to ensure a low
coverage gap). Moreover, our theory can handle nonsymmetric algorithms that treat
di↵erent data points di↵erently, and in particular, can depend on their order. Finally,
and importantly, if there was actually no distribution shift, and the data happened
to be exchangeable, their weighted algorithm does not have any coverage guarantee,
while ours retains exact coverage.

Since its publication, the ideas and methods from Tibshirani et al. [2019] have
been applied and extended in several ways. For example, Podkopaev and Ramdas
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[2021] demonstrate that reweighting can also deal with label shift (the marginal
distribution of Y changes from training to test, but the conditional distribution of X
given Y is assumed unchanged). Lei and Candès [2021a] show how reweighting can be
extended to causal inference setups for predictive inference on individual treatment
e↵ects, and Candès et al. [2021] show how to apply these ideas in the context of
censored outcomes in survival analysis. Fannjiang et al. [2022] use reweighting in
a setup where the test covariate distribution is under the statistician’s control. A
di↵erent weighted approach is taken in Guan [2021], called “localized” conformal
prediction, where the weight on data point i is determined as a function of the distance
kXi �Xn+1k2, to enable predictive coverage that holds locally (in neighborhoods of
X space, i.e., an approximation of prediction that holds conditional on the value of
Xn+1). Each of these works also contributes new ideas to problem-specific challenges
(and di↵ers substantially from the work proposed here, both in terms of methods
and the nature of the resulting guarantees), but we omit the details for brevity.

Conformal methods have also be used for sequential tests for exchangeability
of the underlying data [Vovk, 2021], and these sequential tests can form the basis
of sequential algorithms for changepoint detection [Volkhonskiy et al., 2017] or
outlier detection [Bates et al., 2021]. This line of work is di↵ers from ours in that
they employ conformal prediction for detecting nonexchangeability, but do not
provide algorithms or guarantees for the use of conformal methods for predictive
inference on nonexchangeable data. Several other recent works propose conformal
inference type methods for time series [Chernozhukov et al., 2018, Xu and Xie, 2021,
Stankeviciute et al., 2021], but these results require exchangeability assumptions or
other distributional conditions (e.g., assuming a strongly mixing time series), while
in our present work we aim to avoid these conditions.

The recent work of Gibbs and Candès [2021] takes a di↵erent approach towards
handling distribution drift in an online manner. Informally, they compare the current
attained coverage to the target 1� ↵ level, and if the former is bigger (or smaller)
than the latter, then they iteratively increase (or decrease) the nominal level ↵t to
employ for the next prediction. Za↵ran et al. [2022] build further on this approach,
allowing for adaptivity to the amount of dependence in the time series. An alternative
approach is that of Cauchois et al. [2020], where robustness is introduced under the
assumption that the test distribution is bounded in f -divergence from the distribution
of the training data points.

For data that is instead drawn from a spatial domain, the recent work of Mao
et al. [2020] uses weighted conformal prediction with higher weights assigned to data
points drawn at spatial locations near that of the test point (or, as a special case,
giving a weight of 1 to the nearest neighbors of the test point, and weight 0 to all
other points), but their theoretical guarantees require distributional assumptions.

Finally, we return full circle to the book of Vovk et al. [2005], which has chapters
that discuss moving beyond exchangeability, for example using Mondrian conformal
prediction (and its generalization, online compression models). Mondrian methods
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informally divide the observations into groups, and assume that the observations
within each group are still exchangeable (e.g., class-conditional conformal classifica-
tion). We also note the work of Dunn et al. [2022] that studies the case of two-layer
hierarchical models (like random e↵ect models) that shares strength across groups.
These works involve very di↵erent ideas from those presented in the current paper.

3 Nonexchangeable conformal prediction

We now present our new nonexchangeable conformal prediction method, in both
its split and full versions, in this section. For clarity of the exposition, we will use
|y � bµ(x)| as the score used to measure the nonconformity of a point (x, y) in the
data set, as in (9), but our methods and accompanying theoretical guarantees can
be extended in a straightforward way to arbitrary nonconformity scores—we give
details for this extension in Appendix A.

3.1 Robust inference through weighted quantiles

As described above, our new methodology moves beyond the exchangeable setting
by allowing both for nonexchangeable data, and for nonsymmetric algorithms. For
simplicity, we will first consider only the first extension—the data points Zi = (Xi, Yi)
are no longer required to be exchangeable, but the model fitting algorithm A will still
be assumed to be symmetric for now. The next subsection generalizes the method
to allow nonsymmetric algorithms as well.

For our nonexchangeable conformal methods, we choose weights w1, . . . , wn 2
[0, 1], with the intuition that a higher weight wi should be assigned to a data point Zi

that is “trusted” more, i.e., that we believe comes from (nearly) the same distribution
as the test point Zn+1. We assume the weights wi are fixed (see Section 4.5 for
further discussion on this point). For instance if data point Zi occurs at time i, and
we are concerned about distribution drift, we might choose weights w1  · · ·  wn

so that our prediction interval relies mostly on recent data points and places little
weight on data from the distant past. Alternatively, in a spatial setting, if data point
i is collected at a (prespecified) location Li, then the weight wi might be chosen as a
function of the distance dist(Li, Ln+1), with the intuition that data points collected
nearby in the spatial domain are more likely to have similar distributions.

We now modify the split and full conformal predictive inference methods to use
weighted quantiles, rather than the original definitions where all data points are
implicitly given equal weight. To simplify notation, in what follows, given wi 2 [0, 1],
i = 1, . . . , n, we will define normalized weights

w̃i =
wi

w1 + · · ·+ wn + 1
, i = 1, . . . , n, and w̃n+1 =

1

w1 + · · ·+ wn + 1
. (10)
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Nonexchangeable split conformal with a symmetric algorithm. The pre-
diction interval is given by

bCn(Xn+1) = bµ(Xn+1)± Q1�↵

 
nX

i=1

w̃i · �Ri + w̃n+1 · �+1

!
, (11)

where Ri = |Yi � bµ(Xi)| for the pre-trained model bµ, as before.

Nonexchangeable full conformal with a symmetric algorithm. The predic-
tion set is given by

bCn(Xn+1) =

(
y : Ry

n+1
 Q1�↵

 
n+1X

i=1

w̃i · �Ry
i

!)
, (12)

where as before, we define bµy = A((X1, Y1), . . . , (Xn, Yn), (Xn+1, y)) by running the
algorithm A on the training data together with the hypothesized test point (Xn+1, y),
and define Ry

i as in (7) from before.

Notice that for both methods, their original (unweighted) versions are recovered
by choosing weights w1 = · · · = wn = 1.

The theoretical results for this section, which we previewed in (3) and (4), will
follow as a corollary of more general results that also accommodate nonsymmetric
algorithms (introduced next); we avoid restating the results here for brevity. In
addition, the interested reader may already jump forward to Appendix C to ex-
amine a di↵erent style of result on the robustness of weighted (and unweighted)
conformal methods—using symmetric algorithms—under a Huber-style adversarial
contamination model (which relies on stronger assumptions to allow for a tighter
guarantee).

3.2 Enhanced predictions with nonsymmetric algorithms

Now, we will allow the algorithm A to be an arbitrary function of the data points,
removing the requirement of a symmetric algorithm. This generalization will require
only a small modification to the previous conformal method to ensure validity, and
can result in more accurate predictors and boost e�ciency of the resulting prediction
sets, as we will demonstrate in the experiments (Section 5).

To begin, let us give some examples of algorithms that do not treat data points
symmetrically, to see what types of settings we want to handle:

• Weighted regression. The algorithm A might fit a model bµ(x) = x>b� where
the parameter vector b� is fitted via a weighted regression. Specifically, for
nonnegative weights ti, consider solving

b� = arg min
�2Rp

(
X

i

ti · `(X>
i �, Yi) + h(�)

)
, (13)
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for some loss function ` and penalty function h. For example, weighted least
squares would be obtained by taking the loss function `(u, y) = (u� y)2.

• Adapting to changepoints. In a streaming data setting, if sudden changes
may occur in the data distribution, then the quality of our predictions will
su↵er if our models are always trained on the full set of available training
data without accounting for possible changepoints. We might therefore aim to
improve the model by building in a changepoint detection step. Assume data
points arrive in an ordered fashion so that i = 1 is the first arrival, i = 2 the
second, and so on. Then, we might have

b� = arg min
�2Rp

8
<

:
X

i>bT

`(X>
i �, Yi) + h(�)

9
=

; , (14)

for some loss function ` and penalty function h, where bT is the time of the
most recent detected changepoint (or bT = 0 if no changepoint is detected). To
be clear, here the algorithm A incorporates estimation of both bT and of b�.

• Autoregressive models. Suppose that the response Yn+1 is best predicted
by combining information from the features Xn+1 together with response Yn

from the previous time point—for example, we might solve for

(b�, b�) = arg min
(�,�)2Rp⇥R

(
X

i

�
Yi � (X>

i � + �Yi�1)
�2
)
, (15)

to return a fitted function of the form bµ(x, yprev) := x>b� + b� · yprev.

To accommodate these and many other settings, we will now define A as

A : [n�0 (X ⇥ R⇥ T )n ! {measurable functions bµ : X ! R} , (16)

mapping a data sequence containing any number of “tagged” data points (Xi, Yi, ti) 2
X ⇥ R⇥ T , to a fitted regression function bµ. The tag ti associated with data point
(Xi, Yi) can play a variety of di↵erent roles, depending on the application:

• ti can provide the weight for data point i in a weighted regression;

• ti can indicate the time or spatial location at which data point i is sampled;

• ti can simply indicate the order of the data points (i.e., setting ti = i for each
i), so that A is “aware” that data point (Xi, Yi) is the ith data point, and is
thus able to use the ordering of the data points when fitting the model.
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In particular, the algorithm A is no longer required to treat the input data points
(Xi, Yi) symmetrically, because if we swap (Xi, Yi) with (Xj, Yj) (and the algorithm
receives tagged data points (Xj, Yj, ti) and (Xi, Yi, tj)), the fitted model may indeed
change.3 As for the weights wi, we require the tags t1, . . . , tn+1 to be fixed.

With the added flexibility of a nonsymmetric regression algorithm, we will need a
key modification to the methods defined earlier in Section 3.1 to maintain predictive
coverage. Our modification requires that, before applying the model fitting algorithm
A, we first randomly swap the tags of two of the data points in the ordering. First,
draw a random index K 2 [n+ 1] from the multinomial distribution that takes the
value i with probability w̃i (defined in (10)):

K ⇠
n+1X

i=1

w̃i · �i. (17)

Note that K is drawn independently from the data. We will apply our algorithm to
the data ZK (defined in (2)) in place of Z. In particular, the tagged data points are
now (Xn+1, Yn+1, tK) and (XK , YK , tn+1), i.e., these two data points have swapped
tags. This modification is carried out as follows.

Nonexchangeable split conformal with a nonsymmetric algorithm. For
split conformal, the model bµ is pre-fitted on separate data, and does not depend on
the data points (Xi, Yi) of the holdout set—in other words, bµ is trivially a symmetric
function of the (Xi, Yi) points. Thus, no modification is needed, and our prediction
interval (11) is unaltered.

Nonexchangeable full conformal with a nonsymmetric algorithm. First,
for any y 2 R and any k 2 [n+ 1], define

bµy,k = A
⇣
(X⇡k(i), Y

y
⇡k(i)

, ti) : i 2 [n+ 1]
⌘
,

where ⇡k is the permutation on [n+ 1] swapping indices k and n+ 1 (and ⇡n+1 is
the identity permutation), and where we define

Y y
i =

(
Yi, i = 1, . . . , n,

y, i = n+ 1.

In other words, bµy,k is fitted by applying the algorithm A to the training data
(X1, Y1), . . . , (Xn, Yn) together with the hypothesized test point (Xn+1, y), but with
the kth and (n+ 1)st data points swapped (note that the tags tk and tn+1 are now
assigned to data points (Xn+1, y) and (Xk, Yk), respectively, after this swap).

3For many common examples, the algorithm A will instead be symmetric as a function of the
tagged data points (Xi, Yi, ti), but we do not require this assumption in this work.
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Define the residuals from this model,

Ry,k
i =

(
|Yi � bµy,k(Xi)|, i = 1, . . . , n,

|y � bµy,k(Xn+1)|, i = n+ 1.

Then, after drawing a random index K as in (17), the prediction set is given by

bCn(Xn+1) =

(
y : Ry,K

n+1
 Q1�↵

 
n+1X

i=1

w̃i · �Ry,K
i

!)
. (18)

Symmetric algorithms as a special case. The symmetric setting, discussed in
Section 3.1, is actually a special case of the broader setting defined here. Specifically,
for any symmetric algorithm A that acts on (untagged) data points (xi, yi), we can
trivially regard it as an algorithm A0 that acts on tagged data points (xi, yi, ti) by
simply ignoring the tags. For this reason, we will only give theoretical results for the
general forms of the methods given in this section, but our theorems apply also to
the symmetric setting considered in Section 3.1.

The swap step. In the case of a nonsymmetric algorithm, our swap step requires
that A is run on the swapped data set—that is, with data points (Xn+1, Yn+1, tK)
and (XK , YK , tn+1), rather than the original tagged data points (XK , YK , tK) and
(Xn+1, Yn+1, tn+1). This swap step is necessary for our theoretical guarantees to hold
(in fact, it plays a key role in the theory even for symmetric algorithms, with fixed
weights wi as in (12), even though the fitted models are unchanged in that case).

Of course, for nonsymmetric algorithm A, the swap step will alter the fitted
model bµ produced by A and thus may a↵ect the precision of the resulting prediction
interval. The extent to which this swap will perturb the output of the algorithm A,
will undoubtedly depend on the nature of the algorithm itself. In many practical
situations, we would not expect the random swap to have a large impact on the
output of the method, since many algorithms A applied to a large number of data
points are often not very sensitive to perturbing the training set in this fashion,
although interestingly, our theoretical results do not rely on any stability conditions
or any assumptions of this type. (For comparison, if we were to instead permute
the data at random before applying the algorithm A—that is, use a permutation ⇡
chosen uniformly at random, rather than the single swap permutation ⇡K , so that
the algorithm is now trained on tagged data points (X⇡(i), Y⇡(i), ti)—then this would
restore the symmetric algorithm assumption, but could potentially result in a highly
inaccurate model since the information carried by the tags is now meaningless.)

However, in certain settings it may be the case that the fitted model bµ returns
predictions that are far less accurate due to the swap. For instance, this may be the
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case in an autoregressive setting where the tag tn+1 indicates the most recent data
point and thus plays a disproportionately large role in the resulting predictions. We
leave the important question of practical implementation for such settings, and the
question of how to choose algorithms A that will not be too sensitive to the swap,
to future work.

4 Theory

In this section, we establish theory on the coverage of our proposed method. Since
split conformal is a special case of full conformal (even in this nonexchangeable
setting), we only present theory for the nonexchangeable full conformal method.

We first need to define the map from a data sequence z = (z1, . . . , zn+1) 2
(X ⇥R)n+1, with entries zi = (xi, yi), to a vector of residuals R(z). Given z, we first
define the model

bµ = A
�
(xi, yi, ti) : i 2 [n+ 1]

�
.

Then define the residual vector R(z) 2 Rn+1 with entries

�
R(z)

�
i
= |yi � bµ(xi)|, i = 1, . . . , n+ 1.

4.1 Lower bounds on coverage

Recall the notation Zi, Z, Zi defined in (1) and (2). We now present our coverage
guarantee for nonexchangeable full conformal (and consequently, the same bound
holds for nonexchangeable split conformal as a special case). This theorem can be
viewed as a generalization of Theorem 1.

Theorem 2 (Nonexchangeable full conformal prediction). Let A be an algorithm
mapping a sequence of triplets (Xi, Yi, ti) to a fitted function as in (16). Then the
nonexchangeable full conformal method defined in (18) satisfies

P
n
Yn+1 2 bCn(Xn+1)

o
� 1� ↵�

nX

i=1

w̃i · dTV
�
R(Z), R(Zi)

�
.

The same result holds true for nonexchangeable split conformal.

To summarize, we see that the coverage gap is bounded by
Pn

i=1
w̃i · dTV(R(Z), R(Zi)).

Since it holds that
dTV

�
R(Z), R(Zi)

�
 dTV(Z,Z

i)

for each i, we therefore also see that

Coverage gap 
X

i

w̃i · dTV(Z,Zi).
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This last bound is arguably more interpretable, but could also be significantly more
loose, and we consider it an important point that the coverage gap depends on the
total variation between swapped residual vectors, and not the swapped raw data
vectors. Finally, recalling Lemma 1, we see that in the case of independent data
points, we have

Coverage gap  2
X

i

w̃i · dTV
�
(Xi, Yi), (Xn+1, Yn+1)

�
.

4.2 Upper bounds on coverage

To complement the results in the last subsection, it is also possible to verify, for
the nonexchangeable conformal method, that the procedure does not substantially
overcover—that is, under mild deviations from exchangeability, our method is not
overly conservative.

For the exchangeable setting, Lei et al. [2018, Theorem 2.1] show that, in a setting
where the residuals Ri (for split conformal) or Ry

i (for full conformal) are distinct
with probability 1, conformal prediction satisfies

1� ↵  P
n
Yn+1 2 bCn(Xn+1)

o
< 1� ↵ +

1

n+ 1
.

Here we give the analogous results for our nonexchangeable methods.

Theorem 3. For any algorithm A as in (16), if RYn+1,K
1

, . . . , RYn+1,K
n , RYn+1,K

n+1
are

distinct with probability 1, then the nonexchangeable full conformal method (18)
satisfies

P
n
Yn+1 2 bCn(Xn+1)

o
< 1� ↵ + w̃n+1 +

nX

i=1

w̃i · dTV
�
R(Z), R(Zi)

�
.

The same result holds true for nonexchangeable split conformal.

(In the split conformal context, since RYn+1,K
i = |Yi � bµ(Xi)| for the pre-fitted function

bµ, the statement becomes simpler—we simply require that the residuals |Yi � bµ(Xi)|
are distinct with probability 1.)

From this result, we see that if w̃n+1 =
1

w1+···+wn+1
is small (which corresponds to

the e↵ective sample size of our weighted method being large), then mild violations
of exchangeability can only lead to mild undercoverage (as in Theorem 2) or to mild
overcoverage.

Of course, when we use these methods in practice, it would be useful to know
whether overcoverage or undercoverage is to be expected; however, without further
assumptions, this cannot be determined in advance. As a simple example, if the
data exhibits mild violations of exchangeability due to the conditional variance of
Y | X changing over time, then we might see undercoverage if Var(Y | X) increases
over time (and thus the residual of the test point (Xn+1, Yn+1) is larger than typical
training residuals), or overcoverage if Var(Y | X) is instead decreasing over time.
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4.3 Remarks on the theorems

A few comments are in order to help us further understand the implications of these
theoretical results.

New results in the exchangeable setting. We point out that when the data
happen to be exchangeable, that is, dTV(Z,Zi) = 0 for all i, then the above results
are new and cannot be inferred from the existing conformal literature. In particular,
existing conformal methods are not able to handle nonsymmetric algorithms, which
limits their applicability in many practical settings (e.g., streaming data, as described
above). In addition, our results show that, under exchangeability, there is no coverage
lost by introducing fixed weights wi into the quantile calculations used for constructing
the prediction interval; this means that we are free to use these weights to help
ensure robustness against nonexchangeability without sacrificing any guarantees if
indeed exchangeability happens to hold.

Robustness results for the original algorithms. Another interesting impli-
cation of these new bounds is that they yield robustness results for the original
algorithms. In more detail, the original split conformal (5) and full conformal (8)
algorithms presented in Section 2 can be viewed as special cases of our proposed nonex-
changeable methods (11) and (18), respectively, by taking weights w1 = · · · = wn = 1
and using a symmetric A, i.e., without tags. (As we will see in Appendix B below,
the same is true for viewing jackknife+ as a special case of the nonexchangeable
jackknife+.) In this setting, our theorems establish a new robustness result,

Coverage gap 
Pn

i=1
dTV(R(Z), R(Zi))

n+ 1

Pn

i=1
dTV(Z,Zi)

n+ 1
.

For example, in the case of independent data points, applying Lemma 1 we obtain

Coverage gap 
2
Pn

i=1
dTV

�
(Xi, Yi), (Xn+1, Yn+1)

�
)

n+ 1
.

These new bounds ensure robustness of existing methods against mild violations of
the exchangeability (or i.i.d.) assumption, and thus help explain the success of these
methods on real data, where the exchangeability assumption may not hold.

Choosing the weights. Our theoretical results above confirm the intuition that
we should give higher weights wi to data points (Xi, Yi) that we believe are drawn
from a similar distribution as (Xn+1, Yn+1), and lower weights to those that are less
reliable. As is always the case with inference methods, we are faced with a tradeo↵:
if many weights wi are chosen to be quite low, then this reduces the e↵ective sample
size of the method (e.g., for split conformal prediction, we are reducing the e↵ective

17



sample size for estimating the empirical quantile of the residual distribution). Thus,
overly low weights will often lead to wider prediction intervals—at the extreme,
if we choose w1 = · · · = wn = 0, this yields a coverage gap of zero but results
in bCn(Xn+1) ⌘ R, a completely uninformative prediction interval. How to choose
weights optimally (and, even how to quantify optimality) is an interesting and
important question that we leave for future work.

Is the guarantee useful? While the upper bound on the coverage gap holds
with no assumptions on the distribution of the data, the result is meaningless if
this upper bound is extremely large. Thus we would ideally use these methods in
settings where we have some a priori knowledge about the properties of the data
distribution, so that the weights wi can be chosen in advance in such a way that we
believe the resulting coverage gap is likely to be small. We emphasize in practice
we likely only need qualitative (not quantitative) knowledge of the likely deviations
from exchangeability—for example, under gradual distribution drift, a geometric
decay as in wi = ⇢n+1�i will likely lead to a low coverage gap, without requiring
knowledge of the exact rate or nature of the distribution drift. On the other hand,
if the test point comes from a new distribution that bears no resemblance to the
training data, neither our bound nor any other method would be able to guarantee
valid coverage without further assumptions. An important open question is whether
it may be possible to determine, in an adaptive way, whether coverage will likely
hold for a particular data set, or whether that data set exhibits high deviations from
exchangeability such that the coverage gap may be large.

4.4 Examples

Before turning to our empirical results, we pause to give several examples of settings
where the coverage gap bound is favorable.

Bounded distribution drift. First, consider a setting where the data points
(Xi, Yi) are independent, but experience distribution drift over time. In this type of
setting, we would want to choose weights wi that decay as we move into the distant
past, for example, wi = ⇢n+1�i for some decay parameter ⇢ 2 (0, 1). If we assume
that the distribution drift is bounded with a Lipschitz-type condition,

dTV(Zi, Zn+1)  ✏ · (n+ 1� i), i = 1, . . . , n+ 1,
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for some ✏ > 0, then the coverage gap for our proposed methods is bounded as

Coverage gap 
X

i

w̃i · dTV(Z,Zi) 
X

i

w̃i · 2dTV(Zi, Zn+1)


nX

i=1

⇢n+1�i

1 +
Pn

j=1
⇢n+1�j

· 2✏ · (n+ 1� i)  2✏

1� ⇢
,

which is small as long as the distribution drift parameter ✏ is su�ciently small.

Changepoints. In other settings with independent data points (Xi, Yi), we might
have periodic large changes in the distribution rather than the gradual drift studied
above—that is, we may be faced with a changepoint. Suppose that the most recent
changepoint occurred k time steps ago, so that dTV(Zi, Zn+1) = 0 for i > n� k (but,
before that time, the distribution might be arbitrarily di↵erent from the test point,
so we might even have dTV(Zi, Zn+1) = 1 for i  n� k). In this setting, again taking
weights wi = ⇢n+1�i that decay as we move into the past, we have

Coverage gap 
nX

i=1

w̃i · dTV(Z,Zi) 
n�kX

i=1

w̃i =

Pn�k
i=1

⇢n+1�i

1 +
Pn

i=1
⇢n+1�i

 ⇢k.

This yields a small coverage gap as long as k is large, i.e., as long as we have plenty
of data observed after the most recent changepoint.

Covariate time series. Next, to highlight the distinction between dTV(Z,Zi) and
dTV(R(Z), R(Zi)), we will consider a setting where the data points (Xi, Yi) are no
longer independent. Suppose that Yi = X>

i � + ✏i where ✏i
iid⇠ N (0, �2) but where the

covariates Xi are not i.i.d. For example, the covariates may be dependent due to a
time series structure, or may be independent but not identically distributed. Writing
X 2 R(n+1)⇥p to denote the covariate matrix (with ith row Xi), we will assume that
vec(X) ⇠ N (0,⌃) for some ⌃ 2 R(n+1)p⇥(n+1)p, allowing for both nonindependent
and/or nonidentically distributed rows Xi. Now consider running full conformal with
least squares regression as the base algorithm, so that we have residuals

R(Z) = Y �X(X>X)�1X>Y = P?
X(Y ) = P?

X(✏),

where Y = (Y1, . . . , Yn+1), ✏ = (✏1, . . . , ✏n+1), and P?
X denotes projection to the

orthogonal complement of the column span of X. In Appendix E.3 we prove that

dTV(R(Z), R(Zi)) 
p
8⌃ · pp

n+ 1� p
, (19)

where ⌃ is the condition number of ⌃; if n � p2 while ⌃ is bounded, then this
total variation distance is very small.
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On the other hand, it is likely that dTV(Z,Zi) is very large (it may even be close
to the largest possible value of 1), unless the covariates are essentially exchangeable.
For example, in dimension p = 1, we can consider the autoregressive model Xi =
�Xi�1+N (0, 1��2), with X1 ⇠ N (0, 1), so X1, . . . , Xn+1 are identically distributed.
Then, for 2  i  n we have

dTV(Z,Z
i) � dTV(Xi � �Xi�1, Xn+1 � �Xi�1)

= dTV
�
N (0, 1� �2),N (0, 1 + �2 � 2�n+3�i)

�
,

which is proportional to �2. This shows that dTV(R(Z), R(Zi)) can be vanishingly
small even when dTV(Z,Zi) is bounded away from zero.

4.5 Extensions and explorations

We now briefly describe several extensions of our general framework.

Additive versus multiplicative bounds. In our theoretical results above, the
reduction in coverage is additive—that is, the probability P{Yn+1 62 bCn(Xn+1)} has
the form ↵ +�, where the term � reflects the extent to which the exchangeability
assumption is violated (as measured by total variation distance). If the target
non-coverage level ↵ is extremely low, then this additive bound may represent a
substantial increase in the probability of error. In Appendix C, we give an alternative
bound under a Huber contamination model, which is multiplicative rather than
additive, but holds only for the symmetric algorithm case.

Fixed versus data-dependent weights. Throughout this paper, we have worked
under the assumption that the weights wi on the conformal residuals, as well as the
tags ti used in model fitting in the nonsymmetric case, are fixed a priori. In contrast,
when weighted versions of conformal prediction are used for addressing problems
such as covariate shift [Tibshirani et al., 2019], data censoring [Candès et al., 2021],
or local coverage [Guan, 2021], the weights are data-dependent, i.e., wi = w(Xi)
or wi = w(Xi, Xn+1), in each of these settings. We pause here to comment on this
distinction.

In practical applications of our proposed methods, it may be the case that we
would like to use weights and/or tags that are somehow random—for example, if
each data point (Xi, Yi) is gathered at a random time Ti, the weight wi and tag ti
might then need to depend on Ti. In the setting where the weights wi and/or tags ti
may be random or data-dependent, our results will still apply if the terms dTV(Z,Zi)
appearing in our bounds on the coverage gap are replaced with suitable conditional
versions,

Coverage gap  E
"

nX

i=1

w̃i · dTV
�
Z,Zi | w1, . . . , wn, t1, . . . , tn+1

�
#
,
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where now the ith term on the right-hand side is the total variation distance
between the conditional distributions of Z and Zi, conditioning on the weights and
tags. We might therefore consider a possible extension that unifies the proposed
framework with the weighted conformal prediction [Tibshirani et al., 2019] and/or
localized conformal prediction (LCP) [Guan, 2021] methods, where the weight wi

(and, potentially, the tag ti) placed on data point i might now additionally incorporate
data-dependent information—e.g., the weight wi might depend on both the index i,
as in our framework, and on kXi �Xn+1k2, as in the LCP framework. We leave a
more detailed investigation of data dependent weights for future work.

Are these results assuming the data is approximately exchangeable? Fi-
nally, we point out that these coverage gap bounds are very di↵erent in flavor than
simply assuming that Z is “nearly exchangeable”. In particular, in a setting where
dTV(Z, Z̃) is small for some exchangeable Z̃, it follows immediately that the coverage
gap is bounded by dTV(Z, Z̃) for (unweighted) split or full conformal, since these
methods are guaranteed to have coverage 1 � ↵ with exchangeable data Z̃. By
comparison, our coverage gap bound

P
i w̃i · dTV(Z,Zi) is substantially stronger.

To see this through an example, consider a distribution where the covariates Xi

are i.i.d., and where Yi ⇠ Bernoulli(0.5 + (�1)i · ✏), for some small constant ✏ > 0.
Suppose that we run conformal prediction without weights, wi ⌘ 1. Then we have
dTV(Zi, Zn+1)  2✏ for all i, and so our coverage gap bound ensures that conformal
prediction has coverage at least 1� ↵� 4✏. On the other hand, we have

dTV(Z, Z̃) ⇡ 1 for any exchangeable Z̃.

To verify the above claim, note that under the distribution of Z, we have

bn+1

2
cX

i=1

{Y2i�1 < Y2i}+Bi {Y2i�1 = Y2i} ⇠ Binomial
�
bn+1

2
c, 0.5 + ✏

�
,

where Bi
iid⇠ Bernoulli(0.5), while under any exchangeable distribution, the left-

hand side above is distributed as Binomial
�
bn+1

2
c, 0.5

�
, and these two binomial

distributions have total variation distance ⇡ 1, for large n. Thus, in this example,
we see that our coverage gap is low even though it is not the case that Z is “nearly
exchangeable”.

5 Experiments

In this section, we examine the empirical performance of nonexchangeable full con-
formal prediction, with residual weights and allowing for a nonsymmetric algorithm,
against the original full conformal method. (Additional experiments that implement
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split conformal and jackknife+ can be found in Appendix F.) We will see that adding
weights enables robustness against changes in the data distribution (i.e., better
coverage), while moving to a nonsymmetric algorithm enables shorter prediction
intervals.4

5.1 Simulations

We consider three simulated data distributions:

• Setting 1: i.i.d. data. We generate N = 2000 i.i.d. data points (Xi, Yi), with
Xi

iid⇠ N (0, I4) and Yi ⇠ X>
i � +N (0, 1) for a coe�cient vector � = (2, 1, 0, 0).

• Setting 2: changepoints. We generate N = 2000 data points (Xi, Yi), with
Xi

iid⇠ N (0, I4) and Yi ⇠ X>
i �

(i) +N (0, 1). Here �(i) is the coe�cient vector at
time i, and changes two times over the duration of data collection:

�(1) = · · · = �(500) = (2, 1, 0, 0),

�(501) = · · · = �(1500) = (0,�2,�1, 0),

�(1501) = · · · = �(2000) = (0, 0, 2, 1).

• Setting 3: distribution drift. We generate N = 2000 data points (Xi, Yi),
with Xi

iid⇠ N (0, I4) and Yi ⇠ X>
i �

(i) +N (0, 1). As before, �(i) is the coe�cient
vector at time i; but now we set �(1) = (2, 1, 0, 0), �(N) = (0, 0, 2, 1), and then
compute each intermediate �(i) by linear interpolation.

For each task, we implement the following three methods, with target coverage
level 1� ↵ = 0.9.

• CP+LS: full conformal prediction with least squares. We consider the
original definition of full conformal prediction (8), with bµ the least squares fit,
i.e., A is the least squares regression algorithm.5

• NexCP+LS: nonexchangeable full conformal with least squares. We
also run nonexchangeable full conformal prediction (12) using weights wi =
0.99n+1�i, and with the same algorithm A (least squares regression).

4Code for reproducing the experiments in Sections 5.1 and 5.2 is available at https://rinafb.
github.io/code/nonexchangeable_conformal.zip.

5In principle, full conformal run with A given by least squares may return a prediction set bC(Xn+1)
that is a disjoint union of intervals, but this is rare in most typical settings. The same is true for
NexCP and for weighted least squares. For interpretability, we implement each method to always
return an interval (i.e., if bC(Xn+1) happens to be a disjoint union of intervals, then we return its
convex hull).
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• NexCP+WLS: nonexchangeable full conformal with weighted least
squares. Lastly we use nonexchangeable full conformal prediction (12) but now
with a nonsymmetric algorithm, weighted least squares regression. Specifically,
to fit bµ given tagged data points (xi, yi, ti), the algorithm A will run weighted
least squares regression placing weight ti on data point (xi, yi). We implement
the algorithm with ti = 0.99n+1�i, and again use weights wi = 0.99n+1�i.

After a burn-in period of the first 100 time points, at each time n = 100, . . . , N�1
we run the methods with training data i = 1, . . . , n and test point n+ 1. The results
shown are averaged over 200 independent replications of the simulation.
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Figure 2: Simulation results showing mean prediction interval coverage and width, averaged
over 200 independent trials. The displayed curves are smoothed by taking a rolling average
with a window of 10 time points.

Our results are shown in Figure 2, and are summarized in Table 1. In terms of
coverage, we see that all three methods have coverage ⇡ 90% across the time range
of the experiment for the i.i.d. data setting (Setting 1), while for the changepoint
(Setting 2) and distribution drift (Setting 3) experiments, the two proposed methods
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achieve approximately the desired coverage level, but the original full conformal
method CP+LS undercovers. In particular, as expected, CP+LS shows steep drops
in coverage in Setting 2 after changepoints, while in Setting 3 the coverage for CP+LS
declines gradually over time as the distribution drift grows. The NexCP+LS and
NexCP+WLS methods are better able to maintain coverage in these settings. (In
fact, in Setting 2, we see that NexCP+WLS overcovers for a period of time after each
changepoint—this is because, a short period of time after the changepoint, the fitted
weighted least squares model is already quite accurate for the new data distribution,
but the weights w̃i are still placing some weight on residuals from data points from
before the changepoint, leading briefly to an overestimate of our model error.)

Setting 1 (i.i.d. data) Setting 2 (changepoints) Setting 3 (drift)
Coverage Width Coverage Width Coverage Width

CP+LS 0.900 3.31 0.835 5.99 0.838 3.73
NexCP+LS 0.907 3.39 0.884 6.83 0.888 4.29
NexCP+WLS 0.907 3.42 0.906 4.13 0.907 3.45

Table 1: Simulation results showing mean prediction interval coverage and width,
averaged over all time points and over 200 trials.

Turning to the prediction interval width, for the i.i.d. data setting (Setting 1),
the three methods show similar mean widths, although the widths for NexCP+LS
and NexCP+WLS are very slightly higher than for CP+LS; in addition, variability is
higher for NexCP+LS and NexCP+WLS than for CP+LS, which is to be expected
since using decaying weights wi for computing the prediction intervals leads to a
lower e↵ective sample size. For the changepoint (Setting 2) and distribution drift
(Setting 3) experiments, we see that NexCP+LS leads to wider prediction intervals
than the original method CP+LS, which is to be expected since NexCP+LS is using
the same model fitting algorithm but avoiding the undercoverage issue of CP+LS.
More importantly, NexCP+WLS is able to construct narrower prediction intervals
than CP+LS, while avoiding undercoverage. This is due to the fact that weighted
least squares leads to more accurate fitted models. This highlights the utility of
nonsymmetric algorithms for settings where data are not exchangeable.

5.2 Electricity data set

We now compare the three methods on a real data set. The ELEC2 data set6 [Harries,
1999] tracks electricity usage and pricing in the states of New South Wales and
Victoria in Australia, every 30 minutes over a 2.5 year period in 1996–1999. (This
data set was previously analyzed by Vovk et al. [2021] in the context of conformal
prediction, finding distribution drift that violated exchangeability.)

6Data was obtained from https://www.kaggle.com/yashsharan/the-elec2-dataset.
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Figure 3: Electricity data results showing coverage and prediction interval width on the
original data and the permuted data. The displayed curves are smoothed by taking a
rolling average with a window of 300 time points.

For our experiment, we use four covariates: nswprice and vicprice, the price
of electricity in each of the two states, and nswdemand and vicdemand, the usage
demand in each of the two states. Our response variable is transfer, the quantity
of electricity transferred between the two states. We work with a subset of the data,
keeping only those observations in the time range 9:00am–12:00pm (aiming to remove
daily fluctuation e↵ects), and discarding an initial stretch of time during which the
value transfer is constant. After these steps, we have N = 3444 time points. We
then implement the same three methods as in the simulations (CP+LS, NexCP+LS,
and NexCP+WLS), using the exact same definitions and settings as before.

Our goal is to examine how distribution drift over the duration of this 2.5 year
period will a↵ect each of the three methods. As a sort of “control group”, we also
perform the experiment with a permuted version of this same data set—we draw a
permutation ⇡ on [N ] uniformly at random, and then repeat the same experiment on
the permuted data set (X⇡(1), Y⇡(1)), . . . , (X⇡(N), Y⇡(N)). The random permutation
ensures that the distribution of this data set now satisfies exchangeability.

Our results are shown in Figure 3, and summarized in Table 2. On the original
data set, we see that the unweighted method CP+LS shows some undercoverage,
while both NexCP+LS and NexCP+WLS achieve nearly the desired 90% coverage
level. In particular, CP+LS shows undercoverage during a long range of time around
the middle of the duration of the experiment, and then recovers, showing the e↵ects
of distribution drift in this data set—this occurs as the response variable transfer
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is more noisy during the middle of the time range, as compared to the beginning
and end of the time range. On the permuted data set, on the other hand, all three
methods show coverage that is close to 90% throughout the time range, which is
expected since the permuted data set is exchangeable.

Electricity data Permuted electricity data
Coverage Width Coverage Width

CP+LS 0.852 0.565 0.899 0.639
NexCP+LS 0.890 0.606 0.908 0.652
NexCP+WLS 0.893 0.527 0.908 0.663

Table 2: Electricity data results showing coverage and prediction interval width on
the original data and the permuted data, averaged over all time points.

Turning now to prediction interval width, on the original data set we see that the
interval width of NexCP+LS is generally larger than that of NexCP+WLS, again
demonstrating the advantage of a nonsymmetric algorithm. For the permuted data
set, on the other hand, the interval widths are similar, although NexCP+LS and
NexCP+WLS show higher variability; this is explained by the lower e↵ective sample
size that is introduced by weighting the data points, combined with the heavy-tailed
nature of the data.

5.3 Election data set

Finally, we apply our weighted methods to predict how Americans voted in the 2020
U.S. presidential election. Our experiments in this subsection are inspired by the
work of Cherian and Bronner [2020] for The Washington Post.

The left map in Figure 4 shows, county by county, the relative change in the
number of votes for the Democratic Candidate between 2016 and 2020, defined as:

Y =
Dem2020 �Dem2016

Dem2016

,

where Dem2020 is the number of Democratic votes in a given county in 2020 (and
similarly for 2016). In our experiments, the covariate vector X includes information
on the makeup of the county population by ethnicity, age, sex, median income and
education (see Appendix G for details and for information about the data sources),
given the data that was available in 2020.

During real-time election forecasting, after observing the response Y for a subset
of the counties (those counties that have reported), the problem is to predict the
vote change Y in each of the counties where vote counts are not yet available. If the
order in which counties report their vote totals were drawn uniformly at random,
then the exchangeability of the resulting training and test sets would mean that
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Figure 4: Left map: relative change in the number of votes for the Democratic presidential
candidate from 2016 to 2020. Blue colors indicate an increase in Democratic votes and red
colors indicate a decrease, with the darkest shade of blue (respectively, red) corresponding
to a 50% increase (respectively, decrease). Right map: the counties that form the training
set (in green), and all remaining counties are in the test set.

conformal prediction can be applied in a straightforward manner to obtain valid
predictive intervals for the unobserved counties. In practice, however, the time at
which a county reports its votes may depend on various factor such as the time zone
of the county, the size of the county, and so on. Therefore, if at any point in time
we were to train on counties whose votes have already been reported, then this can
create a division of training and test sets that violates exchangeability, and can thus
lead to a failure of the predictive coverage guarantee.

To mimic this type of biased split, for the current experiment, we use counties
that fall under the Eastern time zone as our training set, and the remaining counties
as the test set, as highlighted in the right-hand map in Figure 4. This results in 1119
training points and 1957 test points.

To run the experiment, we implement the same three full conformal methods as
before (CP+LS, NexCP+LS, and NexCP+WLS). To define weights wi for NexCP,
we will use some available side information—namely, Xprev 2 Rp, which gives the
2016 measurements for the same set of demographic and socioeconomic variables
as contained in X for 2020. The weights are then defined as wi = e��kXprev

i �Xprev

n+1
k2 ,

where we choose � to satisfy

(
Pn

i=1
wi + 1)2Pn

i=1
w2

i + 1
= 100,

essentially corresponding to an e↵ective training sample size of 100 once we use the
weighted training sample. We note that, since these weights depend only on data from
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Coverage
CP+LS 0.743
NexCP+LS 0.820
NexCP+WLS 0.840

Coverage
CP+QR 0.782
NexCP+QR 0.836
NexCP+WQR 0.835

Table 3: Election data results showing coverage, averaged over all test counties.

2016, we can treat these weights as fixed (i.e., these weights were determined “earlier”
than gathering the data set {(Xi, Yi)}3076i=1

in 2020). By using these weights within
nonexchangeable conformal, we are implicitly invoking a hypothesis that counties
which had similar demographics in 2016 will generate approximately exchangeable
data in 2020. Finally, for NexCP+WLS, we use the same choice for the tags used
for running the weighted least squares regression, i.e., setting ti = wi.

In addition, we also repeat the entire experiment with quantile regression in
place of linear regression, and use a corresponding choice of the nonconformity
score function—specifically, after fitting a lower 5% percentile function q̂0.05(·), and
an upper 95% percentile function q̂0.95(·) to the data, the nonconformity score is
given by bS(Xi, Yi) = max{q̂0.05(Xi)� Yi, Yi � q̂0.95(Xi)}, as in Romano et al. [2019].
This yields three additional methods: conformal prediction with quantile regression
(CP+QR), nonexchangeable conformal with quantile regression (NexCP+QR), and
nonexchangeable conformal with weighted quantile regression (NexCP+WQR), where
the weights wi and the tags ti are defined the same way as in linear regression.

Table 3 shows the resulting predictive coverage, averaged over the test set, for
each of the three methods, when they are run with target coverage level 1� ↵ = 0.9.
We can see that CP undercovers substantially, particularly when combined with least
squares, due to the construction of nonexchangeable training and test counties. In
contrast, NexCP (with or without the nonsymmetric algorithm) is able to achieve a
coverage level that is much closer to the target level 90%.

6 Proofs

In this section, we give proofs of all theorems presented so far.

6.1 Background: proof of Theorem 1

To help build intuition for the proof techniques we will use later on, we reformulate
Vovk et al. [2005]’s proofs of these results, and we then explain some of the challenges
in extending these existing results to our new setting.

Let Ri = RYn+1

i denote the ith residual, at the hypothesized value y = Yn+1. By
our assumptions, the data points (X1, Y1), . . . , (Xn+1, Yn+1) are i.i.d. (or exchange-
able), and the fitted model bµ = bµYn+1 = A((X1, Y1), . . . , (Xn+1, Yn+1)) is constructed
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via an algorithm A that treats these n+ 1 data points symmetrically. The residuals
Ri = |Yi � bµ(Xi)| are thus exchangeable.

Now define the set of “strange” points

S(R) =

(
i 2 [n+ 1] : Ri > Q1�↵

 
n+1X

j=1

1

n+ 1
· �Rj

!)
.

That is, an index i corresponds to a “strange” point if its residual Ri is one of the
b↵(n+ 1)c largest elements of the list R1, . . . , Rn+1. By definition, this can include
at most ↵(n+ 1) entries of the list, i.e.,

|S(R)|  ↵(n+ 1).

Next, by definition of the full conformal prediction set, we see that Yn+1 62 bCn(Xn+1)
(i.e., coverage fails) if and only if Rn+1 > Q1�↵

�Pn+1

i=1

1

n+1
· �Ri

�
, or equivalently, if

and only if the test point n+ 1 is “strange”, i.e., n+ 1 2 S(R). Therefore, we have

P
n
Yn+1 62 bCn(Xn+1)

o
= P {n+ 1 2 S(R)} =

1

n+ 1

n+1X

i=1

P {i 2 S(R)}

=
1

n+ 1
E
"
n+1X

i=1

{i 2 S(R)}
#
=

1

n+ 1
E [|S(R)|]  1

n+ 1
· ↵(n+ 1) = ↵,

where the second equality holds due to the exchangeability of R1, . . . , Rn+1.

Challenges for the new algorithms. We will now see why the above proof does
not obviously extend to our nonexchangeable conformal method, even if we were
to assume that the data points (Xi, Yi) are exchangeable. First, suppose that A is
symmetric (i.e., we do not use tags ti). For the original full conformal prediction
method, in the proof of Theorem 1, exchangeability of the data points is used to
verify that P {n+ 1 2 S(R)} = P {i 2 S(R)} for each i 2 [n], or equivalently,

P
(
Rn+1 > Q1�↵

 
n+1X

j=1

1

n+1
· �Rj

!)
= P

(
Ri > Q1�↵

 
n+1X

j=1

1

n+1
· �Rj

!)
.

This equality holds since the residuals Ri are exchangeable (by assumption on the
data) and since Q1�↵(

Pn+1

j=1

1

n+1
· �Rj) is a symmetric function of R1, . . . , Rn+1. For

the nonexchangeable full conformal algorithm proposed in (12), on the other hand,
we would need to check whether

P
(
Rn+1 > Q1�↵

 
n+1X

j=1

w̃j · �Rj

!)
?
= P

(
Ri > Q1�↵

 
n+1X

j=1

w̃j · �Rj

!)
.
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Even when the residuals Ri are exchangeable (i.e., when the data points are exchange-
able and the algorithm is symmetric), the weighted quantile Q1�↵(

Pn+1

j=1
w̃j · �Rj) is

no longer a symmetric function of R1, . . . , Rn+1 if the weights w̃j are not all equal,
and therefore, the equality will no longer be true in general.

Next, if we use nonsymmetric algorithms that take tagged data points (Xi, Yi, ti)
as input, the situation becomes even more complex—even if the data points (Xi, Yi)
are exchangeable, the residuals R1, . . . , Rn+1 may no longer be exchangeable as they
depend on a fitted model bµ that treats the training data points nonsymmetrically.

Finally, in this paper we are of course primarily interested in the setting where
the data points are no longer exchangeable, and in bounding the resulting coverage
gap. This leads to additional challenges, all of which we address in the proofs below.

6.2 Proof of Theorem 2

Since nonexchangeable split conformal is simply a special case of nonexchangeable
full conformal, we only need to prove the result for full conformal.

For each k 2 [n+ 1], denote

bµk = bµYn+1,k = A
⇣
(X⇡k(1)

, Y⇡k(1)
, t1), . . . , (X⇡k(n+1), Y⇡k(n+1), tn+1)

⌘
,

where for any k 2 [n], as before ⇡k denotes the permutation on [n+ 1] that swaps
indices k and n+1, while ⇡n+1 is the identity permutation. Then, for any k 2 [n+1],
we can calculate �

R(Zk)
�
i
= |Y⇡k(i) � bµk(X⇡k(i))|,

and therefore,

�
R(ZK)

�
i
=

8
><

>:

RYn+1,K
i , if i 6= K and i 6= n+ 1,

RYn+1,K
n+1

, if i = K,

RYn+1,K
K , if i = n+ 1.

(20)

The definition of the nonexchangeable full conformal prediction set (18) reveals

Yn+1 62 bCn(Xn+1) () RYn+1,K
n+1

> Q1�↵

 
n+1X

i=1

w̃i · �RYn+1,K

i

!
,

and we can equivalently write this as

Yn+1 62 bCn(Xn+1) () RYn+1,K
n+1

> Q1�↵

 
nX

i=1

w̃i · �RYn+1,K

i

+ w̃n+1 · �+1

!
. (21)

Next, we verify that deterministically (20) implies

Q1�↵

 
nX

i=1

w̃i · �RYn+1,K

i

+ w̃n+1 · �+1

!
� Q1�↵

 
n+1X

i=1

w̃i · �(R(ZK))i

!
. (22)
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Indeed, if K = n+1, then R(ZK) = RYn+1,K by (20), and so the bound holds trivially.
If instead K  n, then the distribution on the left-hand side of (22) equals

nX

i=1

w̃i · �RYn+1,K

i

+ w̃n+1 · �+1

=
X

i=1,...,n;i 6=K

w̃i · �RYn+1,K

i

+ w̃K(�RYn+1,K

K

+ �+1) + (w̃n+1 � w̃K)�+1,

while the distribution on the right-hand side of (22) can be rewritten as

n+1X

i=1

w̃i · �(R(ZK))i
=

X

i=1,...,n;i 6=K

w̃i · �RYn+1,K

i

+ w̃K�RYn+1,K
n+1

+ w̃n+1�RYn+1,K

K

=
X

i=1,...,n;i 6=K

w̃i · �RYn+1,K

i

+ w̃K(�RYn+1,K

K

+ �
R

Yn+1,K
n+1

) + (w̃n+1 � w̃K)�RYn+1,K

K

,

by applying (20). Since wK 2 [0, 1] by assumption, we have w̃n+1 � w̃K , which from
the last two displays verifies that (22) must hold. Combining (21) and (22), we have

Yn+1 62 bCn(Xn+1) =) RYn+1,K
n+1

> Q1�↵

 
n+1X

i=1

w̃i · �(R(ZK))i

!
,

or equivalently by (20),

Yn+1 62 bCn(Xn+1) =) (R(ZK))K > Q1�↵

 
n+1X

i=1

w̃i · �(R(ZK))i

!
. (23)

Next define a function S from Rn+1 to subsets of [n+1], as follows: for any r 2 Rn+1,

S(r) =
(
i 2 [n+ 1] : ri > Q1�↵

 
n+1X

j=1

w̃j · �rj

!)
. (24)

These are the “strange” points—indices i for which ri is unusually large, relative to
the (weighted) empirical distribution of r1, . . . , rn+1. A direct argument (see, e.g.,
the deterministic inequality in [Harrison, 2012, Lemma A.1]) shows that

X

i2S(r)

w̃i  ↵ for all r 2 Rn+1, (25)

that is, the (weighted) fraction of “strange” points cannot exceed ↵. From (23), we
have that noncoverage of Yn+1 implies strangeness of point K:

Yn+1 62 bCn(Xn+1) =) K 2 S
�
R(ZK)

�
. (26)
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Finally,

P
�
K 2 S

�
R(ZK)

� 
=

n+1X

i=1

P
�
K = i and i 2 S

�
R(Zi)

� 

=
n+1X

i=1

w̃i · P
�
i 2 S

�
R(Zi)

� 
(27)


n+1X

i=1

w̃i ·
�
P
�
i 2 S

�
R(Z)

� 
+ dTV

�
R(Z), R(Zi)

��

= E

2

4
X

i2S(R(Z))

w̃i

3

5+
nX

i=1

w̃i · dTV
�
R(Z), R(Zi)

�

 ↵ +
nX

i=1

w̃i · dTV
�
R(Z), R(Zi)

�
,

where the last step holds by (25), whereas step (27) holds because K ?? Z and
Zi = ⇡i(Z) is a function of the data Z, and therefore, K ?? Zi.

7 Discussion

Our main contribution in this paper was to demonstrate how conformal prediction,
which has crucially relied on exchangeability, can be modified to handle nonsymmetric
regression algorithms, and utilize weighted residual distributions in order to provide
robustness against deviations from exchangeability in the data. With no assumptions
whatsoever on the underlying joint distribution of the data, it is possible to give
a coverage guarantee for both existing conformal methods, and our new proposed
nonexchangeable conformal procedures. The coverage gap, expressing the extent to
which the guaranteed coverage level is lower than what would be guaranteed under
exchangeability, is bounded by a weighted sum of total variation distances between
the residual vectors obtained by swapping the ith point with the (n+ 1)st point.

Our work opens the door to applying conformal prediction in applications where
the data is globally likely far from exchangeable but locally deviates mildly from
exchangeability. Tags and weights can be prudently used to downweight “far away”
points during training and calibration, and recover reasonable coverage in practice.
We hope our work will lead to more targeted methods that focus on custom design of
nonsymmetric algorithms and weighting schemes to improve e�ciency and robustness
in specific applications, through the lens of nonexchangeable conformal prediction.
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A Extension to general nonconformity scores

In this section, we extend our new nonexchangeable inference methods for split and
full conformal to the setting of general nonconformity scores. The response is no
longer required to be real-valued, so we will consider the general setting with data
points (Xi, Yi) 2 X ⇥ Y .

For split conformal, as usual, we assume that the nonconformity score function
bS : X ⇥ Y ! R is pre-fitted. The nonexchangeable split conformal set is given by

bCn(Xn+1) =

(
y 2 Y : bS(Xn+1, y)  Q1�↵

 
nX

i=1

w̃i · �bS(Xi,Yi)
+ w̃n+1 · �+1

!)
.

(28)
For the special case bS(x, y) = |y � bµ(x)| (where bµ is a pre-fitted function), note that
this reduces to the previous definition (11) from before.

For full conformal, we now consider algorithms A of the form

A : [n�0 (X ⇥ Y ⇥ T )n !
n
measurable functions bS : X ⇥ Y ! R

o
. (29)

(As before, the symmetric algorithm setting, with no tags ti, is simply a special case
of this general formulation.) First, for any y 2 R and any k 2 [n+ 1], define

bSy,k = A
⇣
(X⇡k(i), Y

y
⇡k(i)

, ti) : i 2 [n+ 1]
⌘
,

where the permutation ⇡k is defined as before (that swaps indices k and n+ 1), and
where

Y y
i = Yi, i = 1, . . . , n, Y y

n+1
= y,

as before. Define the scores from this model,

Sy,k
i = bSy,k(Xi, Yi), i = 1, . . . , n, Sy,k

n+1
= bSy,k(Xn+1, y).

Then, after drawing a random index K as in (17), the prediction set is given by

bCn(Xn+1) =

(
y 2 Y : Sy,K

n+1
 Q1�↵

 
n+1X

i=1

w̃i · �Sy,K
i

!)
. (30)

For the special case bS(x, y) = |y � bµ(x)| (where bµ is fitted on the same data), this
again reduces to the previous definition (18) from before.

Importantly, the same theoretical result (i.e., Theorem 2) holds for these more
general methods as well. The proof does not fundamentally rely on residual scores,
and the modifications required for the general case are straightforward, so we omit
the details here.
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B Nonexchangeable jackknife+

B.1 Background

The jackknife+ [Barber et al., 2021] (closely related to “cross-conformal predic-
tion” [Vovk, 2015]) is a method that o↵ers a compromise between the computational
and statistical costs of the split and full conformal methods. For each i = 1, . . . , n,
define the ith leave-one-out model as

bµ�i = A
�
(X1, Y1), . . . , (Xi�1, Yi�1), (Xi+1, Yi+1), . . . , (Xn, Yn)

�
, (31)

fitted to the training data with ith point removed. Define also the ith leave-one-out
residual RLOO

i = |Yi � bµ�i(Xi)|, which avoids overfitting since data point (Xi, Yi) is
not used for training bµ�i. The jackknife+ prediction interval is then given by7

"
Q↵

 
nX

i=1

1

n+1
· �bµ�i(Xn+1)�RLOO

i
+ 1

n+1
· ��1

!
,

Q1�↵

 
nX

i=1

1

n+1
· �bµ�i(Xn+1)+RLOO

i
+ 1

n+1
· �+1

!#
. (32)

While in practice the jackknife+ generally provides coverage close to the target level
1� ↵ (and provably so under a stability assumption on A), its theoretical guarantee
only ensures 1� 2↵ probability of coverage in the worst case:

Theorem 4 (Jackknife+ [Barber et al., 2021]). If (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)
are i.i.d. (or more generally, exchangeable), and the algorithm A treats the input
data points symmetrically as in (6), then the jackknife+ prediction interval defined
in (32) satisfies

P
n
Yn+1 2 bCn(Xn+1)

o
� 1� 2↵.

This method can be viewed as a form of n-fold cross-validation; more generally,
the CV+ method [Barber et al., 2021] uses K-fold cross-validation for any desired
K, and obtains a similar distribution-free guarantee.

B.2 Methods

We next present the nonexchangeable jackknife+ method.

7Abusing notation, here Q↵(·) is used to denote the largest possible ↵-quantile if it is not unique,
while as before, Q1�↵(·) denotes the smallest possible (1� ↵)-quantile if not unique.
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Nonexchangeable jackknife+ with a symmetric algorithm. We first con-
sider the setting where the algorithm A is symmetric. To begin, we choose weights
wi 2 [0, 1], i = 1, . . . , n, which are fixed ahead of time, and as before, this gives rise
to normalized weights as in (10). The prediction interval is then given by

"
Q↵

 
nX

i=1

w̃i · �bµ�i(Xn+1)�RLOO

i
+ w̃n+1 · ��1

!
,

Q1�↵

 
nX

i=1

w̃i · �bµ�i(Xn+1)+RLOO

i
+ w̃n+1 · �+1

!#
, (33)

where bµ�i is defined as in (31), and RLOO

i = |Yi � bµ�i(Xi)| as before.

Analogous to split and full conformal, here the original (unweighted) version of
jackknife+ is recovered by choosing weights w1 = · · · = wn = 1 in the new algorithm.

Nonexchangeable jackknife+ with a nonsymmetric algorithm. We now
extend the nonexchangeable jackknife+ to allow for a nonsymmetric algorithm A.
For any k 2 [n+ 1] and any i 2 [n], define the model bµk

�i as

bµk
�i = A

�
(X⇡k(j), Y⇡k(j), tj) : j 2 [n+ 1], ⇡k(j) 62 {i, n+ 1}

�
.

As before, ⇡k is the permutation on [n+ 1] that swaps indices k and n+ 1 (or, the
identity permutation in the case k = n+ 1). Equivalently,

bµk
�i =

(
A ((Xj, Yj, tj) : j 2 [n]\{i, k}, (Xk, Yk, tn+1)) , if k 2 [n] and k 6= i,

A ((Xj, Yj, tj) : j 2 [n]\{i}) , if k = n+ 1 or k = i.

In other words, this model is fitted on the training data (X1, Y1), . . . , (Xn, Yn) but
with the ith point removed, and furthermore the data point (Xk, Yk) is given the
tag tn+1 rather than tk. (We note that computing the fitted model bµk

�i does not
require knowledge of the test point (Xn+1, Yn+1), because ⇡k(j) = n+ 1 is excluded
from the data set when running A.) For the model bµk

�i, we define its corresponding
leave-one-out residuals as

Rk,LOO

i = |Yi � bµk
�i(Xi)|.

To run the method, we first draw a random index K as in (17), and then compute
the nonexchangeable jackknife+ prediction interval as

"
Q↵

 
nX

i=1

w̃i · �bµK
�i(Xn+1)�RK,LOO

i
+ w̃n+1 · ��1

!
,
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Q1�↵

 
nX

i=1

w̃i · �bµK
�i(Xn+1)+RK,LOO

i
+ w̃n+1 · �+1

!#
. (34)

Again, as was the case for nonexchangeable conformal, this method is a general-
ization of the symmetric case for nonexchangeable jackknife+, which was presented
above.

B.3 Theory

As for the proof for nonexchangeable full conformal, we first need to define how we
map a data sequence z = (z1, . . . , zn+1) 2 (X ⇥ R)n+1, with entries zi = (xi, yi), to
the residuals Rjack+(z). In the setting of jackknife+, however, the residuals are now
a matrix rather than a vector. Given z, we define

�
n+1

2

�
leave-two-out models: for

each i, j 2 [n+ 1] with i 6= j, let

bµ�ij = bµ�ji = A
�
(xk, yk, tk) : k 2 [n+ 1]\{i, j}

�
.

Then define the matrix of residuals Rjack+(z) 2 R(n+1)⇥(n+1) with entries
�
Rjack+(z)

�
ij
= |yi � bµ�ij(xi)|,

for all i 6= j, and zeros on the diagonal.

Theorem 5 (Nonexchangeable jackknife+). Let A be an algorithm mapping a se-
quence of triplets (Xi, Yi, ti) to a fitted function as in (16). Then the nonexchangeable
jackknife+ defined in (34) satisfies

P
n
Yn+1 2 bCn(Xn+1)

o
� 1� 2↵�

nX

i=1

w̃i · dTV
�
Rjack+(Z), Rjack+(Z

i)
�
.

The proof of this result is given in Appendix E.4 below. To summarize, we see
that the coverage gap is bounded by

nX

i=1

w̃i · dTV(Rjack+(Z), Rjack+(Z
i)).

As for the full conformal guarantee, this therefore implies the coverage gap is bounded
by

P
i w̃i · dTV(Z,Zi), as well. Again, while this last bound can be viewed as more

interpretable, in many settings it is substantially more loose.
While jackknife+ is defined specifically for the residual-based nonconformity score

(i.e., the score |y � bµ(x)| to measure the extent to which a data point (x, y) does
not conform to observed trends in the data), in other settings we may wish to use
alternative nonconformity scores. Jackknife+ is closely related to earlier work on the
cross-conformal method [Vovk, 2015, Vovk et al., 2018]. Unlike jackknife+, the cross-
conformal method can be applied to arbitrary nonconformity scores. In Appendix D,
we will present a nonexchangeable version of the cross-conformal algorithm.
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C Huber-robustness of conformal prediction

In this section, we consider an alternative form of robustness, which requires stricter
assumptions on the distribution drift but will yield a stronger predictive coverage
guarantee. First, consider a version of the classic Huber contamination model from
robust statistics, where most of the data is i.i.d. from the target distribution Dtarget,
but some fraction ✏ of the data is arbitrarily corrupted. For simplicity, to start we
consider observing training data point Zi = (Xi, Yi) from the mixture model

Di = (1� ✏)Dtarget + ✏D0
i. (35)

Here D0
i denotes an arbitrary adversarial distribution, that could potentially corrupt

the ith training data point. However, we want to ensure coverage with respect to
the target distribution Dtarget—that is, the test point Zn+1 = (Xn+1, Yn+1) will be
drawn from Dtarget. Standard conformal prediction assumes ✏ = 0. But, one may ask:
how badly can such adversarial corruptions hurt coverage? Here, we will answer that
question, but do so in a slightly more general manner. First, define a new measure
of distance between distributions,

dmix(D,D0) = inf {t � 0 : D = (1� t) · D0 + t · D00 for some distribution D00} .
(36)

Abusing notation, we will write dmix(Z,Z 0) = dmix(D,D0) if Z ⇠ D and Z 0 ⇠ D0.
This “distance” can be thought of as measuring the contamination of D0, in the

Huber sense. Indeed, if the data did indeed come from the mixture model in (35),
then we would have dmix(Zi, Zn+1)  ✏. (We note that dmix is not a metric, and in
particular, is not symmetric in its two arguments.)

We now state our theory for our weighted version of split conformal, full conformal,
and jackknife+, in a more restricted setting where the data points are independent
and the algorithm is symmetric. From this point on we assume w1 + · · ·+wn > 0 to
avoid a trivial setting. Define

w̄i =
wi

w1 + · · ·+ wn
, i = 1, . . . , n.

Theorem 6 (Multiplicative bounds). Suppose that Z1, . . . , Zn+1 are independent.
For any symmetric algorithm A, the nonexchangeable full conformal method (12)
satisfies

P
n
Yn+1 /2 bCn(Xn+1)

o
 ↵

1�
Pn

i=1
w̄i · dmix(Zi, Zn+1)

(which includes the nonexchangeable split conformal method (11) as a special case),
and the nonexchangeable jackknife+ method (33) satisfies

P
n
Yn+1 /2 bCn(Xn+1)

o
 2↵

1�
Pn

i=1
w̄i · dmix(Zi, Zn+1)

.
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In particular, if each Zi follows an ✏-Huber contamination model relative to
Zn+1 as in (35), then the bound on the noncoverage rate for both unweighted and
weighted conformal methods inflates by a factor of at most 1/(1� ✏), i.e., for split
or full conformal prediction we get a noncoverage guarantee of ↵/(1� ✏) instead of
the nominal level ↵. We note that the coverage gap here is multiplicative—that is,
↵/(1� ✏) ⇡ ↵+ ↵✏, and so the coverage gap is proportional to ↵. If the target error
level ↵ is small, then this multiplicative bound can o↵er much tighter error control,
as compared to the earlier additive bounds in Theorem 2, if the terms dmix(Zi, Zn+1)
are small.

On the other hand, notice that in general we have dmix(Zi, Zn+1) � dTV(Zi, Zn+1),
and furthermore, it is possible to have dmix(Zi, Zn+1) = 1 even when dTV(Zi, Zn+1)
is arbitrarily small. In a such setting the original additive bounds may give tighter
results. Of course, an additional restriction is that the multiplicative bounds require
independent data and symmetric algorithms, whereas the earlier theorems make no
such assumptions.

D Nonexchangeable cross-conformal

While jackknife+ is defined specifically for the residual-based nonconformity score
(i.e., the score |y � bµ(x)| to measure the extent to which a data point (x, y) does
not conform to observed trends in the data), in other settings we may wish to use
alternative nonconformity scores. Jackknife+ is closely related to earlier work on
the cross-conformal method [Vovk, 2015, Vovk et al., 2018]. Unlike jackknife+, the
cross-conformal method can be applied to arbitrary nonconformity scores.

In this section, we present a nonexchangeable version of the n-fold cross-conformal
algorithm [Vovk, 2015], which can be implemented with an arbitrary nonconformity
score. In the case of the regression score bS(x, y) = |y � bµ(x)|, the jackknife+ predic-
tion interval always contains the n-fold cross-conformal prediction set. (See Barber
et al. [2021] for a more detailed comparison of these methods in the exchangeable
setting.)

As for the extension of nonexchangeable full conformal prediction to the setting
of general nonconformity scores (in Appendix A), the algorithm A is now a function
mapping tagged data sets to scoring functions, as in (29). For any k 2 [n+ 1] and
any i 2 [n], define the ith leave-one-out scoring function bSk

�i as

bSk
�i = A

⇣
(X⇡k(i), Y

y
⇡k(i)

, ti) : i 2 [n+ 1], ⇡k(j) 62 {i, n+ 1}
⌘
,

or equivalently,

bSk
�i =

(
A
⇣
(Xj, Yj, tj) : j 2 [n]\{i, k}, (Xk, Yk, tn+1)

⌘
, if k 2 [n] and k 6= i,

A ((Xj, Yj, tj) : j 2 [n]\{i}) , if k = n+ 1 or k = i.
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As before, ⇡k is the permutation on [n+ 1] that swaps indices k and n+ 1 (or, the
identity permutation in the case k = n+ 1). In other words, this scoring function
is fitted on the training data (X1, Y1), . . . , (Xn, Yn) but with the ith point removed,
and furthermore the data point (Xk, Yk) is given the tag tn+1 rather than tk. We
then define the corresponding leave-one-out scores as

Sk,LOO

i = bSk
�i(Xi, Yi).

Finally, to define the prediction set, we first draw a random index K as in (17),
and then compute the nonexchangeable cross-conformal prediction set as

bCn(Xn+1) =

(
y 2 Y : SK,LOO

n+1
 Q1�↵

 
n+1X

i=1

w̃i · �SK,LOO

i

!)
.

As for the exchangeable setting, in the special case of the standard nonconformity
score S(x, y) = |y � bµ(x)|, the nonexchangeable n-fold cross-conformal prediction set
defined here is always contained inside the nonexchangeable jackknife+ prediction
interval defined in (34).

Importantly, the same guarantee that holds for jackknife+, i.e., the result of
Theorem 5, also holds for the n-fold cross-conformal method run with an arbitrary
nonconformity score. The proof of this coverage guarantee is essentially the same as
for jackknife+ and so we omit it here for brevity. (For the exchangeable case, the
connection between the proofs for these two di↵erent methods is explained in detail
in Barber et al. [2021], and extends in a straightforward way to the nonexchangeable
case considered here.)

E Additional proofs and calculations

E.1 Proof of Lemma 1

First, by the maximal coupling theorem (e.g., [Ross and Peköz, 2007, Proposition
2.7]), there exists a distribution D on a pair of random variables (Z 0

i, Z
0
n+1

) such
that, marginally, Z 0

i
d
= Zi and Z 0

n+1

d
= Zn+1, and such that

P
�
Z 0

i = Z 0
n+1

 
= 1� dTV(Zi, Zn+1).

Now let Z = (Z1, . . . , Zn+1), with Zj drawn independently for each j 2 [n+ 1], then
draw (Z 0

i, Z
0
n+1

), (Z 00
i , Z

00
n+1

)
iid⇠ D, independently from Z. Define

Z 0 = (Z1, . . . , Zi�1, Z
0
i, Zi+1, . . . , Zn, Z

00
n+1

),

and
Z 00 = (Z1, . . . , Zi�1, Z

00
i , Zi+1, . . . , Zn, Z

0
n+1

).
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Then clearly, Z 0 d
= Z 00 d

= Z. In particular, recalling the swapped indices notation (2),
this implies that (Z 00)i

d
= Zi, and so

dTV(Z,Z
i) = dTV(Z

0, (Z 00)i).

Again applying the maximal coupling theorem, we have

dTV(Z
0, (Z 00)i)  1� P

�
Z 0 = (Z 00)i

 

= 1� P
�
Z 0

i = Z 0
n+1

, Z 00
i = Z 00

n+1

 

= 1� P
�
Z 0

i = Z 0
n+1

 
· P

�
Z 00

i = Z 00
n+1

 

= 1� (1� dTV(Zi, Zn+1))
2

= 2dTV(Zi, Zn+1)� dTV(Zi, Zn+1)
2,

completing the proof.

E.2 Proof of Theorem 3

Since nonexchangeable split conformal is simply a special case of nonexchangeable
full conformal, we only need to prove the result for full conformal. We recall from the
proof of Theorem 2, found in Section 6.2, that for nonexchangeable full conformal,
the coverage event can be characterized as

Yn+1 2 bCn(Xn+1) () RYn+1,K
n+1

 Q1�↵

 
n+1X

i=1

w̃i · �RYn+1,K

i

!
,

or equivalently,

Yn+1 2 bCn(Xn+1) () R(ZK)K  Q1�↵

 
n+1X

i=1

w̃⇡K(i) · �R(ZK)i

!
.

Therefore,

P
n
Yn+1 2 bCn(Xn+1)

o

= P
(
R(ZK)K  Q1�↵

 
n+1X

i=1

w̃⇡K(i) · �R(ZK)i

!)

=
n+1X

k=1

P
(
K = k and R(Zk)k  Q1�↵

 
n+1X

i=1

w̃⇡k(i) · �R(Zk)i

!)

=
n+1X

k=1

w̃k · P
(
R(Zk)k  Q1�↵

 
n+1X

i=1

w̃⇡k(i) · �R(Zk)i

!)
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
n+1X

k=1

w̃k · P
(
R(Z)k  Q1�↵

 
n+1X

i=1

w̃⇡k(i) · �R(Z)i

!)

+
n+1X

k=1

w̃k · dTV(R(Z), R(Zk))

= E
"
n+1X

k=1

w̃k ·
(
R(Z)k  Q1�↵

 
n+1X

i=1

w̃⇡k(i) · �R(Z)i

!)#

+
n+1X

k=1

w̃k · dTV(R(Z), R(Zk)).

Here, as in the proof of Theorem 2, the third equality holds as K is drawn indepen-
dently from Z. Below, we will show that, for any distinct and fixed r1, . . . , rn+1 2 R,
it holds that

n+1X

k=1

w̃k ·
(
rk  Q1�↵

 
n+1X

i=1

w̃⇡k(i) · �ri

!)
< 1� ↵ + w̃n+1. (37)

Applying this inequality with ri = R(Z)i (and recalling, by assumption in the theorem,
the values R(Z)1, . . . , R(Z)n+1 are distinct with probability 1), we obtain

P
n
Yn+1 2 bCn(Xn+1)

o
 1� ↵ + w̃n+1 +

n+1X

k=1

w̃k · dTV(R(Z), R(Zk)),

which would complete the proof of the theorem.
Now we need to verify (37). Define

K =

(
k 2 [n+ 1] : rk  Q1�↵

 
n+1X

i=1

w̃⇡k(i) · �ri

!)
,

so that proving (37) is equivalent to proving that
P

k2K w̃k < 1� ↵ + w̃n+1. Let

k⇤ = argmax
k

{rk : k 2 K} ,

indexing the largest value rk over indices k 2 K. Since k⇤ 2 K by definition,

rk⇤  Q1�↵

 
n+1X

i=1

w̃⇡k⇤ (i)
· �ri

!
=)

n+1X

i=1

w̃⇡k⇤ (i)
· {ri < rk⇤} < 1� ↵.

As k⇤ is defined to attain the maximum, we also have K ✓ {k 2 [n+ 1] : rk  rk⇤}.
Therefore,

X

k2K

w̃k 
n+1X

k=1

w̃k · {rk  rk⇤}
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= w̃k⇤ +
n+1X

k=1

w̃k · {rk < rk⇤}

= w̃k⇤ +
n+1X

k=1

�
w̃k � w̃⇡k⇤ (k)

�
· {rk < rk⇤}+

n+1X

k=1

w̃⇡k⇤ (k)
· {rk < rk⇤}

< w̃k⇤ +
n+1X

k=1

�
w̃k � w̃⇡k⇤ (k)

�
· {rk < rk⇤}+ (1� ↵).

The second line holds because r1, . . . , rn+1 are distinct, and the last line holds by the
calculations above.

Finally, consider the term (w̃k � w̃⇡k⇤ (k)
) · {rk < rk⇤} in the remaining sum. If

k = k⇤, then {rk < rk⇤} = 0. If k = n+ 1, then

�
w̃k � w̃⇡k⇤ (k)

�
· {rk < rk⇤} = (w̃n+1 � w̃k⇤) · {rk < rk⇤}  w̃n+1 � w̃k⇤ .

If k 62 {k⇤, n+ 1}, then ⇡k⇤(k) = k and so the term is again zero. Therefore, we have

n+1X

k=1

�
w̃k � w̃⇡k⇤ (k)

�
· {rk < rk⇤}  w̃n+1 � w̃k⇤ ,

and combining this with the work above, we have shown that

X

k2K

w̃k < 1� ↵ + w̃n+1.

This verifies (37), and therefore we have proved the theorem.

E.3 Calculation for (19)

Define R = R(Z) = P?
X(✏), U = R/kRk2 and L = kRk2. Then R = U · L. Let

Ri = R(Zi), and write U i = Ri/kRik2. Note that Ri and U i are obtained from R
and U , respectively, by swapping the ith and (n+ 1)st entries, and note also that
kRk2 = kRik2 and so Ri = U i · L. We then have

dTV(R,Ri) = dTV(U · L,U i · L)  dTV((U,L), (U
i, L)) = dTV(U,U

i),

where the last step holds because U ?? L, and consequently, U i ?? L also. (To see
why U ?? L holds, we note that R | X ⇠ N (0, �2P?

X), and thus U ?? L | X by
properties of the normal distribution; moreover, L | X ⇠ � · �n+1�p, meaning that
L ?? X.) On the other hand, we have

dTV(U,U
i) = dTV(R/kRk2, Ri/kRik2)  dTV(R,Ri),
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and so we see that dTV(R,Ri) = dTV(U,U i). From this point on, we only need to
bound dTV(U,U i).

Conditional on the subspace span(X)?, the unit vector U is drawn uniformly
from this subspace intersected with the unit sphere, and therefore the joint density
of (X,U) is given by

f(X,U)(x, u) /
1

(2⇡)(n+1)p/2|⌃|1/2 e
�vec(x)>⌃

�1
vec(x)/2

with respect to Lebesgue measure on the manifold
�
(x, u) 2 R(n+1)⇥p ⇥ Sn : x ? u

 
.

Therefore the marginal density of u is given by

gU(u) /
Z

x2R(n+1)⇥p;x?u

1

(2⇡)(n+1)p/2|⌃|1/2 e
�vec(x)>⌃

�1
vec(x)/2 dx,

where the integral is taken over the np-dimensional subspace of matrices x where
all columns are orthogonal to u. Equivalently we can take x = Wuy where Wu 2
R(n+1)p⇥np is an orthonormal basis for the subspace orthogonal to u, and so

gU(u) /
Z

y2Rn⇥p

1

(2⇡)(n+1)p/2|⌃|1/2 e
�(Wuvec(y))>⌃

�1
(Wuvec(y))/2 dy

=
(2⇡)np/2|(W>

u ⌃�1Wu)�1|1/2

(2⇡)(n+1)p/2|⌃|1/2 / |(W>
u ⌃�1Wu)

�1|1/2 = |W>
u ⌃�1Wu|�1/2.

Since [Wu | u⌦ Ip] is an orthogonal matrix, we can verify through matrix identities
that

|W>
u ⌃�1Wu| = |(u⌦ Ip)

>⌃(u⌦ Ip)| · |⌃|�1,

and therefore,

gU(u) = g(u) / 1p
|(u⌦ Ip)>⌃(u⌦ Ip)|

.

We can also calculate the marginal density of U i,

gU i(u) = g(ui) / 1p
|(ui ⌦ Ip)>⌃(ui ⌦ Ip)|

,

and note that these two densities have the same normalizing constant, so we have

gU i(u)

gU(u)
=

g(ui)

g(u)
=

s
|(u⌦ Ip)>⌃(u⌦ Ip)|
|(ui ⌦ Ip)>⌃(ui ⌦ Ip)|

.

Next, the multiplicative property of the determinant yields

|(ui ⌦ Ip)
>⌃(ui ⌦ Ip)| = |(u⌦ Ip)

>⌃(u⌦ Ip)|
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·
���
�
(u⌦ Ip)

>⌃(u⌦ Ip)
��1/2 · (ui ⌦ Ip)

>⌃(ui ⌦ Ip) ·
�
(u⌦ Ip)

>⌃(u⌦ Ip)
��1/2

��� ,

and so

gU i(u)

gU(u)
=

�����
�
(u⌦ Ip)

>⌃(u⌦ Ip)
��1/2 · (ui ⌦ Ip)

>⌃(ui ⌦ Ip)

·
�
(u⌦ Ip)

>⌃(u⌦ Ip)
��1/2

�����

�1/2

.

Next, for any positive definite matrices A,B 2 Rp⇥p, we calculate

|A�1/2 · B · A�1/2|  kA�1/2 · B · A�1/2kp = kIp + A�1/2 · (B � A) · A�1/2kp


�
1 + kA�1/2 · (B � A) · A�1/2k

�p 
�
1 + kA�1k · kB � Ak

�p
,

and so applying this with A = (u⌦ Ip)>⌃(u⌦ Ip) and B = (ui ⌦ Ip)>⌃(ui ⌦ Ip), we
have

gU i(u)

gU(u)
�
�
1 + k⌃�1k ·

��(ui ⌦ Ip)
>⌃(ui ⌦ Ip)� (u⌦ Ip)

>⌃(u⌦ Ip)
����p/2

.

Now we calculate the remaining matrix norm. Fix any unit vector v 2 Rp. We
have

��v>
�
(ui ⌦ Ip)

>⌃(ui ⌦ Ip)� (u⌦ Ip)
>⌃(u⌦ Ip)

�
v
��

=
��(ui ⌦ v)>⌃(ui ⌦ v)� (u⌦ v)>⌃(u⌦ v)

��

=
��(ui ⌦ v)>⌃((ui � u)⌦ v) + ((ui � u)⌦ v)>⌃(u⌦ v)

��

 k⌃k ·
�
kui ⌦ vk2 · k(ui � u)⌦ vk2 + k(ui � u)⌦ vk2 · ku⌦ vk2

�

= k⌃k ·
�
kuik2 · kvk2 · kui � uk2 · kvk2 + kui � uk2 · kvk2 · kuk2 · kvk2

�

= 2k⌃kkui � uk2
=

p
8k⌃k|ui � un+1|.

Combining everything so far, then, we have

gU i(u)

gU(u)
�
⇣
1 +

p
8k⌃kk⌃�1k|ui � un+1|

⌘�p/2

=
⇣
1 +

p
8⌃|ui � un+1|

⌘�p/2

.

In particular, this implies that

1� gU i(u)

gU(u)
 1�

⇣
1 +

p
8⌃|ui � un+1|

⌘�p/2

 p
p
2⌃ · |ui � un+1|.
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Next we have

dTV(U,U
i) =

Z

u2Sn
(gU(u)� gU i(u))

+
du

=

Z

u2Sn
gU(u)

✓
1� gU i(u)

gU(u)

◆

+

du


Z

u2Sn
gU(u) · p

p
2⌃ · |ui � un+1| du

= E
h
p
p
2⌃ · |Ui � Un+1|

i

 p
p
2⌃ · (E [|Ui|] + E [|Un+1|]) .

Now we need to bound E [|Ui|]. Recall that R = U · L, with U ?? L | X. We can
therefore calculate

E
⇥
R2

i

�� X
⇤
= E

⇥
U2

i · L2
�� X

⇤
= E

⇥
U2

i

�� X
⇤
·E

⇥
L2

�� X
⇤
= E

⇥
U2

i

�� X
⇤
·�2(n+1�p),

since L | X ⇠ � · �n+1�p. Therefore,

E
⇥
U2

i

�� X
⇤
=

E [R2

i | X]

�2(n+ 1� p)
=

�2(P?
X)ii

�2(n+ 1� p)
 1

n+ 1� p
,

where the last equality holds because R | X ⇠ N (0, �2P?
X). Therefore,

E [|Ui|] 
q
E [U2

i ] 
1p

n+ 1� p
.

Since this also holds for Un+1 in place of Ui, we therefore have

dTV(U,U
i)  ⌃

p
8 · pp

n+ 1� p
,

which completes the proof.

E.4 Proofs for the jackknife+

E.4.1 Background: proof of Theorem 4

Before proving our new results for nonexchangeable jackknife+, we first recall the
proof of Theorem 4, from Barber et al. [2021], for the exchangeable case. Denote
by bµ�ij the model fitted by running the symmetric algorithm A on the n� 1 data
points

�
(Xk, Yk) : k 2 [n+ 1]\{i, j}

 
. Let Rjack+ 2 R(n+1)⇥(n+1) be the matrix with

entries
(Rjack+)ij = |Yi � bµ�ij(Xi)|,
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for each i 6= j, and zeros on the diagonal. By exchangeability of the n + 1
data points, the matrix Rjack+ also satisfies an exchangeability property, namely,
⇧ ·Rjack+ · ⇧> d

= Rjack+ for any fixed permutation matrix ⇧. Moreover, for each
i 2 [n], we have

bµ�i,(n+1) = bµ�(n+1),i = bµ�i,

where bµ�i is the usual leave-one-out model defined earlier, and so also

(Rjack+)n+1,i = |Yn+1 � bµ�i(Xn+1)| and (Rjack+)i,n+1 = RLOO

i = |Yi � bµ�i(Xi)|.

Next, define the set of “strange” points

S(Rjack+) =

(
i 2 [n+ 1] :

n+1X

j=1

{(Rjack+)ij > (Rjack+)ji} � (1� ↵)(n+ 1)

)
.

In [Barber et al., 2021, Proof of Theorem 1] it is shown that the bound

|S(Rjack+)|  2↵(n+ 1)

must hold deterministically as a consequence of Landau’s theorem for tournaments
[Landau, 1953]. Furthermore, by definition of the jackknife+ prediction interval,
Barber et al. [2021, Proof of Theorem 1] verify that failure of coverage, i.e., the event
Yn+1 62 bCn(Xn+1), implies that n+ 1 2 S(Rjack+). Thus, we have

P
n
Yn+1 62 bCn(Xn+1)

o
 P {n+ 1 2 S(Rjack+)} =

1

n+ 1

n+1X

i=1

P {i 2 S(R)}  2↵,

where the equality holds due to the exchangeability property of the matrix Rjack+,
while the last step follows the bound on the size of the set of “strange” points.

E.4.2 Proof of Theorem 5

Observe that, for i 2 [n],

�
Rjack+(Z

K)
�
⇡K(i),K

= |Yi � bµK
�i(Xi)| = RK,LOO

i ,

where ⇡K is the permutation swapping indices K and n+ 1 as before, and also

�
Rjack+(Z

K)
�
K,⇡K(i)

= |Yn+1 � bµK
�i(Xn+1)|.

Therefore,

nX

i=1

w̃i ·
n
|Yn+1 � bµK

�i(Xn+1)| > RK,LOO

i

o
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=
nX

i=1

w̃i ·
n�

Rjack+(Z
K)
�
K,⇡K(i)

>
�
Rjack+(Z

K)
�
⇡K(i),K

o

=
X

i2[n+1]\{n+1}

w̃i ·
n�

Rjack+(Z
K)
�
K,⇡K(i)

>
�
Rjack+(Z

K)
�
⇡K(i),K

o

=
X

i2[n+1]\{K}

w̃⇡K(i) ·
��

Rjack+(Z
K)
�
Ki

>
�
Rjack+(Z

K)
�
iK

 


X

i2[n+1]\{K}

w̃i ·
��

Rjack+(Z
K)
�
Ki

>
�
Rjack+(Z

K)
�
iK

 

=
n+1X

i=1

w̃i ·
��

Rjack+(Z
K)
�
Ki

>
�
Rjack+(Z

K)
�
iK

 
,

where the third step holds by simply substituting i with ⇡K(i) in the sum indexing,
and the next step (the inequality) holds since w̃⇡K(i)  w̃i for all i 2 [n+ 1]\{K}, as
we either have i = ⇡K(i), or i = n+ 1 in which case we have w̃⇡K(n+1) = w̃K  w̃n+1,
as wK 2 [0, 1] by assumption.

Next, by its construction, we can verify that the noncoverage event satisfies

Yn+1 62 bCn(Xn+1) =)
nX

i=1

w̃i ·
n
|Yn+1 � bµK

�i(Xn+1)| > RK,LOO

i

o
� 1� ↵.

The proof of this claim in the unweighted case is given in Barber et al. [2021, Proof
of Theorem 1]; the proof for the weighted case is similar. Combined with the above,
this gives

Yn+1 62 bCn(Xn+1) =)
n+1X

i=1

w̃i ·
��

Rjack+(Z
K)
�
Ki

>
�
Rjack+(Z

K)
�
iK

 
� 1� ↵.

(38)
Now for any r 2 R(n+1)⇥(n+1), define

S(r) =
(
i 2 [n+ 1] :

n+1X

j=1

w̃j · {rij > rji} � 1� ↵

)
, (39)

a weighted set of “strange” points. The following lemma (proved in Appendix E.4.3
for completeness) verifies that

P
i2S(r) w̃i  2↵ for any r.

Lemma 2 (Lei and Candès [2021b]). Fix w̃1, . . . , w̃n+1 � 0, with
Pn+1

i=1
w̃n+1 = 1.

Let S(r) be defined as in (39). Then

X

i2S(r)

w̃i  2↵ for all r 2 R(n+1)⇥(n+1).
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In words, the above lemma shows that the (weighted) fraction of “strange” points
cannot exceed 2↵. From (38), we see that noncoverage of Yn+1 implies strangeness
of point K:

Yn+1 62 bCn(Xn+1) =) K 2 S
�
Rjack+(Z

K)
�
, (40)

and finally, following the exact same steps as in the proof of Theorem 2, we have

P
�
K 2 S

�
Rjack+(Z

K)
� 

 2↵ +
nX

i=1

w̃i · dTV
�
Rjack+(Z), Rjack+(Z

i)
�
,

which completes the proof.

E.4.3 Proof of Lemma 2

Lemma 2 is stated and proved in Lei and Candès [2021b]; we reproduce the proof
here for completeness since that paper is currently an unpublished manuscript. For
each i 2 S, by definition of S, we have

1� ↵ 
n+1X

j=1

w̃j {rij > rji} 
X

j2S(r)

w̃j {rij > rji} +
X

j2[n+1]\S(r)

w̃j

=
X

j2S(r)

w̃j {rij > rji}+ 1�
X

j2S(r)

w̃j,

where the last step holds since
Pn+1

i=1
w̃i = 1 by definition. Taking a weighted sum

over i 2 S(r),

(1� ↵)
X

i2S(r)

w̃i 
X

i2S(r)

w̃i ·

2

4
X

j2S(r)

w̃j {rij > rji}+ 1�
X

j2S(r)

w̃j

3

5 .

Rearranging terms, we have

0

@
X

i2S(r)

w̃i

1

A
2


X

i,j2S(r)

w̃iw̃j {rij > rji}+ ↵
X

i2S(r)

w̃i

=
1

2

X

i,j2S(r)

w̃iw̃j ( {rij > rji}+ {rji > rij}) + ↵
X

i2S(r)

w̃i

 1

2

X

i,j2S(r)

w̃iw̃j + ↵
X

i2S(r)

w̃i =
1

2

0

@
X

i2S(r)

w̃i

1

A
2

+ ↵
X

i2S(r)

w̃i.
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Rearranging terms again we have

1

2

0

@
X

i2S(r)

w̃i

1

A
2

 ↵

0

@
X

i2S(r)

w̃i

1

A =)
X

i2S(r)

w̃i  2↵,

which proves the lemma.

E.5 Proof of Theorem 6

To prove the theorem, we first need a lemma on weighted sums of Bernoulli random
variables. Its proof will follow shortly.

Lemma 3. Fix p1, . . . , pn, a1, . . . , an 2 [0, 1], with a1 + · · ·+ an > 0. Let B1, . . . , Bn

be independent, with Bi ⇠ Bernoulli(pi). Then

a1 + · · ·+ an + 1

a1p1 + · · ·+ anpn + 1
 E


a1 + · · ·+ an + 1

a1B1 + · · ·+ anBn + 1

�
 a1 + · · ·+ an

a1p1 + · · ·+ anpn
.

The lower bound clearly holds by Jensen’s inequality, but the upper bound is
more challenging to prove. Several special cases of this upper bound are well-known
in the multiple testing literature. For example, the case where a1 = · · · = an = 1 and
p1 = · · · = pn is proved in [Storey et al., 2004, Theorem 3] and used for proving FDR
control of Storey’s modification of the Benjamini-Hochberg procedure [Storey, 2002].
The case where p1 = · · · = pn (and a1, . . . , an are arbitrary) can be found in [Ramdas
et al., 2019, Lemma 3] and is used for proving FDR control for a hierarchical multiple
testing procedure (the p-filter).

We are now ready to prove the theorem. By definition of dmix (36), note that we
can view Z1, . . . , Zn+1 as being generated by the following procedure.

• Draw C1, . . . , Cn independently, with Ci ⇠ Bernoulli(dmix(Zi, Zn+1)).

• For each i 2 [n] with Ci = 0, and for i = n + 1, draw Zi i.i.d. from the
distribution of Zn+1.

• For each i 2 [n] with Ci = 1, draw Zi from the contamination distribution,
i.e., the distribution D00 achieving the infimum in (36) (applied with D and D0

equal to the distribution of Zi and of Zn+1, respectively).

Below, we will show that for nonexchangeable conformal,

P
n
Yn+1 62 bCn(Xn+1)

��� C1, . . . , Cn

o
 ↵Pn

i=1
w̃i {Ci = 0}+ w̃n+1

, (41)

while for nonexchangeable jackknife+,

P
n
Yn+1 62 bCn(Xn+1)

��� C1, . . . , Cn

o
 2↵Pn

i=1
w̃i {Ci = 0}+ w̃n+1

. (42)
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Having shown this, observe that

E


1Pn
i=1

w̃i {Ci = 0}+ w̃n+1

�
= E

 Pn
i=1

wi + 1Pn
i=1

wi {Ci = 0}+ 1

�


Pn

i=1
wiPn

i=1
wi(1� dmix(Zi, Zn+1))

=
1Pn

i=1
w̄i(1� dmix(Zi, Zn+1))

=
1

1�
Pn

i=1
w̄idmix(Zi, Zn+1)

,

where the inequality holds by Lemma 3. This implies that

P
n
Yn+1 62 bCn(Xn+1)

o
= E

h
P
n
Yn+1 62 bCn(Xn+1)

��� C1, . . . , Cn

oi

 ↵

1�
Pn

i=1
w̄idmix(Zi, Zn+1)

,

for nonexchangeable conformal prediction, and

P
n
Yn+1 62 bCn(Xn+1)

o
= E

h
P
n
Yn+1 62 bCn(Xn+1)

��� C1, . . . , Cn

oi

 2↵

1�
Pn

i=1
w̄idmix(Zi, Zn+1)

,

for nonexchangeable jackknife+, as desired.
To complete the proof, we now need to verify the bounds (41) and (42). For the

bound (41) for conformal prediction, we have

Yn+1 62 bCn(Xn+1) () RYn+1,K
n+1

> Q1�↵

 
n+1X

i=1

w̃i�RYn+1,K

i

!

()
n+1X

i=1

w̃i

n
RYn+1,K

n+1
 RYn+1,K

i

o
 ↵.

Now let w0
i = wi {Ci = 0} and let

w̃0
i =

w0
i

w0
1
+ · · ·+ w0

n + 1
, i = 1, . . . , n; w̃0

n+1
=

1

w0
1
+ · · ·+ w0

n + 1
.

Then, deterministically,

n+1X

i=1

w̃i

n
RYn+1,K

n+1
 RYn+1,K

i

o
�

n+1X

i=1

w̃i · {Ci = 0} ·
n
RYn+1,K

n+1
 RYn+1,K

i

o
,

and so we can write

Yn+1 62 bCn(Xn+1) =)
n+1X

i=1

w̃0
i

n
RYn+1,K

n+1
 RYn+1,K

i

o
 ↵ · w1 + · · ·+ wn + 1

w0
1
+ · · ·+ w0

n + 1
.
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Now suppose we had instead conditioned on C1, . . . , Cn and we ran nonexchangeable
full conformal on the same data set Z but with weights w0

i in place of wi, and with a
level ↵ · w1+···+wn+1

w0
1
+···+w0

n+1
in place of ↵. Let bC 0

n(Xn+1) be the resulting prediction interval.
Then by the same arguments as above, we have

Yn+1 62 bC 0
n(Xn+1) ()

n+1X

i=1

w̃0
i

n
RYn+1,K

n+1
 RYn+1,K

i

o
 ↵ · w1 + · · ·+ wn + 1

w0
1
+ · · ·+ w0

n + 1
.

and combining this with the work above, we obtain

Yn+1 62 bCn(Xn+1) =) Yn+1 62 bC 0
n(Xn+1).

Moreover, Theorem 2 ensures that

P
n
Yn+1 62 bC 0

n(Xn+1)
��� C1, . . . , Cn

o
 ↵ · w1 + · · ·+ wn + 1

w0
1
+ · · ·+ w0

n + 1

+
nX

i=1

w̃0
i · dTV(Z,Zi | C1, . . . , Cn),

where dTV(Z,Zi | C1, . . . , Cn) is the total variation distance between the conditional
distributions of Z and of Zi conditional on C1, . . . , Cn. Furthermore, we can see that
dTV(Z,Zi | C1, . . . , Cn) = 0 for all i 2 [n] with Ci = 0. Since w̃0

i is nonzero only for i
with Ci = 0, we thus have

P
n
Yn+1 62 bC 0

n(Xn+1)
��� C1, . . . , Cn

o

 ↵ · w1 + · · ·+ wn + 1

w0
1
+ · · ·+ w0

n + 1
=

↵Pn
i=1

w̃i {Ci = 0}+ w̃n+1

,

where the last step applies the definitions of w̃i (10) and of w0
i. Therefore,

P
n
Yn+1 62 bCn(Xn+1)

��� C1, . . . , Cn

o

 P
n
Yn+1 62 bC 0

n(Xn+1)
��� C1, . . . , Cn

o
 ↵Pn

i=1
w̃i {Ci = 0}+ w̃n+1

,

which verifies (41).
Finally, the proof of the bound (42) for the jackknife+ is nearly identical. As

calculated before, we have

Yn+1 62 bCn(Xn+1) =)
nX

i=1

w̃i

�
|Yn+1 � bµ�i(Xn+1)| > RLOO

i

 
� 1� ↵

()
nX

i=1

w̃i

�
|Yn+1 � bµ�i(Xn+1)|  RLOO

i

 
 ↵.
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Define w0
i and w̃0

i as above. Then, deterministically,

nX

i=1

w̃i

�
|Yn+1 � bµ�i(Xn+1)|  RLOO

i

 

�
nX

i=1

w̃i · {Ci = 0} ·
�
|Yn+1 � bµ�i(Xn+1)|  RLOO

i

 
,

and so we can write

Yn+1 62 bCn(Xn+1)

=)
n+1X

i=1

w̃0
i

�
|Yn+1 � bµ�i(Xn+1)|  RLOO

i

 
 ↵ · w1 + · · ·+ wn + 1

w0
1
+ · · ·+ w0

n + 1
.

As argued before, suppose that we had instead conditioned on C1, . . . , Cn, then ran
nonexchangeable jackknife+ on the same data set Z but with weights w0

i in place of
wi, and with a level ↵ · w1+···+wn+1

w0
1
+···+w0

n+1
in place of ↵. Then by the same arguments as in

the proof of Theorem 5, we have

P
n
Yn+1 62 bCn(Xn+1)

��� C1, . . . , Cn

o

= P
(

n+1X

i=1

w̃0
i

�
|Yn+1 � bµ�i(Xn+1)|  RLOO

i

 
 ↵ · w1 + · · ·+ wn + 1

w0
1
+ · · ·+ w0

n + 1

����� C1, . . . , Cn

)

 2↵ · w1 + · · ·+ wn + 1

w0
1
+ · · ·+ w0

n + 1
+

nX

i=1

w̃0
i · dTV(Zi, Z | C1, . . . , Cn)

= 2↵ · w1 + · · ·+ wn + 1

w0
1
+ · · ·+ w0

n + 1
=

2↵Pn
i=1

w̃i {Ci = 0}+ w̃n+1

,

where the next-to-last step is shown exactly as for full conformal. This verifies (42).

E.5.1 Proof of Lemma 3

The lower bound holds by Jensen’s inequality. For the upper bound, we will instead
prove the claim

E

a>1+ c+ 1

a>B + c+ 1

�
 a>1+ c

a>p+ c
, (43)

for any c � 0 and any p1, . . . , pn, a1, . . . , an 2 [0, 1] with a1 + · · ·+ an + c > 0, where
a = (a1, . . . , an), p = (p1, . . . , pn), B = (B1, . . . , Bn), and as before, the expectation
is taken with respect to independent Bernoulli random variables Bi ⇠ Bernoulli(pi).
Initially this appears stronger than the claim in the lemma (i.e., the lemma claims
this bound only for the case c = 0), but in fact these claims are equivalent.
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To see why, suppose that the lemma holds and now we want to prove (43) for
some p, a 2 [0, 1]n and some c > 0. Let m � c be any integer, and let p̃, ã 2 [0, 1]n+m

be defined as

p̃ = (p1, . . . , pn, 1 . . . , 1), ã = (a1, . . . , an, c/m, . . . , c/m).

Then writing B̃ = (B̃1, . . . , B̃n+m) for independent BernoullisB̃i ⇠ Bernoulli(p̃i), the
claim (43) is equivalent to

E

ã>1+ 1

ã>B̃ + 1

�
 ã>1

ã>p̃
,

which holds by applying the lemma with p̃, ã, n+m in place of p, a, n.

Case 1: a1 = · · · = an = 1 and p1 = · · · = pn. Proving that (43) holds for this
case is equivalent to proving that

E

n+ c+ 1

A+ c+ 1

�
 n+ c

np1 + c

for A ⇠ Binomial(n, p1). In particular, if c = 0, then this is the well-known bound
E
⇥
n+1

A+1

⇤
 1

p1
(e.g., [Storey et al., 2004, Theorem 3]), while if p1 = 0 then the result

is trivial. If instead c > 0 and p1 > 0, then we calculate

E

n+ c+ 1

A+ c+ 1

�
= 1 + E


n� A

A+ c+ 1

�

= 1 +
n�1X

k=0

P {A = k} · n� k

k + c+ 1

= 1 +
1� p1
p1

·
n�1X

k=0

P {A = k + 1} · k + 1

k + c+ 1

= 1 +
1� p1
p1

· E


A

A+ c

�

 1 +
1� p1
p1

· E [A]

E [A] + c
=

n+ c

np1 + c
,

where the inequality holds by Jensen’s inequality.

Case 2: a1, . . . , an arbitrary and p1 = · · · = pn. Proving that (43) holds for this
next case is equivalent to proving that

E

a>1+ c+ 1

a>B + c+ 1

�
 a>1+ c

a>1 · p1 + c
.
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For the special case c = 0, this result is shown in [Ramdas et al., 2019, Lemma 3]. Let
A = (A1, . . . , An), where Ai ⇠ Bernoulli(ai) are drawn independently for i = 1, . . . , n,
and A ?? B. Note that, conditional on B, it holds that A>B ?? A>(1�B). Therefore,

E

A>1+ c+ 1

A>B + c+ 1

���� B
�
= 1 + E


A>(1� B)

A>B + c+ 1

���� B
�

= 1 + E
⇥
A>(1� B)

�� B
⇤
· E


1

A>B + c+ 1

���� B
�

� 1 +
E
⇥
A>(1� B)

�� B
⇤

E [A>B + c+ 1 | B]
(by Jensen’s inequality)

= 1 +
a>(1� B)

a>B + c+ 1
=

a>1+ c+ 1

a>B + c+ 1
,

and therefore after marginalizing over B, we obtain

E

a>1+ c+ 1

a>B + c+ 1

�
 E


A>1+ c+ 1

A>B + c+ 1

�
.

Next, writing S = A>1, we see that A>B follows a Binomial(S, p1) distribution
conditional on S, and therefore,

E

A>1+ c+ 1

A>B + c+ 1

���� S
�
= E


S + c+ 1

Binomial(S, p1) + c+ 1

���� S
�
 S + c

Sp1 + c
,

where the last step holds by case 1. We can also observe that s 7! s+c
sp1+c is a concave

function, and so

E

a>1+ c+ 1

a>B + c+ 1

�
 E


A>1+ c+ 1

A>B + c+ 1

�

= E

E

A>1+ c+ 1

A>B + c+ 1

���� S
��

 E


S + c

Sp1 + c

�
 E [S] + c

E [S] · p1 + c
=

a>1+ c

a>1 · p1 + c
,

as desired.

Case 3: a1, . . . , an and p1, . . . , pn arbitrary. In this final case, we will prove (43),
proceeding by induction on n. For n = 1, this reduces to case 1, so we can proceed
to the case n � 2. Without loss of generality, assume p1  · · ·  pn. If pn = 0
then the claim is trivial. Otherwise, let Ai ⇠ Bernoulli(pi/pn) for i = 1, . . . , n� 1,
and let Ci ⇠ Bernoulli(pn) for i = 1, . . . , n, with A1, . . . , An�1, C1, . . . , Cn all drawn
independently. Then a1B1 + · · ·+ anBn

d
= a1A1C1 + · · ·+ an�1An�1Cn�1 + anCn.

Next, define random weights W = (W1, . . . ,Wn), where Wi = aiAi for each
i = 1, . . . , n� 1 and Wn = an. Then by case 2, we have

E


W1 + · · ·+Wn + c+ 1

W1C1 + · · ·+WnCn + c+ 1

���� W
�
 W>1+ c

W>1 · pn + c
.
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Equivalently, we have shown that

E

a>�nA+ an + c+ 1

a>B + c+ 1

���� A
�


a>�nA+ an + c

(a>�nA+ an) · pn + c
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1
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�

c
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1
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� 1

⌘
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.

Thus,
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a>B + c+ 1

�
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
a>1+ c+ 1

a>�nA+ an + c+ 1
·
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a>B + c+ 1

�
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2

4 a>1+ c+ 1
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·
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@ 1
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�

c
⇣

1

pn
� 1

⌘

(a>�nA+ an) · pn + c

1

A

3

5

 E


a>1+ c+ 1

a>�nA+ an + c+ 1

�
· E

2

4 1

pn
�

c
⇣

1

pn
� 1

⌘

(a>�nA+ an) · pn + c

3

5 , (44)

where the last step holds since the first quantity is a monotone decreasing function
of a>�nA, and the second quantity is a monotone increasing function of a>�nA. By
induction, we can apply (43) at size n� 1 in place of n to see that the first expected
value is bounded as

E


a>1+ c+ 1

a>�nA+ an + c+ 1

�
 a>1+ c

a>�n(p�1
n p�n) + an + c

= pn ·
a>1+ c

a>p+ cpn
.

Moreover, applying Jensen’s inequality, we calculate

E

2

4 1
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�

c
⇣

1

pn
� 1

⌘

(a>�nA+ an) · pn + c

3

5 

0

@ 1

pn
�

c
⇣

1

pn
� 1

⌘

(a>�nE [A] + an) · pn + c

1

A

=

0

@ 1

pn
�

c
⇣

1

pn
� 1

⌘

a>p+ c

1

A =
a>p+ cpn
pn(a>p+ c)

.

Combining these calculations with (44) above, we have

E

a>1+ c+ 1

a>B + c+ 1

�
 pn ·

a>1+ c

a>p+ cpn
· a>p+ cpn
pn(a>p+ c)

=
a>1+ c

a>p+ c
,

which proves that (43) holds as desired.
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F Simulations for split conformal and jackknife+

The simulations presented in Section 5.1 used only full conformal methods. In this
section, we repeat these simulated data experiments with split conformal prediction
and jackknife+. The same data is used in these experiments as was generated for the
results in Section 5.1. (Code for reproducing these additional experiments is available
at https://rinafb.github.io/code/nonexchangeable_conformal.zip.)

For split conformal prediction, we split the training data indices [n] by assigning
odd indices to the training set and even indices to the holdout set. The methods
compared for split conformal are SplitCP+LS, NexSplitCP+LS, NexSplitCP+WLS,
defined exactly as the full conformal experiments but with split conformal in place
of full conformal. For jackknife+, the methods compare are Jack+LS, NexJack+LS,
NexJack+WLS, again defined analogously.

For both split conformal and jackknife+, the details for defining bµ for choosing
the weights wi and tags ti are exactly the same as for the full conformal experiments
given in Section 5.1. Also as in the full conformal experiments, after a burn-in period
of the first 100 time points, at each time n = 100, . . . , N � 1 we run the inference
methods with training data i = 1, . . . , n and test point n+ 1. The results shown are
averaged over 200 independent replications of the simulation.

Setting 1 (i.i.d. data) Setting 2 (changepts) Setting 3 (drift)
Coverage Width Coverage Width Coverage Width

SplitCP+LS 0.902 3.34 0.836 6.04 0.839 3.76
NexSplitCP+LS 0.915 3.51 0.893 7.09 0.896 4.43
NexSplitCP+WLS 0.915 3.56 0.914 4.33 0.914 3.59

Table 4: Simulation results showing mean prediction interval coverage and width,
averaged over all time points and over 200 trials, for split conformal methods.

Setting 1 (i.i.d. data) Setting 2 (changepoints) Setting 3 (drift)
Coverage Width Coverage Width Coverage Width

Jack+LS 0.899 3.30 0.834 5.98 0.837 3.72
NexJack+LS 0.906 3.38 0.881 6.79 0.887 4.27
NexJack+WLS 0.906 3.40 0.905 4.11 0.905 3.44

Table 5: Simulation results showing mean prediction interval coverage and width,
averaged over all time points and over 200 trials, for jackknife+ methods.

Results for split conformal and for jackknife+ are summarized in Tables 4 and 5,
respectively, while Figures 5 and 6 display the average coverage and the prediction
interval width over the time range of the simulation. Overall, we see similar trends as
for the full conformal prediction experiments in Section 5.1, where for the i.i.d. data
in Setting 1 the performance of all three versions of each method are comparable,
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while for the changepoint data in Setting 2 and the distribution drift data in Setting
3, the original methods lose coverage substantially, while nonexchangeable versions of
split conformal and of jackknife+ remain closer to the target coverage level, and the
nonsymmetric algorithm (weighted least squares) allows for a narrower prediction
interval.

G Election data set description

To prepare the data, we followed the protocol from Gibbs and Candès [2021] and,
therefore, quote from the above reference:

The county-level demographic characteristics used for prediction were the
proportion of the total population that fell into each of the following race
categories (either alone or in combination): black or African American,
American Indian or Alaska Native, Asian, Native Hawaiian or other
Pacific islander. In addition to this, we also used the proportion of the
total population that was male, of Hispanic origin and that fell within
each of the age ranges 20-29, 30-44, 45-64, and 65+. Demographic
information was obtained from 2019 estimates published by the United
States Census Bureau and available at [United States Census Bureau,
2019a]. In addition to these demographic features we also used the median
household income and the percentage of individuals with a bachelors degree
or higher as covariates. Data on county-level median household incomes
was based on 2019 estimates obtained from [United States Census Bureau,
2019c]. The percentage of individuals with a bachelors degree or higher
was computed based on data collected during the years 2015-2019 and
published at [United States Census Bureau, 2019b]. As an aside, we
remark that we used 2019 estimates because this was the most recent year
for which data was available.

For 2016 covariate data, we used the same data sources, subject to the important
distinction that we—almost exclusively—used published figures available by 2016.
(The U.S. Census Bureau sometimes updates its figures so we cannot rule out the
possibility that a few entries were changed post 2016.) Finally, vote counts for the
2016 election were obtained from MIT Election Data and Science Lab [2018], while
2020 election data was taken from Leip [2020]. In total, matching covariate and
election vote count data were obtained for 3111 counties. Merging 2016 and 2020
data left us with 3076 counties (1119 in the training set and 1957 in the test set).
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Figure 5: Simulation results showing mean prediction interval coverage and width for split
conformal methods, averaged over 200 independent trials. The curves are smoothed by
taking a rolling average with a window of 10 time points.
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Figure 6: Simulation results showing mean prediction interval coverage and width for
jacknife+ methods, averaged over 200 independent trials. The curves are smoothed by
taking a rolling average with a window of 10 time points.
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