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Abstract: We derive a collection of reference prior distributions for Bayesian anal-

ysis under the three-parameter generalized extreme value (GEV) distribution.

These priors are based on an established formal definition of non-informativeness.

They depend on the ordering of the three parameters, and we show that the GEV

is unusual in that some orderings fail to yield proper posteriors for any sample

size. We also consider a reparametrization that explicitly regards return level

estimation, which is the most common goal of GEV analysis, to be the most im-

portant inferential task. We investigate the properties of the derived priors using

simulation and apply them to an analysis of a fire threat index in California.
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mality.

1. Introduction

For Bayesian analysis under the three-parameter generalized extreme value

(GEV) model, a formal notion of non-informativeness of the prior distri-



bution can be achieved using reference analysis. We derive reference priors

under the standard parametrization of the GEV, showing that the result-

ing posterior distributions are improper for some, but not all, orderings

of the parameters, and furthermore that re-parametrizing to prioritize in-

ference on a high quantile results in the same behavior as the standard

parametrization. Through simulation, we compare the performance of refer-

ence priors to two previously-recommended priors: an alternative rule-based

non-informative prior and a prior based on domain knowledge, finding none

to be uniformly most desirable. The tradeoffs are clearly displayed in our

analysis of the extremes of a fire threat index observed in California. In the

absence of specific domain knowledge about the tail of the process under

investigation, particularly when estimation about a high quantile is the goal

of the analysis, the reference prior that we describe here which prioritizes

inference on that high quantile might be considered a good default option.

We emphasize that the purpose of this paper is not to suggest a prior that

is superior to existing priors in terms of its estimation performance, but

rather derive the prior that satisfies the notion of noninformativeness in

the reference analysis sense, particularly when return level estimation is

the primary goal.



In Bayesian inference, one typically proposes a parametric model

M = {p(y|θ) : y ∈ Y ,θ ∈ Θ}

in which the conditional probability density p(y|θ) is assumed to be an

appropriate characterization of the true underlying mechanism of how the

observed data are generated. Then analysis is performed using the available

information to infer the parameters that describe the model. Naturally, the

choice of model involves a certain amount of subjectivity. In practice, it

may be desirable to perform Bayesian analysis that is objective in the sense

that that it only depends on the assumed model and the available data,

and excludes personal beliefs about the model parameters. To achieve this,

it is necessary to adopt structural rules that formalize what it means for

prior distributions to be non-informative.

The flat prior which assigns equal probability across the support of the

parameters, as justified by Jakob Bernoulli’s principle of insufficient reason

(Stigler, 1986, p. 135), is a straightforward but näıve solution. This seem-

ingly non-informative prior suffers from multiple pathologies, often produc-

ing marginalization paradoxes (Dawid et al., 1973) or implicitly containing

large amounts of information that could dominate the analysis. Its casual

use is therefore discouraged.

In view of the limitations of using constant priors, Jeffreys (1961) for-



mulated a rule for selecting priors, which is taken to be

πJ(θ) ∝ det(I(θ))1/2, (1.1)

where I(θ) is the Fisher information matrix. An attractive property of Jef-

freys’s rule is that it is invariant under reparametrization of the parameter

θ. Jeffreys’s rule chooses priors by convention, rather than as a unifying

representation of ignorance (Kass and Wasserman, 1996), which is also true

for several subsequent efforts to construct rules for selecting priors. Maxi-

mum entropy priors are another well-studied type of noninformative prior.

Entropy of π captures the amount of uncertainty implied by π, and the

prior with larger entropy is considered to be less informative, which leads

to the selection of prior that maximizes the entropy (Jaynes, 1982). See

Kass and Wasserman (1996) for a complete review and critique of Jeffreys’s

rule and maximum entropy.

Here we consider the class of reference priors suggested by Bernardo

(1979), which has proven to be very successful in many settings, including

exponential regression (Ye and Berger, 1991), multinomial models (Berger

and Bernardo, 1992), and auto-regressive time series models (Berger and

Yang, 1994). For a collection of regular priors P , the amount of missing

information about the (univariate, for the moment) parameter θ, which

could potentially be obtained by repeatedly sampling from the assumed



model M, is measured for each π ∈ P . The reference prior is defined

to be the prior πθ = π(θ |M,P) that maximizes the missing information

within the class of candidate priors P , which assures that the information

from the available data will not be dominated by prior beliefs. When there

are multiple parameters involved in M, the reference prior will then be

developed via a stepwise procedure.

In this study, we are interested in finding the reference priors for the

family of GEV distributions, whose distribution function can be parametrized

by θ = (µ, τ, ξ):

P (y |θ) =


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




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exp
{

−
[
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)]−1/ξ
}

, ξ 6= 0,

exp
{

− exp
[

−y−µ
τ

]}

, ξ = 0,

for 1 + ξ(y − µ)/τ > 0 when ξ 6= 0, where the scale parameter τ > 0,

location parameter µ ∈ R, and shape parameter ξ ∈ R. The GEV is an

important class of distributions because it arises as the limiting distribution

of re-normalized maxima taken over increasingly large samples of random

variables. It is therefore considered the standard tool for analyzing the far

right tail of univariate processes. However, the support of GEV distribu-

tion is dependent on its parameter, which makes it challenging to derive the

common asymptotic properties of likelihood-based estimators. Frequentist

asymptotic results have only been recently established for the local maxi-



mum likelihood estimator (MLE) found on a pre-determined compact sub-

set of Θ; see Dombry (2015) and Bücher and Segers (2017). Zhang and

Shaby (2021b) further showed that the local MLE found on a compact set

is actually the unique and global maximizer of the GEV likelihood function

when n is sufficiently large.

Nevertheless, it is difficult to examine the joint likelihood function over

entire parameter space Θ when applying Bayesian methods. Relatively

few systematic explorations of prior specifications have appeared, most of

which are proposed explicitly for the sub-families of the GEV distributions.

Ramos et al. (2018) established two reference priors specific to Fréchet

distribution. Ho (2010) investigated noninformative matching prior, and

Eugenia Castellanos and Cabras (2007) studied a Jeffreys prior for the

parameters of the generalized Pareto distribution, which is closely related

to the GEV. Sun (1997) derived reference and matching priors for the two-

parameter Weibull distribution. For the GEV likelihoods, Northrop and

Attalides (2016) extensively discussed posterior propriety when paired with

the Jeffreys prior (while holding µ fixed), the maximal data information

(MDI) prior (Zellner, 1971), and independent uniform priors. This paper

conducts an analogous investigation to Northrop and Attalides (2016), but

with reference priors. Beranger et al. (2019) focused on the estimation of



returns levels in a Bayesian framework with the prior π(θ) ∝ 1/τ .

To derive the reference priors via a conditioning argument described in

Bernardo (2005), we utilize the large sample Bayesian results from Zhang

and Shaby (2021a). Given an independent and identically distributed se-

quence of observations, they formally established the asymptotic posterior

normality for the family of GEV distributions as seen in the Bernstein-von

Mises theorem—the posterior distribution of the GEV parameter vector,

paired with a class of priors which factorizes as π(θ) ∝ g(ξ)/τ , converges to

a normal distribution centered at the true parameter. The tail heaviness of

g(ξ) when ξ → ∞ was controlled to obtain posterior propriety and asymp-

totic normality. This class of priors is commonly seen in location-scale

models, although the asymptotic posterior normality is ensured as long as

the conditioning argument from Bernardo (2005) is valid for any one prior.

More importantly, since the reference prior depends on the ordering of

the parameter vector, we investigate the properties of the resultant posteri-

ors under different orderings. In particular, the reference technique provides

no guarantees that it will give priors that correspond to proper posteriors,

although only a few cases are known of models that satisfy the assump-

tions of the standard reference technique and fail to yield proper posteriors

(Berger et al., 2001; Ramos et al., 2017). We therefore check posterior



propriety under different orderings of θ = (µ, τ, ξ) and find, somewhat sur-

prisingly, that some are not proper.

2. Reference priors for GEV distribution

2.1 Formal definitions of reference priors

We begin by looking at model M with univariate parameter θ. To measure

the missing information of π ∈ P that could be obtained through one sample

generated from the model M, Bernardo (2005) calculates the Kullback-

Leibler distance of the joint density p(y, θ) = p(y | θ)π(θ) from p(y)π(θ),

where p(y) =
∫

Θ
p(y | θ)π(θ)dθ. We denote this distance by I{π |M}.

For n conditionally independent observations given θ {y1, · · · , yn}, we

denote the corresponding multivariate model by Mn = {∏n
i=1 p(yi | θ) : yi ∈

X , θ ∈ Θ}. As n → ∞, I{π |Mn} will become an accurate measure of the

missing information about θ with respect to the prior π. The reference prior

πθ is defined as the prior function such that, for some increasing sequence

{Θi} with limi→∞ Θi = Θ and
∫

Θi
πθ(θ)dθ <∞,

lim
n→∞

[I{πθ
i |Mn} − I{πi |Mn}] ≥ 0, ∀Θi, ∀π ∈ P (2.2)

where πθ
i and πi are renormalized versions of πθ and π restricted on Θi.

If Θ is a finite parameter space, (2.2) yields the maximum entropy and



2.1 Formal definitions of reference priors

the reference prior is the uniform distribution. If Θ is a continuous parame-

ter space, the reference prior can be more complex, and it might be difficult

to write it down in explicit form, depending on the regularity conditions

imposed on P . However, if the posterior distribution of the parameter is

asymptotically normal with standard deviation s(θ̃n)/
√
n, where θ̃n is a

consistent estimator of θ, then the reference prior is proportional to s(θ)−1,

given it is a permissible prior.

The extension of the reference prior to the case of several parameters in

the model M is achieved through reducing the multiple parameter problem

to a sequential application of the established procedure for the single param-

eter case. We first assume an ordering of inferential priority {θ1, · · · , θm},

with θ1 being the most important. Conditioning on all the more ‘important’

parameters, we calculate the reference prior for the nuisance parameter θm,

and then move the nuisance parameter out of the model via integrating the

product of this prior and the model density. This process repeats until only

the most important parameter θ1 is left in the model. In the end, the prod-

uct of m conditional reference priors yields the reference prior under the

particular ordering. Generally different orderings produce different priors.

The aforementioned procedure seems formidable. Fortunately, under

asymptotic posterior normality, reference priors can be easily obtained in



2.1 Formal definitions of reference priors

terms of the corresponding Fisher information matrix.

Lemma 1. (Bernardo (2005), Theorem 14) Let P0 be the class of all con-

tinuous priors with support Θ, and M = {p(y |θ); y ∈ Y ,θ ∈ Θ =

∏m
j=1 Θj} be the assumed model. From any one prior in P0, if the posterior

density π(θ | y1, · · · , yn) is asymptotically normal with covariance V (θ̃n)/n,

where θ̃n is a consistent estimator of θ, let Hj be the inverse of the upper

j × j submatrix of V and hjj(θ) be the bottom right element of Hj. Then

the reference prior, corresponding to the ordering {θ1, · · · , θm}, is

π(θ |M,P0) = π(θm | θ1, · · · , θm−1)× · · · × π(θ2 | θ1)π(θ1),

where π(θm | θ1, · · · , θm−1) = h
1/2
mm(θ), and for i = 1, · · · ,m− 1,

π(θj | θ1, · · · , θj−1) ∝ exp

[

∫

Θ
j+1

m
∏

l=j+1

π(θl | θ1, · · · , θl−1) log{h1/2jj (θ)}dθj+1

]

with θj+1 = {θj+1, · · · , θm}. Moreover, if Θj does not depend on {θ1, · · · , θj−1},

and the functions hjj(θ) can be factorized in the form

h
1/2
jj (θ) ∝ fj(θj)gj(θ1, · · · , θj−1, θj+1, · · · , θm), j = 1, · · · ,m,

then the reference prior is simply πθ(θ) =
∏m

j=1 fj(θj).

Because of the irregularity of the GEV likelihood function, it is not

obvious that it is safe to derive reference priors using Lemma 1, which as-

sumes posterior asymptotic normality. However, Zhang and Shaby (2021a)



2.2 Fisher information matrix for GEV distribution

have formally established posterior asymptotic normality with covariance

I−1(θ̂n)/n for independent GEV sequences for Θ = {(τ, µ, ξ) : τ > 0, ξ >

−1/2}, in which θ̂n is the local MLE with strong consistency. We proceed

using the reference prior algorithm described in Lemma 1.

2.2 Fisher information matrix for GEV distribution

The score function of the GEV log-likelihood and the Fisher information

matrix have been derived by Prescott andWalden (1980). The log-likelihood

can be written as:

l(θ; y) = − log τ −
(

1

ξ
+ 1

)

log

{

1 + ξ

(

y − µ

τ

)}

−
{

1 + ξ

(

y − µ

τ

)}−1/ξ

.

The Fisher information matrix is defined as the variances of the score func-

tions, whose exact form can be found in the Appendix S1. To apply Lemma

1, we need to calculate the determinant of the Fisher information matrix.

Proposition 1. One can verify that

|I(θ)| = 1

τ 4ξ4

[

π2

6
{p− Γ2(ξ + 2)} − {q − sΓ(ξ + 2)}2

]

, (2.3)

where p = (1 + ξ)2Γ(2ξ + 1), ξq = ξ(1 + ξ)Γ′(ξ + 1) + (1 + ξ)2Γ(1 + ξ), s =

1− γ + 1
ξ
and γ is the Euler–Mascheroni constant.



2.3 Calculate the reference priors

2.3 Calculate the reference priors

Zhang and Shaby (2021a) established V −1(θ) = H(θ) = I(θ) as needed

in Lemma 1. We now calculate the reference priors under all orderings of

θ = (τ, µ, ξ).

Proposition 2. Let P0 be the class of all continuous priors with support

Θ = (0,∞)× R× (−1/2,∞). Denote the upper j × j submatrix of I−1(θ)

by Vj, Hj = V −1
j , and hjj(θ) is the lower right element of Hj.

(A) Under the ordered parametrizations (ξ, τ, µ) and (ξ, µ, τ),

π(ξ, τ, µ | P0) ∝
1

τ
h
1/2
11 (ξ) =

1

τ |ξ|

[

π2

6
− {q − sΓ(ξ + 2)}2

p− Γ2(ξ + 2)

]1/2

. (2.4)

When ξ → 0, h11(ξ) = 11π4/360 − 6ζ(3)/π2 + o(1) ≈ 2.098 + o(1),

where ζ(3) is the Apéry’s constant.

When ξ → ∞, h11(ξ) = π2/(6ξ2) + o(1/ξ3).

When ξ → −1/2, h11(ξ) = 2π2/3 +O(2ξ + 1).

(B) Under the ordered parametrizations (µ, τ, ξ) and (τ, µ, ξ),

π(µ, τ, ξ | P0) ∝
1

τ
h
1/2
33 (ξ) =

1

τ |ξ|

[

π2

6
+ s2 − 2q

ξ
+

p

ξ2

]1/2

. (2.5)

When ξ → 0, h33(ξ) = Γ(2)(1)+Γ(3)(1)+Γ(4)(1)/4+o(1) ≈ 2.424+o(1).

When ξ → ∞, h33(ξ) = {Γ(2ξ + 1) − 2Γ(ξ + 1)ψ(ξ + 1)}/ξ2 + o(1),

where ψ denotes the digamma function.



2.3 Calculate the reference priors

When ξ → −1/2, h33(ξ) = 4/(2ξ + 1) +O(1).

(C) Under the the ordered parametrization (µ, ξ, τ),

π(µ, ξ, τ | P0) ∝
1

τ
h
1/2
22 (ξ) =

1

τ |ξ|

[

π2

6
+ (1− γ)2 − {Γ(ξ + 2)/ξ − q + 1− γ}2

1 + p− 2Γ(ξ + 2)

]1/2

.

(2.6)

When ξ → 0, h22(ξ) ≈ 2.363 + o(1).

When ξ → ∞, h22(ξ) = {π2/6 + (1− γ)2}/ξ2 + o(1/ξ2).

When ξ → −1/2, h22(ξ) = 2π2/3 + 4(1− γ)2 +O(2ξ + 1).

(D) Under the ordered parametrization (τ, ξ, µ),

π(τ, ξ, µ | P0) ∝
1

τ
h
1/2
22 (ξ) =

1

τ |ξ|

[

π2

6
+ s2 − q2

p

]1/2

. (2.7)

When ξ → 0, h22(ξ) ≈ π2(1−γ)2/6+2(γ−1)ζ(3)+11π4/360+o(1) ≈

2.254 + o(1).

When ξ → ∞, h22(ξ) = {π2/6 + (1− γ)2}/ξ2 + o(1/ξ2).

When ξ → −1/2, h22(ξ) = 2π2/3 + 4(1 + γ)2 +O(2ξ + 1).

Proof. The proof of Proposition 2 is given in Appendix S1. The asymp-

totic behavior of hjj when ξ approaches 0, 1 or −1/2 will be used later on

to establish propriety/impropriety of the posterior distributions, formally

verifying the conjectures formulated therein.



2.3 Calculate the reference priors

Proposition 2(A) applies to the case where the shape parameter ξ is

considered the most important for inference. This is probably the most

common use case under the standard parametrization, as the shape pa-

rameter plays the critical role of controlling the thickness of the right tail.

Understanding the value of ξ for a data generating process under analysis

is therefore an inferential task with clear and important ramifications.

Proposition 2(B) applies to the orderings where the shape parameter ξ

is of least importance. These include the ordering that corresponds to the

conventional notation θ = (µ, τ, ξ), which makes it tempting to consider

this ordering as somehow canonical. However, this convention is arbitrary

with respect to the inferential importance of the parameters, and it is hard

to come up with a clear scenario where either ordering referred to in Propo-

sition 2(B) would be preferred. Similarly, the orderings to which Proposi-

tions 2(C) and 2(D) apply, those which consider the shape parameter to be

of middle importance, may not be commonly applicable in practice.

In all orderings, we see that the three parameters are independent of

each other in the reference prior. Furthermore, the prior for the location

parameter µ is flat, and the prior for the scale parameter τ is proportional to

1/τ . This is typically the case for reference priors for location-scale families,

and differs from the Jeffreys prior, which usually has the scale parameter



2.3 Calculate the reference priors

proportional to 1/τ 2.

The left panel of Figure 1 shows the prior function for ξ under the

orderings (ξ, τ, µ) and (ξ, µ, τ). We can see that it decreases at rate 1/ξ,

which of course means the prior is improper, and that it converges to its

limiting form in its right tail fairly quickly. The right panel of Figure 1

shows the prior function for ξ under the orderings (µ, τ, ξ) and (τ, µ, ξ).

Its behavior is qualitatively very different, increasing very quickly in ξ,

suggesting that it may not yield a proper posterior. Here again, we see

good correspondence between the limiting form and the exact function,

this time in the left limit as ξ → −1/2.

When the importance of ξ is in the middle, the reference priors (2.6)

and (2.7) behave similarly to (2.4) under the ordering (ξ, µ, τ), and have

finite limits when ξ → −1/2. Though appearing to be different on the left,

they possess the exact same tail
√

π2/6 + (1− γ)2/ξ. See Figure 2. To

differentiate between the two different h22(ξ) appearing in (2.6) and (2.7),

we henceforth designate h22,1(ξ) for the ordered parametrization (µ, ξ, τ),

and h22,2(ξ) for (τ, ξ, µ).







2.4 Parametrization under return level

Since estimating a return level is overwhelmingly the most common

end goal of GEV analysis, here we derive reference priors corresponding

to the case where inference on the return level is explicitly prioritized. To

do this, we simply change from the θ = (µ, τ, ξ) parametrization to the

φ = (µT , τ, ξ) parametrization, which simply requires the transformation

µ = µ(φ) = µT − τ

ξ

{

log−ξ

(

T

T − 1

)

− 1

}

.

We will use the fact that reference priors are coherent under monotone

transformations of each parameter in the sense that πφ(φ) = πθ[θ(φ)]|J(φ)|,

where J(φ) is the Jacobian of the inverse transformation θ = θ(φ) (Bernardo,

2005). Under the transformation from (µT , τ, ξ) to the (µ, τ, ξ), |J(φ)| = 1,

and thus the reference priors under various ordered parametrization are

π(ξ, τ, µT | P0) =
1

τ
h
1/2
11 (ξ), π(µT , τ, ξ | P0) =

1

τ
h
1/2
33 (ξ),

π(µT , ξ, τ | P0) =
1

τ
h
1/2
22,1(ξ), π(τ, ξ, µT | P0) =

1

τ
h
1/2
22,2(ξ),

(2.8)

which indicates that φ = (µT , τ, ξ) behaves, for the purpose of reference

analysis, identically to the standard location parametrization. Hence the

reference priors under the common scenario where the return level has the

most important inferential priority are those described by (2.5) and (2.6).



2.5 The propriety of the posterior

2.5 The propriety of the posterior

Reference priors generated using the procedure in Lemma 1 are not guar-

anteed to be permissible in the sense that they result in proper posteriors.

We therefore now examine whether the reference priors π(θ) = π(θ | P0),

associated with all ordered parametrizations of θ, are permissible.

Theorem 1. Let data consist of i.i.d observations of size n, yn = {y1, · · · , yn},

from GEV(θ0), where θ0 = (ξ0, τ0, µ0). For reference prior function (2.4)

and sample size n ≥ 4, the normalizing constant for the posterior Cn =

∫

Θn
p(yn |θ)π(θ)dθ < ∞, in which p(yn |θ) =

∏n
i=1 p(yi |θ), Θn = {θ :

1 + ξ
(

yi−µ
τ

)

> 0, i = 1, · · · , n}.

Moreover, for any n ≥ 4,

Cn ≤ 6(n− 1)−n+2

(n− 2)
∏n

j=2 δj
+

3Γ(n)Γ(n− 1)e

(n− 1)(n− 3)δn−1
n

, (2.9)

where δj = δj(n) = y(j) − y(1) and y(1) < · · · < y(n) are the order statistics.

Corollary 1. Since the reference priors under ordered parametrization (µ, ξ, τ)

and (τ, ξ, µ) have the same tail properties as (2.4), the posterior obtained

from (2.6) or (2.7) is assured to be proper when sample size n ≥ 4.

Furthermore, for both (2.6) and (2.7),

Cn ≤ 6(n− 1)−n+2

(n− 2)
∏n

j=2 δj
+

5Γ(n)Γ(n− 1)e

(n− 1)(n− 3)δn−1
n



for any n ≥ 4, δj = δj(n) = y(j) − y(1).

Theorem 2. Under the same assumptions as Theorem 1, for reference

prior (2.5) under the order that ξ is least preferred, there is no sample size

n > 0 for which the corresponding posterior is proper.

The proof of these results can be found Appendix S2. They tell us that

as long as the data consist of more than 4 block maxima, the reference

priors based on the orderings where the shape parameter as either the most

important or the second most important for inference will yield proper

posteriors. In contrast, the reference priors based on the orderings where

the shape parameter is the least important for inference will always fail to

yield a proper posterior. Hence, this prior should never be used and will

not be considered further. By (2.8), similar posterior propriety statements

for different orderings can be made under the parameterization with the

return level µT .

3. Simulations

To assess the performance of the reference priors derived above, we conduct

a small simulation study that mimics applied settings that are frequently

encountered in the analysis of environmental extremes. We compare the

reference priors to the MDI prior, a competing rule-based prior that was



recently suggested for the GEV, and to a beta prior that has been recom-

mended in the applied literature. We do not consider the Jeffreys rule prior

(1.1) as it fails to yield a proper posterior; see Appendix S2. We make

comparisons across a range of performance metrics.

To simulate the data, we fix µ = 0, τ = 1, and consider ξ = 0.15 (typ-

ical of annual rainfall maxima), ξ = −0.2 (typical of annual temperature

maxima). We also simulate data from a GEV with ξ = 1, which is very

heavy-tailed and not typically seen in environmental data, but might be

of interest for applied work in other domains. For each parameter setting,

we simulate 1,000 data sets, each of which consists of sample size n = 50.

For each data set, we obtain draws from posterior densities based on refer-

ence priors under ordered parametrizations (ξ, µ, τ), (µ, ξ, τ) and (τ, ξ, µ),

a Beta(6, 9) prior which appears in Martins and Stedinger (2000) as a rec-

ommendation for hydrological data (except in the ξ = 1 case, as ξ = 1 is

not in the support of the Beta prior), and the MDI prior which uses the

negative entropy of p(y |θ) (Zellner, 1971):

πMDI(θ) ∝ exp

{
∫

Y

p(y |θ) log p(y |θ)dy
}

=
1

τ
e−γ(1+ξ)−1,

which has a much lighter tail of ξ compared to the three reference priors

under consideration.

To directly sample from the posterior densities of the GEV parameters,



Table 1: Bias and RMSE of the posterior means under five different priors.

Posterior
estimators

Bias RMSE

Beta(6, 9) h
1/2
11 (ξ) h

1/2
22,1(ξ) h

1/2
22,2(ξ) MDI Beta(6, 9) h

1/2
11 (ξ) h

1/2
22,1(ξ) h

1/2
22,2(ξ) MDI

ξ = −0.2

ξ 0.0398 -0.0015 -0.0025 -0.0083 -0.0032 0.0686 0.0990 0.1001 0.0999 0.0983

µ50 0.1937 0.1378 0.1322 0.1173 0.1512 0.3856 0.4432 0.4472 0.4301 0.4496

µ100 0.2728 0.1952 0.1885 0.1655 0.2148 0.4833 0.5878 0.5931 0.5674 0.5981

ξ = 0.15

ξ -0.1051 0.0055 0.0045 0.0036 0.0075 0.1256 0.1223 0.1221 0.1256 0.1228

µ50 -0.6402 0.7561 0.7399 0.7454 0.7725 1.0613 1.8915 1.8983 1.9513 1.9448

µ100 -0.9955 1.3050 1.2780 1.2903 1.3310 1.4862 3.0631 3.0769 3.1990 3.1828

ξ = 1

ξ - 0.0204 0.0196 0.0236 0.0149 - 0.1912 0.1924 0.1925 0.1893

µ50 - 45.854 45.689 46.920 42.545 - 95.564 96.198 99.675 90.013

µ100 - 156.33 155.43 160.07 144.55 - 336.71 339.35 367.08 318.24

one can use the revdbayes package (Northrop, 2020) in R which permits

user-specified priors. Alternatively, one could easily obtain the posterior

samples using the random walk Metropolis (RWM) algorithm, as we do

here. In the subsequent analyses, we run the MCMC chain for each repli-

cate, and each chain has 10,000 iterations. We discard a burn-in period of

5,000 iterations, and then thin the results by a factor of 10. Using posterior

means as estimators, the averaged bias, root mean squared error (RMSE)

of the shape parameter ξ, 50-year and 100-year return levels are calculated

and shown in Table 1.

The reference prior under ordering (ξ, µ, τ) and MDI prior have similar

performance. The two reference priors with ξ being the second highest pri-



ority have outcomes that are indistinguishable from each other and slightly

worse than the MDI and reference prior that prioritizes ξ. For ξ = −0.2 and

ξ = 0.15, the beta prior yields smaller RMSE for point estimates of almost

all parameters and return levels. In general, the beta prior trades a bit of

bias for greatly reduced variance, as is typical for a generally well-designed

informative prior.

We also investigate the calibration characteristics of the posteriors gen-

erated from the various priors. Bayesian calibration, in its simplest form,

says that credible intervals are accurate reflections of uncertainty when they

cover the true parameter at their nominal rates (see Box, 1980, e.g.); es-

sentially, they should behave like confidence intervals. Table 2 shows the

empirical coverage rates of 95% and 99% credible intervals obtained under

each prior and data-generating scenario. It shows that the rule-based priors

produce almost perfectly calibrated intervals, while the beta prior produces

intervals that are well-calibrated in the ξ = −0.2 case but too small in the

ξ = 0.15 case, giving an unrealistically confident posterior distribution.

We also apply two proper scoring rules (Gneiting and Raftery, 2007),

interval scores and quantile scores, to assess the quality of the posterior

distributions under five different priors, which we obtained for each replicate

using MCMC. For both scores, higher scores indicate better performance.



Table 2: Empirical coverage rates of (1− α)× 100% credible intervals.

Coverage
rates (%)

α = 0.05 α = 0.01

Beta(6, 9) h
1/2
11 (ξ) h

1/2
22,1(ξ) h

1/2
22,2(ξ) MDI Beta(6, 9) h

1/2
11 (ξ) h

1/2
22,1(ξ) h

1/2
22,2(ξ) MDI

ξ = −0.2

ξ 97.1 95.2 95.6 95.9 95.9 99.5 99.0 99.0 98.8 99.1

µ50 95.9 94.3 94.4 94.5 94.9 99.4 99.0 99.0 99.0 99.0

µ100 95.3 93.9 93.7 94.2 94.1 99.3 98.9 98.8 98.9 99.0

ξ = 0.15

ξ 81.3 94.9 94.6 94.6 94.6 95.1 98.6 98.6 98.5 98.8

µ50 86.9 94.7 94.4 94.1 94.5 96.5 99.0 99.2 98.8 98.9

µ100 85.5 94.2 94.5 94.3 94.6 95.9 98.9 98.9 98.9 99.0

ξ = 1

ξ - 95.6 95.7 95.5 95.6 - 98.8 98.6 98.8 98.8

µ50 - 95.6 95.3 95.3 95.4 - 99.1 99.0 99.1 99.1

µ100 - 95.3 95.2 95.3 95.4 - 99.1 99.2 99.0 99.1

The interval score considers both coverage and width of the (1−α)× 100%

posterior credible interval for a given parameter θ:

Sint(l, u; θ0) = −(u− l)− 2

α
(l − θ0)I{θ0 < l} − 2

α
(θ0 − u)I{θ0 > u},

where [l, u] are the lower and upper bounds that are the posterior quantiles

at level α/2 and 1 − α/2, and θ0 is the true value of θ that generates the

samples. The quantile score adopts a scoring rule that is similar to the

check function proposed by Koenker and Bassett (1978):

S(r; x) = (x− r)(I{x ≤ r} − p),

where x is the true pth quantile, r is the pth posterior quantile. It is

specifically designed to evaluate quantile estimates, so it is more appropriate

than RMSE in assessing the quality of return level analyses. In our analyses,



we calculate the quantile scores for 50-year and 100-year return levels, which

correspond to 0.02th and 0.01th quantiles. Figure 3 summarizes both scores

for 1,000 replicates using boxplots.

The reference priors and the MDI prior yield comparable scores across

all scenarios. Due to larger widths of the credible intervals produced by the

non-informative priors, the beta prior displays an obvious lead in interval

scores, but there are many outlier scores beneath the whiskers that spread

the interquartile ranges for the other priors. In addition, this performance

advantage of the beta prior becomes less pronounced for the quantile scores.

For ξ = −0.2, the beta prior may be slightly worse than the noninformative

priors at estimating the return levels. This particular beta prior is specifi-

cally designed with hydrological data in mind, so it is not surprising that it

performs better when the shape parameter is slightly positive, rather than

slightly negative.

Figure 3 also shows that scores systematically decrease as the true ξ

increases. To better understand how different values of ξ and sample size

n affect the outcomes from each prior, we perform additional simulations,

varying ξ from -0.4 to 0.4 (with n = 50), and varying the sample size 15 to

155 (with ξ = 0.2). For each parameter setting, we generate 1,000 replicates

and run the MCMC chain for 10,000 iterations in the same way as before.



(a) Case ξ = −0.2
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(b) Case ξ = 0.15
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(c) Case ξ = 1
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Figure 3: Comparisons of the interval scores (α = 0.05) for the posterior

credible intervals for ξ, and quantile scores (50-year and 100-year return lev-

els) among different posterior distributions under five priors. Each score is

calculated 1,000 times, once for each replicate consisting of n = 50 samples.

Higher values indicate better predictive quality in all panels.



The bias, RMSE and averaged interval scores of the 50-year and 100-year

return level estimators are compared in Figure 4 and 5. The performances

of the MDI prior and reference priors are almost identical.

Since larger ξ is associated with more extreme quantiles and thus more

unstable estimation, the bias and RMSE in Figure 4 increase with ξ for all

priors. Interestingly, the non-informative priors tend to overestimate the

return levels, while the beta prior tends to underestimate the return levels.

When −0.3 < ξ < 0.3, the beta prior produces smaller RMSE and higher

interval scores, demonstrating the advantage of prior knowledge. However,

when |ξ| > 0.3, the non-informative priors overtake the beta prior in terms

of interval scores, indicating better coverage of the credible intervals. When

the shape parameter is very small (ξ < −0.3), the beta prior yields higher

RMSE than the noninformative priors.

By definition, the reference prior technique assumes weak initial knowl-

edge and maximizes the missing information that the data provides; but

perfect knowledge is only attained asymptotically when n → ∞. Figure 5

demonstrates that as n becomes larger, all metrics improve and then stabi-

lize, and the information from the data outweighs the prior knowledge. For

this combination of beta prior and data-generating model, it takes a fairly

large sample size (n ≥ 120) for the reference and MDI priors to achieve



l l
l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l l l
l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l l l
l

l

l

l

l

l

l

l l l l
l

l

l

l

l

l

Figure 4: Bias, RMSE, and averaged interval scores of the 50-year return

level (top row) and 100-year return level (bottom row) estimators under

different true ξ values, where sample size n = 50 and number of simulations

N = 1, 000.

similar performance with respect to RMSE and interval scores. With large

sample sizes, the bias is considerably greater for the beta prior.

4. Data analysis

Dry and warm weather conditions continue to pose a high risk of devas-

tating wildfires in California, with dried up and dead vegetation from the
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Figure 5: Bias, RMSE, and averaged interval scores of the 50-year return

level under different sample sizes, in which true ξ = 0.2 and number of

simulations N = 1, 000. The same plots for the 100-year return level behave

similarly and are omitted.

2011–2017 drought further increasing risk by acting as kindling. To study

the tail behavior the fire risk, we consider the yearly maximum of the Fos-

berg Fire Weather Index (FFWI) from 1973 to 2018 at four monitoring

stations (Dunn et al., 2012). These are the stations that are closest to four

deadly wildfires that happened recently, in 2018–2019; see the locations of

the wildfires and monitoring stations in Figure 6. The FFWI quantifies

the potential wildfire threat by calculating a single number summary from

temperature, wind speed, and relative humidity; larger index values reflect

greater risk of rapid drying and high flame lengths (Fosberg, 1978). FFWI

does not account for human activities and fuel sources, such as changes

in land management practices and incursion of invasive species that may





obtained using different priors exhibit close resemblance for µ and τ across

all stations, and posterior means are almost identical. As expected, the beta

prior generates slightly narrower credible intervals for the shape parameter

ξ, the value of which is confined between −0.25 and 0.15 for Mendocino,

Getty, and Camp. However, there is an evident disparity amongst the esti-

mates of ξ for Kincade, which suggest values higher than 0.7 from the MDI

and the reference priors. This estimate could be suspicious because the

fire station near Mendocino is less than 140km away and has much lower

ξ values than the one near Kincade, although their weather patterns may

still differ in potentially important respects, despite their close proximity.

In the above analysis, we have assumed that there has been no trend

in the distribution of annual maximum FFWI values. To examine whether

this assumption is plausible, we look for time trends in 50-year return levels.

We collect the annual maxima in backward 20-year sliding windows from

1992-2018 and perform similar Bayesian analyses as described previously,

for each 20-year window, for each station. Since the performance for the

non-informative priors are indistinguishable, we only use the beta prior and

the reference prior under the ordering (µ, ξ, τ), which corresponds to the

reference prior that prioritizes inference on the return level. Figure 8 shows

the posterior mean and 95% credible intervals of the 50-year return levels





calculated using the parameters of each MCMC iteration. For Kincade and

Mendocino, the return levels are much higher for the 20-year windows that

stop in 1991-1998 when using the reference prior, but the estimates from

the two methods coincide well after around 2000. We observe a possible

slight increase in return levels for Getty and Camp. Aside from that, there

is no obvious trend in the return levels, suggesting that our assumption of

constant GEV parameters is adequate. It also may suggest that the recent

surge in the scale and frequency of wildfires in California may have more

to do with fuel availability, human activity, and land use than changes in

weather factors.

5. Discussion

In this paper, we used the procedure in Bernardo (2005) to derive reference

priors for the family of generalized extreme value distributions. We found

that when the primary inferential task is to estimate a return level, the

most common use case of the GEV, the reference priors are identical to

those under the standard parametrization. Furthermore, for different or-

derings of the parameters, we completed the specification of these priors by

filling the limits at discontinuity points and deriving tail approximations.

To answer the question of posterior propriety, we provided upper bounds





for the posterior normalizing constants under the orderings that give per-

missible reference priors, and found that the posterior is improper under

reference priors that treat ξ as least important of the three parameters.

This is a surprising result because examples of reference priors that are not

permissible are very rare in the literature.

We performed a series of simulations to compare the performance of the

reference priors to other priors suggested in the literature, under varying

values of the shape parameter ξ and sample size n. For ξ within a reasonable

range, the beta prior seems to have the best performance; when |ξ| < 0.3 it

has the best RMSE and interval scores for the estimation of ξ and return

levels, even while its bias is consistently worse than the non-informative

priors we tested, due to its reduced variance. Nonetheless, the superiority

of the informative beta prior is less obvious as n grows. When n ≥ 120, it

may be better to use the MDI prior or one of the reference priors, as the

bias is lower, and RMSE and interval scores are comparable to that of the

beta prior. When |ξ| > 0.3, using this particular beta prior is not advised,

especially when the goal is to accurately estimate a return level.

When outside information about the shape parameter ξ is available,

we conclude, unsurprisingly, that using a well-designed informative prior

can improve results by stabilizing estimation of the shape parameter ξ,



especially when the number of observations is small. This is feasible for

well-studied variables like precipitation and temperature, but it is somewhat

dangerous for less common variables like FFWI, as it is much less clear how

to design reasonable informative priors, and estimation performance might

suffer due to poor choices.

In contrast, an advantage of using rule-based non-informative priors

is that they have stable and reliable performance without requiring prior

knowledge of the data-generating process. The rule-based priors we investi-

gated here performed indistinguishably. Without clear empirical guidance

based on performance characteristics, we suggest choosing from among the

non-informative priors based on the underlying principles from which they

derive. If the MDI principle is appealing, then that is a fine choice. If

the missing information idea is more attractive, then one of the reference

priors might be preferable. If the goal of the analysis is estimation of a re-

turn level, then the reference prior corresponding to the parameter ordering

(µT , ξ, σ) seems like the natural one to choose.

Supplementary Materials

The Supplementary Material provides details on the construction of the

reference priors for the family of generalized extreme value distribution.
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Also, it contains the proof for the posterior propriety of the reference priors,

and some diagnostics of the MCMC algorithm used in the data analysis.
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