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Abstract. In this paper, we introduce a nonlocal model for linear steady Stokes sys-
tem with physical no-slip boundary condition. We use the idea of volume constraint
to enforce the no-slip boundary condition and prove that the nonlocal model is well-
posed. We also show that and the solution of the nonlocal system converges to the
solution of the original Stokes system as the nonlocality vanishes.
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1. Introduction

Recently, nonlocal models and corresponding numerical methods have attracted
much attention due to many successful applications. For example, in solid mechanics,
the theory of peridynamics [38] has been used as a possible alternative to conventional
models of elasticity and fracture mechanics. Many numerical methods have also been
developed to simulate nonlocal models like peridynamics based on rigorous mathemat-
ical analysis [10-12,30,31,39,43]. Nonlocal methods are also successfully applied in
image processing and data analysis [2,4, 6,19, 20, 22,23,29,33-35,41]. The idea of
integral approximation is also applied to derive numerical scheme for solving PDEs on
point cloud [25,26].

In this paper, we study the nonlocal analog of the Stokes system in fluid mechanics.
Previously, nonlocal Stokes models have been proposed in [13,24] and analyzed subject
to periodic boundary condition. In this paper, we consider the case of a nonlocal no-slip
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boundary condition. More precisely, for the conventional, local linear Stokes system on
a domain 2 C R"™,

{ Au(x) — Vp(z) = f(x), =€, (.1)
V- u(x) =0, z e
the no-slip boundary condition on the boundary 92 is

u=0 at J0. (1.2)
For the pressure, we impose average zero condition

/Qp(ar:)dar: = 0. (1.3)

The no-slip boundary condition is a Dirichlet type boundary condition and it is of-
ten used in many real world applications. However, the theoretical study with no-slip
boundary condition is also much more difficult. The first question is how to enforce
no-slip boundary condition in the nonlocal approach. Recently, Du et al. [10] pro-
posed volume constraint to deal with the boundary condition in the nonlocal diffusion
problem by enforcing the condition over a nonlocal region adjacent to the boundary.
Adopting this idea, in the nonlocal Stokes system, we extend the no-slip condition to
a small layer as shown in Fig. 1.

Q=0Q;UV;s

—\

(=)

— 00
Vs

Figure 1: Computational domain in non-local Stokes model.

For a nonlocal problem involving nonlocal interactions on the range of § > 0, the whole
computational domain (2 is decomposed to two parts. 2 = Vs J s as shown in Fig. 1
and u is enforced to be zero in V;, i.e.

u(;(a:) =0, =xeVs. (1.4)

Definition of Qs and Vs will be given in (2.1). The parameter § is often called the
nonlocal horizon parameter [9, 38]. In ()5, the Stokes equation is approximated is
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formulated as

Lsus(xz) — Gsps(x / Rs(z,y)f(y)dy, =€ Qs, (1.52)
Dsus(z) — Lsps(x) = x €. (1.5b)

The nonlocal integral operators used in (1.5) represent the nonlocal diffusion (Lapla-
cian) Ls, nonlocal gradient G5 and nonlocal divergence Ds respectively as in [13] and
the references cited therein. An additional operator L; is also used, which is a rescaled
nonlocal diffusion operator. The particular forms of the operators adopted here are
given by

Lsu(@) = = / Ry(z, y) (u(y) — u(x))dy, (1.6)
Gsp(x) = 252/R5(w y)(y — z)p(y)dy, (1.7)
Dsu(a) = 555 | Ro(e.)(y @) ulw)dy. 1.8
Loplw) = [ Rslaw)(oly) ~ pla)dy 1.9)

for some nonnegative and smooth kernels Rs(x, y) and R;(x,y) specified later.
Finally, we also need average zero condition for the pressure

/ ps(x)dx = 0. (1.10)
Q

(1.4), (1.5) and (1.10) form a complete nonlocal formulation of the Stokes system.

As pointed out in the literature on nonlocal modeling (e.g. [9,13]), nonlocal inte-
gral approximations are closely related to many numerical schemes of computational
fluid dynamics, such as the smoothed particle hydrodynamics (SPH) [18,27,28, 32],
vortex methods [1,7] and others [3,5,15,21,40]. Analysis to the linear steady Stokes
equation in this paper could give some new understanding to the theoretical foundation
of these methods.

The Stokes system (1.1) is well-known to be a saddle point problem. This remains
the case for the nonlocal Stokes system given in [13] subject to periodic boundary
conditions. Here, different from [13], we add a relaxation term, L;sps(x), in Eq. (1.5b).
It mimics the classical technique of stabilizing the approximation of incompressibility
by adding a positive definite block to the original saddle point system. Although this
results in a slightly compressible system, the stabilization term vanishes as § — 0 so
that it does not destroy the approximation of the nonlocal formulation to the local
limit. Yet, this additional term is crucial for the stability and well-posedness in our case
where smooth nonlocal kernels are used to define the nonlocal operators. Indeed, the
well-posed study in [13] showed that, without extra relaxation, it is necessary to use
singular kernels. A remedy was provided in [24] by incorporating non-radial nonlocal
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interactions. The addition of the relaxation term enables the use of smooth kernels
in the definition of the associated nonlocal operators which may allow more flexible
practical implementation such as more conventional quadratures for smooth functions.
For the Fourier analysis of a related formulation with periodic boundary conditions, we
refer to [42].

The rest of the paper is organized as follows. We give the formulation of the non-
local linear Stokes system in Section 2 together with some related assumptions and
estimates. Then the well-posedness of the nonlocal model is established in Section 3.
The vanishing nonlocality limit is analyzed in Section 4. In Section 5, we conclude with
a summary and a discussion on future research.

2. Nonlocal Stokes system with related assumptions and estimates

In this section we present the nonlocal Stokes model in more details, together with
some basic assumptions on the geometry and kernel functions used to define the model,
along with some related estimates.

2.1. Notation and assumptions
First, we let €25 and Vs be subsets of () defined as
Qs ={xeQ:B(x,2)No0=0}, Vs=Q\Q. (2.1)

The relation of €2, 01, 25 and Vs are showed in Fig. 1.
Next, we state the following assumptions on the domain {2 and a kernel function
R(r).

Assumption 2.1.

* Assumptions on the computational domain: {2 € R" is open, bounded and con-
nected. 99 is C? smooth.

* Assumptions on the kernel function R(r):

(a) (regularity) R € C1[0,1];
(b) (positivity and compact support) R(r) > 0 and R(r) = 0 for Vr > 1;
(c) (nondegeneracy) 3y > 0 so that R(r) > o for 0 <r < %'

Then, the rescaled kernels used in the definitions of the nonlocal operators have the

form )
"B_
Ry(w,y) = R (12 Y1)
46 2.2)
Rs(z,y) = C5R lz - y|* .
5 b 5 452 )

tHere 1 can be replaced by any constant in (0, 1).
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where

B +00 1

R(r) = / R(s)ds = / R(s)ds, (2.3)
which satisfies obviously

_ d - n

R'(r) = aR(T) = R(r), VYreRT",

R(r)=0, V¥r>1.

The constant Cs = o, 6" in (2.2) is a normalization factor so that

1 2
Rs(z,y)dy = oann/ R (T—> e =1 2.4)
Rr 0 4

with S,, denotes area of the unit sphere in R™. With this normalization factor, the
local limits of L5, G5 and Dy recover the classical Laplacian A, gradient and divergence
operators respectively as § goes to 0. Moreover, L; also behaves like a nonlocal analog
of 8,62A, that is, a scaled nonlocal Laplacian that vanishes in the local limit.

2.2. Nonlocal Stokes system with volume constraint

By combining the volume constraint boundary condition of u and the average zero
condition of p, we have the nonlocal Stokes model given as follows:

Lous(@) — Gsps(x / Rs(e,9)f(y)dy, @<, (2.5a)

D(;u(;( ) E(;pg( ) x €€, (2.5b)

us(x) =0, € Vs, (2.50)

/ ps(x)da = 0. (2.5d)
Q

The integral operators have been defined in (1.6)-(1.9). A formal derivation of the
nonlocal model is given in the Appendix A.

Formally, the choices of normalization specified in this paper further imply that the
local limits of L5, Gs and Dy recover the classical Laplacian A, gradient and divergence
operators respectively as § goes to 0 [9,31]. Moreover, L; also behaves like a nonlocal
analog of f3,02A, that is, a scaled nonlocal Laplacian that vanishes in the local limit.
Thus, we may see (2.5) as a nonlocal extension of the local Stokes model (1.1)-(1.2).

Remark 2.1. For the study of the nonlocal model with periodic boundary condition on
2 = (0,1)", we can use Fourier transform to get the Fourier symbols of the nonlocal
operators, see the discussion in [42].
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2.3. Related estimates

Next, we list several technical results of the kernel functions which will be used in
the subsequent analysis.

Lemma 2.1. Let R = R(r) be a kernel function satisfying Assumption 2.1 and Rs, Rs be
given by (2.2) and (2.3) respectively.

(i) There exists a constant C' > 0, independent of § such that

_ C
|VeRs(x, y)| < Y,

= (|Rh(@,y)| + | Rs(@.v)])

Bla £
8

5
{vyva6($, y)| <
for any x,y € R", where

dR(r)
dr

xr — 2
Rs(x,y) = CsR’ <%> , R'(r)=

(ii) Let R be a kernel function satisfying the Assumption 2.1(a),(b) and

2 np =yl
Rs(z,y) = and R<T .

There exists a constant iy > 0 only dependent on Q and R such that for § < ng

—<w5 /Rgmydy<wn.—an5/ < >r"1dr.

Ks(y,z) :/Q{R(;(ac,z)vwﬁg(ac,yﬂdx

(iii) Let

for any y,z € R™. There exists C' > 0 independent on ¢ such that

ly — 2|
< —_— .
K(;(y,z) ~ CR < 3252

Proof. (i) Can be checked directly.

(i) This estimate is classical for smooth mollifiers. For the sake of completeness,

we give a brief proof here. The upper bound is easy to prove using the non-negativity
of R5

@s(x) = /Qﬁia(w,y)dy < [ Rs(z,y)dy = @y.

Rn
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To prove the lower bound, we need to use the condition that 99 is C2? and Rj is
continuous and bounded. Then for x € 99,

~ - _ll2 ~
lim &s(x) = lim/ Rs(x,y)dy = Oén/ R <M>dy - ﬂ,
0—0 6—0 Jo z+R 4 2

Where RY ={y = (y1,-- ,yn) € R" : y1 > 0}. On the other hand, for € ©, since Q2
is open,

lim @ () = 1i R dy = g (lz=yl® 4, _ -
5(90)—61_{% QR(s(ﬂe,y) y=o, [ R 1 Y = Wy

§—0

So, for any x € Q = QU 99, there exists 1, > 0 such that for any § < 7,, we have
@s(x) > @, /3. Using the compactness of ), there exists 9 > 0 such that for any = € ,
5 < o, we have ws(x) > &, /3.

(iii) When ||y —z|| > 49, we have max{||x —z|, ||z —y||} > 20, then using condition
(a) and (b) in Assumption 2.1,

Rs(x,2)VgRs(x,y) =0, VxecQ.

This gives that if ||y — z|| > 49,

Kg(y,Z) = 0.
When ||y — z|| < 49, we have
2
— 1
ly —a> _1
3242 2

Using condition (c) in Assumption 2.1,

K(;(y,z):/Q|]:25(:c,z)vm}~25(ac,y)‘dac

< 357 | Io = vl st )| |Rife. ) lda

1 ~ s
< 55 [ 1fs(e.)| By y)]da
2% Jo
C3 5 (llz =2\ || 5 [z —2]?
< 8 e = =]i” e — z||”
T 20 Jonp(wtz 20) R( 46° i 462 4
T2
< MCj B y+z725
20 2
CM CM ly —z|?
< — < — g 0
0 Como < 670 C(SR< 3262 )7

where M = max,co, 1] |R(r)R'(r)], 7o is the constant in condition (c) in Assumption 2.1,
Cjs is the normalization factor in (2.2). O
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3. Well-posedness of the nonlocal Stokes system (2.5)

In this section, we prove the well-posedness of the nonlocal Stokes system (2.5).
More precisely, we show the following theorem.

Theorem 3.1. Suppose that the Assumption 2.1 is satisfied. For any f € H~'(Q), there
exits one and only one pair (u,p) such that

(@) uwe HYQs), p € L3(Q). In addition,

wlla oy + 1P 22) < ClFlla-10),
where C > 0 is a constant that only depends on §2 and kernel function R.
(b) The pair (u, p) satisfies the nonlocal Stokes system (2.5).
In the proof of the well-posedness, we need several technical lemmas.

Lemma 3.1 ([37]). If 0 is small enough, for any function u € L?()), there exists a con-
stant C' > 0, independent of § and u such that

// <H$3;5§’”2>(u(w)_u(y))dedy
<c// <Hx4_52y“2>(u(m)_u(y))dedy,

Similar results concerning the scaling of the nonlocal interaction neighborhood like
the above one can also be found in [14] for other types of kernels including fractional
ones.

Next, we consider an extension to a similar result shown in [36].

Lemma 3.2. For any function u € Lo(R™) vanishing outside of €5, i.e. u(x) = 0 for
x € R™\Qy, there exists a constant C' > 0 independent on § such that

5[] Reew () - uly) dedy
95 Qs
+ = u2(;c) < Rs(x, y)dy> da
6 Vs
26’/ \VU\Qdm,
Q

where

o) = /Q R, y)u(y)dy = /Q Rs(, y)u(y)dy,

ws(x) = /Qﬁéa (z,y) dy,
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~ = (2 =yl
R&(%y):C&R( w2 )

and R is a kernel function satisfying condition (a)-(c) in Assumption 2.1.

and

Proof. For any x € (), we have

Vs(x)

- /v Rs(z, y)u(y)dy — (@) /Q(Ra(w,y))U(y)dy

- / / Rs(x,2)VRs(z,y) (u(y) — u(z))dydz.

Vo(

wé

1
e)
1
W3 (x)
This leads to

/Q|Vv(sc)|2d;c—/ —'//Rg x,2)VaRs(x, y)( (y) — u(z))dydz

<— <//|R5$ZVR5xy{dydz>

(/ / |Rs(,2) Vo Rs(,y)| (u(y) - (Z))Qdydz> dz

< i [ ] Koty 2) (uly) — u(a) "y
Whin /2 /O
~ 1 b n—1
Wmin = ganSn/O R <Z> r* T idr

Ks(y,z) :/Q|R5(a:,z)vx]3€5(a:,y)‘dm.

2
dx

with

given in Lemma 2.1 and

In the last inequality, we use the estimate

//|R5($7Z)“Vm}?5($,y)‘dydz
QJQ
1 ~ ~
<7 | [ e = vl Rt Rt )y

3 [ ] 1Rt vl s |y <

~ ~ — 2 ~ »
Rfs(w,y):CsR’Cw y|>, R’(T)Zd—R-

with

452 dr



912 Q. Du and Z. Shi

Finally, Lemma 2.1 (ii) gives that
[ ivu@pa < 5 [ [ oo (M50 o) - ) asay
< o [ [ e (Bt (ute) - utw) oy
/ | otw.)(uta) ~u(w)*dady
o5 [ ([ Bt wutwray) as

The second inequality comes from Lemma 3.1. O

Using above lemma, it is easy to get a nonlocal Poincare inequality for the special
kernels, Lemma 3.3.

Lemma 3.3. For any function u € Ly(R™) vanishing outside of ()5, there exists a constant
C > 0 independent on 0 such that

5 /96 /Qa Rs(@,y) (u(@) - u(y)) dedy
T /95 u(®) ( ,, @ y)dy> dz

> Cllull?, 0,
if 0 is small enough.

Proof. Let

1
ws(x)
Using the definition of (g,

1

v@) = ws(x)

/ Rs(z,y)u(y)dy = /Ra(&y)U(y)dy-
Qs Q

v(x) =0, Ve .

Then Lemma 3.2 and the Poincare inequality imply that

[0]172(q) < 52</ / Rs(@, ) (u(z) — u(y)) dzdy
+/Q§ uQ(m)< . Rg(a:,y)dy> dm).

On the other hand, for x € Q;
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Therefore,

lu =2, < ;/ (/ Rs(z,y dy> / Rs(,y)(u(@) — u(y))*dyd
[ ] Rilew)(ut@) - u(w) dyda

“hin

IN

— Lmax ( / Rs(z, y) (u(z) — u(y))’dedy
Qs JQs

Whin
+2/ W2 () (/ R(g(:c,y)dy> dz |,
Q(S V(g
1 1 2 1 2
Wmin = _ansn/ R (T—> ’I“nildT', Wmax = OénSn/ R <T—> T‘nildT‘

as given in Lemma 2.1. O

where

Remark 3.1. Support of fv(; Rs(x,y)dy is a narrow band adjacent to 02 with the

width of 45. So the second term in Lemma 3.3, 3 Jos u2(a:)(fV6 Rs(z,y)dy)dz, is
used to control u(x) near the boundary while the first term controls the fluctuation
in the interior. Lemma 3.3 is actually very natural following the spirit of the Poincare
inequality. For more general discussions, we refer to, e.g., [9,30,31] and the references
cited therein.

Lemma 3.4. For any function p € Lo(Q)) with fQ x)dx = 0, there exists a constant
C > 0 independent on § such that

5% /Q /QR(S(:B’ y) (p(z) — p(y))*dedy > C|lpll3 o)

if 6 is small enough.

Proof. For p with fQ x)dx = 0, we also have nonlocal Poincare inequality [37],

C _ 2
P17z 0y < g/ Rs(z,y) (p(x) — p(y)) dzdy.
Qs JQs

Using nondegeneracy assumption in Assumption 2.1, it is easy to verify that for any
x €,

/ R45($7y)dy Z co > 07
Qs

where

z — 2
Ruste.) = G5t (5745
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and Cj is the normalization factor in (2.2)

Wl < € [ @ ( [ Rolwwin ) ao
<c| ( / 5 |p<w>|2R45<x,y>dy> da

< C/ ( o, Ip(z) —p(y)!2345(w7y)dy> da
ve | ( [t Rust Wiy ) de

<C//\p \R45my)dydm+6’/ Ip(y)|?de
<c [ [ Ip(e) - plo)*Rs(a,y)dyde + ClolEsqo,
The proof is complete. O

Now we can prove the main theorem in this section, Theorem 3.1.
Proof. First, in the nonlocal Stokes system, we replace the condition

/Qpa(ﬂﬁ)dﬂﬁ =0
/96 ps(x)dx =0

and denote the pressure in the original nonlocal Stokes system as ps. It is obvious that

B 1
P =p g /Q ps(@)da. 3.1)

The existence and uniqueness of the solution to the nonlocal Stokes system is a direct
implication of Lax-Milgram theorem by introducing the bilinear form in LZ(2) x L(Q)

by

(2], [0.4)) = 555 / | Fsta.v) (ule) ~ uw) - (vla) — vly))dady
+ 35 | [ Fs@niy - 2)- (0@ly) - u@()dedy
+/Q/Qf?5(w,y)(19(w)—p(y))(Q(w)—Q(y))dwdy, (3.2)

where

L3(Q) = {[u,p] cu € LA(Q)", p € L*(Q),supp(u) C Qg,/Q p(x)de = 0} )

8
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To apply Lax-Milgram theorem, we need to check the continuity and coercivity of
the bilinear form, i.e. for any [u, p], [v,q] € L3(Q),

|a(fw.p), [0, )| < Cllullr2@) + IPll2@) (I0ll2@ + llal @),
(o1 ) > € (Il + Il

with C' > 0 independent on [u,p] and [v, g]. Note that here constant C' may depend
on 4.

The continuity is easy to check and coercivity can be given by Lemmas 3.3 and 3.4.
Then, the existence and uniqueness of the solution is given by Lax-Milgram theorem
[16, Section 6.2.1].

In the rest of the proof, we will devote to get the uniform upper bound of ||u|/%,, @) T

pl|F2/0y- Multiplying us on Eq. (2.5a) and multiplying p on Eq. (2.5b) and integrating
72(q- Multiplyi Eq. (2.5a) and multiplyi Eq. (2.5b) and i i
over 2 and adding them together, we can get

5 [ Bl yluse) - us(y)Pdedy
0% Ja Jo
+ [ [ Rataw) (@)~ ps(w) *dady
= ( / Ra(w,y)f(y)dy> (@) da. (3.3)
From (3.3), using Lemma 3.3, we have

sl <€ [ ([ Rste.n)fwan) - ustonta

and

[ [ Rste ) - s@lazdy| < IS0 aslin o
with
dg(y):/}_%g(m,y)u§(m)dm.

0

Notice that us(y) = 0,y € Vs and [, VyRs(x,y)dz = 0,y € Q5, so
us(w) [ VyFs(oy)da =0, yeo.

Then we have

2
dy

Vel = | 1 [ 9uhste ppusteie

),

2
dy

/vaRg(:B, Y) (w;(a:) — w;(y))dm
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< [([1vurstewlaz) [ [9yfsw0)]lus@) - ustw)| dody
<55 [ ] Rotelus@) - us(y)Pdady

to get the last inequality, Lemma 2.1 is used.
Moreover, it is easy to see that

- C
[5][72(0) < Cllus|Fz) < 5—2/Q/QR<S($,Z/)|U<S($) — us(z)[dzedy.

Putting above estimates together, we have

sl < 55 [, ] Rl lus(@) —usly) Pdady
<cC

[ Ry 1) -u5<w>dwdy\ .

It follows that

| [ #stwwsw) -u5<w>dwdy\ < OlF P
QJQ

Hence, we get

lusllzz@) < Cllfllm-1(0)- (3.4
In addition, from Eq. (2.5a), us has following expression, for any x € Qy:
us(x) = ! /R(m Jus(y)d

4+ 2w5 / Rs(x,y)(x — y)ps(y)dy
52 =
B w5(a:)/gR5(m7y)f(y)dy- (3-5)

Using Lemma 3.2, (3.3) and (3.4), we have

HV (@/S)Ra(ww)ua(y)dy) .

C
<5 [ [ B wlus) - usw)Pdedy < Clf gy GO
0 QJQ

Notice that for any x € {25, ws(x) is a positive constant. Then we have

¥ (5o L st - wmstway)

2

2

L2(Qs)
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2

<C dz
Qs

/vaR(;(;c, y)(xz — y)ps(y)dy

+C (/ Rs(x, y)ps(y )dy>2d$

_52/\/ Byl - uPlos(w)ldy|
—I-C/ </R5myp5( )dy) dx
<cf ( / \R{«a:,ympa(y)\dyfdm

dx

2
+C/ (/ Rs(z, y)ps(y )dy> da < Cllps| 720,

where

x — y|? d
Rifa) = ot (P20 ) R = fRG)

In addition, direct calculation gives that

v (wf;) [ Rate)swan)

For any v € L%(Qs),

/Qév( < /Raﬂﬂy >d
:/QU%U(:L-)V% (MR( )) dw) F(y)dy

<N F -2 1001y »

L2(Qs)

where
2

i) = [ Ve (0 o)) o

52 _
= / v(x) ——=VRs(x, y)dx.
Qs ws (@)

Here we use the fact that ws(x) is a constant over (5.
Using Lemma 2.1, it is easy to check that

101l 1 ) < Clivllz2(s)-

Then (3.8) is obtained. Putting (3.4) and (3.6)-(3.8) together, we obtain

lusll ) < Cllfla-1(0) + CllpsliL2()-

<Clflla-1@

917

3.7)

(3.8)

(3.9
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Next, we turn to estimate the pressure p. First, considering the problem
V-v(x) =ps(x), x €. (3.10)

It is well known (e.g. [17, Section 3.3]) that if Q) satisfies cone condition, there exists
at least one solution of (3.10), denoted by v such that

v e Hy(Qs), |vllmay) < clpsllzey) (3.11)

with ¢ > 0 independent on §. Proof of (3.11) can be found in Appendix B. Then, we
extend v to {2 by assigning the value on Vj to be 0 and denote the new function also by
v. Obviously, we have

v e Hy(Q) N Hy (), ||vlla (o) < cllpslz2oy)- (3.12)
On the other hand, using Eq. (2.5b), for any x € 2 we have

as@ips(e) = [ Rolw.w)osw)dy + 555 | Row.w)(e ) usty)dy

:/%Rg(m,y)v-v( )dy—|—2(152/ Rs(z, y)(x — y) - us(y)dy

1
+o |, Be@wie - dy+ [ Rt vy
1
= —352 A Rs(z,y)(x — dy+/ (z,y)ps(y)dy, (3.13)
)

where
?I}(;($) :/S]R6($,y)dy, V=V — U

Then, it follows that

%/ o(x) (/ Rs(x,y)(x — ’y)pé(y)d’y> dx
— 252/ (/ Rs(x,y)(x — )ﬁ(y)dy) de

_ /Qpa(aC)wa(aC)da: - /ng(ac) </v(; R(;(:c,y)p(;(y)dy> de. (3.14)

The first term is positive, thus a good term. The second term becomes

_ /Qpa(m) (/v(S Rg(a:,y)p5(y)dy> da

- /Qpa(x) ( . Rs(z,y)(ps(z) —pé(y))dy> da

—/Qpﬁ(w) (/v(S Ra(w,y)dy> de. (3.15)
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The second term of (3.15) can be controlled by the first term of (3.14). And the first
term is bounded by

/Qpa(x) </v§ Rs(z,y) (ps(x) —pé(y))dy> da
- %/Vé /Vé Rs(x,y) (ps() — ps(y)) “dyda
/96 ps(x) ( . Rs(z,y) (ps(x) —p5(y))dy> da

v
N |
= 7

/V Rs(,y) (ps(x) — ps(y)) dyda

+ /95 </v§ Rs(z,y) (ps(x) —p5(y))2dy> de

> %/Q </v§ Rs(x,y)(ps(x) —pa(’y))Qdy> de
— %/v& pi(x) ( o, Rg(m,y)dy) de. (3.16)

Combining (3.14)-(3.16), we get

% /96 v(®) (/Q Rs(@, y)(z — y)pa(y)dy> de
- /95 ps(@) (/95 R‘S(x’y)dy> da. (3.17)

Now, we are ready to get the estimate of ps. Multiplying Eq. (2.5a) by v and
integrating over €5, using the fact that v(x) = 0, € Vs, we have

- 55 [ ] Rotw.) (@) = us(w) - (5(2) = o(w))dady

* % /96 v(z) (/Q Rs(z,y)(@ — y)pa(y)dy> da
- [ o@ ([ Fote) sy dz 18

Using (3.3), (3.9), (3.12), (3.18) and (3.17), we have

1 1 3
_ 2 < [ = _ 2
60y < (55 [ [ Rolwwlusta) - usty) Paady)

x <T§2/Q/QR5(a:,y)yf;(m)_ﬁ(y)‘dedyf
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+ ol ) 1 FllE-1(0)
1
1 2
< 2//Ra(m,y)\U5(:c)—U5(y)]2da:dy

x ((% | [ Bs@wlote) —v(y)\Zdwdy)%
(o [ [ R5<w,y>\u5<w>—u(s(y)\?dwdy)%)

+ (vl gy + lwsl @) 1 -1

1 1
< lwsll oo 1Fl-1(0) + [1wsll 7 o) 1F 1 -1 0 10l 21 0)
+ C(HP&HB(Q&) + Hf”H*l(Q))HfHH*l(Q)
< C(llpsll2eq) + 1 F -1 @) 1 F | -1 (0)- (3.19)

Using (3.3), (3.9), (3.19) and Lemma 3.4 yields
Hpé“?ﬁ(g) < CH“éHB(Q)HfHH*l(Q) + CHP&H%%Q&)
< C(llpsll2) + 1F -1 ) I F a1 ()
which implies
Ipsliz2) < ClFlla-1(0)- (3.20)
This also gives the H' estimate of u; using (3.9),

usll 1 s) < Clflla-10) (3.21)

and using (3.1),

1
P52y < lIpsliz2) + 9] '/Qpé(iﬂ)dw < Clflla-1 @) (3.22)
Note that in the above, the fact that
51| [ @] < — [l
T Ps > ——||Psl|L2
9] |Ja N
is used. O

4. Vanishing nonlocality

Besides the well-posedness, we are also interested in the limiting behavior of the
nonlocal Stokes system (2.5) as the nonlocality vanishes, i.e. § — 0. In this section, un-
der some assumptions, we prove that solutions of the nonlocal Stokes system converge
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to the solution of the Stokes system as 6 — 0. Furthermore, we give an estimate on the
convergence rate. The result is summarized in Theorem 4.2.

Before stating the main theorem, we give several technical results that are used to
prove the main theorem.

We also need the following theorem on the order of the nonlocal approximation
which can be proved via simple Taylor expansion.

Theorem 4.1. Let
1 —
m%:—ﬁlyﬁwyMM@—U@D@r:LRd%wAWﬂM% Ve € Q5.

There exist constants C, T, depending only on € such that for any 6 < Ty, for u € H3(S),

(@)l L2(0y) < COllullm3 (), 4.1)
V(@) 1200, < Cllullms@)- (4.2)

We then have the main result of this section regarding the convergence of the non-
local Stokes system as the nonlocality vanishes.

Theorem 4.2. Let u(x),p(x) be solution of Stokes system (1.1) and us(x),ps(x) be
solution of nonlocal Stokes system (2.5) with f € H'(Q). There exists a constant C' > 0
that only depends on 2 and R such that

lu — s g1 0) + 1P — poll o) < CVOI Fllaa)-
Proof. Let
es(@) = u(@) — us(e)
and .
ds=p—ps — — x) — ps(x))dx,
=P~ P 1o o, (p(x) — ps(x))
then es and d; satisfy

(

_%Aym@w@mm—%@»@

+%/ Rs(x,y)(x — y)ds(y)dy = ru(z), €, (4.32)
es(xz) =u(x), zeVs, (4.3b)
1
552 / Rs(z,y)(xz —y) - es(y)dy

/R5 z,y)(ds(x) — ds(y))dy = rp(x), x€Q, (4.30)

/ s(x)dx =0, (4.3d)
Qs
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ruf@) = [ Fs@y)duw)ly + 5 [ Rsle.y)(u@) - u(w)dy. Vo es. @

—/QRa(w,y)(p(w) —p(y))dy, Vee Q. (4.5)

First, we focus on the following estimate:
1
5 [ est@) [ Ry (es(@) - esty)dyde
Qs Q

== o, es(x) - /Qé Rs(x,y) (65(56) - ea(y))dyd;c

+ 5% /95 es(x) - . R(;(a:,y)(eg(a:) — eg(y))dydm

1
~ 952 / Rs(z,y)|es(x) — es(y)|*dedy
26% Jo, Jas

1

The second term of the right-hand side of (4.6) can be calculated as

512/ es(x) - / Rs(z, y)( s(x) —es(y ))dydx

/ les(x |2</ R(;acydy>dac

52 /Qé es(x) - ( . Rs(z, y)u(y )dy> da.

+ 5—2 Aé 65(:11) . . R(;(.’B,y) (65(.’3) — 65(y))dydm

(4.6)

4.7)

Here we use the definition of es and the volume constraint condition us(x) = 0, € Vs

to get that es(x) = u(x), x € V;.

The first term is positive which is good for us. We only need to bound the second

term of (4.7). First, the second term can be bounded as following:

[ e (/ 6 Rs(a.y)u(w)dy ) da
/ jes( ( / Ra<x,y)dy>5<Aégé<x,y)|u<y)|zdy>édm

1
62

%( [ Flestor ( Rs(a,y)dy ) da -+ 2 /. <V5R‘*<‘"’" lu(y)Pdy dm>

2 2
S%Q/ les(x \(/ Rawydy>dw+52/!u !(/ sty)d>dy
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1 2 C 2
< 55 | les(z)] Rs(@,y)dy | dz + = | |u(y)l"dy
20% Ja, Vs Vs

1
< g | les@P ([ Rstw.wty ) do -+ 0611 o 48)
20 Qs Vs

Here we use Lemma B.1 in Appendix B to get the last inequality. By substituting (4.8),
(4.7) in (4.6), we get

5%/ es(@) / Rs(z,y)(es(z) — es(y))dydx
= 252/ / Rs(z,y)les(x) — es(y)*dedy
b7 / les(x (/ Rs(a:,y)dy> da — CHfH?{l(Q)é. 4.9)

This is the key estimate to show the convergence.
We also need the following bound:

5 [ et ) ([ Rste.w)@ - w)dstady ) da
+5—12/Qd5(a:) (/QRa(w,y)(w—y)-ea(y)dy> de

=5 s ([ Asee =) syt ) o

<5 [ ([ e piis@lumiay ) da
<5 L ([ mwiaseray)as [ ([ @ plumk) da:]é

< CV6|| £l o lldsll 220 (4.10)

Multiplying es(x), ds(x) on both sides of Egs. (4.3a) and (4.3c) and integrating over
Qs, ) respectively and adding them together, using (4.9), (4.10), we have

//sty\es (@) — es(y)Pdwdy

+ 252/ les ()| </ Rs(x y)dy> dae
+/Q/QR5(sc,y)|d5(sc)—d5(y)| dzdy

< (I7ull2)) llesll n2 ) + Ipll Lz lds |l 2@
+ OVl () l1ds | L2y + C3llF I - (4.11)



924 Q. Du and Z. Shi

To simplify the notation, we denote the right hand side of (4.11) as Q2.
It is well known (e.g. [17, Section 3.3]) that with the condition that

/ ds(x)dx =0,
Qs

there exists at least one function ¥ € H}(£2s) such that
Vp(x) =ds(z), x€Qs, and |[|[o[|giq,) < clldslr2(ay) (4.12)

and c is a constant independent on ¢, the proof can be found in Appendix C.
Then, we extend v to 2 by assigning the value on Vj to be 0 and denote the new
function also by 1. Obviously, we have

Y € Hy(Q) N Hg(Q), 1Yl ) < clldslrzy)- (4.13)
Using Eq (4.3¢), we have
o) = | Ro(w.u)ds(w)y + 355 | Rlw.w)( ~v)-estwdy ()

-/ : Rilau)V 40y + 57 | Rt v)(e ) - estu)dy

+ W R5($ y)(x —vy) - es(y)dy + L, Rs(x,y)ds(y)dy — rp(x)
= _% . Rs(z,y)(z —y) - ¥(y)dy + 2(152 Ra(w, y)(x —y) - u(y)dy
: Rs(,y)ds(y)dy — rp(), (4.14)

where
w5($):/QR5($,y)dy, ’JJ:'lnb_e(S-
Then, it follows that

1

267 Jo, ¥ </Q Ryl y)(e - y>d5<y>dy) da
1

- 252/d5( )< o, Ré(%y)(w—y)w(y)dy) da

= /ng(ac)wg(ac)dac — /Qd(;(ar:) </v§ Rg(;c,y)d(;(y)dy> dx

_ /Qdé(x) ( . Rs(z,y)(x —y) - u(y)dy> dz +/Qd5(;c)rp(oc)dm. (4.15)
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The first term is positive which is a good term. The second term becomes

_/ng(m)< . Rg(m,y)dé(y)dy> de
~ [ ([ Ry (o) - i) ) d

1 _
~ 552 / d3(x )( . Rg(m,y)dy) de. (4.16)

The second term of (4.16) can be controlled by the first term of (4.15). And the first
term is bounded by

[ aste ( [ Botw.)(dste) - ds(w)y ) da

1 / Rs(z,y) (ds(@) — ds(y)) dyda

/ (/ Rs(x,y)(ds(x) — dé(y))dy> dae
- 5/ Rs(x,y)(ds(x) — ds(y)) *dyda
J

+
Qs

( Rs(z,y)(ds(z) — dé(y))Qdy> de
Vs

8 ( ,, (@) (ds(@) - ds(w)ds(w)y ) do

S~
N
N
jnol]
&
8
<
—
o8
(=2}
QU
>
o,
<
N—
o,
8

1 _
- —/ d3(x) (/ Rs(z, y)dy> de. (4.17)
2 Vs Qs
Combining (4.15)-(4.17), we get

% /95 () (/Q Rs(z,y)(x — y)da(y)dy> de
> /Q &(x) </Q Ra(%’y)dy> da

~ 5 e ([ Bte@ —v) - u(w)ay ) ds

+/ ds(x)rp(x)de. (4.18)
Q

In addition, we have

2(152 / ds(z) </v(5 Rs(z,y)(x — y) 'u(y)dy> dx
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= 25/ s ( (/ Rs(z,y)|u(y )!dy> da
< [ ([ mtewaw)ae [ ([ mioponra) ]

< CVO|| fllm o llds | 22 () (4.19)

[ dst@r@iie| = | [ dsto) ([ Riwm)o(e) - )iy ) ao
< Collpll e lldsliz2) < Cllf a1 @ ldsll 2 (0)- (4.20)

and

Multiplying Eq. (4.3a) by 1 and using (4.18)-(4.20), we have
2 1 . .
1511720y < ﬁ/g /Q Rs(z,y)(es(z) — es(y)) - (¥(x) — h(y))dzdy
1 _
b [ @) ([ Rslew)(esta) - esw)dy) aa
0 Qs Vs

+ 19l 2(g) (ITullz2(0y)) + CVOIF Il @) llds] 22 (- (4.21)

The first term can be bounded as

5[ Rt esto) — estw) - (o(e) ~ 9wy

< (5[ [ mstwwesta) —estw) oy )
(5 [ [ mstewiie) - ot)Pasy)’

(5 [ [ motwwiesta) — estwPazay )

x ((} [ [ Bt s - vwdssy)

(5 [ ] A vlesto) - e5<y>12dwdy)%>

< Q%+ CQ|Y (0, < Q%+ CQlds 12(0y)- (4.22)

The estimate of the second term of (4.21) is more involved. First

% o, P()- ( . Rs(@,y)(es(x) — ea(y))dy> da
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<

<l [ ([ Rt ) (e) — b)) - (est@) ~ esw)iy ) da

LR T ——
< [(; ([ mste i - dway) dxf
# (5 [ @ ([ #ow i) ax) é]

(5 [ ([ mowlesta) estwPay) dsc)é

C (Il ) + VoIl Fllm ()

x (5% /95 ( v, Rs(w,y)les(x) — 65(3’)'2(13’) dx> 5

+ 5 [ ([ mstewlesa) - estwPay) gz (429

Vs

_|_

Moreover,

= ( [ Rt lesta )~ estw) Py ) da
53/ (/ Rs(a ) es(w)dy | i [ (A6R5<w,y>|ea<y>|2dy> da
< [ et ([ mwyay)azs 5 [ ([ R yuiay) i

<Q*+ C5Hf”?{l(sz)- (4.24)
Combining (4.23) and (4.24), we get
1 _
5 [ @) ([ Rl (esta) - estw)ay ) az
d Qs Vs
< (Idsll 2y + Vol £l ) (@ + Vol flla ) + Q% + 5Hf”%11(9)- (4.25)

Substituting (4.22) and (4.25) in (4.21),
Ids 172, < Q%+ Clldsl L2(0s) + VIl £l () (@ + VoIl £ll a1 )
+ 12 Imull 2y + CVOILF Il ) lldsll 22 ()
< Q%+ C(|lds| 20y + VOl Fll i) (Q + VOl £l o))

+ (lldsll z2(0g) + lleslrzy)) (Irallz2y))
+ V6| £l () ds |l 20 - (4.26)
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On the other hand, using Lemma 3.4, we have

sty <€ [ [ 16s(@) — dotw) PRote iy + Cllislioeyy (42)
Then it follows from (4.11) and above inequality

1572y < Q@ + C(llds| L2e) + VoIl £l () (Q + VoIl £l ()
+ ([Idsll 12y + llesllzzag)) (17wl L2@y))- (4.28)

Theorem 4.1 gives that
Irullz2) < Collfllar@)ys  rpllre) < Collflla ) (4.29)
Following Lemma 3.3 and (4.11), we have

lesl2qay < @ < OVl Flm oy llesllzay) + O8I ey
+ C\/SHfHHl(Q)Hd&HB(Q),

which implies that
leslZz oy < COIFIl7 ) + CVOIF I o l1ds] 20)- (4.30)
Consequently, 2 is bounded by
Q* < O8I fllin () + CVO £l o llds 2 () - (4.31)
Now, we have the bound of ||ds|| r2(q) from (4.28) and (4.31),
Ids172(0) < COllF I3 ) + CVOIlF o sl 2o

+ (sl 2 + VOl £l ) @
< 8| £l 0 + CVO £l () sl 2o

( 151220y + 8171 e )

Therefore
Ids1172 () < COllF I ) + CVOI £l o llds ] 2 () - (4.32)

Then the bound of [|ds||;2(q) is obtained

Idsll 2y < CVO| £lla ) (4.33)

The bound of ||es][12(q;) follows from (4.30) and (4.33),

lesl|zz(aq) < CVOI £l (4.39)
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and
Ip = sl r2) < Idsllr2o) + lds| < CV|| £l (), (4.35)

- 1
d(g = —/ d5 x)dx
9] Jy )
and we use the fact that

- 1
d(;:—‘/d(;;cd;c<
sl = 77 | [ )

where

1
< —=lldsl >
9] (@)
Finally, the bound of ||e;| ;1 () can be derived from

N
ws(x)

+ 2?1}51(.’3) /QRJ("E y)(:l: - "J)dé(y)dy — 527‘.“(;3)_ (4.36)

es(x) = /Q Rs(@, y)es()dy

We are left with estimating the three terms on the right hand side one by one. The
third term is easy to bound using Theorem 4.1,

H(SQVTU(m)HL?(QJ) < 62||fHH1(Q)

Notice that for any x € 5, ws(x) is a positive constant. Then we have

¥ (g L B wa —y>d5<y>dy)
| Vehsta )@ - sty Ry [ ([ mtewisty )dy>2dm
<& [ ime e - spasan aso [ (/Raw’yda( iy da
<c[([ |Rg<x,y>|da<y>dy) awre [ ([ Ra(ﬂe,y)da(y)dy)zdw

< C|lds| 720y < CVOIIF 11 ()

2

L2(Qs)

<C
Qs

where

442 dr
The first term of (4.36) can be split into two terms

xr — 2
R)(z,y) :ch’<| y| > R = L R(r).

1

w5($)
_ 1 /m Ra(sc,’y)ea(y)dy+w;x) /v(; Rs(z, y)u(y)dy.

ws ()

/ Rs(, y)es(y)dy
Q
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Using Lemma B.1,

‘v (% Rs(z, y)U(y)dy>

(z) Vs

And it follows from Lemma 3.2 and (4.11),

‘ v ( ! Rg<x,y>e5<y>dy>

ws(x) Qs

< C\/SHfHHl(Q)-

L2(Qs)

< C\/SHfHHl(Q)-
L2(Qs)

Hence, the proof is complete. O

5. Discussion and conclusion

In this paper, we propose a nonlocal model for linear steady Stokes equation with
no-slip boundary condition. The main idea is to use volume constraint to enforce the
no-slip boundary condition and add a relaxation term in the divergence free condition
to maintain the well-posedness of the nonlocal system. As the nonlocal horizon param-
eter § approaches 0, the solution of the nonlocal system converges to the solution of the
original Stoke equation, assuming that the solution to the latter is sufficiently smooth.

In terms of future work, one may examine the convergence with minimal regular-
ity assumptions on the local systems. It is also interesting to consider the numerical
discretizations. From the nonlocal system, we can derive a numerical scheme for the
original Stokes system on point cloud. Assume we are given a set of sample points P
sampling the domain 2 and a subset S C P sampling the boundary of €. In addi-

tion, assume we are given one vector V = (V4,--- , V)" where V; is an volume weight
of x; in €, so that for any C! function f on €, [, f(x)dx can be approximated by
ZiEiEQ f(wz)‘/z-

Then, the nonlocal Stokes system (2.5) can be discretized as following:

1 1
-5 > Rs(mi, @) (u; — uj)V + 357 > Rs(xi, @) (w; — x;)p;V;

ijQ ijQ
= > Rs(mi, @) f;V;, i€y,
iBjEQ
1 _
252 Y Rs(ms, @) (@i —wj)uVy — Y Rs(wi,@;)(pi —pj)V; =0, @ €Q,
x; €0 x; €0

u;, =0, x; €Vs.

This scheme is very simple and easy to implement. However, the accuracy is relatively
low. We can show that the error of above scheme is 0(5% + 9), where h is the average
distance among the sample points in P. The first term 6% comes from the error of
the numerical integral and the second term § is from error between nonlocal system
and the original Stoke equation. Further improvement and studies of asymptotically

compatible scheme [39] are interesting questions to be explored further.
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Appendix A. Formal derivation of the nonlocal Stokes model
Based on Assumptions 2.1 on the nonlocal kernels, we give some formal derivation
of the nonlocal Stokes model from its local counterpart.

First, for z € Qs, we multiply Rs(x,y) on both sides of the first equation of the
Stokes system (1.1) evaluated at y € ) and taking integral with respect to y over {2,

/Ra(w,y)AU(y)dy—/Ra(a%y)Vp(y)dy:/Ra(%y)f(y)dy, x € Q5.
Q Q Q

For the left hand side, we apply integration by parts and using the property Rs(x,y) = 0
for y € 09 and the relation between R and R,

2(152 / Rs(z,y)(y — x) - Vu(y)dy — 2—22/9}%5(:2,14)(1; —z)p(y)dy

:/QR(s(w,y)f(y)dy, x € Qs. (A.1)

For the first term of the left-hand side, the derivation in [36] proceeds with an approx-
imation by Taylor expansion for x € s,

/ Rs(, y) Au(y)dy
Q

_ —%/&]Rg(w,y)(iﬂ —y) - Vu(y)dy

2U
5 [ Rotww) (u(w) ~uly) 5 O @y - yj>§T;;)dy +00)

2
Puly)

= 252/}25 z,y)(u(z) —u(y))dy + - ]Z:l/ ayz (x,y)( )8yi8yj dy+0(9)

=55 | Falav) (wla) — ulw)dy + 3 [ Row.w)du)dy +006)

5 [ Fata.9)(u(@) - u(y)dy + O0)

By dropping O(d) term, we obtain

—%/QRJ(W;)(U(%) u(y ))dy+2(152/Rs(w,y)(w—y)p(y)dy
=/Qf?5(w,y)f(y)dy, T € Q.

From the derivation, it would appear that the error in the approximation of the left-
hand side is formally of order O(9).
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The derivation of Eq. (1.5b) is much easier. We also multiply Rs(x,y) in the diver-
gence free equation and carry out integration by parts over 2

/QR(s(%y)(w —y) - u(y)dy = 0.

Then a stabilization term that mimics a nonlocal analog of the multiple of §?Ap is
added to the above to obtain Eq. (1.5b): We remark that the stabilization term is O(6?)
so that its presence does not affect the order of the overall approximation.

Appendix B. Some basic estimates on the local Stokes system

Lemma B.1. Let u(x) be the solution of the Stokes system (1.1) and f € H'(Q), then
there are generic constants C' > 0 and Ty > 0, depending only on Q and 0f2 such that for
any § < Ty,

|, [u@)Pdy < Ol £72(0)
S

Proof. Since 0f) is compact and C*° smooth. Consequently, it is well known that 92
has positive reaches [8], which means that there exists 7 > 0 only depends on 012, if
t < Ty, Vs can be parameterized as (z(y),7) € 92 x [0, 1], where

y =z(y) +7(z' (y) — z(y))

and

det (%)' e

and C' > 0 is a constant only depends on 2 and 9f2. Here z'(y) is the intersection point
of Q) and the line determined by z(y) and y. The parametrization is illustrated in
Fig. 2.

*
z(y)
Figure 2: Parametrization of V.

First, we have

fu(y) Py = / [uly) — ulz(y))*dy
Vs Vs
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:/vé
:/v(;

1
<co /v /O Vuly + 5(z(y) — )| dsdy

2

1dq
| fouly + staw) - w)ds) dy
0 S

2

1
/0 (a(y) — ) - Valy + s(z(y) — y))ds| dy

<06 sup | |Vu(y + s(z(y) — y))|* dy.
0<s<1 J Vs

Here, we use the fact that ||z(y) — y||2 < 20 to get the second last inequality.
Then, the proof can be completed by following estimation.

[ 19ty + staty) - ) o

1
<ci [ [ Vulat)+ (0= 97t (v) - a(w) Faaty)ir

sU U\z —STZ/—Z 2Z
gcao;gl/m{v (z+ (1 —s)7( )| "d

< C§ sup / IVu(z)|? dz
Ty,

0<r<1

< Ol ) < COll £ 113200,
where I'; ; is a k — 1 dimensional manifold given by
Ty, = {z +(1—3s)7(z —2):z€ 89}.

We use the trace theorem to get the second last inequality and the last inequality is due
to that u is the solution of the Stokes system (1.1). O

Appendix C. Divergence estimation (3.11) (4.12)

Theorem C.1 ([17, Theorem II1.3.1]). Let Q be a bounded domain of R™,n > 2 such
that

N
Q:UQk, N > 1,
k=1

where each Q, is star-shaped with respect to some open ball B, with By, C €. Then,
given f € LI1(Q),1 < q < o, satisfying [, f(x)dx = 0, there exists at least one solution
v e Wyi(Q) to



934 Q. Du and Z. Shi

and
[vll1,q < el fllg-

Furthermore, the constant ¢ admits the following estimate:

d(2)\" d(€?)
< =) 1+ =2
C_COC<RO> <+Ro ’
where Ry is the smallest radius of the balls By, d(Q?) is the diameter of Q,co = co(n,q)
and C' is an upper bound for the constants C}, given as following:

Ot
cy =144 °
[Py e
‘Qk‘l—% k—1 -y L
Cr = 1+‘F‘17l [T(+E DD -0 ), k=2,
kIl 1/ i=1

where F; = Q, N D; and D; = UiV:iH 0¥

Based on above theorem, to get the constant independent on ¢ in (4.12), we need
to find decomposition for ,,0 < 1 < ¢y such that corresponding R, and |F;| both
have uniform lower bound independent on 7 with some ¢y > 0. Next, we will give an
explicit way to construct the decomposition of €2,,.

Under the assumption that the boundary 9Q is C? smooth, as shown in Fig. 3, for
any point x € 012, there exists d, > 0 such that

Up={2€Q:|z—x| <}

is star-shaped with respect to open ball B(y,d,/4) with y = x — géwn(m), n(x) is the
outer normal of 9N at x.

Figure 3: Cover of 0f).

iSince Q is connected, we can always label sets F; in such a way that |F;| #£ 0,4 =1,..., N.
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Uzcon Uz is an open cover of 9€2. Since 0N is compact, there exist x;, € 0,k =

1,..., N such that
N

00 C | Us,.
k=1

Compactness of 92 also implies that there exists 7y € (0,  minj<j<x s, ) such that

Recall that V,; = {x € Q2 : dist(x,0) < no}.
For any 0 < n < n9/2,

Ul ={zeQ:|z—x| <dp}, k=1,...,N

are also star-shaped with respect to B(yy, 6z, /4) with y;, = @y — 204, n(x)), n(zy) is the

outer normal of 92 at x;. On the other hand, compactness of €}, gives zy,--- ,z) €
)y, such that
M 0
~ l l 0
QWO C kilB (Zk;, 5) .

For any 0 <7 <o/2,

o(m)off )

k=1

Ua, is star-shaped with respect to B(yy,n0/2) and B(zg,1n0/2) is star-shaped with re-
spect to itself. It is easy to check based on above decomposition, Theorem C.1 implies
(3.11) and (4.12).
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