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We consider linear structural equation models with latent variables and
develop a criterion to certify whether the direct causal effects between the ob-
servable variables are identifiable based on the observed covariance matrix.
Linear structural equation models assume that both observed and latent vari-
ables solve a linear equation system featuring stochastic noise terms. Each
model corresponds to a directed graph whose edges represent the direct ef-
fects that appear as coefficients in the equation system. Prior research has
developed a variety of methods to decide identifiability of direct effects in a
latent projection framework, in which the confounding effects of the latent
variables are represented by correlation among noise terms. This approach
is effective when the confounding is sparse and effects only small subsets
of the observed variables. In contrast, the new latent-factor half-trek crite-
rion (LF-HTC) we develop in this paper operates on the original unprojected
latent variable model and is able to certify identifiability in settings, where
some latent variables may also have dense effects on many or even all of
the observables. Our LF-HTC is an effective sufficient criterion for rational
identifiability, under which the direct effects can be uniquely recovered as
rational functions of the joint covariance matrix of the observed random vari-
ables. When restricting the search steps in LF-HTC to consider subsets of
latent variables of bounded size, the criterion can be verified in time that is
polynomial in the size of the graph.

1. Introduction. Equipped with an intuitive causal interpretation, structural
equation models are very popular tools in a broad range of applied sciences
(Spirtes, Glymour and Scheines, 2000; Pearl, 2009; Peters, Janzing and Schölkopf, 2017).
Often, structural equation models involve latent variables, and it becomes a key problem to
clarify whether parameters of interest are identifiable from the joint distribution of the ob-
servable variables. Many different criteria have been developed to decide such identifiability.
The dominant approach in state-of-the-art methods is to project away latent variables, i.e.,
their effects are absorbed into correlations among error terms in the structural equations.
In contrast, we here consider models with explicit latent variables and show how the latent
dependence structure may be used to certify identifiability even in cases with dense latent
confounding, where projection approaches remain inconclusive.

Concretely, we study linear structural equation models with explicit latent variables. The
precise setting of interest may be described as follows. Let X = (Xv)v∈V be a collection of
d = |V | observed variables, and let L = (Lh)h∈L be ! = |L| latent (unobserved) variables.
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Suppose all variables are related by linear equations as

Xv =
∑

w "=v

λwvXw +
∑

h∈L

γhvLh + εv , v ∈ V,

where λwv and γhv are real-valued parameters that are also known as direct causal effects
of Xw on Xv and Lh on Xv , respectively. The εv are independent mean zero random
variables that model noise. We assume that each εv has finite variance ωv > 0. The latent
variables (Lh)h∈L are assumed to be independent, and also independent of the noise terms
ε= (εv)v∈V . Since we are primarily interested in identification of direct causal effects λvw ,
we may fix, without loss of generality, the latent scale such that each Lh has mean zero and
variance 1. Viewing X , L, and ε as vectors, the above equation system can be presented in
the form

(1.1) X = Λ#X + Γ#L+ ε

with d× d parameter matrix Λ= (λwv) and !× d parameter matrix Γ= (γhv). The matrix
Λ has zeros along the diagonal. Specific models are now derived from (1.1) by assuming
specific sparsity patterns in Λ and Γ. The resulting models assume that all unobserved con-
founding is caused only by the explicitly modeled, independent latent variables. Thus the
latent structure corresponds to factor analysis models, and we will refer to the latent vari-
ables also as latent factors.

The models belong to the general framework of structural equation models with latent
variables as they are considered, e.g., in Bollen (1989). However, where many of the ex-
amples in Bollen’s book are concerned with measurement models, i.e., latent variables are
measured through observations and these observations are conditionally independent given
the latent variables, our interest here is the setting where we have direct causal effects λwv

between observed variables and the latent variables constitute confounders.
The focus of this paper will be on the covariance structure posited by models derived from

(1.1). In particular, we will be interested in determining when sparsity in the matrices Λ and
Γ allows one to identify (i.e., uniquely recover) the direct effects λwv from the covariance
matrix of the observable random vector X . Solving (1.1), we find

X = (Id −Λ)−#(Γ#L+ ε).

The vector Γ#L+ ε follows a latent factor model and has covariance matrix

(1.2) Ω= Var[ε] + Γ#Var[L]Γ=Ωdiag + Γ#Γ=Ωdiag +
∑

h∈L

Γ#
h Γh,

where Ωdiag is diagonal with entries Ωdiag,vv = ωv and Γh is the h-th row of Γ such that the
entries of Γh correspond to the causal effects associated to the latent factor Lh. We term the
matrix Ω the latent covariance matrix. It follows that X has covariance matrix

Σ= (Id −Λ)−#Ω(Id −Λ)−1.

In order to study structural equation models it is useful to adopt a graphical perspective.
To this end, the zero patterns in Λ and Γ are associated to a directed graph G= (V ∪L,D),
where D ⊂ (V ∪ L)× (V ∪ L) is a collection of directed edges w→ v. For two observed
nodes v,w ∈ V , the effect λwv may be nonzero only if the edge w→ v is contained in the set
D. Similarly, for a latent node h ∈ L and an observed node v ∈ V , the effect γhv is possibly
nonzero if h→ v ∈D. In figures we draw latent nodes h in gray, and we draw edges h→ v
dashed for better distinction. This is illustrated in the next example.
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T1 O1 O2 T2 O3Z

FIG 1. Graph corresponding to a randomized clinical trial for sequential administered treatments with a latent

factor L.

EXAMPLE 1.1. We consider an augmented version of an example from
Stanghellini and Wermuth (2005, Section 7), which pertains to the effects of sequen-
tial treatments in randomized clinical trials. Suppose that the patients receive two treatment
doses in sequence, T1 and T2, and at both times the treatment dose is assigned at random.
The randomization distribution of the second treatment dose T2 depends on the previous
treatment dose T1 and on two intermediate outcome measures O1 and O2. The intermediate
outcome measures are deemed potentially related, i.e., O2 may causally depend on O1. After
the second treatment a final outcome measure O3 is recorded. Assume now that there is a
latent factor L, such as a specific characteristic of a patient, that has effects on all outcomes
O1,O2,O3. Finally, as in Stanghellini and Wermuth (2005), we assume that there exists an
auxiliary observed variable Z that provides a noisy measurement of L. The direct effects in
this setup are depicted in the graph shown in Figure 1.

We aim to characterize those models of the form (1.1) that are rationally identifiable, i.e.,
all possibly nonzero direct causal effects λwv can be uniquely recovered as rational functions
of the entries of the observable covariance matrix Σ. This kind of identifiability has been ex-
amined in previous research in the context of latent projections where latent variables are not
explicitly modeled. Models then correspond to mixed graphs that contain only the observed
nodes V , but bidirectional edges in addition to the directed edges. Each bidirected edge rep-
resents a possibly nonzero entry in the latent covariance matrix Ω, i.e., it implicitly indicates
the presence of a confounding latent factor. The starting point for deriving sufficient criteria
for rational identifiability are then the equations

(1.3) [(Id −Λ)#Σ(Id −Λ)]vw =Ωvw = 0,

which hold whenever no confounding latent factor affects both, Xv and Xw with v '=w. The
equations (1.3) are then solved to obtain the nonzero effects in Λ. This strategy has been
leveraged to formulate graphical criteria applicable to mixed graph representations of latent
variable models.

An example of a graphical criterion leveraging the latent projection approach is the half-
trek criterion of Foygel, Draisma and Drton (2012), which can be considered as a predecessor
and special case of the new results in this paper. But there are also various other graphical cri-
teria on mixed graphs such as instrumental variables (Bowden and Turkington, 1984), condi-
tional instruments (Brito and Pearl, 2002), the G-criterion (Brito and Pearl, 2006), auxiliary
variables (Chen, Pearl and Bareinboim, 2016 and Chen, Kumor and Bareinboim, 2017), de-
composition techniques (Tian, 2005) and several generalizations and further developments,
cf. Tian (2009), Drton and Weihs (2016), Weihs et al. (2017), Kumor, Chen and Bareinboim
(2019) and Kumor, Cinelli and Bareinboim (2020).

In contrast, in this work we consider the original, unprojected latent variable model as
defined in (1.1), and we allow the latent covariance matrix Ω to be dense with only few or
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no zero entries. Then the usual approach of exploiting the zero structure in Ω that was high-
lighted in (1.3) is no longer effective. However, dense confounding of the observed variables
may be caused by only a small number of latent factors, in which case the latent covariance
matrix Ω exhibits exploitable structure. Our key observation is that Ω may contain rank-
deficient submatrices. For example, let Y,Z ⊆ V be two disjoint sets of observed nodes.
Then by (1.2) the submatrix ΩY,Z equals

ΩY,Z = (Ωdiag)Y,Z +
∑

h∈L

(Γ#
h Γh)Y,Z =

∑

h∈H

(Γ#
h Γh)Y,Z ,

where the subset H ⊆ L over which we sum on the right-hand side contains exactly those
latent factors that have an effect on a node in Y and at the same time also an effect on a node
in Z . Since the matrix Γ#

h Γh has rank one for each latent node h, the submatrix ΩY,Z is not
of full column rank if |H| < |Z|. Exploiting this low rank structure of the latent covariance
matrix Ω yields our main result, which is a sufficient criterion for rational identifiability of
the direct causal effects λwv. We show how to convert the criterion into a graphical condi-
tion that can be checked using efficient algorithms under a bound on the considered rank.
The graphical criterion is directly applicable to directed graphs G= (V ∪L,D) that explic-
itly contain the latent nodes L, i.e., the criterion operates on the unprojected latent variable
model and allows to explore specific confounding. We refer to it as the latent-factor half-trek
criterion (LF-HTC).

EXAMPLE 1.2. We take up the earlier example of a randomized clinical trial with se-
quential treatments, which we summarized in the graph in Figure 1. It is natural to investigate
the direct causal effects between the observed variables T1,O1,O2, T2 and O3. These direct
causal effects correspond to the blue (non-dashed) edges in the figure. Our new latent-factor
half-trek criterion will be able to certify that the whole parameter matrix Λ is rationally iden-
tifiable and all nonzero effects λvw can be written as rational formulas in the entries of the
observable covariance matrix Σ. For example, the direct effect from the first treatment dose
T1 on the intermediate outcome O1 is given by ΣT1,O1

/ΣT1,T1
; a standard regression coeffi-

cient. But remarkably, we can even identify effects corresponding to the edges T1→O2 and
O1→ O2 by the latent-factor half-trek criterion. We verified that it is impossible to identify
the latter two effects in the latent projection framework (cf. Section 4).

While most of the general identification criteria have been developed in the setting of
latent projections, some existing work also considers unprojected latent factor models as de-
fined in (1.1). However, this work addresses special types of latent confounding only. For
example, Stanghellini and Wermuth (2005) and Leung, Drton and Hara (2016) examine lin-
ear latent variable models with one latent variable, and the conditional instrument approach
in Van Der Zander, Textor and Liskiewicz (2015) covers scenarios in which no confounding
factor has an effect on all observed variables. Another approach requires that latent fac-
tors are measured through observed proxy variables and relies on identifying the causal
effect between the latent factor and the proxy, see for example Kuroki and Pearl (2014),
Miao, Geng and Tchetgen Tchetgen (2018) and Lee and Bareinboim (2021), the latter of
which deals with the discrete case.

It should be noted that, in principle, rational identifiability is always decidable by computa-
tional algebraic geometry (Garcia-Puente, Spielvogel and Sullivant, 2010) involving Gröbner
basis computations (Cox, Little and O’Shea, 2007). However, in the worst case, the complex-
ity of these methods can be double exponential in the size of the graph. Thus, they may be
infeasible even for relatively small graphs, and more efficient graphical criteria are of great
value. To check the new latent-factor half-trek criterion we propose an algorithm based on
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max-flow computations (Cormen et al., 2009) that runs in polynomial time in the size of the
graph if we confine ourselves to search only over subsets of latent factors of bounded size.
We show that the restriction of the search space is necessary since the task of checking the
latent-factor half-trek criterion without restrictions is in general NP-complete.

The organization of the paper is as follows. In Section 2 we provide a precise definition
of linear structural equation models given by directed graphs and rigorously introduce the
concept of rational identifiability. Moreover, we derive basic necessary conditions for rational
identifiability based on dimension arguments. In Section 3 we present our main result, the LF-
HTC. In Section 4 we discuss the latent projection framework considered in previous research
and compare the new LF-HTC to existing criteria. In particular, we compare the LF-HTC to
the original half-trek criterion. In Section 5 we present an algorithm to check the LF-HTC
efficiently. Using this algorithm we systematically check identifiability of certain classes of
small latent-factor graphs in Section 6. The restriction to small graphs allows for these checks
to be validated using suitably designed Gröbner basis computations. Finally, the proof of the
main result is given in Section 7. Further elements of proofs, a hardness result for checking
the LF-HTC without a bound on the cardinality of searched sets of latent variables and an
explanation on how to effectively deploy techniques from computational algebraic geometry
are deferred to the Supplementary Material (Barber et al., 2022).

2. Graphical Representation and Identifiability. Let G = (V ∪ L,D) be a directed
graph where V and L are finite disjoint sets of observed and latent nodes, respectively. We
emphasize that G is allowed to contain directed cycles. Let d= |V | and != |L|. The edge set
D ⊂ (V ∪L)× (V ∪L) is assumed to be free of self-loops, so v→ v /∈D for all v ∈ V ∪L.
For each vertex v ∈ V ∪ L, define its set of parents as pa(v) = {w ∈ V ∪ L : w→ v ∈D}.
Throughout the paper we require pa(h) = ∅ for all h ∈ L, so that all latent nodes are source
nodes and the outgoing edges of latent nodes only point to observed nodes. If this condition
is satisfied, we call G a latent-factor graph and, to emphasize the set of latent variables, write
GL instead of G.

The edge set of a latent-factor graph may be partitioned as D =DV ∪DLV , where DV =
D ∩ (V × V ) is the set of directed edges between observed nodes and DLV =D ∩ (L× V )
is the set of directed edges that point from latent to observed nodes. Let RDV be the set of
real d× d matrices Λ= (λwv) with support DV , that is, λwv = 0 if w→ v /∈DV . Write RDV

reg

for the subset of matrices Λ ∈RDV with Id−Λ invertible; recall that we allow GL to contain
directed cycles. Similarly, let RDLV be the set of real !× d matrices Γ= (γhv) with support
DLV , that is, γhv = 0 if h→ v /∈DLV . Additionally, we write diag+d for the set of all d× d
diagonal matrices with a positive diagonal indexed by the elements of V .

Each latent-factor graph postulates a covariance model that corresponds to a linear struc-
tural equation model specified via (1.1).

DEFINITION 2.1. The covariance model given by a latent-factor graph GL = (V ∪L,D)
with |V |= d and |L|= ! is the family of covariance matrices

(2.1) Σ= (Id −Λ)−#Ω(Id −Λ)−1

obtained from choices of Λ ∈RDV
reg and Ω in the image of the map

τ :RDLV × diag+d −→ PD(d)

(Γ,Ωdiag) +−→Ωdiag + Γ#Γ,

where PD(d) is the cone of positive definite symmetric d× d matrices. We term the image
Im(τ)⊆ PD(d) the cone of latent covariance matrices.
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We are interested in the question of identifiability, i.e., whether the matrix Λ can be
uniquely recovered from a given covariance matrix Σ of the form (2.1). If it is possible to
recover the whole matrix Λ uniquely, we can determine Ω uniquely by the equation

(2.2) (Id −Λ)#Σ(Id −Λ) =Ω,

since the matrix Id − Λ is assumed to be invertible. Thus, for Θ= RDV
reg × Im(τ), identifia-

bility holds if the parametrization map

ϕGL :Θ−→ PD(d)

(Λ,Ω) +−→ (Id −Λ)−#Ω(Id −Λ)−1
(2.3)

is injective on Θ, or a suitably large subset. Since identifiability will usually not hold on
the whole set Θ, we need to clarify what we mean by a “suitably large” subset. We use
terminology from algebraic geometry, background can be found in Cox, Little and O’Shea
(2007), Shafarevich (2013) or Hartshorne (1977).

A property on an irreducible algebraic set W is said to be generically true if the property
holds on the complement W \A of a proper algebraic subset A⊆W . Due to irreducibility,
the complement W \ A is dense in W with respect to the Zariski topology and therefore
considered as a “suitably large” subset. When W is an irreducible algebraic set defined over
the real numbers, a proper algebraic subset of W has Lebesgue measure zero, see e.g. the
lemma in Okamoto (1973).

To connect this terminology to our setup, we observe that the Zariski closure Θ, i.e., the
smallest algebraic subset that contains the domain Θ, is irreducible. This is true because Θ is
the polynomial image of an open set. Hence, we say that a property on Θ is generically true if
there exists a proper algebraic subset A⊂Θ such that the property holds on the complement
Θ \A. Our interest is now in generically identifying the direct causal effects λwv. Since the
parametrization ϕGL is rational, the identification formula, in the worst case, is an algebraic
function (Garcia-Puente, Spielvogel and Sullivant, 2010). However, in all examples we know,
if generic identifiability is possible, then by rational formulas. This motivates the following
definition.

DEFINITION 2.2 (Rational identifiability).

(a) The latent-factor graph GL is said to be rationally identifiable if there exists a proper
algebraic subset A ⊂ Θ and a rational map ψ : PD(d) −→ RDV

reg × PD(d) such that ψ ◦
ϕGL(Λ,Ω) = (Λ,Ω) for all (Λ,Ω) ∈Θ \A.

(b) The direct causal effect λvw , or also simply the edge v→ w ∈DV , is rationally identi-
fiable if there exists a proper algebraic subset A⊂Θ and a rational map ψ : PD(d)−→R

such that ψ ◦ϕGL(Λ,Ω) = λvw for all (Λ,Ω) ∈Θ \A.

Rational identifiability of GL is equivalent to rational identifiability of all edges in DV ;
recall (2.2). If GL is rationally identifiable, then a (absolutely continuous) random choice of
the effects in (Λ,Γ) and the error variances in Ωdiag will almost surely yield a covariance
matrix for the observable vector X from which Λ can be recovered uniquely by rational for-
mulas. If GL is not generically identifiable, its parametrization ϕGL may be either generically
finite-to-one or generically infinite-to-one:

DEFINITION 2.3. Let f : S → Rn be a map defined on a subset S ⊆ Rm such that the
Zariski closure S is irreducible. Then f is generically finite-to-one if there exists a proper
algebraic subset A ⊆ S such that the fiber Ff (s) = f−1(f(s)) is finite for all s ∈ S \ A.
Otherwise, f is said to be generically infinite-to-one.
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h1

1 2 3 4 5

FIG 2. Latent-factor graph that is (trivially) generically infinite-to-one.

DEFINITION 2.4. A latent-factor graph GL is generically finite-to-one if its parametriza-
tion ϕGL is generically finite-to-one. In this case we will also say that GL is finitely identifi-
able. Otherwise, GL is said to be generically infinite-to-one.

Note that if a latent-factor graph GL is rationally identifiable, then the fiber FϕGL
(Λ,Ω) =

{(Λ,Ω)} for all parameter choices outside of a proper algebraic subset. In particular, a
graph that is rationally identifiable is generically finite-to-one. The following Lemma is
an important tool to check if a rational map is generically finite-to-one. For complete-
ness, we provide a proof in Appendix A in the supplement (Barber et al., 2022). Here, we
rely on the notion of semialgebraic sets, which are finite unions of sets defined by finitely
many polynomial equations and inequalities. For background on semialgebraic sets we refer
to Bochnak, Coste and Roy (1998), Basu, Pollack and Roy (2006) and Benedetti and Risler
(1990).

LEMMA 2.5. Let S ⊆ Rm be a semialgebraic set such that the Zariski closure S is ir-
reducible. Then a rational mapping f : S → Rn is generically finite-to-one if and only if
dim(f(S)) = dim(S). In particular, if dim(S) > n then f must be generically infinite-to-
one.

REMARK 2.6. If the rational mapping in Lemma 2.5 is infinite-to-one, then it holds that
the fiber is infinite for almost all s ∈ S. This can be seen, in particular, by inspecting the proof
of Lemma 2.5.

In our context, the rational mapping of interest is the parametrization map ϕGL , which
maps into the positive definite cone PD(d). We observe that a latent-factor graph GL cannot
be finite-to-one if the dimension of the domain Θ=RDV

reg × Im(τ) is larger than the dimension
of PD(d). This gives a basic necessary condition.

COROLLARY 2.7. A latent-factor graph GL is generically infinite-to-one if |DV | +
dim(Im(τ))>

(
d+1
2

)
.

PROOF. To apply Lemma 2.5 we have to show that Θ=RDV
reg × Im(τ) is semialgebraic, its

closure is irreducible and that the parametrization map ϕGL is rational. The first two claims
are true since Θ is the polynomial image of an open semialgebraic set. Moreover, the map
ϕGL is rational due to Cramer’s rule.

Now, we study the dimensions of Θ and the image ϕGL(Θ). The dimension of Θ is equal
to |DV |+ dim(Im(τ)) since the dimension of the product of two semialgebraic sets is the
sum of their individual dimensions (Bochnak, Coste and Roy, 1998, Prop. 2.8.5). Since the
image of ϕGL lies in the positive definite cone PD(d), we have

dim(ϕGL(Θ))≤ dim(PD(d)) =

(
d+ 1

2

)
.

Thus, if |DV |+ dim(Im(τ))>
(
d+1
2

)
, then dim(Θ)> dim(ϕGL(Θ)) and by Lemma 2.5 we

conclude that ϕGL is generically infinite-to-one.
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(a)

h1

1 2 3 4 5

(b)

h1

1 2 3 4 5

(c)

FIG 3. Latent-factor graphs with one latent-factor. (a) Rationally identifiable. (b) Generically finite-to-one but

not rationally identifiable. (c) Generically infinite-to-one.

EXAMPLE 2.8. Consider the graph in Figure 2 where the latent structure is that of a one-
factor model. By Theorem 2 in Drton, Sturmfels and Sullivant (2007) we have dim(Im(τ)) =
10; with only one factor the dimension is equal to the number of edges from the latent node
to the observed nodes, |DLV | = 5, plus the 5 parameters appearing on the diagonal of the
matrix Ωdiag. But since the number of observed edges |DV |= 6 we have that 16 = |DV |+
dim(Im(τ)) >

(6
2

)
= 15 and therefore the graph is generically infinite-to-one by Corollary

2.7.

If a latent-factor graph is not trivially infinite-to-one by dimension comparison, then it
becomes more difficult to decide whether it is generically infinite-to-one, generically finite-
to-one or rationally identifiable. Figure 3 shows latent-factor graphs that only have subtle
differences in their structures but each of them has a different status of identifiability.

3. Main Identifiability Result. The main idea underlying our sufficient condition for
rational identifiability is to exploit the low rank structure of the latent covariance matrix

Ω=Ωdiag +
∑

h∈L

Γ#
h Γh.

Recall that Ωdiag ∈ diag+d is diagonal and Γh is the h-th row of Γ ∈ RDLV . For a node
v ∈ V , denote by paV (v) = {w ∈ V : w → v ∈ DV } the set of observed parents and by
paL(v) = {w ∈ L : w→ v ∈DLV } the set of latent parents. So, pa(v) = paV (v) ∪ paL(v).
Focusing on a fixed node v ∈ V , it is our goal to find linear equations that determine the
direct causal effects corresponding to the observed parents, that is, we aim to determine the
vector ΛpaV (v),v . Our approach is to find suitable sets of observed nodes Y,Z ⊆ V \ {v} and
a set of latent nodes H ⊆ L with |H|= |Z| such that the latent covariance matrix contains a
submatrix that satisfies

(3.1) ΩY,Z∪{v} =
∑

h∈H

(Γ#
h Γh)Y,Z∪{v}

and fails to have full column rank. The drop in rank means that the entries of the subma-
trix exhibit algebraic relations, which we may then use to identify the targeted direct causal
effects.

The equality in (3.1) holds if (i) Y ∩ (Z ∪ {v}) = ∅ and (ii) paL(Y )∩paL(Z ∪ {v})⊆H .
Indeed, (i) ensures that (Ωdiag)Y,Z∪{v} = 0 because the considered submatrix does not involve
any diagonal elements. And by (ii), the set H contains all latent factors that have an effect on
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a node in Y and at the same time an effect on a node in Z ∪ {v}. Assume there exists a triple
of sets (Y,Z,H) with |H|= |Z| and satisfying (i) and (ii) above. Then

rank
(
ΩY,Z∪{v}

)
= rank

(
∑

h∈H

(Γ#
h Γh)Y,Z∪{v}

)

≤ |H|= |Z|,

since the matrix Γ#
h Γh has rank one for each h ∈L. Hence the matrix ΩY,Z∪{v} does not have

full column rank. Moreover, suppose that we are able to ensure that the smaller submatrix
ΩY,Z is of full column rank |Z|. Then, since the column ranks of ΩY,Z∪{v} and ΩY,Z are
equal, the vector ΩY,v must be a linear combination of the columns of ΩY,Z , i.e., there exists
ψ ∈R|Z| such that ΩY,Z ·ψ =ΩY,v. Using the identity (Id −Λ)#Σ(Id −Λ) =Ω from (2.2),
this is equivalent to

[(Id −Λ)#Σ(Id −Λ)]Y,v − [(Id −Λ)#Σ(Id −Λ)]Y,Z · ψ = 0.

Rewriting the matrix on the left we get the system of equations

(3.2)
(
[(Id −Λ)#Σ]Y,paV (v) [(Id −Λ)#Σ(Id −Λ)]Y,Z

)
·

(
ΛpaV (v),v

ψ

)
= [(Id −Λ)#Σ]Y,v.

Now, if we make sure the matrix on the left-hand side in (3.2) is square and invertible, we
can solve the system for the unknown parameters ΛpaV (v),v . However, for this to be useful
for parameter identification, suitable entries of Λ must already be known from earlier similar
calculations in order to determine the coefficient matrix and the vector on the right-hand side
of (3.2).

EXAMPLE 3.1. Consider the graph in Figure 3 (a). Since there is one latent factor having
dense effect on all observed variables, the parameter matrix Γ is given by the row vector
(γ11, . . . ,γ15). Now focus on node v = 3 which only has a single observed parent. We aim to
recover the effect ΛpaV (3),3 = λ23 and we claim that the triple (Y,Z,H) = ({2,4},{1},{h1})
satisfies the properties discussed above. Clearly, |H|= |Z|, we have empty intersection Y ∩
(Z∪{v}) and the only common latent parent of Y and Z∪{v} is h1, i.e., paL(Y )∩paL(Z∪
{v})⊆H . By inspecting the rank one submatrix

ΩY,Z∪{v} =

(
γ12
γ14

)
·
(
γ11 γ13

)
=

(
γ11γ12 γ12γ13
γ11γ14 γ13γ14

)

we can easily deduce the relation

ΩY,Z ·
γ13
γ11

=ΩY,v

which holds true for generic choices of γ11, i.e., for γ11 '= 0. In other words, the parameter ψ
is equal to γ13/γ11 and the equation system (3.2) is given by

(
σ22 σ12

−λ34σ23 + σ24 −λ34σ13 + σ14

)(
λ23
ψ

)
=

(
σ23

−λ34σ33 + σ34

)

where σij is the ij-th entry of the covariance matrix Σ. If we already knew that the effect λ34
is given by a rational function in Σ, then we could also recover the effect λ23 by a rational
function of Σ since the matrix on the left-hand side is quadratic and generically invertible.

Our main result shows that the above story can be made practical and yields a criterion to
recursively identify columns in Λ. Importantly, the imposed conditions can all be translated
into combinatorial conditions on the considered latent-factor graph. The resulting method is
proven correct in Theorem 3.7 below. Before stating the theorem we define the necessary
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graphical concepts, which involve special types of paths that we term latent-factor half-treks.
Recall that a path from node v to w in a latent-factor graph GL = (V ∪L,D) is a sequence of
edges that connects the consecutive nodes in a sequence of nodes beginning in v and ending
in w.

DEFINITION 3.2 (Latent-factor half-trek). A path π in the latent-factor graph GL is a
latent-factor half-trek from source v to target w if it is a path from v ∈ V to w ∈ V in GL

and is of the form

v→ x1→ · · ·→ xn→w

or of the form

v← h→ x1→ · · ·→ xn→w

for x1, . . . , xn ∈ V and for some h ∈ L.

The name latent-factor half-trek is inspired by the customary notion of a trek, which is
a pair of directed paths (π1,π2) that share the same source node. If a latent-factor half-trek
is of the first form in Definition 3.2, we say that the left-hand side of π, written Left(π), is
the node v and the right-hand side, written Right(π), is the set of nodes {v,x1, . . . , xn,w}.
In the second case Left(π) = {v,h} and Right(π) = {h,x1, . . . , xn,w}. A latent-factor half-
trek from v to v may have no edges, in this case Left(π) = Right(π) = {v} and the half-trek
is called trivial. For a set of n latent-factor half-treks, Π= {π1, . . . ,πn}, let vi and wi be the
source and the target of πi. If the sources are all distinct and the targets are all distinct, then we
say that Π is a system of latent-factor half-treks from A= {v1, . . . , vn} to B = {w1, . . . ,wn}.
A set of latent-factor half-treks Π= {π1, . . . ,πn} has no sided intersection if

Left(πi)∩ Left(πj) = ∅= Right(πi)∩Right(πj) for all i '= j.

EXAMPLE 3.3. Consider the graph in Figure 3 (a). Then the system of latent-factor half-
treks

{π1 : 5← h1→ 3, π2 : 4→ 5}

has no sided intersection. On the other hand, the system

{π̃1 : 2← h1→ 3, π̃2 : 3→ 4→ 5}

has sided intersection since Right(π̃1)∩ Right(π̃2) = {3}.

DEFINITION 3.4 (Latent-factor half-trek reachability). Let v,w ∈ V be two distinct ob-
served nodes in a latent-factor graph GL. Let H ⊆ L be a set of latent factors. If there exists
a latent-factor half-trek from v to w through the latent-factor graph GL, which does not pass
through any node in H , then we say that w is half-trek reachable from v while avoiding H ,
and write w ∈ htrH(v). For a set U ⊆ V , we write w ∈ htrH(U) if w ∈ htrH(u) for some
u ∈ U .

EXAMPLE 3.5. Consider the graph in Figure 3 (a), and let H = ∅. Then 2 ∈ htrH(1)
since there is the latent-factor half-trek 1← h1 → 2 and h1 '∈ H . But if H = {h1}, then
htrH(1) = ∅ since there is no latent-factor half-trek from node 1 to any other node in the
graph while avoiding the node h1.

DEFINITION 3.6 (Latent-factor half-trek criterion). Given a node v ∈ V , the triple
(Y,Z,H) ∈ 2V \{v} × 2V \{v} × 2L satisfies the latent-factor half-trek criterion (LF-HTC)
with respect to v if
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(i) |Y |= |paV (v)|+ |H| and |Z|= |H| with Z ∩ paV (v) = ∅,
(ii) Y ∩ (Z ∪ {v}) = ∅ and paL(Y )∩ paL(Z ∪ {v})⊆H , and
(iii) there exists a system of latent-factor half-treks with no sided intersection from Y to

Z ∪ paV (v) in GL, such that for each z ∈ Z , the half-trek terminating at z takes the form
y← h→ z for some y ∈ Y and some h ∈H .

If a triple (Y,Z,H) satisfies the LF-HTC with respect to a node v, then condition (ii)
ensures that the submatrix ΩY,Z∪{v} of the latent covariance matrix can be written as in
(3.1) and, since |Z|= |H|, the submatrix does not have full column rank. Moreover, condi-
tion (iii) ensures that the matrix on the left-hand side of (3.2) is invertible. The latter claim
will be established by means of an application of the Gessel-Viennot-Lindström Lemma
(Gessel and Viennot, 1985; Lindström, 1973). We now state our main result; its proof is de-
ferred to Section 7. For a directed edge u→ y ∈D we say that y is the head of the edge.

THEOREM 3.7 (LF-HTC-identifiability). Suppose that the triple (Y,Z,H) ∈ 2V \{v} ×
2V \{v} × 2L satisfies the LF-HTC with respect to v ∈ V . If all directed edges u→ y ∈DV

with head y ∈ Z ∪ (Y ∩ htrH(Z ∪ {v})) are rationally identifiable, then all directed edges
in DV with v as a head are rationally identifiable.

This theorem yields the basis for an efficient algorithm that recursively solves for all direct
causal effects corresponding to the edges DV in a latent-factor graph. That is, we recover the
matrix Λ column-by-column. The corresponding algorithm is detailed in Section 5. We refer
to a latent-factor graph GL as LF-HTC-identifiable if all columns of Λ may be recovered
recursively by Theorem 3.7.

EXAMPLE 3.8. The latent-factor graph in Figure 3 (a) is LF-HTC-identifiable. To see
this, we recursively check all nodes v ∈ V = {1,2,3,4,5}. That is, for each v ∈ V we find
a triple (Y,Z,H) that satisfies the LF-HTC such that all nodes in Z ∪ (Y ∩ htrH(Z ∪ {v}))
were already checked successfully to satisfy the LF-HTC in the steps before.
v = 1,2: The triple (Y,Z,H) = (∅,∅,∅) trivially satisfies the LF-HTC since paV (v) = ∅.
v = 4: Let (Y,Z,H) = ({2,3},{1},{h1}). Conditions (i) and (ii) are easily checked and for
condition (iii) consider the system of latent-factor half-treks {3,2← h1→ 1} where 3 corre-
sponds to the trivial trek from 3 to 3. Finally, note that Y ∩htrH(Z∪{v}) = {2,3}∩{4,5} =
∅ and that the node 1 ∈ Z was already checked successfully in the last step.
v = 3: Let (Y,Z,H) = ({2,4},{1},{h1}). Then the system of latent-factor half-treks
{2,4← h1→ 1} satisfies (iii) and Z ∪ (Y ∩ htrH(Z ∪ {v})) = {1,4}.
v = 5: Let (Y,Z,H) = ({2,3,4},{1},{h1}). Then the system of latent-factor half-treks
{3,4,2← h1→ 1} satisfies (iii) and Z ∪ (Y ∩ htrH(Z ∪ {v})) = {1}.

If the observed part (V,DV ) of a latent-factor graph does not contain directed cycles,
then the latent-factor graph is said to be acyclic. Moreover, we say that a latent-factor graph
is bow-free if it does not contain any two observed vertices v,w ∈ V such that there is a
directed edge between v and w and, in addition, there is a latent factor h ∈ L that has directed
edges pointing to both v and w. As a special case of Theorem 3.7 we have the following
straightforward observation.

COROLLARY 3.9. Bow-free acyclic latent-factor graphs are rationally identifiable.

PROOF. Let GL = (V ∪L,D) be a latent-factor graph. It is easy to see that for every node
v ∈ V the triple (Y,Z,H) = (paV (v),∅,∅) satisfies the LF-HTC with respect to v since v and
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paV (v) do not have a common latent parent (i.e., paL(paV (v))∩paL(v) = ∅). The observed
part (V,DV ) is a directed aycylic graph (DAG) and therefore induces at least one topological
ordering ≺ on V , that is, an ordering such that v → w ∈ DV only if v ≺ w. Importantly,
all parents w ∈ paV (v) are predecessors of v with respect to ≺. Thus by Theorem 3.7 we
can determine rational identifiability of all edges in DV in a step-wise manner according to
the ordering ≺ and using the triple (paV (v),∅,∅) for each v ∈ V . We conclude that GL is
LF-HTC-identifiable and hence, in particular, rationally identifiable.

4. Latent Projections. As mentioned in the introduction, previous criteria for rational
identifiability of direct causal effects operate on mixed graphs obtained by a projection. These
projections can be defined for general directed graphs with hidden variables (Maathuis et al.,
2019, Chap. 2 and Pearl, 2009, Chap. 2), but we treat the special case of latent-factor graphs:

DEFINITION 4.1 (Maathuis et al., 2019, Chap. 2). Let GL = (V ∪ L,D) be a latent-
factor graph. Define a new graph starting with the induced subgraph G′ = (V,DV ) and add
edges as follows:

Whenever v← h→w in GL for h ∈L and v,w ∈ V, add v↔w to G′.

The mixed graph G′ = (V,DV ,B) is the latent projection of GL, where B is the collection of
bidirected edges v↔w. They have no orientation, i.e., v↔w ∈B if and only if w↔ v ∈B.

Every mixed graph defines a covariance model. Denote PD(B) ⊆ PD(d) the subcone of
matrices with support B, that is, for Ω = (ωvw) ∈ PD(B) we have ωvw = 0 if v '= w and
v↔w /∈B.

DEFINITION 4.2. The covariance model given by a mixed graph G′ = (V,DV ,B) with
V = |d| is the family of covariance matrices

Σ= (Id −Λ)−#Ω(Id −Λ)−1

obtained from choices of Λ ∈RDV
reg and Ω ∈ PD(B).

For any latent-factor graph, the cone of latent covariance matrices Im(τ) is clearly a subset
of PD(B), the cone of latent covariance matrices of the latent projection. Thus, a covariance
model given by a latent-factor graph is a submodel of the covariance model given by its latent
projection. More details on the at times subtle differences between Im(τ) and PD(B) can be
found in Drton and Yu (2010).

In the remainder of this section, we focus on the predecessor of the LF-HTC that operates
on mixed graphs, namely the original half-trek criterion (HTC) of Foygel, Draisma and Drton
(2012). We say that a mixed graph is HTC-identifiable if it is rationally identifiable by this
criterion.

At first sight, it appears as if the HTC coincides with the version of the LF-HTC obtained
by only allowing H = Z = ∅; compare Def. 4 in Foygel, Draisma and Drton (2012) with
Definition 3.6 here. However, as we will show below there is a subtle difference in the way
systems of half-treks with no sided intersection are defined. Indeed, in the setting of the
LF-HTC two half-treks may also intersect at latent nodes, whereas in the HTC intersections
are only possible at observed nodes. Intuitively, each bidirected edge in a latent projection
can amount to confounding induced by a separate latent variable. Before highlighting this
subtlety, we first exemplify an application of HTC.
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h1

1 2 3 4 5 1 2 3 4 5

(a)

h1

1 2 3 4 5 1 2 3 4 5

(b)

FIG 4. Latent-factor graphs and their latent projection.

EXAMPLE 4.3. Figure 4 shows two latent-factor graphs and their latent projection. Both
latent-factor graphs are LF-HTC-identifiable, cf. Example 3.8. But only the latent projection
in the upper panel (a) is HTC-identifiable while the latent projection in panel (b) is generically
infinite-to-one. The latter is easily seen since the number of model parameters corresponding
to the mixed graph is larger than the dimension

(
d+1
2

)
of the space PD(d), see e.g. Proposition

2 in Foygel, Draisma and Drton (2012).

Comparing the graphs in Figure 4, the latent-factor graphs on the left-hand side assume
that all unobserved confounding is caused by a single latent factor. In contrast, for the latent
projections on the right-hand side, there may be multiple latent factors that are the sources
of confounding represented by bidirected edges. This leads to rational identifiability of the
latent-factor graphs while the projection on the mixed graphs may be generically infinite-to-
one.

Surprisingly, a mixed graph G′ being rationally identifiable does not imply that all latent-
factor graphs GL having G′ as their latent projection are rationally identifiable. Recall that
in the case of rational identifiability of the latent projection there may be a proper algebraic
subset A of the Zariski closure of RDV

reg ×PD(B) such that identification is not possible on A.
If the dimensionality of the cone of latent covariance matrices Im(τ) is strictly smaller than
the dimension of PD(B), it can therefore happen that Θ=RDV

reg × Im(τ)⊆A and the latent-
factor graph is generically infinite-to-one. As an example, the latent projection in Figure
5 is HTC-identifiable while the latent-factor graph itself is generically infinite-to-one. In
this example, dim(Im(τ)) = 11 while dim(PD(B)) = 13. Hence, although the model given
by the graph to the left is still a submodel of the one given by the graph to the right, the
relevant notion of genericity is different, referring to proper subsets of PD(B) and of Im(τ),
respectively.

h1 h2

h3

1 2 3 4 5

(a)

1 2 3 4 5

(b)

FIG 5. Latent-factor graph that is generically infinite-to-one but its latent projection is HTC-identifiable.
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In the experiments in Section 6, we systematically compare LF-HTC-identifiability of
latent-factor graphs with HTC-identifiability applied to the corresponding latent projection.

5. Computation. In this section we propose an efficient algorithm for deciding whether
a latent-factor graph is LF-HTC-identifiable. It is similar to the algorithm of the original
half-trek criterion in Foygel, Draisma and Drton (2012) and makes use of maximum flows in
a special flow graph Gflow = (Vf ,Df ) from a designated source node s⊆ Vf to a target node
t ⊆ Vf . The standard maximum-flow framework is introduced in Cormen et al. (2009). We
highlight that the maximum flow can be computed in polynomial time and the complexity is
O((|Vf |+ r)3) where r≤ |Df |/2 is the number of reciprocal edge pairs in Df . A reciprocal
edge pair is a pair v→w and w→ v for distinct nodes v '=w ∈ Vf .

Let GL be a latent-factor graph, and fix a node v ∈ V . Then we denote by LF-HTC(GL, v)
the decision problem whether there exists a triple (Y,Z,H) ∈ 2V \{v}×2V \{v}×2L satisfying
the LF-HTC for v ∈ V in GL. To solve this problem, we first address a subproblem by
assuming that we are given a fixed set H ⊆ L and a fixed set Z ⊆ ch(H) \ ({v} ∪ paV (v))
such that |Z| = |H|. Since the second part of condition (ii) of the LF-HTC is equivalent to
Y ∩ ch(paL(Z ∪{v})\H) = ∅, the set A= V \ (Z ∪{v}∪ ch(paL(Z ∪{v})\H)) is the set
of “allowed” nodes that may contain a set Y ⊆ A such that (Y,Z,H) satisfies the LF-HTC
with respect to v. We are able to prove the existence or inexistence of such a set Y efficiently
by one maximum flow computation on a suitable flow graph Gflow(v,A,Z) = (Vf ,Df ).

The flow graph is defined as follows: Let V ′ and L′ be copies of the sets V and L. Then
the graph contains the nodes Vf = (A∪L)∪ (V ′ ∪L′)∪ {s, t}, where s is a source node and
t is a sink node. The set of edges Df contains

(a) s→ a for all a ∈A,
(b) a→w if a ∈A and w→ a ∈DLV ,
(c) w→w′ for all w ∈A∪L,
(d) u′→w′ for all u→w ∈DLV and for all u→w ∈DV such that w /∈Z ,
(e) w′→ t for all w ∈ paV (v)∪Z .

We assign to all edges capacity∞. The source node s and the target node t have capacity∞
while all other nodes have capacity 1. Note that, by construction, no flow in Gflow(v,A,Z)
can exceed |paV (v)| + |Z| in size, therefore one may replace the infinite capacities with
|paV (v)|+ |Z| in practice. An example of a flow graph is shown in Figure 6 (b).

h1

1 2 3 4 5

(a)

h1 2 3 5

h′1 1′ 2′ 3′ 4′ 5′

s

t

(b)

FIG 6. Using maximum-flow to find a set Y ⊆ A such that the triple (Y,Z,H) with fixed sets H = {h1} and

Z = {1} satisfies the LF-HTC with respect to v = 4. The set of allowed nodes is A= {2,3,5}. (a) The concerned

latent-factor graph. (b) The corresponding flow graph Gflow(v,A,Z).
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Let MaxFlow(Gflow(v,A,Z)) be the maximum flow from s to t in the graph
Gflow(v,A,Z). The following theorem is proven in Appendix A in the supplement
(Barber et al., 2022).

THEOREM 5.1. Let GL = (V ∪ L,D) be a latent-factor graph, and fix a node v ∈ V , a
set H ⊆ L and a set Z ⊆ ch(H) \ ({v}∪paV (v)) such that |Z|= |H|. For the set of allowed
nodes A= V \ (Z ∪{v}∪ ch(paL(Z∪{v})\H)) we have that MaxFlow(Gflow(v,A,Z)) =
|paV (v)| + |Z| if and only if there exists Y ⊆ A such that the triple (Y,Z,H) satisfies the
LF-HTC for v ∈ V .

For solving LF-HTC(GL, v) we iterate over all suitable sets H ⊆ L and Z ⊆ ch(H) \
({v}∪paV (v)) such that |Z|= |H| and check for each pair (Z,H) if there is a corresponding
set Y ⊆ A. In each iteration, we have to compute one maximum flow by Theorem 5.1. It is
enough to iterate over subsets H ⊆ L≥4 where L≥4 = {h ∈ L : |ch(h)| ≥ 4} contains only
those latent nodes with more than four children. Recall that the children of a node v ∈ V ∪L
are formally defined as ch(v) = {w ∈ V ∪ L : v→ w ∈D}. We prove the following fact in
Appendix A in the supplement.

PROPOSITION 5.2. Let GL = (V ∪L,D) be a latent-factor graph, and fix a node v ∈ V .
If the triple (Y,Z,H) satisfies the LF-HTC for v ∈ V and there is a node h ∈H such that

|ch(h)| ≤ 3, then there are subsets Ỹ ⊆ Y and Z̃ ⊆ Z such that the triple (Ỹ , Z̃, H̃) with

H̃ =H \ {h} satisfies the LF-HTC for v ∈ V as well.

Next, we give an algorithm to determine whether a graph GL is LF-HTC-identifiable by
iterating over all nodes v ∈ V and solving LF-HTC(GL, v) in each step. Moreover, when
solving LF-HTC(GL, v) for a specific node v ∈ V , we have to make sure that, for a possi-
ble solution (Y,Z,H), each node w ∈ Z ∪ (Y ∩ htrH(Z ∪ {v})) was solved before. This
intuition is formalized in Algorithm 1. In Theorem 5.3 we prove that the algorithm correctly
determines LF-HTC-identifiability. Our implementation of Algorithm 1 is included in the R
package SEMID as of version 0.4.0 (R Core Team, 2020; Foygel Barber et al., 2022), which
is available on CRAN, the Comprehensive R Archive Network.

Algorithm 1 Testing LF-HTC-identifiability of a latent-factor graph

Input: Latent-factor graph GL = (V ∪L,D).
Initialize: Solved nodes S← {v ∈ V : paV (v) = ∅}.
1: repeat

2: for v ∈ V \ S do

3: for H ∈L≥4 do

4: Za← (S ∩ ch(H)) \ ({v} ∪ paV (v)).
5: for Z ⊆ Za such that |Z|= |H | do

6: A← V \ (Z ∪ {v} ∪ ch(paL(Z ∪ {v}) \H)∪ (htrH (Z ∪ {v}) \ S)).
7: if MaxFlow(Gflow(v,A,Z)) = |paV (v)|+ |Z| then

8: S← S ∪ {v}
9: break

10: end if

11: end for

12: if v ∈ S then

13: break

14: end if

15: end for

16: end for

17: until S = V or no change has occurred in the last iteration.
18: Output: “yes” if S = V , “no” otherwise.
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THEOREM 5.3. A latent-factor graph GL = (V ∪ L,D) is LF-HTC-identifiable if and
only if Algorithm 1 returns “yes”. If we only allow sets H with |H| ≤ k in line 3, then the
algorithm has complexity at most O(|V |2+k|L|k(|V |+ |L|+ r)3) where r ≤ |DV |/2 is the
number of reciprocal edge pairs in DV .

In Algorithm 1 we iterate over subsets of the power sets of L and V , and we put effort into
iterating over a small subset. Nevertheless, if we allow the cardinality of |H| to be unbounded
in line three, then we search over an exponentially large space and, thus, our algorithm will
in general take exponential time O(2|L|+|V |). In fact, there is a fundamental barrier in finding
a polynomial time algorithm as we are able to show that LF-HTC(GL, v) is an NP-complete
problem.

To see that LF-HTC(GL, v) is NP-complete, first note that LF-HTC(GL, v) is in
the NP-complexity class due to Theorem 5.1. Every candidate triple (Y,Z,H) to solve
LF-HTC(GL, v) can be checked to be a solution in polynomial time by first check-
ing if (Y,Z,H) satisfies conditions (i) and (ii) of the LF-HTC and then checking if
MaxFlow(Gflow(v,Y,Z)) = |paV (v)| + |Z|. Moreover, we are able to show NP-hardness
of LF-HTC(GL, v) by a reduction from the Boolean satisfiability problem in conjunctive
normal form; this result is developed in Appendix B in the supplement (Barber et al., 2022).

6. Numerical Experiments. This section reports on the results of experiments with
small latent-factor graphs, for which the identification problem can be fully solved by tech-
niques from computational algebraic geometry, as we discuss in Appendix C in the sup-
plement (Barber et al., 2022). We study acyclic latent-factor graphs with |V | = 6 observed
nodes.

In the first experimental setup we consider one global latent factor that has an effect on all
observed variables, as illustrated in Figure 7. All possible DAGs on 6 nodes are considered
for the observed part (V,DV ). Table 1 lists the counts when there are |DV | ≤ 9 edges in

h1

FIG 7. Latent structure of unlabeled latent-factor graph with one global latent factor.

nr of obs.
edges |DV | total

generically
finite-to-one

rationally
identifiable

LF-HTC-
identifiable

0 1 1 1 1
1 1 1 1 1
2 4 4 4 4
3 13 13 13 13
4 51 51 51 50
5 163 160 159 134
6 407 401 398 250
7 796 770 747 234
8 1169 1047 956 64
9 1291 896 631 4

Total 3896 3344 2961 755

TABLE 1
Counts of unlabeled DAGs with |V |= 6 observed nodes and one latent node as in Figure 7.
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h1 h2

FIG 8. Latent structure of unlabeled latent-factor graphs with two latent factors.

nr of obs.
edges |DV | total

generically
finite-to-one

rationally
identifiable

LF-HTC-
identifiable

HTC-
identifiable

0 1 1 1 1 1
1 8 6 6 6 4
2 63 45 45 43 24
3 391 255 255 236 104
4 1983 1171 1171 1018 384
5 7570 3907 3898 3028 900
6 21029 9080 8960 5861 1157

Total 31045 14465 14336 10193 2574

TABLE 2
Counts of unlabeled DAGs with |V |= 6 observed nodes and two latent nodes as in Figure 8.

the observed part of the graph. Graphs with |DV |> 9 are trivially generically infinite-to-one
by Corollary 2.7. In the counts in Table 1 we treat graphs as unlabeled, that is, we count
isomorphism classes of graphs. Formally, two latent-factor graphs G= (V ∪L,D) and G′ =
(V ∪ L,D′) with the same set of nodes are isomorphic if there is a permutation π of the
observed nodes V such that for two nodes h ∈ L and v ∈ V the edge h→ v ∈ D if and
only if h→ π(v) ∈ D′ and for two nodes v,w ∈ V the edge v → w ∈ D if and only if
π(v)→ π(w) ∈D′.

In the second setup we consider two latent factors, each of them only having influence on
some of the observed variables. The precise latent structure is illustrated in Figure 8. Since
the number of isomorphism classes is much larger in this case, for computational reasons
we only consider graphs with at most |DV | = 6 edges between observed nodes. Up to this
constraint, the observed part may be any DAG. Table 2 lists the counts for these graphs,
again up to isomorphism. In this setup it is possible that the latent projection is rationally
identifiable. Thus, we compare the LF-HTC with the original HTC applied to the projection
and the results are counted in an additional column.

In the considered setups, we see that the latent factor-criterion is very successful in certi-
fying the graphs to be rationally identifiable as long as the number of observed edges |DV | is
not too large. It misses more graphs the larger the number of observed edges is. Moreover, in
the second setup, the latent-factor half-trek criterion declares about four times more graphs to
be rationally identifiable than the original half-trek criterion applied to the latent projection.

7. Proof of main result. In this section we prove the main theorem.

PROOF OF THEOREM 3.7. Let paV (v) = {p1, . . . , pn}, H ⊆ L with |H| = r, Y =
{y1, . . . , yn+r}, and Z = {z1, . . . , zr} be as in the statement of the theorem. Define matri-
ces A ∈R(n+r)×n,B ∈R(n+r)×r and a vector c ∈Rn+r as follows:

Aij =

{[
(Id −Λ)#Σ

]
yipj

, if yi ∈ htrH(Z ∪ {v}),

Σyipj
, if yi '∈ htrH(Z ∪ {v}),
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and

Bij =

{[
(Id −Λ)#Σ(Id −Λ)

]
yizj

, if yi ∈ htrH(Z ∪ {v}),

[Σ(Id −Λ)]yizj
, if yi '∈ htrH(Z ∪ {v}),

and

ci =

{[
(Id −Λ)#Σ

]
yiv

, if yi ∈ htrH(Z ∪ {v}),

Σyiv, if yi '∈ htrH(Z ∪ {v}).

Claim 1. The matrices A and B and the vector c are all rationally identifiable.

By assumption, all columns of Λ indexed by a vertex in Z ∪ (Y ∩ htrH(Z ∪ {v})) are ratio-
nally identifiable (i.e., rational functions of Σ). Inspecting the above expressions, we observe
that only entries from these columns of Λ appear in the definition of A, B, and c. Hence, A,
B, and c are rationally identifiable, as claimed.

Next, note that there is a set YZ ⊆ Y such that there is a system of latent-factor half-
treks with no sided intersection from YZ to Z . In this system each half-trek takes the form
y ← h→ z for y ∈ Y , z ∈ Z and h ∈ H . Since the system has no sided intersection, it
follows from Proposition 3.4 in Sullivant, Talaska and Draisma (2010) that det(ΩYZ ,Z) '= 0
generically. Thus the matrix ΩY,Z has full column rank r because ΩYZ ,Z is a submatrix.
Using this fact we prove our next claim.

Claim 2. There exists some ψ ∈Rr such that

(
AB

)
·

(
ΛpaV (v),v

ψ

)
= c .

To see this, we will implicitly construct ψ. Let Ωh = Γ#
h Γh for each h ∈ L, and observe that

ΩY,Z∪{v} = (Ωdiag)Y,Z∪{v} +
∑

h∈H

(Ωh)Y,Z∪{v} +
∑

h∈L\H

(Ωh)Y,Z∪{v} .

Since Y ∩ (Z ∪ {v}) = ∅ by definition of the latent-factor half-trek criterion, we have that
(Ωdiag)Y,Z∪{v} = 0. The definition of the latent-factor half-trek criterion yields furthermore
that for any h ∈ L\H , either Y ∩ch(h) = ∅ or (Z∪{v})∩ch(h) = ∅. Hence, (Ωh)Y,Z∪{v} =
0. We obtain that

ΩY,Z∪{v} =
∑

h∈H

(Ωh)Y,Z∪{v} = (ΩH)Y,Z∪{v} ,

where ΩH :=
∑

h∈H Ωh. Note that rank(ΩH)≤ |H|= r. Moreover, (ΩH)V,Z has full column
rank r by assumption (since ΩY,Z is a submatrix of this matrix), which proves that

(7.1) (ΩH)V,Z · ψ = (ΩH)V,v

for some ψ ∈Rr .
Next, consider any index i such that yi ∈ htrH(Z ∪ {v}). Then

[(
AB

)
·

(
ΛpaV (v),v

ψ

)]

i

=
[
(Id −Λ)#Σ

]

yi,paV (v)
·ΛpaV (v),v +

[
(Id −Λ)#Σ(Id −Λ)

]

yi,Z
· ψ

=
[
(Id −Λ)#Σ ·Λ

]

yiv
+ [ΩY,Z · ψ]i(7.2)
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because Λwv = 0 unless w ∈ paV (v) and (Id − Λ)#Σ(Id − Λ) = Ω. Since ΩY,Z∪{v} =
(ΩH)Y,Z∪{v}, it follows from (7.1) that

[ΩY,Z · ψ]i = [ΩY,v]i =Ωyiv.

Hence, we may rewrite (7.2) as
[(
AB

)
·

(
ΛpaV (v),v

ψ

)]

i

=
[
(Id −Λ)#Σ

]

yiv
−
[
(Id −Λ)#Σ(Id −Λ)

]

yiv
+Ωyiv

=
[
(Id −Λ)#Σ

]

yiv
−Ωyiv +Ωyiv

= ci,

by the definition of c.
To conclude the proof of Claim 2, consider any index i such that yi '∈ htrH(Z ∪ {v}). For

any such i, any latent-factor half-trek from a node w ∈Z ∪ {v} to yi must be of the form

w← h→ x1→ · · ·→ xm→ yi

for some h ∈H . This implies that

(7.3)
[
Ω(Id −Λ)−1

]
wyi

=
[
ΩH(Id −Λ)−1

]
wyi

for all w ∈ Z ∪ {v}. Consequently,
[(
AB

)
·

(
ΛpaV (v),v

ψ

)]

i

=Σyi,pa(v) ·ΛpaV (v),v + [Σ(Id −Λ)]yi,Z
· ψ

= [ΣΛ]yiv
+ [Σ(Id −Λ)]yi,Z

· ψ

=Σyiv − [Σ(Id −Λ)]yiv
+ [Σ(Id −Λ)]yi,Z

· ψ

=Σyiv −
[
(Id −Λ)−#Ω

]

yiv
+
[
(Id −Λ)−#Ω

]

yi,Z
· ψ,(7.4)

because Ω= (Id −Λ)#Σ(Id −Λ). Applying first (7.3) and then (7.1), we find that

−
[
(Id −Λ)−#Ω

]

yiv
+
[
(Id −Λ)−#Ω

]

yi,Z
· ψ

=−
[
(Id −Λ)−#ΩH

]

yiv
+
[
(Id −Λ)−#ΩH

]

yi,Z
·ψ

=−
[
(Id −Λ)−#ΩH

]

yiv
+
[
(Id −Λ)−#ΩH

]

yiv
= 0.

Taking up (7.4) and recalling the definition of c, we conclude that
[(

AB
)
·

(
ΛpaV (v),v

ψ

)]

i

=Σyiv = ci.

The theorem is now proven if the equation system exhibited in Claim 2 has a unique
solution generically. This is addressed by our last claim:

Claim 3. The matrix
(
AB

)
is generically invertible.

To prove Claim 3, we will show that if we set some parameters equal to zero, then the con-
sidered matrix is invertible for generic choices of the remaining free parameters, which is
sufficient to show that the matrix will be generically invertible with respect to choices of all
parameters.
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By assumption, the latent-factor graph GL contains a system of latent-factor half-treks
from Y to Z ∪paV (v), where half-treks terminating at any z ∈ Z are of the form yi← h→ z
for some h ∈H . For every z ∈ Z , set ΛpaV (z),z = 0. Furthermore, every node h ∈H appears
in at most one of the latent-factor half-treks in the system. Suppose it appears as yi← h→w.
Then we will define Ωh to have value ωyiw at entries {yi,w}× {yi,w}, and zeros elsewhere.

Consider now a mixed graph Ĝ constructed as follows. Starting with the induced subgraph
Ĝ= (V,DV ), first remove all edges with head in Z . Next, looking at the selected system of
latent-factor half-treks from Y to Z ∪ paV (v) in the latent-factor graph GL, any time we see
a half-trek beginning with yi← h→w, add a bidirected edge yi↔w to Ĝ.

By definition of the new graph Ĝ, the selected system of latent-factor half-treks from Y
to Z ∪ paV (v) in GL has a corresponding system of half-treks in Ĝ. Here, any latent-factor
half-trek that begins with edges yi← h→ w has these two initial two edges replaced by the
bidirected edge yi↔ w. The resulting system of half-treks in Ĝ has no sided intersection.
Let Λ̂ and Ω̂ be the parameter matrices for this graph. Note that (I − Λ̂)∗,Z = I∗,Z because
Λ̂∗,Z = 0 by construction. Therefore, we can write

Bij =

{[
(Id −Λ)#Σ

]
yizj

, if yi ∈ htrH(Z ∪ {v}),

Σyizj , if yi '∈ htrH(Z ∪ {v}).

We now apply Lemma 2 in the original half-trek paper (Foygel, Draisma and Drton, 2012) to
conclude that

(
AB

)
is generically invertible.

8. Discussion. In this work we proposed a graphical criterion that provides an effec-
tive sufficient condition for rational identifiability in linear structural equation models where
latent variables are not projected to correlation among noise terms. To the best of our knowl-
edge, it is the most general graphical criterion to decide identifiability for graphs explicitly
including latent nodes. The new criterion can be checked in time that is polynomial in the size
of the graph if we search only over subsets of latent nodes of bounded size. The restriction of
the search space is necessary since checking the criterion without any restriction is in general
NP-hard.

The criterion applies to a wide range of models and allows for presence of multiple latent
factors that may even have an effect on many or all of the observed variables. The correspond-
ing directed graph is allowed to be cyclic, the only restriction that we made in this work is
that all latent factors are source nodes in the graph.

It is noteworthy that even if a model is not LF-HTC-identifiable, the latent-factor half-
trek method can still prove certain columns of Λ to be identifiable. This is the case if the
recursive procedure of Algorithm 1 stops early declaring some but not all nodes to satisfy the
LF-HTC. In this case, the status of identifiability of the whole graph remains inconclusive
but for the nodes v that the method successfully visits, the parameters ΛpaV (v),v are proven
to be rationally identifiable.

Methods for identifiability of latent-factor graphs are useful also as a refinement of meth-
ods that operate on mixed graphs in the latent projection framework: Imagine a model that is
generically infinite-to-one in the latent projection framework. The main reason for this is of-
ten denser confounding, that is, there is confounding between many of the observed variables.
There is then the natural question whether the model would be (rationally) identifiable if the
confounding originated from a simpler structure, i.e., is caused by only a few latent factors.
Then the LF-HTC may be applicable and may prove a model rationally identifiable. On the
other hand, if a model is rationally identifiable in the latent projection framework, then the
identifiability may be due to the assumption that confounding is caused by multiple different
latent factors. As shown in Figure 5, there may be settings where rational identifiability no
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longer holds when the confounding is in fact caused by fewer factors. Using our method it is
possible to check for such identifiability failures.

We would like to emphasize that the LF-HTC is useful also if the goal is model selection.
One may then be interested in testing the goodness-of-fit of a particular model, a problem for
which it is crucial to know the dimension of the model. The LF-HTC asserting identifiability
also means that the model has the expected dimension obtained from counting parameters.

An interesting research program emerges from the work presented here. Indeed, one may
strive to improve and extend the efficiency of the LF-HTC along similar lines as those that
have been applied in previous work that has led to improvements of the original half-trek
criterion for mixed graphs. In particular, it would be useful to find a latent-factor modifica-
tion of the criterion for edgewise identifiability that allows for identification of a subset or
even single direct causal effects λwv instead of only targeting whole columns ΛpaV (v),v ; com-
pare to Weihs et al. (2017) and references therein. This extension is of interest when effects
between particular variables are the primary targets of investigation, but it may also make
the criterion more powerful as a whole. Another way to extend the scope of the LF-HTC
would be to apply graph decomposition techniques as proposed by Tian (2005); see also
Foygel, Draisma and Drton (2012) and Drton (2018, Section 6).

Furthermore, it would be interesting to generalize the LF-HTC to a version in which we
relax the condition that all latent factors are source nodes in the graph. For example, one
may consider models where latent nodes are only required to be upstream, i.e., there may be
direct causal effects between latent variables but no effects from observed variables to latent
variables. Put differently, in addition to the equation system (1.1) that defines the model, the
vector of latent variables (Lh)h∈L is required to satisfy the equation

L=BTL+ δ

where B is an !× ! matrix with zeros along the diagonal and the noise terms δ = (δh)h∈L are
independent with mean zero and variance 1. The latent covariance matrix is now of the form

Ω=Ωdiag + Γ#(I" −B)−#(I" −B)−1Γ.

Thus the parametrization τ of the cone of latent covariance matrices is rational and depends
on the three parameter matrices (B,Γ,Ωdiag). The question is how to identify effects between
observed variables in this case, or, even more, what can be said in terms of identifying causal
effects between latent variables. Note that such a setting cannot be handled by a mixed graph
approach which marginalizes out the effects of interest. Hence our work sets the scene for
future developments of identifiability between latent variables.

In Lemma 2.5 we gave a simple necessary condition for the parametrization map to be
generically finite-to-one. In future work, we hope to obtain more powerful necessary condi-
tions for generic identifiability in the form of efficient graphical criteria. This will amount to
studying the Jacobian matrix of the parametrization ϕGL , taking into account the algebraic
geometry of the cone of latent covariance matrices.
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SUPPLEMENTARY MATERIAL

Supplement to “Half-Trek Criterion for Identifiability of Latent Variable Models”
The supplement contains additional material such as further elements of proofs, a hardness
result for checking the LF-HTC without a bound on the cardinality of searched sets of latent
variables, and an explanation on how to effectively deploy techniques from computational
algebraic geometry.

REFERENCES

BARBER, R. F., DRTON, M., STURMA, N. and WEIHS, L. (2022). Supplement to “Half-Trek Criterion for
Identifiability of Latent Variable Models”.

BASU, S., POLLACK, R. and ROY, M.-F. (2006). Algorithms in real algebraic geometry, second ed. Algorithms

and Computation in Mathematics 10. Springer-Verlag, Berlin. MR2248869
BENEDETTI, R. and RISLER, J.-J. (1990). Real algebraic and semi-algebraic sets. Actualités Mathématiques.

[Current Mathematical Topics]. Hermann, Paris. MR1070358
BOCHNAK, J., COSTE, M. and ROY, M.-F. (1998). Real algebraic geometry. Ergebnisse der Mathematik und

ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 36. Springer-Verlag, Berlin Translated
from the 1987 French original, Revised by the authors. MR1659509

BOLLEN, K. A. (1989). Structural equations with latent variables. Wiley Series in Probability and Mathemat-

ical Statistics: Applied Probability and Statistics. John Wiley & Sons, Inc., New York A Wiley-Interscience
Publication. MR996025

BOWDEN, R. J. and TURKINGTON, D. A. (1984). Instrumental variables. Econometric Society Monographs in

Quantitative Economics 8. Cambridge University Press, Cambridge. MR798790
BRITO, C. and PEARL, J. (2002). Generalized Instrumental Variables. In Proceedings of the 18th Conference on

Uncertainty in Artificial Intelligence (UAI). UAI’02 85–93. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

BRITO, C. and PEARL, J. (2006). Graphical Condition for Identification in Recursive SEM. In Proceedings of

the 22nd Conference on Uncertainty in Artificial Intelligence (UAI) 47–54. AUAI Press.
CHEN, B., KUMOR, D. and BAREINBOIM, E. (2017). Identification and Model Testing in Linear Structural

Equation Models Using Auxiliary Variables. In Proceedings of the 34th International Conference on Machine

Learning (ICML). ICML’17 757–766. JMLR.
CHEN, B., PEARL, J. and BAREINBOIM, E. (2016). Incorporating Knowledge into Structural Equation Models

Using Auxiliary Variables. In Proceedings of the 25th International Joint Conference on Artificial Intelligence

(IJCAI). IJCAI’16 3577–3583. AAAI Press.
CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L. and STEIN, C. (2009). Introduction to algorithms, Third ed.

MIT Press, Cambridge, MA. MR2572804
COX, D., LITTLE, J. and O’SHEA, D. (2007). Ideals, varieties, and algorithms, third ed. Undergraduate Texts

in Mathematics. Springer, New York An introduction to computational algebraic geometry and commutative
algebra. MR2290010

DRTON, M. (2018). Algebraic problems in structural equation modeling. In The 50th anniversary of Gröbner

bases. Adv. Stud. Pure Math. 77 35–86. Math. Soc. Japan, Tokyo. MR3839705
DRTON, M., STURMFELS, B. and SULLIVANT, S. (2007). Algebraic factor analysis: tetrads, pentads and beyond.

Probab. Theory Related Fields 138 463–493. MR2299716
DRTON, M. and WEIHS, L. (2016). Generic identifiability of linear structural equation models by ancestor de-

composition. Scand. J. Stat. 43 1035–1045. MR3573674
DRTON, M. and YU, J. (2010). On a parametrization of positive semidefinite matrices with zeros. SIAM J. Matrix

Anal. Appl. 31 2665–2680. MR2740626
FOYGEL, R., DRAISMA, J. and DRTON, M. (2012). Half-trek criterion for generic identifiability of linear struc-

tural equation models. Ann. Statist. 40 1682–1713. MR3015040
FOYGEL BARBER, R., DRTON, M., STURMA, N. and WEIHS, L. (2022). SEMID: Identifiability of linear struc-

tural equation models. R package version 0.4.0.
GARCIA-PUENTE, L. D., SPIELVOGEL, S. and SULLIVANT, S. (2010). Identifying Causal Effects with Com-

puter Algebra. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI). AUAI
Press.

GESSEL, I. and VIENNOT, G. (1985). Binomial determinants, paths, and hook length formulae. Adv. in Math. 58

300–321. MR815360
HARTSHORNE, R. (1977). Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New

York-Heidelberg. MR0463157

https://www.ams.org/mathscinet-getitem?mr=2248869
https://www.ams.org/mathscinet-getitem?mr=1070358
https://www.ams.org/mathscinet-getitem?mr=1659509
https://www.ams.org/mathscinet-getitem?mr=996025
https://www.ams.org/mathscinet-getitem?mr=798790
https://www.ams.org/mathscinet-getitem?mr=2572804
https://www.ams.org/mathscinet-getitem?mr=2290010
https://www.ams.org/mathscinet-getitem?mr=3839705
https://www.ams.org/mathscinet-getitem?mr=2299716
https://www.ams.org/mathscinet-getitem?mr=3573674
https://www.ams.org/mathscinet-getitem?mr=2740626
https://www.ams.org/mathscinet-getitem?mr=3015040
https://www.ams.org/mathscinet-getitem?mr=815360
https://www.ams.org/mathscinet-getitem?mr=0463157


IDENTIFIABILITY IN LATENT VARIABLE MODELS 23

KUMOR, D., CHEN, B. and BAREINBOIM, E. (2019). Efficient Identification in Linear Structural Causal Models
with Instrumental Cutsets. In Advances in Neural Information Processing Systems (NeurIPS) 32 12477–12486.
Neural Information Processing Systems Foundation. Curran Associates, Inc.

KUMOR, D., CINELLI, C. and BAREINBOIM, E. (2020). Efficient Identification in Linear Structural Causal
Models with Auxiliary Cutsets. In Proceedings of the 37th International Conference on Machine Learning

(ICML). Proceedings of Machine Learning Research 119 5501–5510. PMLR.
KUROKI, M. and PEARL, J. (2014). Measurement bias and effect restoration in causal inference. Biometrika 101

423–437. MR3215357
LEE, S. and BAREINBOIM, E. (2021). Causal Identification with Matrix Equations. In Advances in Neu-

ral Information Processing Systems (M. RANZATO, A. BEYGELZIMER, Y. DAUPHIN, P. S. LIANG and
J. W. VAUGHAN, eds.) 34 9468–9479. Curran Associates, Inc.

LEUNG, D., DRTON, M. and HARA, H. (2016). Identifiability of directed Gaussian graphical models with one
latent source. Electron. J. Stat. 10 394–422. MR3466188

LINDSTRÖM, B. (1973). On the vector representations of induced matroids. Bull. London Math. Soc. 5 85–90.
MR335313

MAATHUIS, M., DRTON, M., LAURITZEN, S. and WAINWRIGHT, M., eds. (2019). Handbook of graphical

models. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, Boca Raton, FL.
MR3889064

MIAO, W., GENG, Z. and TCHETGEN TCHETGEN, E. J. (2018). Identifying causal effects with proxy variables
of an unmeasured confounder. Biometrika 105 987–993. MR3877879

OKAMOTO, M. (1973). Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist.

1 763–765. MR331643
PEARL, J. (2009). Causality, Second ed. Cambridge University Press, Cambridge Models, reasoning, and infer-

ence. MR2548166
PETERS, J., JANZING, D. and SCHÖLKOPF, B. (2017). Elements of causal inference. Adaptive Computation and

Machine Learning. MIT Press, Cambridge, MA Foundations and learning algorithms. MR3822088
SHAFAREVICH, I. R. (2013). Basic Algebraic Geometry 1, third ed. Springer Berlin Heidelberg Varieties in

projective space. MR3100243
SPIRTES, P., GLYMOUR, C. and SCHEINES, R. (2000). Causation, prediction, and search, second ed. Adaptive

Computation and Machine Learning. MIT Press, Cambridge, MA With additional material by David Hecker-
man, Christopher Meek, Gregory F. Cooper and Thomas Richardson, A Bradford Book. MR1815675

STANGHELLINI, E. and WERMUTH, N. (2005). On the identification of path analysis models with one hidden
variable. Biometrika 92 337–350. MR2201363

SULLIVANT, S., TALASKA, K. and DRAISMA, J. (2010). Trek separation for Gaussian graphical models. Ann.

Statist. 38 1665–1685. MR2662356
R CORE TEAM (2020). R: A Language and Environment for Statistical Computing R Foundation for Statistical

Computing, Vienna, Austria.
TIAN, J. (2005). Identifying Direct Causal Effects in Linear Models. In Proceedings of the 20th National Con-

ference on Artificial Intelligence (AAAI). AAAI’05 346–352. Association for the Advancement of Artificial
Intelligence. AAAI Press.

TIAN, J. (2009). Parameter Identification in a Class of Linear Structural Equation Models. In Proceedings of the

21st International Joint Conference on Artificial Intelligence (IJCAI). IJCAI’09 1970–1975. AAAI Press.
VAN DER ZANDER, B., TEXTOR, J. and LISKIEWICZ, M. (2015). Efficiently Finding Conditional Instruments

for Causal Inference. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJ-

CAI). IJCAI’15 3243–3249. AAAI Press.
WEIHS, L., ROBINSON, B., DUFRESNE, E., KENKEL, J., KUBJAS REGINALD MCGEE II, K., REGI-

NALD, M. I., NGUYEN, N., ROBEVA, E. and DRTON, M. (2017). Determinantal Generalizations of Instru-
mental Variables. J. Causal Inference 6.

https://www.ams.org/mathscinet-getitem?mr=3215357
https://www.ams.org/mathscinet-getitem?mr=3466188
https://www.ams.org/mathscinet-getitem?mr=335313
https://www.ams.org/mathscinet-getitem?mr=3889064
https://www.ams.org/mathscinet-getitem?mr=3877879
https://www.ams.org/mathscinet-getitem?mr=331643
https://www.ams.org/mathscinet-getitem?mr=2548166
https://www.ams.org/mathscinet-getitem?mr=3822088
https://www.ams.org/mathscinet-getitem?mr=3100243
https://www.ams.org/mathscinet-getitem?mr=1815675
https://www.ams.org/mathscinet-getitem?mr=2201363
https://www.ams.org/mathscinet-getitem?mr=2662356


ar
X

iv
:2

20
1.

04
45

7v
2 

 [m
at

h.
ST

]  
12

 A
ug

 2
02

2
Submitted to the Annals of Statistics

SUPPLEMENT TO “HALF-TREK CRITERION FOR IDENTIFIABILITY OF
LATENT VARIABLE MODELS”

BY RINA FOYGEL BARBER1, MATHIAS DRTON2,*, NILS STURMA2,† AND LUCA WEIHS3

1Department of Statistics, University of Chicago, rina@uchicago.edu

2Department of Mathematics and Munich Data Science Institute, Technical University of Munich, *mathias.drton@tum.de;
†nils.sturma@tum.de

3Allen Institute for AI, lucaw@allenai.org

This supplement contains additional material such as further elements of

proofs (Appendix A), a hardness result for checking the LF-HTC without a

bound on the cardinality of searched sets of latent variables (Appendix B),

and an explanation on how to effectively deploy techniques from computa-

tional algebraic geometry (Appendix C).

APPENDIX A: PROOFS

PROOF OF LEMMA 2.5. Throughout the proof we let p= dim(S). Since f is rational, it
is a semialgebraic mapping according to Definition 2.2.5 in Bochnak, Coste and Roy (1998).
Images and preimages of semialgebraic sets under semialgebraic mappings are again semial-
gebraic. Hence, the image f(S) is a semialgebraic set. The rest of the proof is an application
of Hardt’s triviality theorem (Basu, Pollack and Roy, 2006, Theorem 5.45) which states that
there exists a finite partition of f(S) into semialgebraic sets f(S) =

⋃r
i=1 Ti such that for

each i and for each y ∈ Ti the product Ti × f−1(y) is semialgebraically homeomorphic to
f−1(Ti). In particular, we have for all y ∈ Ti the equality

(A.1) dim(f−1(y)) = dim(f−1(Ti))− dim(Ti).

Now suppose that k = dim(f(S))< p. Observe that S =
⋃r

i=1 f
−1(Ti) is a finite union of

semi-algebraic sets. We write C for the union of all preimages f−1(Ti) of dimension strictly
less than p. Then for all x ∈ S \C we have by Equation (A.1)

dim(f−1(f(x)))≥ dim(S)− dim(f(S)) = p− k > 0,

which means that for all x ∈ S \ C the fiber f−1(f(x)) is a semialgebraic subset of S
with positive dimension, i.e., it contains infinitely many elements (cf. Theorem 5.19 in
Basu, Pollack and Roy (2006)). Moreover, the Zariski closure S is equal to the union of
Zariski closures S \C ∪C . By Proposition 2.8.5 in Bochnak, Coste and Roy (1998) the di-
mension of C is strictly less than p, i.e., S &= C . Since S is irreducible, it must be the case
S = S \C . Thus there is no proper algebraic subset of S that contains S \C and we conclude
that f is generically infinite-to-one.

For the other direction, suppose that k = dim(f(S)) = p. Let I = {i ∈ {1, . . . , r} :
dim(Ti) < p} and B =

⋃
i∈I Ti. Then the Zariski closure B in Rn has dimension strictly

smaller than p. Applying Equation (A.1) we get for all y ∈ f(S) \B that

dim(f−1(y))≤ dim(S)− p= p− p= 0.
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Therefore, for all x ∈ S \ f−1(B) the fiber f−1(f(x)) is a zero-dimensional and thus finite
semialgebraic set (compare Theorem 5.19 in Basu, Pollack and Roy (2006) again). To finish
the proof it remains to show that the Zariski closure of f−1(B) is a proper subset of S. As
S is assumed to be irreducible, it suffices to argue that S contains a point outside the Zariski
closure of f−1(B). Using that f is rational, we see that the preimage f−1(B) is an algebraic
subset of S. Since dim(B) < p, the set f(S) \B is nonempty and therefore S \ f−1(B) is
nonempty as well. Now observe that the points in S \f−1(B) are not contained in the Zariski
closure of f−1(B). We conclude that f is generically finite-to-one.

PROOF OF THEOREM 5.1. The proof is similar to the proof of Theorem 6 in
Foygel, Draisma and Drton (2012a). If (Y,Z,H) ∈ 2V \{v} × 2V \{v} × 2L satisfies the LF-
HTC with respect to v, then we have a system Π of latent-factor half-treks from Y to
paV (v) ∪ Z with no sided intersection such that for each z ∈ Z , the half-trek terminating
at z takes the form y← h→ z for some y ∈ Y and some h ∈H .

For each latent-factor half-trek πk ∈Π of the form

πk : yk← hk→wk→ · · ·→ k, k ∈ paV (v)∪Z,

add a flow of size 1 along the path

π̃k : s→ yk→ hk→ h′k→w′
k→ · · ·→ k′→ t

in the flow graph Gflow. Similarly, for each latent-factor half-trek πk ∈Π of the form

πk : yk→wk→ · · ·→ k, k ∈ paV (v) ∪Z,

add a flow of size 1 along the path

π̃k : s→ yk→ y′k→w′
k→ · · ·→ k′→ t

in the flow graph Gflow. Let Π̃= {π̃k : k ∈ paV (v) ∪Z} be the system of directed paths that
we obtain in the flow graph Gflow. Clearly, the total flow size from s to t in the flow graph is
|paV (v)|+ |Z|. It is left to check that no capacity constraint is exceeded. This is trivial for the
infinite edge capacities as well as for the infinite capacities of the nodes s and t. For all other

nodes that appear in some of the paths of the system Π̃, note that they appear exactly once in
the system since the original system of latent-factor half-treks Π has no sided intersection.

Now suppose MaxFlow(Gflow(v,A,Z)) = |paV (v)|+ |Z|. By the properties of the max-
flow problem with integer-valued capacities (Ford and Fulkerson, 1962), this means that there
are |paV (v)| + |Z| directed paths from s to t with flow size 1 along each path. We denote

the collection of these paths by Π̃= {π̃k : k ∈ paV (v) ∪ Z}, recall that by assumption Z ∩
paV (v) = ∅. Since all nodes in the flow graph that are not equal to s or t have capacity 1,

each node different from s and t can appear at most once in the system of paths Π̃. Consider

a specific path π̃k ∈ Π̃. By construction of the graph Gflow, it has one of two forms. First, we
may have

π̃k : s→ yk→ hk→ h′k→w′
k→ · · ·→ k′→ t

with yk ∈A, k ∈ paV (v) ∪Z and hk ∈L. This defines the latent-factor half-trek

πk : yk← hk→wk→ · · ·→ k

in GL. The other possibility is that the path has the form

π̃k : s→ yk→ y′k→w′
k→ · · ·→ k′→ t

with yk ∈A and k ∈ paV (v) ∪Z . This defines the latent-factor half-trek

πk : yk→wk→ · · ·→ k
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in GL. In this way, we obtain a system of latent-factor half-treks Π= {πk : k ∈ paV (v)∪Z}
in GL. Because each node other than s or t appears at most once in the system Π̃ in Gflow,
the constructed system Π has no sided intersection. Furthermore, if k ∈ Z , we have that
wk = k in the latent-factor half-trek πk since by construction the flow graph Gflow(v,A,Z)
does not contain the edge w′ → z′ if w ∈ Z . Moreover, if k ∈ Z , it must be the case that
hk ∈H . Indeed, if we have hk /∈H , then yk ∈ ch(paL(Z ∪ {v}) \H) which is impossible
by assumption since yk ∈ A. Thus, Π is a system of latent-factor half-treks with no sided
intersection from Y = {yk : k ∈ paV (v)∪Z} to Z ∪paV (v) in GL, such that for each z ∈ Z ,
the half-trek terminating at z takes the form y← h→ z for some y ∈ Y and some h ∈H .
Finally, note that for the triple (Y,Z,H) conditions (i) and (ii) of the LF-HTC are trivially
satisfied by construction and the fact that Y ⊆A.

PROOF OF PROPOSITION 5.2. Suppose the triple (Y,Z,H) satisfies the LF-HTC for
v ∈ V in GL. Recall that there exists a system of latent-factor half-treks Π with no sided
intersection from Y to paV (v) ∪ Z such that, for each z ∈ Z , the half-trek terminating at z
takes the form y← h→ z for some y ∈ Y and some h ∈H . Since |Z|= |H|, it is clearly not
possible that there is a node h ∈H such that |ch(h)|= 1.

Now let h ∈ H such that |ch(h)| ∈ {2,3}. Then there is a unique latent-factor half-trek

in Π that has the form y← h→ z for some y ∈ Y and some z ∈ Z . Let Ỹ = Y \ {y} and

Z̃ = Z \ {z}. It is clear that the triple (Ỹ , Z̃, H̃) satisfies conditions (i) and (iii) of the LF-

HTC and Ỹ ∩ (Z̃ ∪ {v}) = ∅. Thus it is left to show that h &∈ paL(Ỹ )∩ paL(Z̃ ∪ {v}).
If |ch(h)| = 2, there are no more children of h other than y and z. Thus, we directly see

that h &∈ paL(Ỹ )∩paL(Z̃ ∪{v}). If |ch(h)|= 3, there might be one child w ∈ ch(h)\{y, z}.

But then due to Ỹ ∩ (Z̃ ∪ {v}) = ∅, this node w cannot be in both sets Ỹ and Z̃ ∪ {v} at

the same time. Thus h &∈ paL(Ỹ ) ∩ paL(Z̃ ∪ {v}) as well. We conclude that condition (ii)

of the LF-HTC is satisfied by the triple (Ỹ , Z̃, H̃) and therefore it satisfies the LF-HTC for
v ∈ V .

PROOF OF THEOREM 5.3. The proof works in the same way as the proof of Theorem 7 in
Foygel, Draisma and Drton (2012a). We start by analyzing the complexity of the algorithm.

Observe that we run the “inner” algorithm (line 3 to 15) at most |V |2 times. This can be
seen by counting the maximal number of repetitions in line 1. Another repetition is only done
if a node was added to S in the repetition before, otherwise the algorithm terminates. Thus
after |V | repetitions of line 1 either all nodes were added to S or the algorithm terminated
before. By investigating line 2 we see that in every pass we also iterate over at most |V | nodes
which yields the maximal number of |V |2 runs of the inner algorithm.

In the inner algorithm itself we iterate first through all sets H ⊆ L≥4 ⊆L with cardinality
at most k. The number of subsets of L with cardinality at most k is

k∑

i=0

(
|L≥4|

i

)
=O(|L|k).

In line 5 we then iterate over all Z ⊆ Za ⊆ V with |Z|= |H|. Similarly as before, we see that
in the worst case these are O(|V |k) iterations. Hence, we compute at most O(|V |2|L|k|V |k)
maximum flows on a graph with at most 2(|V |+ |L|) + 2 nodes and 4|V |+ |L|+ |D| edges
and the same number r of reciprocal edge pairs as in DV . By Cormen et al. (2009, Section
26) each maximum flow computation has complexity at most O((|V |+ |L|+ r)3). Finally,
note that the sets htrH(U) for a subset U ⊆ V can be found using breadth first search which
has complexity O(|V |+ |L|+ |D|) by Cormen et al. (2009, Section 22.2). Finding parents
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and children of nodes is not of higher complexity. Since |D| ≤ |V |2, we conclude that the
total complexity is O(|V |2+k|L|k(|V |+ |L|+ r)3).

Next we show that the algorithm indeed determines LF-HTC-identifiability. Suppose that
GL is LF-HTC-identifiable. Then by Theorem 3.7 there is a total ordering ≺ on V such that
w ≺ v whenever w ∈Zv ∪ (Yv ∩ htrHv

(Zv ∪ {v})) where (Yv,Zv,Hv) ∈ 2V \{v}× 2V \{v}×
2L is a triple satisfying the LF-HTC with respect to v. Hence, if GL is LF-HTC-identifiable,
we might label the elements {v1, . . . , vd}= V such that v1 ≺ v2 ≺ · · ·≺ vd.

Now we claim that after at most k + 1 passes through the for loop in line 2, all nodes vi,
i≺ k, have already been added to the solved nodes S. We prove this by induction. Suppose
that all nodes v1, . . . , vk−1 ∈ S and we are now testing the k-th node vk . Let (Yvk ,Zvk ,Hvk)
be the triple satisfying the LF-HTC with respect to vk . At one point, we will visit the correct
set Hvk ∈ L≥4 in line 3 due to Proposition 5.2. If z ∈ Zvk , then z ≺ vk and therefore z ∈ S
already. Additionally, z ∈ ch(Hvk) and z &∈ {vk} ∪ paV (vk) by definition of the LF-HTC.
Thus, we will visit the correct set Zvk ⊆ Za in line 5. Now take any y ∈ Yvk . By definition
of the LF-HTC, we have that y &∈ Zvk ∪ {vk} ∪ ch(pa(Zzk ∪ {vk}) \ Hvk). Moreover, if
y ∈ htrHvk

(Zvk ∪ {vk}), then y ≺ vk and thus y ∈ S, which means y ∈ A. If instead y &∈
htrHvk

(Zvk ∪ {vk}), then y ∈A by definition of A. Therefore, Yvk ⊆A and by Theorem 5.1
we will add vk to S. By induction, we obtain that S = V after at most |V | repetitions of line
2 to 16.

Conversely, suppose the algorithm finds S = V , and fix a node v ∈ V . It remains to show
that there is a triple (Yv,Zv,Hv) ∈ 2V \{v} × 2V \{v} × 2L such that all nodes w ∈ Zv ∪ (Yv ∩
htrHv

(Zv ∪ {v})) were added to S in the steps before. When v was added to S, there must
have been sets Hv ⊆ L≥4 and Zv ⊆ (S ∩ ch(Hv)) \ ({v} ∪ paV (v)) with |Z| = |H| such
that MaxFlow(Gflow(v,A,Zv)) = |paV (v)| + |Zv |. By Theorem 5.1, this means that there
is a set Yv ⊆ A such that the triple (Yv,Zv,Hv) satisfies the LF-HTC with respect to v. By
construction, Zv ⊆ S at this stage of the algorithm. Moreover, we have for all w ∈ A that
either w ∈ S already or w &∈ htrHv

(Zv ∪ {v}). Thus, we have as well that Yv ∩ htrHv
(Zv ∪

{v})⊆ S at this stage of the algorithm. Applying this reasoning to all v ∈ V , we see that GL

is LF-HTC-identifiable.

APPENDIX B: NP-HARDNESS OF THE LF-HTC

In this section we show that the task of deciding LF-HTC(GL, v) for unrestricted graphs
is NP-hard. That is, it is at least as hard as the hardest problems in the NP-complexity class.
Formally, we have to show that every problem in NP is reducible to LF-HTC(GL, v) in
polynomial time. Fortunately, it is enough to show that one arbitrary problem that is known to
be NP-hard is reducible to LF-HTC(GL, v) in polynomial time. For this purpose, we choose
the Boolean satisfiability problem in conjunctive normal form (CNFSAT). This is the problem
of determining whether a Boolean expression in conjunctive normal form is satisfiable. That
is, suppose we have Boolean variables {x1, . . . , xn}, and let

C =C1 ∧ · · ·∧CM = ("11 ∨ · · ·∨ l
1
m1

)∧ · · ·∧ ("M1 ∨ · · ·∨ l
M
mM

)

where "ij ∈ {x1, . . . , xn,¬x1, . . . ,¬xn} for all 1 ≤ i ≤ M and 1 ≤ j ≤ mi. We call
the elements of {x1, . . . , xn,¬x1, . . . ,¬xn} literals and ¬xi the negation of xi. Then
CNFSAT({x1, . . . , xn},C) is the problem of determining if there exist assignments of True
and False to each xi such that, under this assignment, C is True, i.e., satisfied.

THEOREM B.1. There exists a polynomial time reduction from CNFSAT to
LF-HTC(GL, v) so that LF-HTC(GL, v) is NP-hard.
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FIG 1. The graph GL corresponding to the CNFSAT problem with Boolean expression C = (x1 ∨¬x1)∧ (x1 ∨
x2) ∧ (¬x1 ∨ x2). To not clutter the graph, a red bidirected edge (dashed) corresponds to a latent factor that

has only arrows pointing to the two endpoints of the edge, e.g. the red bidirected edge w1↔ v corresponds to

w1← hw1v→ v.

PROOF. To see that there is a polynomial time reduction from CNFSAT to
LF-HTC(GL, v), let X = {x1, . . . , xn} and let C be as above. We now construct a latent-
factor graph GL and show that solving LF-HTC(GL, v) in GL solves CNFSAT(X,C). Our
construction initializes GL = (V ∪L,D) to be empty. In the following when we add nodes to
GL they will implicitly be added to V unless they are labeled h∗ for some index ∗, in which
case they are to be added to L.

Begin by adding to the graph the nodes v,w1, . . . ,wM , hw1v, . . . , hwmv , the edges wi→ v,
and the edges wi← hwiv→ v for all 1≤ i≤M . The wi will correspond to the M disjunctive
clauses in C . Now for the ith Boolean variable xi, let Ai be the number of times xi (in non-
negated form) appears in C , and let Bi be the number of times ¬xi appears in C . Then add
to the graph

(i) the nodes ui1, . . . , uiAi
, ui1, . . . , uiBi

, ui, ui, hi, hi, and qi,
(ii) uij → wk if the j-th appearance, from the left, of xi (in non-negated form) in C occurs

in the k-th disjunctive clause of C ,
(iii) uij→wk if the j-th appearance, from the left, of ¬xi in C occurs in the k-th disjunctive

clause of C ,
(iv) hi→ a for each a ∈ {ui1, . . . , uiAi

, ui, qi, v},
(v) hi→ a for each a ∈ {ui1, . . . , uiBi

, ui, qi, v},
(vi) a node hab = hba and edges a ← hab → b for each pair of variables a, b ∈

{ui, ui1, . . . , uiAi
}, and

(vii) a node hab = hba and edges a ← hab → b for each pair of variables a, b ∈
{ui, ui1, . . . , uiBi

}.

An example of a graph GL corresponding to a Boolean expression can be found in Figure
1. Now that we have constructed GL we claim that every triple (Y,Z,H) satisfying the
LF-HTC for v ∈ V in GL corresponds to an assignment to X such that C is satisfied under
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this assignment and vice versa.

We will now start with the more complicated direction. Suppose that there is a triple
(Y,Z,H) satisfying the LF-HTC for v in GL. That is, there exists a latent-factor half-trek
system Π from Y to Z ∪ paV (v) satisfying the appropriate LF-HTC conditions.

Claim 1: No wi is an element of Y .

Suppose for contradiction that some wi ∈ Y . Since there exists a node hwiv whose only
edges are wi ← hwiv → v, condition (ii) of the LF-HTC implies that hwiv must be in H .
But then condition (iii) implies that there must be some z ∈ ch(hwiv) ∩ Z for which the
latent-factor half-trek y← hwiv→ z is in Π. By ch(hwiv) = {wi, v} we have a contradiction
since if z = v we would have v ∈ Z , and if z = wi we have that wi ∈ Y ∩ Z so that
Y ∩Z &= ∅. Hence there is no wi ∈ Y .

Claim 2: If Y ∩ {ui, ui1, . . . , uiAi
} &= ∅, then Y ∩ {ui, ui1, . . . , uiBi

}= ∅.

Suppose that u ∈ Y ∩ {ui, ui1, . . . , uiAi
}. Since ch(hi) = {v,ui, qi, ui1, . . . , uiAi

}, it fol-
lows from condition (ii) of the LF-HTC that hi ∈H . Hence, by condition (iii), it must be the
case that there is some y, z ∈ {qi, ui, ui1, . . . , uiAi

} with y &= z such y ∈ Y and z ∈ Z and the
latent-factor half-trek y← hi→ z ∈Π. There are two cases.

Case 1: z &= qi. We must have that z ∈ {ui, ui1, . . . , uiAi
} \ {u}. Recall, in this case, that

there exists huz whose only children are u and z. By a similar argument as in claim 1, it
follows that u← huz → z must also be in Π which contradicts the fact that Π must have
no sided intersection (since z is already in the right-hand side of the latent-factor half-trek
u← hi→ z).

Case 2: z = qi. In this case we must have that the latent-factor half-trek y← hi→ qi ∈Π
for some y ∈ {ui, ui1, . . . , uiAi

}. Now, for essentially identical reasons as above, if we have
u ∈ Y ∩{ui, ui1, . . . , uiBi

}, there is some y ∈ {ui, ui1, . . . , uiBi
}\{u} such that y← hyqi→

qi is in Π. This contradicts the fact that Π has no sided intersection (since qi is in the right
part of two latent-factor half-treks) and thus we must have that Y ∩ {ui, ui1, . . . , uiBi

}= ∅.
Since the first case results in a contradiction we must be in the second case with

Y ∩ {ui, ui1, . . . , uiBi
}= ∅.

Claim 3: If Y ∩ {ui, ui1, . . . , uiBi
} &= ∅, then Y ∩ {ui, ui1, . . . , uiAi

}= ∅.

The claim follows by symmetry from claim 2.

We can now show that our given triple (Y,Z,H) satisfying the LF-HTC for v ∈ V in GL

corresponds to an assignment to X such that C is satisfied under this assignment. For each
1 ≤ i ≤M , assign xi to be True if Y ∩ {ui, ui1, . . . , uiAi

} &= ∅ and False otherwise.
To see that this satisfies C consider the i-th disjunctive clause Ci = ("i1 ∨ · · · ∨ limi

) of
C . Since (Y,Z,H) satisfies the LF-HTC for v, there must exist some y ∈ Y such that
there is a latent-factor half-trek from y to wi in Π. By claim 1 and the proof of claim
2, we must have that y ∈ {uj , uj1, . . . , ujAj

} or y ∈ {uj , uj1, . . . , ujBj
} for some j.

Suppose that y ∈ {uj , uj1, . . . , ujAj
}. Then, since there must be a half-trek from y to wi,

we have, by the construction of GL that xj appears (in non-negated form) in Ci. Since
{uj , uj1, . . . , ujAj

} ∩ Y &= ∅, we must have set xj to be True and thus Ci is satisfied. If
instead y ∈ {uj , uj1, . . . , ujBj

}, it follows, by the same logic, that ¬xj must appear in Ci

and that we set xj to be False, so again Cj is satisfied. As j was arbitrary, C is satisfied by
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the assignment.

Now we wish to show the opposite direction, namely, that if there is an assignment to
X such that C is satisfied under this assignment, then there must also be a set (Y,Z,H)
satisfying the LF-HTC for v. Suppose we have assigned True and False to the xi, so that
C is satisfied. Let 1≤ i≤M . For the ith disjunctive clause Ci in C , let lk be the first literal in
the clause, which evaluates to True (there must be at least one such literal since C = True

implies Ci = True). Now lk must equal xj or ¬xj for some j. Suppose that lk = xj . Then
there exists a unique 1 ≤ "≤ Aj such that edge uj!→ wi is in the graph. If lk = ¬xj then,
similarly, there exists a unique 1 ≤ " ≤ Bj such that there exists an edge uj!→ wi in the
graph. In either case, denote uj! or uj! as yi.

Now for M + 1 ≤ i ≤M + n, let yi = ui if xi is True, and yu = ui otherwise. Let
Z = {q1, . . . , qn}, L= {h̃1, . . . , h̃n} where h̃i = hi if xi = True and h̃i = hi if otherwise,
and Y = {y1, . . . , yM+n}. By our construction, it holds that

(i) |Y |= |paV (v)|+ |H|,
(ii) Y ∩ (Z ∪ {v}) = ∅ and if y ∈ Y and v (or z ∈ Z) are children of the same latent factor,

then that latent factor is some hi for which xi = True or some hi for which xi = False,
and

(iii) the set of latent-factor half-treks Π with elements

yi→wi for 1≤ i≤M,

yM+i← hi→ zi = qi for 1≤ i≤ n if xi is True, and

yM+i← hi→ zi = qi for 1≤ i≤ n if xi is False

forms a latent-factor half-trek system from Y to paV (v) ∪ Z for which the half-trek to
each zi is of the form yM+i ← h̃i → zi and if yi has a common latent parent with v
(or z ∈ Z) then the latent parent must correspond to some h̃j ∈ H and we have that
yM+j← hj → qj ∈Π.

Note that the above three conditions immediately imply that (Y,Z,H) satisfies the LF-
HTC for v. We have thus shown that CNFSAT reduces to LF-HTC(GL, v) in polynomial
time.

APPENDIX C: ALGEBRAIC TECHNIQUES FOR DETERMINING IDENTIFIABILITY

As discussed in Garcia-Puente, Spielvogel and Sullivant (2010), rational identifiability
may be decided by techniques from computational algebraic geometry. For the original half-
trek criterion, Foygel, Draisma and Drton (2012a) provide an effective algorithm to perform
the necessary computations. In this section we show how their approach may be generalized
to cover the latent-factor setup from this paper.

Consider a slightly more general setting than before, i.e., let S ⊆ Rm be an open semial-
gebraic set, and let

τ : S −→ PD(d)

∆ 1−→ τ(∆)

be a polynomial map that parametrizes the cone of latent covariance matrices Im(τ). Together
with a directed graph on the observed nodes GV = (V,DV ) with V = |d|, the cone of latent
covariance matrices Im(τ) postulates a covariance model.
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DEFINITION C.1. The covariance model given by a tuple (GV , Im(τ)), consisting of a
directed graph GV = (V,DV ) with V = |d| and a cone of latent covariance matrices Im(τ),
is given by the family of all covariance matrices

Σ= (Id −Λ)−&Ω(Id −Λ)−1

for Λ ∈RDV
reg and Ω ∈ Im(τ).

A covariance matrix Σ ∈ PD(d) is in the covariance model given by a tuple (GV , Im(τ))
if and only if Σ= ϕ(Λ, τ(∆)) for Λ ∈ RDV

reg and ∆ ∈ S where the parametrization map ϕ is
given by

ϕ :RDV

reg × PD(d)−→ PD(d)

(Λ,Ω) 1−→ (Id −Λ)−&Ω(Id −Λ)−1.

If we let S =RDLV × diag+d and τ : (Γ,Ωdiag) 1→ Ωdiag + Γ&Γ, then Definition C.1 coin-
cides with Definition 2.1 of a covariance model given by a latent-factor graph.

In what follows, let λ= {λij : i→ j ∈DV } be variables representing the non-zero entries
of Λ ∈ RDV

reg , and let ω = {ωij : 1 ≤ i ≤ j ≤ d} be variables representing the entries of Ω ∈
PD(d). Let d(λ) ∈R[λ] be the polynomial defined by det(Id−Λ) for Λ ∈RDV . Now observe
that, for (Λ,Ω) ∈ RDV

reg × PD(d), we may write the ij-th entry of the matrix ϕ(Λ,Ω) as a
rational function

ϕij(Λ,Ω) =
ϕ̃ij(λ,ω)

d(λ)2

with ϕ̃ij(λ,ω) ∈ R[λ,ω] due to Cramer’s rule. Furthermore, we write σ = {σij : 1 ≤ i ≤
j ≤ d} and δ = {δi : i = 1, . . . ,m} for variables representing the entries of Σ ∈ PD(d) and
∆ ∈ S, respectively. Consider the polynomial ring R[λ,σ, δ, ξ] with one additional variable
ξ. Then the vanishing ideal of the graph of the parametrization in Definition C.1 is given by

J = 〈{σijd(λ)
2 − ϕ̃ij(λ, τ(δ)),1≤ i≤ j ≤ d} ∪ {ξd(λ)− 1}〉 ⊆R[λ,σ, δ, ξ].

The additional variable ξ and the polynomial ξd(λ)− 1 are needed to ensure that d(λ) never
vanishes. Eliminating the variables λ, δ and ξ, we get the vanishing ideal of the image of
Θ=RDV

reg × Im(τ) under the parametrization ϕ, in formulas,

I(ϕ(Θ)) = J ∩R[σ].

Nevertheless, for the purpose of identifying direct causal effects, we are interested in an ideal
where λ is not eliminated, i.e., we are interested in

I = J ∩R[λ,σ].

By definition, this ideal consists exactly of those polynomials f(λ,σ) ∈ R[λ,σ] such that
f(Λ,ϕ(Λ,Ω)) = 0 for all (Λ,Ω) ∈Θ.

PROPOSITION C.2. The parameter λij is rationally identifiable if and only if I contains
an element of the form a(σ)λij − b(σ) with a, b ∈R[σ] and a &∈ I(ϕ(Θ)).

PROOF. The proof is similar to the proofs of Lemma 7 in Foygel, Draisma and Drton
(2012b) and Proposition 3 in Garcia-Puente, Spielvogel and Sullivant (2010). For complete-
ness, we give the full proof in our notation. Suppose that the parameter λij is rationally
identifiable. By definition, there is a rational function b(σ)/a(σ) ∈R(σ) such that

b(ϕ(Λ,Ω))

a(ϕ(Λ,Ω))
= λij .
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for all (Λ,Ω) ∈ Θ \A, where A is a proper algebraic subset of the Zariski closure of Θ. In
particular, outside A we must have that a(ϕ(Λ,Ω)) &= 0 and therefore it must be the case that
a &∈ I(ϕ(Θ)). On the other hand, it is clear that the polynomial a(σ)λij − b(σ) is a member
of I since this polynomial vanishes if we substitute σ by ϕ(Λ,Ω) for any (Λ,Ω) ∈Θ \A.

Conversely, suppose that a and b satisfy the given conditions. Since a &∈ I(ϕ(Θ)), we have
a(ϕ(Λ,Ω)) &= 0 for all (Λ,Ω) ∈ Θ \ A, where A is a proper algebraic subset of the Zariski
closure of Θ. But then b/a is a rational function identifying λij from σ outside the proper
algebraic subset A.

For checking rational identifiability one has to check the membership of polynomi-
als of the form a(σ)λij − b(σ) in the ideal I . This can be achieved by computation
of a Gröbner basis of I with eliminating term order using Buchberger’s algorithm; see
Garcia-Puente, Spielvogel and Sullivant (2010). The Gröbner basis computation can be very
challenging in terms of running times, even for small graphs. One reason is that the input
polynomials to the computation ϕ̃ij(λ, τ(δ)),1 ≤ i≤ j ≤ n, may already have large degree.
As mentioned in Foygel, Draisma and Drton (2012b), it is easy to construct graphs where the
bit-size of those polynomials is already exponential in the size of the graphs. By Definition
C.1, we have the equation Σ = (Id − Λ)−&τ(∆)(Id − Λ)−1. Since the matrix (Id − Λ) is
required to be invertible, this is equivalent to the equation

(C.1) (Id −Λ)&Σ(Id −Λ) = τ(∆).

Clearly, the entries of the matrix on the left-hand side are cubic, i.e., the maximal degree of
the involved polynomials in σ and λ is 3. We suggest to exploit this fact instead of computing
the Gröbner basis for I directly. The idea is to compute a generating set of the vanishing ideal
of the cone of latent covariance matrices Im(τ) and then to plug-in the polynomials from the
left-hand side. The resulting polynomials then indeed define the same ideal I and may be
much smaller in size. Therefore, the Gröbner basis computation may be faster. This is proved
in Proposition C.3 below, but we need to introduce some more notation beforehand.

As usual, we denote I(Im(τ)) = {f ∈ R[ω] : f(Ω) = 0 for all Ω ∈ Im(τ)} for the vanish-
ing ideal of Im(τ). We will also need the map corresponding to Equation (C.1), i.e.,

ψ :RDV

reg × PD(d)−→ PD(d)

(Λ,Σ) 1−→ (Id −Λ)&Σ(Id −Λ).

Note that ψ may be interpreted as an “inverse” of ϕ in the sense that ψ(Λ,ϕ(Λ,Ω)) =Ω and
ϕ(Λ,ψ(Λ,Σ)) = Σ. Since ψ and τ are polynomial functions by definition, we write under
abuse of notation ψ(λ,σ) and τ(δ) for the collection of polynomials they define. Similarly,
we write ϕ̃(λ,ω) for the collection of polynomial functions ϕ̃ij(λ,ω) for 1≤ i≤ j ≤ d.

PROPOSITION C.3. Let AS = {h ◦ψ ∈R[λ,σ] : h ∈ I(Im(τ))}. Then

I = 〈AS , ξd(λ)− 1〉 ∩R[λ,σ].

PROOF. We begin by showing AS ⊆ I . Thus let f(λ,σ) ∈AS . By definition of AS , there
is h ∈ I(Im(τ)) such that f = h ◦ψ. Hence, for any point (Λ,Ω) ∈Θ, we have

f(Λ,ϕ(Λ,Ω)) = h(ψ(Λ,ϕ(Λ,Ω))) = h(Ω) = 0

since Ω ∈ Im(τ). This means that f ∈ I and therefore AS ⊆ I . But this yields that
〈AS , ξd(λ)−1〉 ⊆ J , and by the definition of I we conclude that 〈AS , ξd(λ)−1〉∩R[λ,σ]⊆
I .



10

For the other inclusion, let I(Im(τ)) = 〈h1, . . . , hr〉 ⊆ R[ω] and f(λ,σ) ∈ I . Define
the polynomial g(λ,ω, ξ) = f(λ, ξ2ϕ̃(λ,ω)), which is an element of the polynomial ring
R[λ,ω, ξ]. By the definition of I , the polynomial g becomes zero if we plug in (λ,ω, ξ) =
(Λ,Ω, d(Λ)−1) for any (Λ,Ω) ∈Θ. Therefore, g lies in the ideal 〈h1(ω), . . . , hr(ω), ξd(λ)−
1〉 interpreted in the ring R[λ,ω, ξ]. Hence, we can write

g(λ,ω, ξ) =
r∑

i=1

gi(λ,ω, ξ)hi(ω) + gr+1(λ,ω, ξ)(ξd(λ)− 1)

for suitable coefficient polynomials gi(λ,ω, ξ) ∈ R[λ,ω, ξ]. Plugging in ψ(λ,σ) for ω, we
see that

g(λ,ψ(λ,σ), ξ) =
r∑

i=1

gi(λ,ψ(λ,σ), ξ)hi(ψ(λ,σ))

+ gr+1(λ,ψ(λ,σ), ξ)(ξd(λ)− 1)

is an element of 〈AS , ξd(λ) − 1〉 since each polynomial hi(ψ(λ,σ)) ∈ AS . Moreover, we
have the equality

g(λ,ψ(λ,σ), ξ) = f(λ, ξ2ϕ̃(λ,ψ(λ,σ))) = f(λ, ξ2d(λ)2σ)

and thus f(λ, ξ2d(λ)2σ) ∈ 〈AS , ξd(λ)−1〉. But by the fact that ξd(λ)−1 ∈ 〈AS , ξd(λ)−1〉,
it holds that the difference

f(λ, ξ2d(λ)2σ)− f(λ,σ) ∈ 〈AS , ξd(λ)− 1〉

and therefore it must be the case that the polynomial f(λ,σ) itself is in the ideal 〈AS , ξd(λ)−
1〉 since every ideal is an additive group. We conclude the proof by noting that f(λ,σ) does
not depend on ξ which means that f(λ,σ) ∈R[λ,σ] as well.

Propositions C.2 and C.3 yield Algorithm 1 for checking rational identifiability of a covari-
ance model given by (GV , Im(τ)). The proof of the correctness of the algorithm is identical
to the proof of Algorithm 1 in Foygel, Draisma and Drton (2012b) and therefore omitted.

With the reduced Gröbner basis obtained in step 3 of Algorithm 1, it is not just possible to
determine rational identifiability, but it is straightforward to modify the algorithm to check if
a graph is generically finite-to-one (Garcia-Puente, Spielvogel and Sullivant, 2010).

Note that the computation of the ideal I requires the polynomials ψ(λ,σ). To speed-up
the algorithm for large-scale computational experiments as in Section 6, it is advantageous to
replace the variables σ by numerical values obtained from the entries of a randomly chosen
matrix Σ in the model. Put differently, we randomly generate parameters Λ0 ∈RDV

reg and ∆0 ∈
S and then use the polynomials ψ(λ,ϕ(Λ0, τ(∆0))) instead of ψ(λ,σ). The Gröbner basis
then readily yields the dimension and cardinality of the solution set. In practice, we generate
(Λ0,∆0) from prime numbers and we repeat the randomized calculation several times for
each graph to avoid false conclusions from random draws yielding parameters (Λ0, τ(∆0))
in special constellations.

Algorithm 1 Algebraically checking rational identifiability

1: Compute a Gröbner basis 〈h1, . . . , hr〉 ⊆ R[ω] of the vanishing ideal I(Im(τ )) using elimination theory.

2: Choose a block-monomial order ≥ on the monomials in the variables λ,σ with λ> σ.

3: Let I = 〈h1(ψ(λ,σ)), . . . , hr(ψ(λ,σ)), ξd(λ)− 1〉 ∩ R[λ,σ] and compute the reduced Gröbner basis T

with respect to ≥ of the ideal I .

4: The covariance model given by (GV , Im(τ )) is rationally identifiable if and only if for each i→ j ∈DV the

basis T contains an element whose leading monomial equals a monomial in σ times λij .
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1 2 3 4 5 6

FIG 2. LF-HTC-identifiable and therefore rationally identifiable.

EXAMPLE C.4. Consider the latent-factor graph in Figure 2. In this case, the parameter
space S is given by S = RDLV × diag+d and we have τ : (Γ,Ωdiag) 1→ Ωdiag + Γ&Γ. By
implicitization, we find that the Gröbner basis of I(Im(τ)) is given by the following list of
polynomials:

ω12ω34 − ω14ω23, ω13ω24 − ω14ω23, ω15, ω16, ω25, ω26, ω35, ω36.

Now, we plug in the relevant polynomials ψ(λ,σ), which for this graph are given by

ψ12(λ,σ) =−λ12σ11 + σ12,

ψ13(λ,σ) =−λ23σ12 + σ13,

ψ14(λ,σ) = σ14,

ψ15(λ,σ) =−λ45σ14 + σ15,

ψ16(λ,σ) =−λ46σ14 + σ16,

ψ23(λ,σ) = λ12λ23σ12 − λ12σ13 − λ23σ22 + σ23,

ψ24(λ,σ) =−λ12σ14 + σ24,

ψ25(λ,σ) = λ12λ45σ14 − λ12σ15 − λ45σ24 + σ25,

ψ26(λ,σ) = λ12λ46σ14 − λ12σ16 − λ46σ24 + σ26,

ψ34(λ,σ) =−λ23σ24 + σ34,

ψ35(λ,σ) = λ23λ45σ24 − λ23σ25 − λ45σ34 + σ35,

ψ36(λ,σ) = λ23λ46σ24 − λ23σ26 − λ46σ34 + σ36.

As in step 3 of Algorithm 1, we compute the reduced Gröbner basis T of the ideal I . Since
T contains the four polynomials

λ12σ11σ12σ24σ34 − λ12σ11σ13σ
2
24 − λ12σ11σ14σ22σ34

+ λ12σ11σ14σ23σ24 − λ12σ12σ
2
14σ23 + λ12σ13σ

2
14σ22

− σ212σ24σ34 + σ12σ13σ
2
24 + σ12σ14σ22σ34 − σ13σ14σ22σ24,

λ23σ12σ24 − λ23σ14σ22 − σ13σ24 + σ14σ23,

λ45σ14 − σ15 and

λ46σ14 − σ16,

we conclude that the latent-factor graph in Figure 2 is rationally identifiable. It is in fact even
LF-HTC-identifiable.
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