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ABSTRACT
The use of non-traditional computing devices is growing rapidly.
One paradigm of interest is chemical reaction networks (CRNs)
which can model and use chemical interactions for computation.
These CRNs are used to develop programs at the nanoscale for appli-
cations such as intelligent drug delivery. In practice, these programs
are developed in simulation environments, and then compiled into
physical systems. A challenge when designing CRNs for computa-
tion is the lack of techniques to verify and validate correctness. In
this work, we adapt software testing and repair techniques for use
in this domain. In initial work, we designed a testing framework to
handle the challenges presented by CRN programs; this includes
distributed computation and stochastic behavior. We extended this
framework to implement automated program repair of CRN models
and automated test generation via program invariants. For future
work, we will develop a notion of fault localization for these pro-
grams, develop a theory of mutation generation, and address issues
regarding �akiness present in this computing paradigm.

CCS CONCEPTS
• Software and its engineering ! Software testing and de-
bugging.
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1 INTRODUCTION
There is a growing utilization of non-traditional computing paradigms.
Many of these paradigms can be speci�ed with high-level program-
ming languages[4, 7, 19, 21, 27]. One paradigm is a Chemical Re-
action Network (CRN). CRNs are an abstraction of a traditional
model of physical chemistry, which can be compiled into DNA
as a cyber-physical program [3, 9, 24]. Additionally, it has been
shown that CRNs are Turing universal [22]. As a result, CRNs are
used as a nanoscale programming language, capable of computing
both computational primitives such as addition, and more complex
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algorithms such as watchdog timers, state logging and �nite au-
tomata [5, 6, 10, 11, 15]. Since biological organism’s behavior can
be expressed with CRNs, these programs are of interest as well to
biochemists, who use them to describe physical implementations
of both natural and synthetic programs. Recently, CRNs have been
formulated to represent neural networks and shown e�ectiveness
for common classi�cation tasks [20, 26]. When examining novel
uses of CRNs, as many as half the publications in DNA 2021 [23]
and many articles when searching the ACM digital library refer-
ence CRNs, with applications such as intelligent drug delivery and
nano-structures [2, 8]. Given the many applications of these pro-
posed technologies, it is important to validate and verify program
behavior. These programs exhibit challenges to validation.

• There is currently a lack of testing approaches that can han-
dle CRN behavior.

• Evaluating CRNs requires a simulation environment.
• Programs are often stochastic in nature, making the time of
computation random.

• CRNs are distributed in their computation, making the order
of computation random.

• A subset of CRNs themselves are probabilistic in their output,
requiring a di�erent type of oracle to test for correctness.

• There exists inherit �akiness that is present in both the CRN
programs and the test suites.

With these challenges, it is important to develop techniques to
address the testing of CRNs. In this work, we propose a framework
which handles the testing of CRNs, as well as providing techniques
to automate test generation and program repair.

2 BACKGROUND
The evaluation of non-traditional computing paradigms is often
lacking compared to traditional computation. CRNs are one of many
emerging paradigms, �rst used to analyze chemical reactions [3].
A CRN is de�ned as a set of species S and reactions R. A reaction is
composed of reactants on the left side and products on the right
side which are sets of species, and a rate constant that determines
the speed of the reaction. A common semantic for CRNs is the law
of mass-action, which we focus on the stochastic semantics. The
state of the model is determined by a Markov process and molecules
of each species have natural number counts. These models are eval-
uated via simulation, in environments such as Matlab’s Simbiology
package[25]. Consider the CRN given by

X1
1�! Y

X2 + Y
1�! null

In this example, X2 is subtracted from X1 (X1 – X2) and the results
accumulated in the species Y. The rate constants are 1 in both reac-
tions. In the �rst reaction, X1 is the reactant, and Y is the product. In
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Figure 1: The proposal includes a testing framework of CRNs. We propose extending this framework to include automated
test case generation, and mutant generation. These can be used together to implement automated program repair. We further
want to construct a benchmark of CRN programs and related artifacts. The yellow shaded work is yet to be completed, the
pink is partially completed, and white is completed

the second reaction, null speci�es there are no products produced.
This program is stable, which means it will have a deterministic out-
put if the simulation is given enough time to �nish the evaluation.
Some CRNs are not stable and always have a non-deterministic
output.

As we implement CRNs there is a need to verify and validate
behavior. The current state of the art for evaluating CRNs consists
of model checking and theorem proving [9, 10]. These approaches
demonstrate correctness but have limitations. Model checking can
be unable to scale to models above small molecule counts[16]. We
demonstrated this in a preliminary study that some faulty subjects
caused the Prism model checker to fail to build the model [13]. The-
orem proving also has limitations due to domain knowledge which
is needed to construct a proof covering a program’s behavior. This
can be challenging when program behavior is not fully speci�ed.
With these limitations of current approaches there is a need to
develop a testing-based approach to validate and verify. We know
of no testing framework that can handle the challenges of CRNs.

Another area of interest for CRNs is program repair. Just as the
CRN themselves are challenging to test, constructing correct CRNs
is di�cult. One way to help developers is to create an automated
program repair (APR) method, making the job of identifying and
�xing errors easier. There are many APR methods [12] commonly
using search or evolutionary algorithms. APR has primarily been
implemented with traditional programming languages, however
recent work has proposed its use with Alloy Models [28]. This
suggests an opportunity to apply APR to a new domain to help
improve program development.

An important aspect of testing CRNs is handling �akiness. Test
�akiness in traditional software is de�ned as a test that can be
observed to both pass and fail without changes to the code [18].
This is true of both test cases with CRNs as well as the program
variants themselves. Formally, given a test T in a constant test
environment E and a set of input species I and output species O.

If O di�ers on at least one of N runs, T is �aky. In order to reason
about the programs behavior, we need to address this �akiness.

3 PROPOSAL
In this work, we propose a framework which enables the testing
and repair of CRN programs. Figure 1 shows an overview of my
proposed research. The �rst step is a framework itself, which encom-
passes simulation processing, input generation, oracle evaluation
and test case generation. We will extend this framework to include
automated test case generation and additional oracle support. Third,
we will develop program repair, adding mutant generation and fault
localization to the proposed CRNRepair framework. Fourth, we pro-
pose to create a benchmark of CRN programs, test cases, and faults.
Finally, we address �akiness in these programs along with possible
solutions. We now describe each part of the framework in detail.

3.1 Testing Framework
This framework involves addressing the challenges of the stochas-
tic CRNs. We must be able to create test cases from the speci�ca-
tions of the model. This requires a modi�ed �rst-order logic which
can express both the functional properties as well as the tempo-
ral properties that a CRN can be required to satisfy. These can be
instantiated with concrete input values and generated based on
constraints of the speci�cations. This forms oracles to be evaluated
via simulation. Due to the distributed and concurrent nature of
these programs, we have to handle the evaluation time and how
the results are a�ected. Additionally, due to the inherit �akiness of
the models, we must evaluate each test a number of times in order
to observe model behavior. The choice of these parameters can be
set to default values, but may require optimization based on the
subject model.

3.2 Automated Test Case Generation
We can then automate portions of this framework. Utilizing invari-
ant techniques used for Petri nets, we can automatically generate
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oracles from the program model. This is accomplished by generat-
ing the linear invariants and creating oracles from them. Some of
the created oracles require simulation information in addition to
the output, requiring changes to the underlying framework to ac-
commodate these tests. This enables automated test case generation
for regression testing.

3.3 Program Repair
Further, we can use the proposed testing framework to implement
program repair on CRNs. A notion of model �tness for CRNs must
be created to be able to conduct the search-based repair. We further
need to create an abstract syntax tree to work within the genetic
improvement framework. To improve the repair process, we pro-
pose the development of fault localization. To aid in the search
process, new operators will be de�ned. This will lead to the devel-
opment of theory of mutant generation for CRN programs. This
further formalizes mutation testing of CRN programs. The notion
of coverage for CRNs will be de�ned, as to provide a metric for
fault localization and test coverage.

3.4 Benchmark Programs
While there is a large community of researchers building CRNs,
we lack a common set of programs and their faulty versions to
benchmark testing approaches. This research proposes the creation
of a benchmark of CRN programs and related artifacts. This will
enable further research without each group needing to recreate
a reasonable benchmark set. As CRNs increase their usage, the
existence of a general benchmark set will help advancements in the
veri�cation and validation. This benchmark will include programs
gathered from a literature search, a set of generated faults, and the
test suites needed to evaluate the models.

3.5 Flakiness
Finally, we propose an investigation into the role �aky behavior
plays in the testing and repair of CRNs. In our initial results, �aki-
ness is a common attribute to be addressed, which we have devised
methods in the testing framework. As we further explore the causes
of �aky tests and models, we hope to gain techniques that can be
used to further improve the testing and repair frameworks. And
extend these insights to developers in other programming environ-
ments.

4 CONTRIBUTION
In this work the expected contributions are presented below:

• We propose an end-to-end testing framework, ChemTest, for
stochastic CRNs, taking models and a set of speci�cations
as input, and evaluating correctness.

• We propose a program repair framework to handle CRNs,
implementing changes required to handle this new domain.
We evaluate the e�ect of parameters on the repair process.

• We extend ChemTest by implementing an automated test
generation approach, utilizing invariants extracted from the
CRN model. This evaluation is in comparison to the manual
tests generated in the original framework.

• We complete case studies to evaluate each contribution for
its e�ectiveness and impact on validating CRNs

Table 1: ChemTest, number of Deterministic, Flaky, and
Mixed (having both Flaky and Deterministic) test cases and
mutants by Subject. Tests are listed for both Abstract and
Concrete, in parentheses [13].

Subject Type Determ.
Abs(Conc)

Flaky
Abs(Conc)

Mixed
Abs(Conc)

Subtraction Test
Mutant

0 (89)
3

0 (40)
0

9 (224)
6

Hailstone Test
Mutant

0 (0)
5

0 (0)
1

7 (34)
4

ApproxMajoriy Test
Mutant

0 (49)
0

8 (1911)
0

16 (877)
9

• We develop a method of fault localization to improve pro-
gram repair and bug detection in CRN models.

• We compile a benchmark dataset of CRN programs for access
to the community.

• We investigate the properties of �akiness in CRN models
and see what lessons can be applied to improve testing and
repair of CRNs.

5 RESULTS
5.1 Testing Framework: ChemTest
Webuilt an initial version of a software testing framework, ChemTest,
which can be integrated into the MATLAB Simbiology framework
[13]. It uses a LTL-like logic to represent the speci�cations and
oracles, which in turn de�ne abstract tests. We then use the test
speci�cation language to instantiate concrete values for the abstract
tests based on constraints in the speci�cations. Each test then was
simulated 100 times and evaluated at simulation time 100 to account
for stochastic behavior and time dependency of the output. Our
initial results with the ChemTest framework show that e�ective
test suites can be developed for CRNs. Utilizing several types of
tests, functional, metamorphic, and hyper, we were able to achieve
a high level of fault detection in a set of generated mutant models,
�nding 80.4% of generated faults using metamorphic tests and 66.5%
using functional tests.
Further we explored the e�ect of �akiness in the subjects, includ-
ing both �akiness from the stochastic program behavior and the
simulation environment. This includes evaluating the e�ect of time
of evaluation on test correctness [13]. When we look at Table 1,
we see that the majority of subjects exhibit mixed behavior. This
means that some tests are deterministic and some are �aky. Looking
closer, we can see that one hailstone mutant was only detected via
�aky tests, demonstrating that those tests are required to achieve
fault detection on some errors. Further investigation into model
behavior under test is needed to understand how to best test CRNs.

5.2 Program Repair: CRNRepair
Fixing faults in CRNs is non-trivial. Due to the stochastic nature
of CRNs, bugs in the program can be hard to identify. An example
fault from our study subject Hailstone that had 11 reactions can be
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as simple as removing a product species A from

M �! A +A +A +A +A +A + B + B + B.

This yields incorrect behavior of the CRN, but only on a small set
of inputs, and is visually di�cult to see in the full program text.
Therefore, in our initial work [13], we modi�ed the PyGGI repair
tool [1] to evaluate the ability to repair mutant CRN programs.
We implemented a custom abstract syntax tree to parse CRNs,
added support for the XML format of CRNs, and added a base
set of operators. With these improvements, we could repair faulty
programs, 90% of faults for one subject, and 50% for another subject
[17]. An interesting attribute of the repairs we found is that they
had 3 types of behavior. In the repairs found, the model was either
returned to the original correct model behavior, or modi�ed in
such a way to speed up or to slow down the computation. While
the successful repairs had di�erent simulation behavior, all were
functionally correct.
This result has led us to propose developing a more advanced search
method which can account for non-functional properties such as
evaluation time or number of reactions in the candidate repair. We
also evaluated which parameters helped the repair process and
found a middle ground of 40 epochs vs 50 iterations to be most
e�ective for the programs evaluated. However, we did not develop
fault localization or mutation operators to help guide the program
repair, which is work to be completed in my research.

  

   

   

   

   

   

   

   

   

   

    

                                                                     

              

                             

Figure 2: ChemFlow, fault detection by test case type, All
contains all subjects. Stable includes Min, S, Mod, Max, H1,
H2. Unstable includes AM, AL1, MWT citeChemFlow.

5.3 Automated Test Generation: ChemFlow
Further, CRN programs may not have the speci�cations needed to
create oracles. Biological models built from cumulative experimen-
tation represent program behavior, but lack a known speci�cation
from which to build tests from. But even simple functional pro-
grams lead to issues when the speci�cations are unclear, such as a
X mod Y function. When developing this function’s speci�cations,
we incorrectly assumed that its output would always be a Boolean
value, leading to over �tting the test suite and creating false positive
failures when it returned integer values. Third, the speci�cations
we used in ChemTest require the developer to use a �rst-order logic
like language such as LTL which may be hard to write.
To address these issues, we have utilized program invariants ex-
tracted from the CRNmodels [14]. We utilize a Petri net formulation
of the CRNs to extract the invariants in a tool called ChemFlow.
These invariants represent speci�cations (including oracles) that

hold for the entire program. We have de�ned three types of in-
variants, in order to create automated program oracles to evaluate
behavior. This helps address a shortcoming of the original frame-
work by reducing the need for manually generated speci�cations.
This resulted in a similar level of fault detection when evaluated
against a set of mutant programs as the manual speci�cations from
the original ChemTest work[14]. When we look at Figure 2, we can
see as we add additional invariant types together, such as Flows and
Irreducibles, we gain higher fault detection than either set alone.
This shows that the type of test used does a�ect fault detection and
the proposed work to de�ne test coverage is needed to evaluate the
strength of CRN test suites.

6 PLAN OF WORK
As we move forward, we plan on completing the following aspects
of this work.

• We plan on extending the program repair framework. This
will add fault localization, new mutation operators, and
search algorithms which will improve the ability to repair
more complex CRN programs and faults. We will evaluate
these improvements against our current benchmark set used
in ChemFlow and previous work CRNRepair [14, 17].

• We plan on creating a benchmark of CRN programs. This
benchmark will consist of CRN program model, speci�ca-
tions, testing artifacts, and faults. This will enable the com-
munity to further research into validation of CRN programs
without needing to recreate a representative set of programs.
To expand our initial benchmark used in the ChemFlowwork
[14], we will conduct a broad literature review to gather sub-
jects.

• We will explore the �aky behavior of CRN programs and
what can be learned from them. This will provide a better
understanding of the testing results from our work. It will
also provide insights into how to better utilize tests that
behave �akily in other computing systems.
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