
Numer. Math. Theor. Meth. Appl. Vol. 15, No. 4, pp. 903-937

doi: 10.4208/nmtma.OA-2022-0002s November 2022

A Nonlocal Stokes System with Volume Constraints

Qiang Du1,* and Zuoqiang Shi2,3

1 Department of Applied Physics and Applied Mathematics, and Data Science

Institute, Columbia University, New York, NY 10027, USA
2 Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084,

China
3 Yanqi Lake Beijing Institute of Mathematical Sciences and Applications,

Beijing 101408, China

Received 10 December 2020; Accepted (in revised version) 19 January 2022

Abstract. In this paper, we introduce a nonlocal model for linear steady Stokes sys-
tem with physical no-slip boundary condition. We use the idea of volume constraint

to enforce the no-slip boundary condition and prove that the nonlocal model is well-

posed. We also show that and the solution of the nonlocal system converges to the
solution of the original Stokes system as the nonlocality vanishes.
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1. Introduction

Recently, nonlocal models and corresponding numerical methods have attracted

much attention due to many successful applications. For example, in solid mechanics,

the theory of peridynamics [38] has been used as a possible alternative to conventional

models of elasticity and fracture mechanics. Many numerical methods have also been

developed to simulate nonlocal models like peridynamics based on rigorous mathemat-

ical analysis [10–12, 30, 31, 39, 43]. Nonlocal methods are also successfully applied in

image processing and data analysis [2, 4, 6, 19, 20, 22, 23, 29, 33–35, 41]. The idea of

integral approximation is also applied to derive numerical scheme for solving PDEs on

point cloud [25,26].

In this paper, we study the nonlocal analog of the Stokes system in fluid mechanics.

Previously, nonlocal Stokes models have been proposed in [13,24] and analyzed subject

to periodic boundary condition. In this paper, we consider the case of a nonlocal no-slip
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boundary condition. More precisely, for the conventional, local linear Stokes system on

a domain Ω ⊂ R
n,

{

∆u(x)−∇p(x) = f(x), x ∈ Ω,

∇ · u(x) = 0, x ∈ Ω
(1.1)

the no-slip boundary condition on the boundary ∂Ω is

u = 0 at ∂Ω. (1.2)

For the pressure, we impose average zero condition

∫

Ω
p(x)dx = 0. (1.3)

The no-slip boundary condition is a Dirichlet type boundary condition and it is of-

ten used in many real world applications. However, the theoretical study with no-slip

boundary condition is also much more difficult. The first question is how to enforce

no-slip boundary condition in the nonlocal approach. Recently, Du et al. [10] pro-

posed volume constraint to deal with the boundary condition in the nonlocal diffusion

problem by enforcing the condition over a nonlocal region adjacent to the boundary.

Adopting this idea, in the nonlocal Stokes system, we extend the no-slip condition to

a small layer as shown in Fig. 1.

δ

Vδ

Ωδ

Ω = Ωδ ∪ Vδ

∂Ω

Figure 1: Computational domain in non-local Stokes model.

For a nonlocal problem involving nonlocal interactions on the range of δ > 0, the whole

computational domain Ω is decomposed to two parts. Ω = Vδ

⋃

Ωδ as shown in Fig. 1

and u is enforced to be zero in Vδ, i.e.

uδ(x) = 0, x ∈ Vδ. (1.4)

Definition of Ωδ and Vδ will be given in (2.1). The parameter δ is often called the

nonlocal horizon parameter [9, 38]. In Ωδ, the Stokes equation is approximated is
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formulated as






Lδuδ(x)− Gδpδ(x) =

∫

Ω
R̄δ(x,y)f(y)dy, x ∈ Ωδ, (1.5a)

Dδuδ(x)− L̄δpδ(x) = 0, x ∈ Ω. (1.5b)

The nonlocal integral operators used in (1.5) represent the nonlocal diffusion (Lapla-

cian) Lδ, nonlocal gradient Gδ and nonlocal divergence Dδ respectively as in [13] and

the references cited therein. An additional operator L̄δ is also used, which is a rescaled

nonlocal diffusion operator. The particular forms of the operators adopted here are

given by

Lδu(x) =
1

δ2

∫

Ω
Rδ(x,y)

(

u(y)− u(x)
)

dy, (1.6)

Gδp(x) =
1

2δ2

∫

Ω
Rδ(x,y)(y − x)p(y)dy, (1.7)

Dδu(x) =
1

2δ2

∫

Ω
Rδ(x,y)(y − x) · u(y)dy, (1.8)

L̄δp(x) =

∫

Ω
R̄δ(x,y)

(

p(y)− p(x)
)

dy (1.9)

for some nonnegative and smooth kernels Rδ(x,y) and R̄δ(x,y) specified later.

Finally, we also need average zero condition for the pressure

∫

Ω
pδ(x)dx = 0. (1.10)

(1.4), (1.5) and (1.10) form a complete nonlocal formulation of the Stokes system.

As pointed out in the literature on nonlocal modeling (e.g. [9, 13]), nonlocal inte-

gral approximations are closely related to many numerical schemes of computational

fluid dynamics, such as the smoothed particle hydrodynamics (SPH) [18, 27, 28, 32],

vortex methods [1,7] and others [3,5,15,21,40]. Analysis to the linear steady Stokes

equation in this paper could give some new understanding to the theoretical foundation

of these methods.

The Stokes system (1.1) is well-known to be a saddle point problem. This remains

the case for the nonlocal Stokes system given in [13] subject to periodic boundary

conditions. Here, different from [13], we add a relaxation term, L̄δpδ(x), in Eq. (1.5b).

It mimics the classical technique of stabilizing the approximation of incompressibility

by adding a positive definite block to the original saddle point system. Although this

results in a slightly compressible system, the stabilization term vanishes as δ → 0 so

that it does not destroy the approximation of the nonlocal formulation to the local

limit. Yet, this additional term is crucial for the stability and well-posedness in our case

where smooth nonlocal kernels are used to define the nonlocal operators. Indeed, the

well-posed study in [13] showed that, without extra relaxation, it is necessary to use

singular kernels. A remedy was provided in [24] by incorporating non-radial nonlocal
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interactions. The addition of the relaxation term enables the use of smooth kernels

in the definition of the associated nonlocal operators which may allow more flexible

practical implementation such as more conventional quadratures for smooth functions.

For the Fourier analysis of a related formulation with periodic boundary conditions, we

refer to [42].

The rest of the paper is organized as follows. We give the formulation of the non-

local linear Stokes system in Section 2 together with some related assumptions and

estimates. Then the well-posedness of the nonlocal model is established in Section 3.

The vanishing nonlocality limit is analyzed in Section 4. In Section 5, we conclude with

a summary and a discussion on future research.

2. Nonlocal Stokes system with related assumptions and estimates

In this section we present the nonlocal Stokes model in more details, together with

some basic assumptions on the geometry and kernel functions used to define the model,

along with some related estimates.

2.1. Notation and assumptions

First, we let Ωδ and Vδ be subsets of Ω defined as

Ωδ =
{

x ∈ Ω : B(x, 2δ) ∩ ∂Ω = ∅
}

, Vδ = Ω\Ωδ. (2.1)

The relation of Ω, ∂Ω, Ωδ and Vδ are showed in Fig. 1.

Next, we state the following assumptions on the domain Ω and a kernel function

R(r).

Assumption 2.1.

• Assumptions on the computational domain: Ω ∈ R
n is open, bounded and con-

nected. ∂Ω is C2 smooth.

• Assumptions on the kernel function R(r):

(a) (regularity) R ∈ C1[0, 1];

(b) (positivity and compact support) R(r) ≥ 0 and R(r) = 0 for ∀r > 1;

(c) (nondegeneracy) ∃γ0 > 0 so that R(r) ≥ γ0 for 0 ≤ r ≤ 1
2 .†

Then, the rescaled kernels used in the definitions of the nonlocal operators have the

form

Rδ(x,y) = CδR

(‖x− y‖2
4δ2

)

,

R̄δ(x,y) = CδR̄

(‖x− y‖2
4δ2

)

,

(2.2)

†Here 1

2
can be replaced by any constant in (0, 1).
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where

R̄(r) =

∫ +∞

r

R(s)ds =

∫ 1

r

R(s)ds, (2.3)

which satisfies obviously

R̄′(r) =
d

dr
R̄(r) = R(r), ∀r ∈ R

+,

R̄(r) = 0, ∀r > 1.

The constant Cδ = αnδ
−n in (2.2) is a normalization factor so that

∫

Rn

R̄δ(x,y)dy = αnSn

∫ 1

0
R̄

(

r2

4

)

rn−1dr = 1 (2.4)

with Sn denotes area of the unit sphere in R
n. With this normalization factor, the

local limits of Lδ, Gδ and Dδ recover the classical Laplacian ∆, gradient and divergence

operators respectively as δ goes to 0. Moreover, L̄δ also behaves like a nonlocal analog

of βnδ
2∆, that is, a scaled nonlocal Laplacian that vanishes in the local limit.

2.2. Nonlocal Stokes system with volume constraint

By combining the volume constraint boundary condition of u and the average zero

condition of p, we have the nonlocal Stokes model given as follows:



































Lδuδ(x)− Gδpδ(x) =

∫

Ω
R̄δ(x,y)f(y)dy, x ∈ Ωδ, (2.5a)

Dδuδ(x)− L̄δpδ(x) = 0, x ∈ Ω, (2.5b)

uδ(x) = 0,x ∈ Vδ, (2.5c)
∫

Ω
pδ(x)dx = 0. (2.5d)

The integral operators have been defined in (1.6)-(1.9). A formal derivation of the

nonlocal model is given in the Appendix A.

Formally, the choices of normalization specified in this paper further imply that the

local limits of Lδ, Gδ and Dδ recover the classical Laplacian ∆, gradient and divergence

operators respectively as δ goes to 0 [9,31]. Moreover, L̄δ also behaves like a nonlocal

analog of βnδ
2∆, that is, a scaled nonlocal Laplacian that vanishes in the local limit.

Thus, we may see (2.5) as a nonlocal extension of the local Stokes model (1.1)-(1.2).

Remark 2.1. For the study of the nonlocal model with periodic boundary condition on

Ω = (0, 1)n, we can use Fourier transform to get the Fourier symbols of the nonlocal

operators, see the discussion in [42].
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2.3. Related estimates

Next, we list several technical results of the kernel functions which will be used in

the subsequent analysis.

Lemma 2.1. Let R = R(r) be a kernel function satisfying Assumption 2.1 and Rδ, R̄δ be

given by (2.2) and (2.3) respectively.

(i) There exists a constant C > 0, independent of δ such that

∣

∣∇xR̄δ(x,y)
∣

∣ ≤ C

δ
Rδ(x,y),

∣

∣∇y∇xR̄δ(x,y)
∣

∣ ≤ C

δ2

(

∣

∣R′
δ(x,y)

∣

∣ +
∣

∣Rδ(x,y)
∣

∣

)

for any x,y ∈ R
n, where

R′
δ(x,y) = CδR

′

(‖x− y‖2
4δ2

)

, R′(r) =
dR(r)

dr
.

(ii) Let R̃ be a kernel function satisfying the Assumption 2.1(a),(b) and

R̃δ(x,y) = αnδ
−nR̃

(‖x− y‖2
4δ2

)

.

There exists a constant η0 > 0 only dependent on Ω and R̃ such that for δ ≤ η0

ω̃n

3
< ω̃δ(x) :=

∫

Ω
R̃δ(x,y)dy ≤ ω̃n := αnSn

∫ 1

0
R̃

(

r2

4

)

rn−1dr.

(iii) Let

Kδ(y, z) =

∫

Ω

∣

∣R̃δ(x, z)∇xR̃δ(x,y)
∣

∣dx

for any y, z ∈ R
n. There exists C > 0 independent on δ such that

Kδ(y, z) ≤ CR

(‖y − z‖2
32δ2

)

.

Proof. (i) Can be checked directly.

(ii) This estimate is classical for smooth mollifiers. For the sake of completeness,

we give a brief proof here. The upper bound is easy to prove using the non-negativity

of R̃δ

ω̃δ(x) =

∫

Ω
R̃δ(x,y)dy ≤

∫

Rn

R̃δ(x,y)dy = ω̃n.
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To prove the lower bound, we need to use the condition that ∂Ω is C2 and R̃δ is

continuous and bounded. Then for x ∈ ∂Ω,

lim
δ→0

ω̃δ(x) = lim
δ→0

∫

Ω
R̃δ(x,y)dy = αn

∫

x+R
n
+

R̃

(‖x− y‖2
4

)

dy =
ω̃n

2
,

where R
n
+ = {y = (y1, · · · , yn) ∈ R

n : y1 ≥ 0}. On the other hand, for x ∈ Ω, since Ω
is open,

lim
δ→0

ω̃δ(x) = lim
δ→0

∫

Ω
R̃δ(x,y)dy = αn

∫

Rn

R̃

(‖x− y‖2
4

)

dy = ω̃n.

So, for any x ∈ Ω̄ = Ω ∪ ∂Ω, there exists ηx > 0 such that for any δ ≤ ηx, we have

ω̃δ(x) > ω̃n/3. Using the compactness of Ω̄, there exists η0 > 0 such that for any x ∈ Ω̄,

δ ≤ η0, we have ω̃δ(x) > ω̃n/3.

(iii) When ‖y−z‖ ≥ 4δ, we have max{‖x−z‖, ‖x−y‖} ≥ 2δ, then using condition

(a) and (b) in Assumption 2.1,

R̃δ(x, z)∇xR̃δ(x,y) = 0, ∀x ∈ Ω.

This gives that if ‖y − z‖ ≥ 4δ,

Kδ(y, z) = 0.

When ‖y − z‖ < 4δ, we have
‖y − z‖2
32δ2

<
1

2
.

Using condition (c) in Assumption 2.1,

Kδ(y, z) =

∫

Ω

∣

∣R̃δ(x, z)∇xR̃δ(x,y)
∣

∣dx

≤ 1

4δ2

∫

Ω
‖x− y‖

∣

∣R̃δ(x, z)
∣

∣

∣

∣R̃′
δ(x,y)

∣

∣dx

≤ 1

2δ

∫

Ω

∣

∣R̃δ(x, z)
∣

∣

∣

∣R̃′
δ(x,y)

∣

∣dx

≤ C2
δ

2δ

∫

Ω∩B(y+z

2
,2δ)

∣

∣

∣

∣

R̃

(‖x− z‖2
4δ2

)
∣

∣

∣

∣

∣

∣

∣

∣

R̃′

(‖x− z‖2
4δ2

)
∣

∣

∣

∣

dx

≤ M̃C2
δ

2δ

∣

∣

∣

∣

B

(

y + z

2
, 2δ

)∣

∣

∣

∣

≤ CM̃

δγ0
Cδγ0 ≤

CM̃

δγ0
CδR

(‖y − z‖2
32δ2

)

,

where M̃ = maxr∈[0,1] |R̃(r)R̃′(r)|, γ0 is the constant in condition (c) in Assumption 2.1,

Cδ is the normalization factor in (2.2).
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3. Well-posedness of the nonlocal Stokes system (2.5)

In this section, we prove the well-posedness of the nonlocal Stokes system (2.5).

More precisely, we show the following theorem.

Theorem 3.1. Suppose that the Assumption 2.1 is satisfied. For any f ∈ H−1(Ω), there

exits one and only one pair (u, p) such that

(a) u ∈ H1(Ωδ), p ∈ L2(Ω). In addition,

‖u‖H1(Ωδ) + ‖p‖L2(Ω) ≤ C‖f‖H−1(Ω),

where C > 0 is a constant that only depends on Ω and kernel function R.

(b) The pair (u, p) satisfies the nonlocal Stokes system (2.5).

In the proof of the well-posedness, we need several technical lemmas.

Lemma 3.1 ([37]). If δ is small enough, for any function u ∈ L2(Ω), there exists a con-

stant C > 0, independent of δ and u such that

∫

Ω

∫

Ω
R

(‖x− y‖2
32δ2

)

(

u(x)− u(y)
)2
dxdy

≤ C

∫

Ω

∫

Ω
R

(‖x− y‖2
4δ2

)

(

u(x)− u(y)
)2
dxdy.

Similar results concerning the scaling of the nonlocal interaction neighborhood like

the above one can also be found in [14] for other types of kernels including fractional

ones.

Next, we consider an extension to a similar result shown in [36].

Lemma 3.2. For any function u ∈ L2(R
n) vanishing outside of Ωδ, i.e. u(x) = 0 for

x ∈ R
n\Ωδ, there exists a constant C > 0 independent on δ such that

1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)
(

u(x)− u(y)
)2
dxdy

+
1

δ2

∫

Ωδ

u2(x)

(
∫

Vδ

Rδ(x,y)dy

)

dx

≥ C

∫

Ω
|∇v|2dx,

where

v(x) =
1

w̃δ(x)

∫

Ωδ

R̃δ(x,y)u(y)dy =
1

w̃δ(x)

∫

Ω
R̃δ(x,y)u(y)dy,

w̃δ(x) =

∫

Ω
R̃δ (x,y) dy,
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and

R̃δ(x,y) = CδR̃

( |x− y|2
4δ2

)

,

and R̃ is a kernel function satisfying condition (a)-(c) in Assumption 2.1.

Proof. For any x ∈ Ω, we have

∇v(x) =
1

w̃δ(x)

∫

Ω
∇xR̃δ(x,y)u(y)dy − ∇w̃δ(x)

w̃2
δ (x)

∫

Ω

(

R̃δ(x,y)
)

u(y)dy

=
1

w̃2
δ (x)

∫

Ω

∫

Ω
R̃δ(x, z)∇xR̃δ(x,y)

(

u(y)− u(z)
)

dydz.

This leads to

∫

Ω
|∇v(x)|2dx =

∫

Ω

1

w̃4
δ (x)

∣

∣

∣

∣

∫

Ω

∫

Ω
R̃δ(x, z)∇xR̃δ(x,y)

(

u(y)− u(z)
)

dydz

∣

∣

∣

∣

2

dx

≤ 1

ω̃4
min

∫

Ω

(
∫

Ω

∫

Ω

∣

∣R̃δ(x, z)∇xR̃δ(x,y)
∣

∣dydz

)

×
(
∫

Ω

∫

Ω

∣

∣R̃δ(x, z)∇xR̃δ(x,y)
∣

∣

(

u(y)− u(z)
)2
dydz

)

dx

≤ C

δω̃4
min

∫

Ω

∫

Ω
Kδ(y, z)

(

u(y)− u(z)
)2
dydz

with

ω̃min =
1

3
αnSn

∫ 1

0
R̃

(

r2

4

)

rn−1dr

given in Lemma 2.1 and

Kδ(y, z) =

∫

Ω

∣

∣R̃δ(x, z)∇xR̃δ(x,y)
∣

∣dx.

In the last inequality, we use the estimate

∫

Ω

∫

Ω

∣

∣R̃δ(x, z)
∣

∣

∣

∣∇xR̃δ(x,y)
∣

∣dydz

≤ 1

4δ2

∫

Ω

∫

Ω
‖x− y‖

∣

∣R̃′
δ(x,y)

∣

∣

∣

∣R̃δ(x, z)
∣

∣dydz

≤ 1

2δ

∫

Ω

∫

Ω

∣

∣R̃′
δ(x,y)

∣

∣

∣

∣R̃δ(x, z)
∣

∣dydz ≤ C

δ

with

R̃′
δ(x,y) = CδR̃

′

( |x− y|2
4δ2

)

, R̃′(r) =
dR̃

dr
.
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Finally, Lemma 2.1 (ii) gives that

∫

Ωδ

|∇v(x)|2dx ≤ C

δ2

∫

Ω

∫

Ω
CδR

( |x− y|2
32δ2

)

(

u(x)− u(y)
)2
dxdy

≤ C

δ2

∫

Ω

∫

Ω
CδR

( |x− y|2
4δ2

)

(

u(x)− u(y)
)2
dxdy

=
C

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)
(

u(x)− u(y)
)2
dxdy

+
2C

δ2

∫

Vδ

(
∫

Ωδ

Rδ(x,y)u(y)
2dy

)

dx.

The second inequality comes from Lemma 3.1.

Using above lemma, it is easy to get a nonlocal Poincáre inequality for the special

kernels, Lemma 3.3.

Lemma 3.3. For any function u ∈ L2(R
n) vanishing outside of Ωδ, there exists a constant

C > 0 independent on δ such that

1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)
(

u(x)− u(y)
)2
dxdy

+
1

δ2

∫

Ωδ

u2(x)

(
∫

Vδ

Rδ(x,y)dy

)

dx

≥ C‖u‖2L2(Ωδ)

if δ is small enough.

Proof. Let

v(x) =
1

wδ(x)

∫

Ωδ

Rδ(x,y)u(y)dy =
1

wδ(x)

∫

Ω
Rδ(x,y)u(y)dy.

Using the definition of Ωδ,

v(x) = 0, ∀x ∈ ∂Ω.

Then Lemma 3.2 and the Poincáre inequality imply that

‖v‖2L2(Ω) ≤
C

δ2

(

∫

Ωδ

∫

Ωδ

Rδ(x,y)
(

u(x)− u(y)
)2
dxdy

+

∫

Ωδ

u2(x)

(
∫

Vδ

Rδ(x,y)dy

)

dx

)

.

On the other hand, for x ∈ Ωδ

u(x)− v(x) =
1

wδ(x)

∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)

dy.
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Therefore,

‖u− v‖2L2(Ωδ)
≤ 1

ω2
min

∫

Ω

(
∫

Ω
Rδ(x,y)dy

)
∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)2
dydx

≤ ωmax

ω2
min

∫

Ω

∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)2
dydx

=
ωmax

ω2
min

(

∫

Ωδ

∫

Ωδ

Rδ(x,y)
(

u(x)− u(y)
)2
dxdy

+ 2

∫

Ωδ

u2(x)

(
∫

Vδ

Rδ(x,y)dy

)

dx

)

,

where

ωmin =
1

3
αnSn

∫ 1

0
R

(

r2

4

)

rn−1dr, ωmax = αnSn

∫ 1

0
R

(

r2

4

)

rn−1dr

as given in Lemma 2.1.

Remark 3.1. Support of
∫

Vδ
Rδ(x,y)dy is a narrow band adjacent to ∂Ω with the

width of 4δ. So the second term in Lemma 3.3, 1
δ2

∫

Ωδ
u2(x)(

∫

Vδ
Rδ(x,y)dy)dx, is

used to control u(x) near the boundary while the first term controls the fluctuation

in the interior. Lemma 3.3 is actually very natural following the spirit of the Poincáre

inequality. For more general discussions, we refer to, e.g., [9,30,31] and the references

cited therein.

Lemma 3.4. For any function p ∈ L2(Ω) with
∫

Ωδ
p(x)dx = 0, there exists a constant

C > 0 independent on δ such that

1

δ2

∫

Ω

∫

Ω
R̄δ(x,y)

(

p(x)− p(y)
)2
dxdy ≥ C‖p‖2L2(Ω)

if δ is small enough.

Proof. For p with
∫

Ωδ
p(x)dx = 0, we also have nonlocal Poincáre inequality [37],

‖p‖2L2(Ωδ)
≤ C

δ2

∫

Ωδ

∫

Ωδ

R̄δ(x,y)
(

p(x)− p(y)
)2
dxdy.

Using nondegeneracy assumption in Assumption 2.1, it is easy to verify that for any

x ∈ Ω,
∫

Ωδ

R̄4δ(x,y)dy ≥ c0 > 0,

where

R̄4δ(x,y) = CδR̄

(‖x− y‖2
4(4δ)2

)

,
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and Cδ is the normalization factor in (2.2)

‖p‖2L2(Ω) ≤ C

∫

Ω
|p(x)|2

(
∫

Ω
Rδ(x,y)dy

)

dx

≤ C

∫

Ω

(
∫

Ωδ

|p(x)|2R̄4δ(x,y)dy

)

dx

≤ C

∫

Ω

(
∫

Ωδ

|p(x)− p(y)|2R̄4δ(x,y)dy

)

dx

+ C

∫

Ω

(
∫

Ωδ

|p(y)|2R̄4δ(x,y)dy

)

dx

≤ C

∫

Ω

∫

Ω
|p(x)− p(y)|2R̄4δ(x,y)dydx+ C

∫

Ωδ

|p(y)|2dx

≤ C

∫

Ω

∫

Ω
|p(x)− p(y)|2R̄δ(x,y)dydx+ C‖p‖2L2(Ωδ)

.

The proof is complete.

Now we can prove the main theorem in this section, Theorem 3.1.

Proof. First, in the nonlocal Stokes system, we replace the condition

∫

Ω
pδ(x)dx = 0

by
∫

Ωδ

pδ(x)dx = 0

and denote the pressure in the original nonlocal Stokes system as p̄δ. It is obvious that

p̄δ = pδ −
1

|Ω|

∫

Ω
pδ(x)dx. (3.1)

The existence and uniqueness of the solution to the nonlocal Stokes system is a direct

implication of Lax-Milgram theorem by introducing the bilinear form in L2
δ(Ω)×L2

δ(Ω)

a
(

[u, p], [v, q]
)

=
1

2δ2

∫

Ω

∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)

·
(

v(x)− v(y)
)

dxdy

+
1

2δ2

∫

Ω

∫

Ω
Rδ(x,y)(y − x) ·

(

v(x)p(y)− u(x)q(y)
)

dxdy

+

∫

Ω

∫

Ω
R̄δ(x,y)

(

p(x)− p(y)
)(

q(x)− q(y)
)

dxdy, (3.2)

where

L2
δ(Ω) =

{

[u, p] : u ∈ L2(Ω)n, p ∈ L2(Ω), supp(u) ⊂ Ωδ,

∫

Ωδ

p(x)dx = 0

}

.
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To apply Lax-Milgram theorem, we need to check the continuity and coercivity of

the bilinear form, i.e. for any [u, p], [v, q] ∈ L2
δ(Ω),

∣

∣a
(

[u, p], [v, q]
)
∣

∣ ≤ C
(

‖u‖L2(Ω) + ‖p‖L2(Ω)

)(

‖v‖L2(Ω) + ‖q‖L2(Ω)

)

,

a
(

[u, p], [u, p]
)

≥ C
(

‖u‖2L2(Ω) + ‖p‖2L2(Ω)

)

with C > 0 independent on [u, p] and [v, q]. Note that here constant C may depend

on δ.

The continuity is easy to check and coercivity can be given by Lemmas 3.3 and 3.4.

Then, the existence and uniqueness of the solution is given by Lax-Milgram theorem

[16, Section 6.2.1].

In the rest of the proof, we will devote to get the uniform upper bound of ‖u‖2
H1(Ωδ)

+

‖p‖2
L2(Ω). Multiplying uδ on Eq. (2.5a) and multiplying p on Eq. (2.5b) and integrating

over Ω and adding them together, we can get

1

δ2

∫

Ω

∫

Ω
Rδ(x,y)|uδ(x)− uδ(y)|2dxdy

+

∫

Ω

∫

Ω
R̄δ(x,y)

(

pδ(x)− pδ(y)
)2
dxdy

= −2

∫

Ω

(
∫

Ω
R̄δ(x,y)f(y)dy

)

· uδ(x)dx. (3.3)

From (3.3), using Lemma 3.3, we have

‖uδ‖2L2(Ω) ≤ C

∫

Ω

(
∫

Ω
R̄δ(x,y)f(y)dy

)

· uδ(x)dx

and
∣

∣

∣

∣

∫

Ω

∫

Ω
R̄δ(x,y)f(y) · uδ(x)dxdy

∣

∣

∣

∣

≤ C‖f‖H−1(Ω)‖ũδ‖H1(Ω)

with

ũδ(y) =

∫

Ω
R̄δ(x,y)uδ(x)dx.

Notice that uδ(y) = 0,y ∈ Vδ and
∫

Ω ∇yR̄δ(x,y)dx = 0,y ∈ Ωδ, so

uδ(y)

∫

Ω
∇yR̄δ(x,y)dx = 0, y ∈ Ω.

Then we have

‖∇ũδ‖2L2(Ω) =

∫

Ω

∣

∣

∣

∣

∫

Ω
∇yR̄δ(x,y)uδ(x)dx

∣

∣

∣

∣

2

dy

=

∫

Ω

∣

∣

∣

∣

∫

Ω
∇yR̄δ(x,y)

(

uδ(x)− uδ(y)
)

dx

∣

∣

∣

∣

2

dy
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≤
∫

Ω

(
∫

Ω

∣

∣∇yR̄δ(x,y)
∣

∣dx

)
∫

Ω

∣

∣∇yR̄δ(x,y)
∣

∣

∣

∣uδ(x)− uδ(y)
∣

∣

2
dxdy

≤ C

δ2

∫

Ω

∫

Ω
Rδ(x,y)|uδ(x)− uδ(y)|2dxdy

to get the last inequality, Lemma 2.1 is used.

Moreover, it is easy to see that

‖ũδ‖2L2(Ω) ≤ C‖uδ‖2L2(Ω) ≤
C

δ2

∫

Ω

∫

Ω
Rδ(x,y)|uδ(x)− uδ(x)|2dxdy.

Putting above estimates together, we have

‖ũδ‖2H1(Ω) ≤
C

δ2

∫

Ω

∫

Ω
Rδ(x,y)|uδ(x)− uδ(y)|2dxdy

≤ C

∣

∣

∣

∣

∫

Ω

∫

Ω
R̄δ(x,y)f(y) · uδ(x)dxdy

∣

∣

∣

∣

.

It follows that
∣

∣

∣

∣

∫

Ω

∫

Ω
R̄δ(x,y)f(y) · uδ(x)dxdy

∣

∣

∣

∣

≤ C‖f‖2H−1(Ω).

Hence, we get

‖uδ‖L2(Ω) ≤ C‖f‖H−1(Ω). (3.4)

In addition, from Eq. (2.5a), uδ has following expression, for any x ∈ Ωδ:

uδ(x) =
1

wδ(x)

∫

Ω
Rδ(x,y)uδ(y)dy

+
1

2wδ(x)

∫

Ω
Rδ(x,y)(x− y)pδ(y)dy

− δ2

wδ(x)

∫

Ω
R̄δ(x,y)f(y)dy. (3.5)

Using Lemma 3.2, (3.3) and (3.4), we have

∥

∥

∥

∥

∇
(

1

wδ(x)

∫

Ω
Rδ(x,y)uδ(y)dy

)
∥

∥

∥

∥

2

L2(Ωδ)

≤ C

δ2

∫

Ω

∫

Ω
Rδ(x,y)|uδ(x)− uδ(y)|2dxdy ≤ C‖f‖2H−1(Ω). (3.6)

Notice that for any x ∈ Ωδ, wδ(x) is a positive constant. Then we have

∥

∥

∥

∥

∇
(

1

2wδ(x)

∫

Ω
Rδ(x,y)(x − y)pδ(y)dy

)
∥

∥

∥

∥

2

L2(Ωδ)
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≤ C

∫

Ωδ

∣

∣

∣

∣

∫

Ω
∇xRδ(x,y)(x − y)pδ(y)dy

∣

∣

∣

∣

2

dx

+ C

∫

Ωδ

(
∫

Ω
Rδ(x,y)pδ(y)dy

)2

dx

≤ C

δ2

∫

Ω

∣

∣

∣

∣

∫

Ω
|R′

δ(x,y)||x− y|2|pδ(y)|dy
∣

∣

∣

∣

2

dx

+ C

∫

Ω

(
∫

Ω
Rδ(x,y)pδ(y)dy

)2

dx

≤ C

∫

Ω

(
∫

Ω
|R′

δ(x,y)||pδ(y)|dy
)2

dx

+ C

∫

Ω

(
∫

Ω
Rδ(x,y)pδ(y)dy

)2

dx ≤ C‖pδ‖2L2(Ω), (3.7)

where

R′
δ(x,y) = CδR

′

( |x− y|2
4δ2

)

, R′(r) =
d

dr
R(r).

In addition, direct calculation gives that
∥

∥

∥

∥

∇
(

δ2

wδ(x)

∫

Ω
R̄δ(x,y)f(y)dy

)∥

∥

∥

∥

L2(Ωδ)

≤ C‖f‖H−1(Ω). (3.8)

For any v ∈ L2(Ωδ),
∫

Ωδ

v(x)∇x

(

δ2

wδ(x)

∫

Ω
R̄δ(x,y)f(y)dy

)

dx

=

∫

Ω

(
∫

Ωδ

v(x)∇x

(

δ2

wδ(x)
R̄δ(x,y)

)

dx

)

f(y)dy

≤ ‖f‖H−1(Ω) ‖ṽ‖H1(Ωδ)
,

where

ṽ(y) =

∫

Ωδ

v(x)∇x

(

δ2

wδ(x)
R̄δ(x,y)

)

dx

=

∫

Ωδ

v(x)
δ2

wδ(x)
∇xR̄δ(x,y)dx.

Here we use the fact that ωδ(x) is a constant over Ωδ.

Using Lemma 2.1, it is easy to check that

‖ṽ‖H1(Ωδ)
≤ C‖v‖L2(Ωδ).

Then (3.8) is obtained. Putting (3.4) and (3.6)-(3.8) together, we obtain

‖uδ‖H1(Ωδ) ≤ C‖f‖H−1(Ω) + C‖pδ‖L2(Ω). (3.9)
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Next, we turn to estimate the pressure p. First, considering the problem

∇ · v(x) = pδ(x), x ∈ Ωδ. (3.10)

It is well known (e.g. [17, Section 3.3]) that if Ωδ satisfies cone condition, there exists

at least one solution of (3.10), denoted by v such that

v ∈ H1
0 (Ωδ), ‖v‖H1(Ωδ) ≤ c‖pδ‖L2(Ωδ) (3.11)

with c > 0 independent on δ. Proof of (3.11) can be found in Appendix B. Then, we

extend v to Ω by assigning the value on Vδ to be 0 and denote the new function also by

v. Obviously, we have

v ∈ H1
0 (Ωδ) ∩H1

0 (Ω), ‖v‖H1(Ω) ≤ c‖pδ‖L2(Ωδ). (3.12)

On the other hand, using Eq. (2.5b), for any x ∈ Ω we have

w̄δ(x)pδ(x) =

∫

Ω
R̄δ(x,y)pδ(y)dy +

1

2δ2

∫

Ω
Rδ(x,y)(x − y) · uδ(y)dy

=

∫

Ωδ

R̄δ(x,y)∇ · v(y)dy +
1

2δ2

∫

Ωδ

Rδ(x,y)(x − y) · uδ(y)dy

+
1

2δ2

∫

Vδ

Rδ(x,y)(x − y) · uδ(y)dy +

∫

Vδ

R̄δ(x,y)pδ(y)dy

= − 1

2δ2

∫

Ωδ

Rδ(x,y)(x − y) · v̄(y)dy +

∫

Vδ

R̄δ(x,y)pδ(y)dy, (3.13)

where

w̄δ(x) =

∫

Ω
R̄δ(x,y)dy, v̄ = v − uδ.

Then, it follows that

1

2δ2

∫

Ωδ

v̄(x)

(
∫

Ω
Rδ(x,y)(x− y)pδ(y)dy

)

dx

= − 1

2δ2

∫

Ω
pδ(x)

(
∫

Ωδ

Rδ(x,y)(x − y)v̄(y)dy
)

dx

=

∫

Ω
p2δ(x)w̄δ(x)dx−

∫

Ω
pδ(x)

(
∫

Vδ

R̄δ(x,y)pδ(y)dy

)

dx. (3.14)

The first term is positive, thus a good term. The second term becomes

−
∫

Ω
pδ(x)

(
∫

Vδ

R̄δ(x,y)pδ(y)dy

)

dx

=

∫

Ω
pδ(x)

(
∫

Vδ

R̄δ(x,y)
(

pδ(x)− pδ(y)
)

dy

)

dx

−
∫

Ω
p2δ(x)

(
∫

Vδ

R̄δ(x,y)dy

)

dx. (3.15)
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The second term of (3.15) can be controlled by the first term of (3.14). And the first

term is bounded by
∫

Ω
pδ(x)

(
∫

Vδ

R̄δ(x,y)
(

pδ(x)− pδ(y)
)

dy

)

dx

=
1

2

∫

Vδ

∫

Vδ

R̄δ(x,y)
(

pδ(x)− pδ(y)
)2
dydx

+

∫

Ωδ

pδ(x)

(
∫

Vδ

R̄δ(x,y)
(

pδ(x)− pδ(y)
)

dy

)

dx

≥ 1

2

∫

Vδ

∫

Vδ

R̄δ(x,y)
(

pδ(x)− pδ(y)
)2
dydx

+

∫

Ωδ

(
∫

Vδ

R̄δ(x,y)
(

pδ(x)− pδ(y)
)2
dy

)

dx

−
∣

∣

∣

∣

∫

Ωδ

(
∫

Vδ

R̄δ(x,y)
(

pδ(x)− pδ(y)
)

pδ(y)dy

)

dx

∣

∣

∣

∣

≥ 1

2

∫

Ω

(
∫

Vδ

R̄δ(x,y)
(

pδ(x)− pδ(y)
)2
dy

)

dx

− 1

2

∫

Vδ

p2δ(x)

(
∫

Ωδ

R̄δ(x,y)dy

)

dx. (3.16)

Combining (3.14)-(3.16), we get

1

2δ2

∫

Ωδ

v̄(x)

(
∫

Ω
Rδ(x,y)(x− y)pδ(y)dy

)

dx

≥
∫

Ωδ

p2δ(x)

(
∫

Ωδ

R̄δ(x,y)dy

)

dx. (3.17)

Now, we are ready to get the estimate of pδ. Multiplying Eq. (2.5a) by v̄ and

integrating over Ωδ, using the fact that v̄(x) = 0,x ∈ Vδ, we have

− 1

2δ2

∫

Ω

∫

Ω
Rδ(x,y)

(

uδ(x)− uδ(y)
)

·
(

v̄(x)− v̄(y)
)

dxdy

+
1

2δ2

∫

Ωδ

v̄(x)

(
∫

Ω
Rδ(x,y)(x − y)pδ(y)dy

)

dx

=

∫

Ωδ

v̄(x)

(
∫

Ωδ

R̄δ(x,y)f(y)dy

)

dx. (3.18)

Using (3.3), (3.9), (3.12), (3.18) and (3.17), we have

1

2
‖p‖2L2(Ωδ)

≤
(

1

2δ2

∫

Ω

∫

Ω
Rδ(x,y)|uδ(x)− uδ(y)|2dxdy

)
1

2

×
(

1

2δ2

∫

Ω

∫

Ω
Rδ(x,y)|v̄(x)− v̄(y)|2dxdy

)
1

2
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+ ‖v̄‖H1(Ωδ)‖f‖H−1(Ω)

≤
(

1

2δ2

∫

Ω

∫

Ω
Rδ(x,y)|uδ(x)− uδ(y)|2dxdy

)
1

2

×
(

(

1

2δ2

∫

Ω

∫

Ω
Rδ(x,y)|v(x) − v(y)|2dxdy

)
1

2

+

(

1

2δ2

∫

Ω

∫

Ω
Rδ(x,y)|uδ(x)− uδ(y)|2dxdy

)
1

2

)

+
(

‖v‖H1(Ωδ) + ‖uδ‖H1(Ωδ)

)

‖f‖H−1(Ω)

≤ ‖uδ‖H1(Ωδ)‖f‖H−1(Ω) + ‖uδ‖
1

2

H1(Ωδ)
‖f‖

1

2

H−1(Ω)
‖v‖H1(Ωδ)

+ C
(

‖pδ‖L2(Ωδ) + ‖f‖H−1(Ω)

)

‖f‖H−1(Ω)

≤ C
(

‖pδ‖L2(Ωδ) + ‖f‖H−1(Ω)

)

‖f‖H−1(Ω). (3.19)

Using (3.3), (3.9), (3.19) and Lemma 3.4 yields

‖pδ‖2L2(Ω) ≤ C‖uδ‖L2(Ω)‖f‖H−1(Ω) + C‖pδ‖2L2(Ωδ)

≤ C
(

‖pδ‖L2(Ω) + ‖f‖H−1(Ω)

)

‖f‖H−1(Ω),

which implies

‖pδ‖L2(Ω) ≤ C‖f‖H−1(Ω). (3.20)

This also gives the H1 estimate of uδ using (3.9),

‖uδ‖H1(Ωδ) ≤ C‖f‖H−1(Ω) (3.21)

and using (3.1),

‖p̄δ‖L2(Ω) ≤ ‖pδ‖L2(Ω) +
1

|Ω|

∣

∣

∣

∣

∫

Ω
pδ(x)dx

∣

∣

∣

∣

≤ C‖f‖H−1(Ω). (3.22)

Note that in the above, the fact that

1

|Ω|

∣

∣

∣

∣

∫

Ω
pδ(x)dx

∣

∣

∣

∣

≤ 1
√

|Ω|
‖pδ‖L2(Ω)

is used.

4. Vanishing nonlocality

Besides the well-posedness, we are also interested in the limiting behavior of the

nonlocal Stokes system (2.5) as the nonlocality vanishes, i.e. δ → 0. In this section, un-

der some assumptions, we prove that solutions of the nonlocal Stokes system converge
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to the solution of the Stokes system as δ → 0. Furthermore, we give an estimate on the

convergence rate. The result is summarized in Theorem 4.2.

Before stating the main theorem, we give several technical results that are used to

prove the main theorem.

We also need the following theorem on the order of the nonlocal approximation

which can be proved via simple Taylor expansion.

Theorem 4.1. Let

r(x) = − 1

δ2

∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)

dy −
∫

Ω
R̄δ(x,y)∆u(y)dy, ∀x ∈ Ωδ.

There exist constants C, T0 depending only on Ω such that for any δ ≤ T0, for u ∈ H3(Ω),

‖r(x)‖L2(Ωδ)
≤ Cδ‖u‖H3(Ω), (4.1)

‖∇r(x)‖L2(Ωδ)
≤ C‖u‖H3(Ω). (4.2)

We then have the main result of this section regarding the convergence of the non-

local Stokes system as the nonlocality vanishes.

Theorem 4.2. Let u(x), p(x) be solution of Stokes system (1.1) and uδ(x), pδ(x) be

solution of nonlocal Stokes system (2.5) with f ∈ H1(Ω). There exists a constant C > 0
that only depends on Ω and R such that

‖u− uδ‖H1(Ωδ) + ‖p− pδ‖L2(Ω) ≤ C
√
δ‖f‖H1(Ω).

Proof. Let

eδ(x) = u(x)− uδ(x)

and

dδ = p− pδ −
1

|Ωδ|

∫

Ωδ

(

p(x)− pδ(x)
)

dx,

then eδ and dδ satisfy















































































− 1

δ2

∫

Ω
Rδ(x,y)

(

eδ(x)− eδ(y)
)

dy

+
1

2δ2

∫

Ω
Rδ(x,y)(x − y)dδ(y)dy = ru(x), x ∈ Ωδ, (4.3a)

eδ(x) = u(x), x ∈ Vδ, (4.3b)

1

2δ2

∫

Ω
Rδ(x,y)(x− y) · eδ(y)dy

−
∫

Ω
R̄δ(x,y)

(

dδ(x)− dδ(y)
)

dy = rp(x), x ∈ Ω, (4.3c)

∫

Ωδ

dδ(x)dx = 0, (4.3d)
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where

ru(x) =

∫

Ω
R̄δ(x,y)∆u(y)dy +

1

δ2

∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)

dy, ∀x ∈ Ωδ, (4.4)

rp(x) = −
∫

Ω
R̄δ(x,y)

(

p(x)− p(y)
)

dy, ∀x ∈ Ω. (4.5)

First, we focus on the following estimate:

1

δ2

∫

Ωδ

eδ(x) ·
∫

Ω
Rδ(x,y)

(

eδ(x)− eδ(y)
)

dydx

=
1

δ2

∫

Ωδ

eδ(x) ·
∫

Ωδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

dydx

+
1

δ2

∫

Ωδ

eδ(x) ·
∫

Vδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

dydx

=
1

2δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)|eδ(x)− eδ(y)|2dxdy

+
1

δ2

∫

Ωδ

eδ(x) ·
∫

Vδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

dydx. (4.6)

The second term of the right-hand side of (4.6) can be calculated as

1

δ2

∫

Ωδ

eδ(x) ·
∫

Vδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

dydx

=
1

δ2

∫

Ωδ

|eδ(x)|2
(
∫

Vδ

Rδ(x,y)dy

)

dx

− 1

δ2

∫

Ωδ

eδ(x) ·
(
∫

Vδ

Rδ(x,y)u(y)dy

)

dx. (4.7)

Here we use the definition of eδ and the volume constraint condition uδ(x) = 0,x ∈ Vδ

to get that eδ(x) = u(x),x ∈ Vδ.

The first term is positive which is good for us. We only need to bound the second

term of (4.7). First, the second term can be bounded as following:

1

δ2

∣

∣

∣

∣

∫

Ωδ

eδ(x) ·
(
∫

Vδ

Rδ(x,y)u(y)dy

)

dx

∣

∣

∣

∣

≤ 1

δ2

∫

Ωδ

|eδ(x)|
(
∫

Vδ

Rδ(x,y)dy

)
1

2
(
∫

Vδ

Rδ(x,y)|u(y)|2dy
)

1

2

dx

≤ 1

δ2

(

∫

Ωδ

1

2
|eδ(x)|2

(
∫

Vδ

Rδ(x,y)dy

)

dx+ 2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)|u(y)|2dy
)

dx

)

≤ 1

2δ2

∫

Ωδ

|eδ(x)|2
(
∫

Vδ

Rδ(x,y)dy

)

dx+
2

δ2

∫

Vδ

|u(y)|2
(
∫

Ωδ

Rδ(x,y)dx

)

dy
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≤ 1

2δ2

∫

Ωδ

|eδ(x)|2
(
∫

Vδ

Rδ(x,y)dy

)

dx+
C

δ2

∫

Vδ

|u(y)|2dy

≤ 1

2δ2

∫

Ωδ

|eδ(x)|2
(
∫

Vδ

Rδ(x,y)dy

)

dx+ Cδ‖f‖2H1(Ω). (4.8)

Here we use Lemma B.1 in Appendix B to get the last inequality. By substituting (4.8),

(4.7) in (4.6), we get

∣

∣

∣

∣

1

δ2

∫

Ωδ

eδ(x) ·
∫

Ω
Rδ(x,y)

(

eδ(x)− eδ(y)
)

dydx

∣

∣

∣

∣

≥ 1

2δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)|eδ(x)− eδ(y)|2dxdy

+
1

2δ2

∫

Ωδ

|eδ(x)|2
(
∫

Vδ

Rδ(x,y)dy

)

dx− C‖f‖2H1(Ω)δ. (4.9)

This is the key estimate to show the convergence.

We also need the following bound:

∣

∣

∣

∣

1

δ2

∫

Ωδ

eδ(x) ·
(
∫

Ω
Rδ(x,y)(x− y)dδ(y)dy

)

dx

+
1

δ2

∫

Ω
dδ(x)

(
∫

Ω
Rδ(x,y)(x − y) · eδ(y)dy

)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

1

δ2

∫

Ω
dδ(x)

(
∫

Vδ

Rδ(x,y)(x− y) · eδ(y)dy
)

dx

∣

∣

∣

∣

≤ 1

δ

∫

Ω

(
∫

Vδ

Rδ(x,y)|dδ(x)||u(y)|dy
)

dx

≤ 1

δ

[
∫

Ω

(
∫

Vδ

Rδ(x,y)|dδ(x)|2dy
)

dx

∫

Ω

(
∫

Vδ

Rδ(x,y)|u(y)|2dy
)

dx

]
1

2

≤ C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω). (4.10)

Multiplying eδ(x), dδ(x) on both sides of Eqs. (4.3a) and (4.3c) and integrating over

Ωδ,Ω respectively and adding them together, using (4.9), (4.10), we have

1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)|eδ(x)− eδ(y)|2dxdy

+
1

2δ2

∫

Ωδ

|eδ(x)|2
(
∫

Vδ

Rδ(x,y)dy

)

dx

+

∫

Ω

∫

Ω
Rδ(x,y)|dδ(x)− dδ(y)|2dxdy

≤
(

‖ru‖L2(Ωδ)

)

‖eδ‖L2(Ωδ) + ‖rp‖L2(Ω)‖dδ‖L2(Ω)

+ C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω) + Cδ‖f‖2H1(Ω). (4.11)
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To simplify the notation, we denote the right hand side of (4.11) as Q2.

It is well known (e.g. [17, Section 3.3]) that with the condition that

∫

Ωδ

dδ(x)dx = 0,

there exists at least one function ψ ∈ H1
0 (Ωδ) such that

∇ ·ψ(x) = dδ(x), x ∈ Ωδ, and ‖ψ‖H1(Ωδ) ≤ c‖dδ‖L2(Ωδ) (4.12)

and c is a constant independent on δ, the proof can be found in Appendix C.

Then, we extend ψ to Ω by assigning the value on Vδ to be 0 and denote the new

function also by ψ. Obviously, we have

ψ ∈ H1
0 (Ωδ) ∩H1

0 (Ω), ‖ψ‖H1(Ω) ≤ c‖dδ‖L2(Ωδ). (4.13)

Using Eq (4.3c), we have

w̄δ(x)dδ(x) =

∫

Ω
R̄δ(x,y)dδ(y)dy +

1

2δ2

∫

Ω
Rδ(x,y)(x− y) · eδ(y)dy − rp(x)

=

∫

Ωδ

R̄δ(x,y)∇ ·ψ(y)dy +
1

2δ2

∫

Ωδ

Rδ(x,y)(x − y) · eδ(y)dy

+
1

2δ2

∫

Vδ

Rδ(x,y)(x − y) · eδ(y)dy +

∫

Vδ

R̄δ(x,y)dδ(y)dy − rp(x)

= − 1

2δ2

∫

Ωδ

Rδ(x,y)(x − y) · ψ̄(y)dy +
1

2δ2

∫

Vδ

Rδ(x,y)(x− y) · u(y)dy

+

∫

Vδ

R̄δ(x,y)dδ(y)dy − rp(x), (4.14)

where

w̄δ(x) =

∫

Ω
R̄δ(x,y)dy, ψ̄ = ψ − eδ.

Then, it follows that

1

2δ2

∫

Ωδ

ψ̄(x)

(
∫

Ω
Rδ(x,y)(x− y)dδ(y)dy

)

dx

= − 1

2δ2

∫

Ω
dδ(x)

(
∫

Ωδ

Rδ(x,y)(x− y)ψ̄(y)dy
)

dx

=

∫

Ω
d2δ(x)w̄δ(x)dx−

∫

Ω
dδ(x)

(
∫

Vδ

R̄δ(x,y)dδ(y)dy

)

dx

−
∫

Ω
dδ(x)

(
∫

Vδ

Rδ(x,y)(x− y) · u(y)dy
)

dx+

∫

Ω
dδ(x)rp(x)dx. (4.15)
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The first term is positive which is a good term. The second term becomes

−
∫

Ω
dδ(x)

(
∫

Vδ

R̄δ(x,y)dδ(y)dy

)

dx

=

∫

Ω
dδ(x)

(
∫

Vδ

R̄δ(x,y)
(

dδ(x)− dδ(y)
)

dy

)

dx

− 1

2δ2

∫

Ω
d2δ(x)

(
∫

Vδ

R̄δ(x,y)dy

)

dx. (4.16)

The second term of (4.16) can be controlled by the first term of (4.15). And the first

term is bounded by
∫

Ω
dδ(x)

(
∫

Vδ

R̄δ(x,y)
(

dδ(x)− dδ(y)
)

dy

)

dx

=
1

2

∫

Vδ

∫

Vδ

R̄δ(x,y)
(

dδ(x)− dδ(y)
)2
dydx

+

∫

Ωδ

dδ(x)

(
∫

Vδ

R̄δ(x,y)
(

dδ(x)− dδ(y)
)

dy

)

dx

≥ 1

2

∫

Vδ

∫

Vδ

R̄δ(x,y)
(

dδ(x)− dδ(y)
)2
dydx

+

∫

Ωδ

(
∫

Vδ

R̄δ(x,y)
(

dδ(x)− dδ(y)
)2
dy

)

dx

−
∣

∣

∣

∣

∫

Ωδ

(
∫

Vδ

R̄δ(x,y)
(

dδ(x)− dδ(y)
)

dδ(y)dy

)

dx

∣

∣

∣

∣

≥ 1

2

∫

Ω

(
∫

Vδ

R̄δ(x,y)
(

dδ(x)− dδ(y)
)2
dy

)

dx

− 1

2

∫

Vδ

d2δ(x)

(
∫

Ωδ

R̄δ(x,y)dy

)

dx. (4.17)

Combining (4.15)-(4.17), we get

1

2δ2

∫

Ωδ

ψ̄(x)

(
∫

Ω
Rδ(x,y)(x− y)dδ(y)dy

)

dx

≥
∫

Ωδ

d2δ(x)

(
∫

Ωδ

R̄δ(x,y)dy

)

dx

− 1

2δ2

∫

Ω
dδ(x)

(
∫

Vδ

Rδ(x,y)(x − y) · u(y)dy
)

dx

+

∫

Ω
dδ(x)rp(x)dx. (4.18)

In addition, we have
∣

∣

∣

∣

1

2δ2

∫

Ω
dδ(x)

(
∫

Vδ

Rδ(x,y)(x− y) · u(y)dy
)

dx

∣

∣

∣

∣



926 Q. Du and Z. Shi

≤ 1

2δ

∫

Ω
|dδ(x)|

(
∫

Vδ

Rδ(x,y)|u(y)|dy
)

dx

≤ 1

2δ

[
∫

Ω
|dδ(x)|2

(
∫

Vδ

Rδ(x,y)dy

)

dx

∫

Ω

(
∫

Vδ

Rδ(x,y)|u(y)|2dy
)

dx

]
1

2

≤ C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω) (4.19)

and
∣

∣

∣

∣

∫

Ω
dδ(x)rp(x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
dδ(x)

(
∫

Ω
R̄δ(x,y)(p(x) − p(y))dy

)

dx

∣

∣

∣

∣

≤ Cδ‖p‖H1(Ω)‖dδ‖L2(Ω) ≤ Cδ‖f‖H1(Ω)‖dδ‖L2(Ω). (4.20)

Multiplying Eq. (4.3a) by ψ̄ and using (4.18)-(4.20), we have

‖dδ‖2L2(Ωδ)
≤ 1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

·
(

ψ̄(x)− ψ̄(y)
)

dxdy

+
1

δ2

∫

Ωδ

ψ̄(x) ·
(
∫

Vδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

dy

)

dx

+ ‖ψ̄‖L2(Ωδ)

(

‖ru‖L2(Ωδ)

)

+ C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω). (4.21)

The first term can be bounded as
∣

∣

∣

∣

1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

·
(

ψ̄(x)− ψ̄(y)
)

dxdy

∣

∣

∣

∣

≤
(

1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)|eδ(x)− eδ(y)|2dxdy
)

1

2

×
(

1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)|ψ̄(x)− ψ̄(y)|2dxdy
)

1

2

≤
(

1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)|eδ(x)− eδ(y)|2dxdy
)

1

2

×
(

(

1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)|ψ(x) −ψ(y)|2dxdy
)

1

2

+

(

1

δ2

∫

Ωδ

∫

Ωδ

Rδ(x,y)|eδ(x)− eδ(y)|2dxdy
)

1

2

)

≤ Q2 + CQ‖ψ‖H1(Ωδ) ≤ Q2 + CQ‖dδ‖L2(Ωδ). (4.22)

The estimate of the second term of (4.21) is more involved. First

∣

∣

∣

∣

1

δ2

∫

Ωδ

ψ̄(x) ·
(
∫

Vδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

dy

)

dx

∣

∣

∣

∣
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≤
∣

∣

∣

∣

1

δ2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)
(

ψ̄(x)− ψ̄(y)
)

·
(

eδ(x)− eδ(y)
)

dy

)

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

1

δ2

∫

Vδ

u(x) ·
(
∫

Ωδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

dy

)

dx

∣

∣

∣

∣

≤
[

(

1

δ2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)|ψ̄(x)− ψ̄(y)|2dy
)

dx

)
1

2

+

(

1

δ2

∫

Vδ

|u(x)|2
(
∫

Ωδ

Rδ(x,y)dy

)

dx

)
1

2

]

×
(

1

δ2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)|eδ(x)− eδ(y)|2dy
)

dx

)
1

2

≤ C
(

‖ψ‖H1(Ω) +
√
δ‖f‖H1(Ω)

)

×
(

1

δ2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)|eδ(x)− eδ(y)|2dy
)

dx

)
1

2

+
C

δ2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)|eδ(x)− eδ(y)|2dy
)

dx. (4.23)

Moreover,

1

δ2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)|eδ(x)− eδ(y)|2dy
)

dx

≤ 2

δ2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)|eδ(x)|2dy
)

dx+
2

δ2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)|eδ(y)|2dy
)

dx

≤ 2

δ2

∫

Ωδ

|eδ(x)|2
(
∫

Vδ

Rδ(x,y)dy

)

dx+
2

δ2

∫

Ωδ

(
∫

Vδ

Rδ(x,y)|u(y)|2dy
)

dx

≤ Q2 + Cδ‖f‖2H1(Ω). (4.24)

Combining (4.23) and (4.24), we get
∣

∣

∣

∣

1

δ2

∫

Ωδ

ψ̄(x) ·
(
∫

Vδ

Rδ(x,y)
(

eδ(x)− eδ(y)
)

dy

)

dx

∣

∣

∣

∣

≤
(

‖dδ‖L2(Ωδ) +
√
δ‖f‖H1(Ω)

)(

Q+
√
δ‖f‖H1(Ω)

)

+Q2 + δ‖f‖2H1(Ω). (4.25)

Substituting (4.22) and (4.25) in (4.21),

‖dδ‖2L2(Ωδ)
≤ Q2 + C

(

‖dδ‖L2(Ωδ) +
√
δ‖f‖H1(Ω)

)(

Q+
√
δ‖f‖H1(Ω)

)

+ ‖ψ̄‖L2(Ωδ)‖ru‖L2(Ω) + C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω)

≤ Q2 + C
(

‖dδ‖L2(Ωδ) +
√
δ‖f‖H1(Ω)

)(

Q+
√
δ‖f‖H1(Ω)

)

+
(

‖dδ‖L2(Ωδ) + ‖eδ‖L2(Ωδ)

) (

‖ru‖L2(Ωδ)

)

+ C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω). (4.26)
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On the other hand, using Lemma 3.4, we have

‖dδ‖2L2(Ω) ≤ C

∫

Ω

∫

Ω
|dδ(x)− dδ(y)|2Rδ(x,y)dydx+ C‖dδ‖2L2(Ωδ)

. (4.27)

Then it follows from (4.11) and above inequality

‖dδ‖2L2(Ω) ≤ Q2 + C
(

‖dδ‖L2(Ω) +
√
δ‖f‖H1(Ω)

)(

Q+
√
δ‖f‖H1(Ω)

)

+
(

‖dδ‖L2(Ω) + ‖eδ‖L2(Ωδ)

)(

‖ru‖L2(Ωδ)

)

. (4.28)

Theorem 4.1 gives that

‖ru‖L2(Ω) ≤ Cδ‖f‖H1(Ω), ‖rp‖L2(Ω) ≤ Cδ‖f‖H1(Ω). (4.29)

Following Lemma 3.3 and (4.11), we have

‖eδ‖2L2(Ωδ)
≤ Q2 ≤ C

√
δ‖f‖H1(Ω)‖eδ‖L2(Ωδ) +Cδ‖f‖2H1(Ω)

+ C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω),

which implies that

‖eδ‖2L2(Ωδ)
≤ Cδ‖f‖2H1(Ω) + C

√
δ‖f‖H1(Ω)‖dδ‖L2(Ω). (4.30)

Consequently, Q2 is bounded by

Q2 ≤ Cδ‖f‖2H1(Ω) + C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω). (4.31)

Now, we have the bound of ‖dδ‖L2(Ω) from (4.28) and (4.31),

‖dδ‖2L2(Ω) ≤ Cδ‖f‖2H1(Ω) + C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω)

+
(

‖dδ‖L2(Ω) +
√
δ‖f‖H1(Ω)

)

Q

≤ Cδ‖f‖2H1(Ω) + C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω)

+

(

1

2
‖dδ‖2L2(Ω) + δ‖f‖2H1(Ω)

)

.

Therefore

‖dδ‖2L2(Ω) ≤ Cδ‖f‖2H1(Ω) + C
√
δ‖f‖H1(Ω)‖dδ‖L2(Ω). (4.32)

Then the bound of ‖dδ‖L2(Ω) is obtained

‖dδ‖L2(Ω) ≤ C
√
δ‖f‖H1(Ω). (4.33)

The bound of ‖eδ‖L2(Ωδ) follows from (4.30) and (4.33),

‖eδ‖L2(Ωδ) ≤ C
√
δ‖f‖H1(Ω) (4.34)
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and

‖p − pδ‖L2(Ω) ≤ ‖dδ‖L2(Ω) + |d̄δ | ≤ C
√
δ‖f‖H1(Ω), (4.35)

where

d̄δ =
1

|Ω|

∫

Ω
dδ(x)dx

and we use the fact that

|d̄δ| =
1

|Ω|

∣

∣

∣

∣

∫

Ω
dδ(x)dx

∣

∣

∣

∣

≤ 1
√

|Ω|
‖dδ‖L2(Ω).

Finally, the bound of ‖eδ‖H1(Ωδ) can be derived from

eδ(x) =
1

wδ(x)

∫

Ω
Rδ(x,y)eδ(y)dy

+
1

2wδ(x)

∫

Ω
Rδ(x,y)(x− y)dδ(y)dy − δ2ru(x). (4.36)

We are left with estimating the three terms on the right hand side one by one. The

third term is easy to bound using Theorem 4.1,

∥

∥δ2∇ru(x)
∥

∥

L2(Ωδ)
≤ δ2‖f‖H1(Ω).

Notice that for any x ∈ Ωδ, wδ(x) is a positive constant. Then we have

∥

∥

∥

∥

∇
(

1

2wδ(x)

∫

Ω
Rδ(x,y)(x − y)dδ(y)dy

)∥

∥

∥

∥

2

L2(Ωδ)

≤ C

∫

Ωδ

∣

∣

∣

∣

∫

Ω
∇xRδ(x,y)(x − y)dδ(y)dy

∣

∣

∣

∣

2

dx+ C

∫

Ωδ

(
∫

Ω
Rδ(x,y)dδ(y)dy

)2

dx

≤ C

δ2

∫

Ω

∣

∣

∣

∣

∫

Ω
|R′

δ(x,y)||x− y|2dδ(y)dy
∣

∣

∣

∣

2

dx+ C

∫

Ω

(
∫

Ω
Rδ(x,y)dδ(y)dy

)2

dx

≤ C

∫

Ω

(
∫

Ω
|R′

δ(x,y)|dδ(y)dy
)2

dx+ C

∫

Ω

(
∫

Ω
Rδ(x,y)dδ(y)dy

)2

dx

≤ C‖dδ‖2L2(Ω) ≤ C
√
δ‖f‖H1(Ω),

where

R′
δ(x,y) = CδR

′

( |x− y|2
4δ2

)

, R′(r) =
d

dr
R(r).

The first term of (4.36) can be split into two terms

1

wδ(x)

∫

Ω
Rδ(x,y)eδ(y)dy

=
1

wδ(x)

∫

Ωδ

Rδ(x,y)eδ(y)dy +
1

wδ(x)

∫

Vδ

Rδ(x,y)u(y)dy.
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Using Lemma B.1,
∥

∥

∥

∥

∇
(

1

wδ(x)

∫

Vδ

Rδ(x,y)u(y)dy

)∥

∥

∥

∥

L2(Ωδ)

≤ C
√
δ‖f‖H1(Ω).

And it follows from Lemma 3.2 and (4.11),
∥

∥

∥

∥

∇
(

1

wδ(x)

∫

Ωδ

Rδ(x,y)eδ(y)dy

)
∥

∥

∥

∥

L2(Ωδ)

≤ C
√
δ‖f‖H1(Ω).

Hence, the proof is complete.

5. Discussion and conclusion

In this paper, we propose a nonlocal model for linear steady Stokes equation with

no-slip boundary condition. The main idea is to use volume constraint to enforce the

no-slip boundary condition and add a relaxation term in the divergence free condition

to maintain the well-posedness of the nonlocal system. As the nonlocal horizon param-

eter δ approaches 0, the solution of the nonlocal system converges to the solution of the

original Stoke equation, assuming that the solution to the latter is sufficiently smooth.

In terms of future work, one may examine the convergence with minimal regular-

ity assumptions on the local systems. It is also interesting to consider the numerical

discretizations. From the nonlocal system, we can derive a numerical scheme for the

original Stokes system on point cloud. Assume we are given a set of sample points P
sampling the domain Ω and a subset S ⊂ P sampling the boundary of Ω. In addi-

tion, assume we are given one vector V = (V1, · · · , Vn)
t where Vi is an volume weight

of xi in Ω, so that for any C1 function f on Ω,
∫

Ω f(x)dx can be approximated by
∑

xi∈Ω
f(xi)Vi.

Then, the nonlocal Stokes system (2.5) can be discretized as following:

− 1

δ2

∑

xj∈Ω

Rδ(xi,xj)(ui − uj)Vj +
1

2δ2

∑

xj∈Ω

Rδ(xi,xj)(xi − xj)pjVj

=
∑

xj∈Ω

R̄δ(xi,xj)fjVj, xi ∈ Ωδ,

1

2δ2

∑

xj∈Ω

Rδ(xi,xj)(xi − xj)ujVj −
∑

xj∈Ω

R̄δ(xi,xj)(pi − pj)Vj = 0, xi ∈ Ω,

ui = 0, xi ∈ Vδ.

This scheme is very simple and easy to implement. However, the accuracy is relatively

low. We can show that the error of above scheme is O( h
δ2

+ δ), where h is the average

distance among the sample points in P . The first term h
δ2

comes from the error of

the numerical integral and the second term δ is from error between nonlocal system

and the original Stoke equation. Further improvement and studies of asymptotically

compatible scheme [39] are interesting questions to be explored further.
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Appendix A. Formal derivation of the nonlocal Stokes model

Based on Assumptions 2.1 on the nonlocal kernels, we give some formal derivation

of the nonlocal Stokes model from its local counterpart.

First, for x ∈ Ωδ, we multiply R̄δ(x,y) on both sides of the first equation of the

Stokes system (1.1) evaluated at y ∈ Ω and taking integral with respect to y over Ω,

∫

Ω
R̄δ(x,y)∆u(y)dy −

∫

Ω
R̄δ(x,y)∇p(y)dy =

∫

Ω
R̄δ(x,y)f(y)dy, x ∈ Ωδ.

For the left hand side, we apply integration by parts and using the property R̄δ(x,y) = 0
for y ∈ ∂Ω and the relation between R̄ and R,

1

2δ2

∫

Ω
Rδ(x,y)(y − x) · ∇u(y)dy − 1

2δ2

∫

Ω
Rδ(x,y)(y − x)p(y)dy

=

∫

Ω
R̄δ(x,y)f(y)dy, x ∈ Ωδ. (A.1)

For the first term of the left-hand side, the derivation in [36] proceeds with an approx-

imation by Taylor expansion for x ∈ Ωδ,

∫

Ω
R̄δ(x,y)∆u(y)dy

= − 1

2δ2

∫

Ω
Rδ(x,y)(x − y) · ∇u(y)dy

= − 1

2δ2

∫

Ω
Rδ(x,y)

(

u(x)− u(y)− 1

2

n
∑

i,j=1

(xi − yi)(xj − yj)
∂2u(y)

∂yi∂yj

)

dy +O(δ)

= − 1

2δ2

∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)

dy +
1

2

n
∑

i,j=1

∫

Ω

∂

∂yi
R̄δ(x,y)(xj − yj)

∂2u(y)

∂yi∂yj
dy+O(δ)

= − 1

2δ2

∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)

dy +
1

2

∫

Ω
R̄δ(x,y)∆u(y)dy +O(δ)

= − 1

δ2

∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)

dy +O(δ).

By dropping O(δ) term, we obtain

− 1

δ2

∫

Ω
Rδ(x,y)

(

u(x)− u(y)
)

dy +
1

2δ2

∫

Ω
Rδ(x,y)(x − y)p(y)dy

=

∫

Ω
R̄δ(x,y)f(y)dy, x ∈ Ωδ.

From the derivation, it would appear that the error in the approximation of the left-

hand side is formally of order O(δ).
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The derivation of Eq. (1.5b) is much easier. We also multiply R̄δ(x,y) in the diver-

gence free equation and carry out integration by parts over Ω

∫

Ω
Rδ(x,y)(x − y) · u(y)dy = 0.

Then a stabilization term that mimics a nonlocal analog of the multiple of δ2∆p is

added to the above to obtain Eq. (1.5b): We remark that the stabilization term is O(δ2)
so that its presence does not affect the order of the overall approximation.

Appendix B. Some basic estimates on the local Stokes system

Lemma B.1. Let u(x) be the solution of the Stokes system (1.1) and f ∈ H1(Ω), then

there are generic constants C > 0 and T0 > 0, depending only on Ω and ∂Ω such that for

any δ < T0,
∫

Vδ

|u(y)|2dy ≤ Cδ3‖f‖2L2(Ω).

Proof. Since ∂Ω is compact and C∞ smooth. Consequently, it is well known that ∂Ω
has positive reaches [8], which means that there exists T0 > 0 only depends on ∂Ω, if

t < T0,Vδ can be parameterized as (z(y), τ) ∈ ∂Ω× [0, 1], where

y = z(y) + τ(z′(y)− z(y)
)

and
∣

∣

∣

∣

det

(

dy

d(z(y), τ)

)
∣

∣

∣

∣

≤ Cδ

and C > 0 is a constant only depends on Ω and ∂Ω. Here z
′(y) is the intersection point

of ∂Ω′ and the line determined by z(y) and y. The parametrization is illustrated in

Fig. 2.

y

z
′(y)

z(y)
∂Ω

Vδ

Ωδ

Γs,τ

Figure 2: Parametrization of Vδ.

First, we have

∫

Vδ

|u(y)|2dy =

∫

Vδ

|u(y)− u(z(y))|2dy
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=

∫

Vδ

∣

∣

∣

∣

∫ 1

0

d

ds
u(y + s(z(y)− y))ds

∣

∣

∣

∣

2

dy

=

∫

Vδ

∣

∣

∣

∣

∫ 1

0
(z(y) − y) · ∇u(y + s(z(y)− y))ds

∣

∣

∣

∣

2

dy

≤ Cδ2
∫

Vδ

∫ 1

0
|∇u(y + s(z(y) − y))|2 dsdy

≤ Cδ2 sup
0≤s≤1

∫

Vδ

|∇u(y + s(z(y)− y))|2 dy.

Here, we use the fact that ‖z(y) − y‖2 ≤ 2δ to get the second last inequality.

Then, the proof can be completed by following estimation.

∫

Vδ

∣

∣∇u
(

y + s(z(y)− y)
)∣

∣

2
dy

≤ Cδ

∫ 1

0

∫

∂Ω

∣

∣∇u
(

z(y) + (1− s)τ(z′(y)− z(y))
)
∣

∣

2
dz(y)dτ

≤ Cδ sup
0≤τ≤1

∫

∂Ω

∣

∣∇u
(

z+ (1− s)τ(z′ − z)
)∣

∣

2
dz

≤ Cδ sup
0≤τ≤1

∫

Γs,τ

|∇u(z̃)|2 dz̃

≤ Cδ‖u‖2H2(Ω) ≤ Cδ‖f‖2L2(Ω),

where Γs,τ is a k − 1 dimensional manifold given by

Γs,τ =
{

z+ (1− s)τ(z′ − z) : z ∈ ∂Ω
}

.

We use the trace theorem to get the second last inequality and the last inequality is due

to that u is the solution of the Stokes system (1.1).

Appendix C. Divergence estimation (3.11) (4.12)

Theorem C.1 ([17, Theorem III.3.1]). Let Ω be a bounded domain of Rn, n ≥ 2 such

that

Ω =
N
⋃

k=1

Ωk, N ≥ 1,

where each Ωk is star-shaped with respect to some open ball Bk with B̄k ⊂ Ωk. Then,

given f ∈ Lq(Ω), 1 < q < ∞, satisfying
∫

Ω f(x)dx = 0, there exists at least one solution

v ∈ W 1,q
0 (Ω) to

∇ · v(x) = f(x), x ∈ Ω,
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and

‖v‖1,q ≤ c‖f‖q.
Furthermore, the constant c admits the following estimate:

c ≤ c0C

(

d(Ω)

R0

)n(

1 +
d(Ω)

R0

)

,

where R0 is the smallest radius of the balls Bk, d(Ω) is the diameter of Ω, c0 = c0(n, q)
and C is an upper bound for the constants Ck given as following:

C1 = 1 +
|Ω1|1−

1

q

|F1|1−
1

q

,

Ck =

(

1 +
|Ωk|1−

1

q

|Fk|1−
1

q

)

k−1
∏

i=1

(

1 + |Fi|−(1− 1

q
)|Di − Ωi|1−

1

q

)

, k ≥ 2,

where Fi = Ωi ∩Di and Di =
⋃N

s=i+1Ωs.
‡

Based on above theorem, to get the constant independent on δ in (4.12), we need

to find decomposition for Ωη, 0 ≤ η ≤ δ0 such that corresponding R0 and |Fi| both

have uniform lower bound independent on η with some δ0 > 0. Next, we will give an

explicit way to construct the decomposition of Ωη.

Under the assumption that the boundary ∂Ω is C2 smooth, as shown in Fig. 3, for

any point x ∈ ∂Ω, there exists δx > 0 such that

Ux =
{

z ∈ Ω : |z− x| < δx
}

is star-shaped with respect to open ball B(y, δx/4) with y = x − 2
3δxn(x),n(x) is the

outer normal of ∂Ω at x.

x

y

Ω

η0
n(x)

δx

Figure 3: Cover of ∂Ω.

‡Since Ω is connected, we can always label sets Fi in such a way that |Fi| 6= 0, i = 1, . . . , N .
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⋃

x∈∂Ω Ux is an open cover of ∂Ω. Since ∂Ω is compact, there exist xk ∈ ∂Ω, k =
1, . . . , N such that

∂Ω ⊂
N
⋃

k=1

Uxk
.

Compactness of ∂Ω also implies that there exists η0 ∈ (0, 12 min1≤k≤N δxk
) such that

Vη0 ⊂
N
⋃

k=1

Uxk
.

Recall that Vη0 = {x ∈ Ω : dist(x, ∂Ω) ≤ η0}.

For any 0 ≤ η ≤ η0/2,

Uη
xk

=
{

z ∈ Ωη : |z− xk| < δxk

}

, k = 1, . . . , N

are also star-shaped with respect to B(yk, δxk
/4) with yk = xk− 2

3δxk
n(xk),n(xk) is the

outer normal of ∂Ω at xk. On the other hand, compactness of Ω̄η0 gives z1, · · · , zM ∈
Ω̄η0 such that

Ω̄η0 ⊂
M
⋃

k=1

B
(

zk,
η0
2

)

.

For any 0 ≤ η ≤ η0/2,

Ωη =

(

N
⋃

k=1

Uη
xk

)

⋃

(

M
⋃

k=1

B
(

zk,
η0
2

)

)

,

Uη
xk

is star-shaped with respect to B(yk, η0/2) and B(zk, η0/2) is star-shaped with re-

spect to itself. It is easy to check based on above decomposition, Theorem C.1 implies

(3.11) and (4.12).
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