Computer-Aided Design 160 (2023) 103520

Contents lists available at ScienceDirect

CAD

Computer-Aided Design =

journal homepage: www.elsevier.com/locate/cad

A Framework for Physics-Informed Deep Learning Over Freeform R

Check for

Domains

Francesco Mezzadri?, Joshua Gasick”, Xiaoping Qian ”*

2 Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via P. Vivarelli 10/1, Building 26, 1-41125, Modena, Italy
b Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI, 53706 - 1572, USA

ARTICLE INFO ABSTRACT

Article history:

Received 25 October 2022

Received in revised form 28 February 2023
Accepted 29 March 2023

Deep learning is a popular approach for approximating the solutions to partial differential equations
(PDEs) over different material parameters and boundary conditions. However, no work has yet been
reported on learning PDE solutions over changing shapes of the underlying domain.

We present a framework to train neural networks (NN) and physics-informed neural networks
(PINNs) to learn the solutions to PDEs defined over varying freeform domains. This is made possible
through our adoption of a parametric non-uniform rational B-Spline (NURBS) representation of the
underlying physical shape. Distinct physical domains are mapped to a common parametric space via
NURBS parameterization. In our approach, we formulate NNs and PINNs that learn the solutions to
PDEs as a function of the shape of the domain itself through shape parameters.

Under this formulation, the loss function is based on an unchanging parametric domain that maps
to a variable physical domain. Residual computation in PINNs is made possible through the Jacobian
of the mapping.

Numerical results show that our networks can be trained to predict the solutions to a PDE defined
over an entire set of shapes. We focus on the linear elasticity PDE and show how we can build
a surrogate model that is able to predict displacements and stresses over a variety of freeform
domains. To assess the efficacy of all networks in this work, data efficiency, network accuracy, and
the capacity of networks to extrapolate are considered and compared between NNs and PINNs. The
comparison includes cases where little training data is available. Transfer learning and applications
to shape optimization are analyzed as well. A selection of the used codes and datasets is provided at
https://github.com/fmezzadri/shape_parameterized.git.

Keywords:

Physics-informed deep learning
Neural network

NURBS

Computer-aided design

Partial differential equations

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Computational approaches based on machine learning and
neural networks have been widely studied in recent years. In-
deed, the growing availability of computational power and a
proliferation of data have made it possible to apply neural net-
works to increasingly complex problems. Further, the generality
and relative simplicity of neural networks have cemented them
as powerful tools in diverse fields. To meet the demands of many
of these environments, neural networks have been adapted, re-
formulated, and re-structured. For instance, many recent works
have focused on optimizing hyperparameters to improve learn-
ing [1-3]. Other researchers have proposed alternative network
architectures and loss formulations to address difficulties in train-

ing.

* Corresponding author.
E-mail addresses: francesco.mezzadri@unimore.it (F. Mezzadri),
gian@engr.wisc.edu (X. Qian).

https://doi.org/10.1016/j.cad.2023.103520
0010-4485/© 2023 Elsevier Ltd. All rights reserved.

In this context, physics-informed neural networks (PINNs)
have been recently introduced [4] to solve forward and inverse
problems involving partial differential equations (PDEs). These
networks are characterized by the incorporation of an additional
loss term that represents the residual of the neural network-
predicted solution with respect to the governing equations them-
selves. The total loss of a typical physics-informed neural network
is then composed of two parts: a data-based term and a residual-
or physics-based term. The data term captures the extent to
which the PINN predicted solution interpolates the data whereas
the physics term identifies the adherence of the predicted solu-
tion to some underlying physical equations. The explicit inclusion
of the residual of the PDE in the loss acts as a regularization
mechanism and can lead to more physically consistent solution
fields. Although the training can be an issue in some cases [5],
PINNs have proven to be an effective tool especially for inverse
problems and surrogate modeling. Variations of the formulation
of PINNs have been proposed, such as PINNs designed to satisfy

https://doi.org/10.1016/j.cad.2023.103520
https://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2023.103520&domain=pdf
https://github.com/fmezzadri/shape_parameterized.git
mailto:francesco.mezzadri@unimore.it
mailto:qian@engr.wisc.edu
https://doi.org/10.1016/j.cad.2023.103520

F. Mezzadri, J. Gasick and X. Qian

conservation laws [6], PINNs that decompose a long-time prob-
lem into many independent short-time problems [7], and PINNs
for fractional derivatives [8].

Physics-informed neural networks have also been applied to a
variety of physical problems. Examples include the Navier-Stokes
equation [9], the Reynolds equation [10], high-speed flows [11],
the Chen-Lee-Liu equations [12], and the equations of linear
elasticity. With respect to the final of these, PINNs were trained to
serve as surrogate models for problems in solid mechanics in [13].
For example, Haghighat et al. in [13] trained PINNs to learn
the solution to the equations of linear elasticity for a problem
over a simple, square domain as a function of the physical Lame
parameter j. It was also empirically shown that the trained PINNs
could accurately predict the solution of the PDE for wide ranges
of u, including those which were not considered during training.

While [13] and other works [14,15] have shown the useful-
ness of training PINNs and NNs to model the solutions to PDEs
as a function of varying material properties (PDE coefficients),
little research has been done to extend this approach to model
solutions as a function of varying domain shapes. Further, the ne-
cessity to formulate neural networks that can work with freeform
domains is called for in the literature. For instance, the support
of accurate descriptions of complex curvilinear boundaries is
mentioned as a possible future development of the DeepXDE
tool [16]. To address these needs, in this paper, we propose a
formulation for NNs and PINNs that can predict PDE solutions as a
function of domain shape. In our formulation, the loss functions of
neural networks are based on an unchanging parametric domain
that maps to a variable physical domain. Residual computation in
PINNs is made possible by the use the Jacobian of the mapping.
The Jacobian is needed only for physics-informed loss compu-
tation during the training, and is not needed for PINN-based
solution query.

Fig. 1 summarizes our approach. In the figure, a generic phys-
ical domain §2 with coordinates (x, y) is mapped on a parametric
domain £2. The parametric coordinates are denoted by (&,). In
our approach, the mapping between 2 and §2 is constructed
through non-uniform rational B-splines (NURBS) [17]. Our choice
of NURBS parameterization of shapes is due to several reasons.
First, NURBS are a common shape representation widely used in
CAD systems and represent shape changes compactly. Second,
NURBS parameterization of the physical domain is the basis of
a popular analysis approach, isogeometric analysis [18]. Finally,
due to the use of a common parametric domain, NURBS allow for
convenient querying of point-wise data-based errors or physics-
based residuals over varying physical domains. The geometric
mapping between the domains is based on the coordinates of a
set of control points, which we denote as P;. As represented in
Fig. 1, a set of collocation points is then selected in Q. Working
in the parametric domain, the parametric coordinates of the
collocation points will not change even when the physical domain
is modified. Under the assumption that we have access to the
solution u*(&, n) of a PDE at these collocation points for one or
more training shapes, we can train a neural network that is a
surrogate model of the solution of the PDE on different domains.
The inputs of such neural network are the parametric coordinates
(€, n) along with the shape parameters that characterize the
shape of the domains. The training data is constituted by the
solution u*(&,) of the PDE in the training domains. Since we
employ a NURBS parameterization, we can conveniently generate
the data by isogeometric analysis (IGA) [18]. With this infor-
mation, a NN loss function (completely based on the training
data) or a PINN loss function (where physics-based terms are
also included) can be formulated. The trained neural network can
predict a solution u(&, n) of the PDE defined on any domain when
the network is inputted with a set of coordinates (£,) and with

Computer-Aided Design 160 (2023) 103520

the shape parameters, such as NURBS control points or geometric
parameters such as axes of ellipses.

To demonstrate the efficacy of this approach, linear elastic-
ity problems defined over domains of varying complexities are
addressed. Background information on elasticity, neural network
and NURBS are introduced in Section 2. Neural networks for
parameterized shapes are then introduced in Section 3. Section 4
contains several numerical experiments. The comparative effi-
ciencies and accuracies of NNs and PINNs are also assessed in
Section 4, alongside an analysis of the role of the continuity and
the degree of the parameterization on learning. The accuracy of
the two types of neural network when little data is available is
also compared and analyzed. Transfer learning and applications
to shape optimization are finally considered as well. In Section 5,
concluding remarks are made and an outline for future work is
described.

2. Introduction to elasticity PDEs, neural networks, and
NURBS

In this section, a model for linear elasticity, a mathemati-
cal summary of the structure of neural networks and physics-
informed neural networks, and an overview of NURBS represen-
tation are discussed.

2.1. The linear elasticity model
Throughout this paper, the 2D equations of linear elasticity

are studied under the plane stress assumption. The constitutive
equations are:

E
Ooxx = (€xx + Veyy)m, (1)
Oyy = (UEXX + ny)m, (2)
E
Oxy = mfxw (3)

where E denotes the Young’s stiffness modulus, v denotes the
Poisson’s ratio of the material, oy, i, j € {x, ¥}, is the stress tensor
and ¢; is the strain tensor. By the Kinematic relations, this last
term can be written as

1
€jj = i(ui,j + uji), (4)

for i,j € ({x,y}, where u; denotes the displacements and the
comma in the subscripts indicates a partial derivative.

Finally, in general, the linear elasticity model includes a mo-
mentum balance

ojjj +fi=0, (5)

where f;, i € {x, y}, denotes the body forces.
2.2. Neural networks

A neural network is a mathematical tool that can be trained to
represent the relationship between data or datasets. For example,
a neural network can be trained to associate images with classes,
or to predict the solution to a PDE based on a set of spatial
coordinates.

A fundamental feature of neural networks is that they are
composed of different layers of neurons. Fig. 2 shows a simple
example of a neural network where there are two inputs x1, X5,
two hidden (or intermediate) layers with two neurons each and
one output u. The neurons of the hidden layer are named aj(k),
which is the jth neuron of the kth hidden layer. Finally, ny denotes
the cardinality of the weights ngk) of the kth layer, b; Visa bias, fi

F. Mezzadri, J. Gasick and X. Qian

<

Geometrical map G

Computer-Aided Design 160 (2023) 103520

<

>

L]

|

8

Physical domain 2

Inverse mapping G~

n

3

Parametric domain 2

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X|
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X|
X X X X X X X X X X X X X X X|
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X|
ur(€m)
(&mn)
Py — NN / PINN | —u(&,n)

Fig. 1. NURBS-based domain parameterization for physics-informed deep learning over freeform shapes. Different physical domains are parameterized to a common
domain §2 by means of the control points P; of a NURBS representation. The solution u* of a PDE defined on the freeform shape is then evaluated in a set of
collocation points in the parametric domain. Finally, the data is passed to a neural network for training. The trained network can make predictions u of the solution

u* even when the shape of the domain is changed.

denotes an activation function, u* denotes the expected solution,
and |O| denotes the mean square error, which, for a general
output vector u of n components, is

n

! Z(ui —ur)?

lu—u|= -
i=1

(6)

n

The weights and the biases are variables which can be adjusted
or ‘trained’ such that the neural network predicts a certain output
when given a certain input. During training, the network predicts
on some inputs for which the correct output is known. The output
predicted by the network is then compared with the expected
output by means of the loss function £. The training of the
weights is achieved by solving an unconstrained minimization
problem to reduce the loss, or, equivalently, to improve the
accuracy of the network:

min L.
b,w

(7)

During each iteration of the optimization algorithm, the weights
are then tuned by means of a “backpropagation” procedure. If
there exists a continuous, bounded relationship between the in-
put and output data, a neural network that is an arbitrarily

good model of this input-output relationship can be formed and
trained [19]. For more information on the neural networks the
reader is referred to [20].

2.3. Physics-informed neural network for linear elasticity

Consider a PDE of the form

Du = b,

(8)

where D denotes a partial differential operator that acts on a
distribution u in some domain £2 with boundary 9£2. The solution
to the PDE can be modeled by neural networks for forward or
inverse problems.

Physics-informed deep learning [4] supplements generic neu-
ral network training by including a PDE-specific residual term in
the loss function. A PINN loss function can thus be written as
follows, where a superscript ‘*’ denotes given information/data:

9)
The physics-informed component of the loss is the term |Du — b*|
in Eq. (9). The terms |u —ugl,_, and |u — u*[,, represent the

enforcement of initial and boundary conditions, respectively. Fi-
nally, the term |u — u*|, represents a data-driven contribution

Lonny = U —u*|g + |Du — b*| 4 |u — ugl,_y + [u — u*[50.

F. Mezzadri, J. Gasick and X. Qian

Inputs

Hidden layers

Computer-Aided Design 160 (2023) 103520

*

Fig. 2. Outline of the mathematical setting of a generic neural network.

that is based on the knowledge of u in some points of the
interior of the domain. Naturally, not all these data-based terms
are always present. For instance, if a PINN is used to forward
solve a differential problem, the only available data will be at the
boundary and at the initial time. Conversely, in inverse problems
and surrogate modeling, the solution to the PDE may be known
at some points on the interior of the domain but potentially not
at the boundaries.

2.4. Parameterization by NURBS

Let {Bip}, i = 0,...,n, be the B-spline function of degree p
defined on the knot vector
ke = {80, &1, ..., Enspr1}-

Such B-spline functions can be defined recursively. In particular,
for the generic ith B-spline function, we have

—E)Bi . — EBiiq
BLy(€) = (& — &)Bip-1(&) n (§ip+1 — &)Biv1p 1(%‘),
Sirp — & Eirpr1 — &in (10)
B (g)_ 1 éiffffiﬂ,
0P)= 0 otherwise.
The derivative of a B-Spline basis function, Blf’p(;-‘), is:
B(E) = Bipa(§) = L Biapa(). (11)
Eip— & Eirpr1 — &in
A NURBS curve of degree p can be defined as
L P
X(E) = Z,:o 1,p(€)w1 i (12)

Yo BipE)w;
where {P;},i = 0, ..., n, represents the coordinates of a set of
control points, w;,i =0, ..., n, is the corresponding weight, and
& € [0, 1] is the parametric variable.

Eq. (12) can written more concisely using NURBS basis func-
tions:

n
£)= Rip(£)P. (13)
i=0
In Eq. (13), R; p(&) is defined according to:

BLp(é;_ Jw;

Rip(f) = =221
25 Zj:OBf,P(E)wJ

(14)

The derivative of a NURBS curve is simply:

Xe(§) =) R, (£)P. (15)
i=0

In Eq. (15), the NURBS basis function derivative is:

R (&)= nBi,p(%)wi - Bi,p(g)w; (X Bj,p(&;)w;)_ (16)
> im0 Bip(&)w (Zj:o B; p(&)wj)

Similarly, it is possible to define a NURBS surface of degree p
in the first parametric direction £ and of degree q in the second
parametric direction 7, as

— Y Rule)

i=0 j=0

R;.q (n)Py, (17)

where the control points {P;} form a {(n 4 1) x (m + 1)} control
net and are associated to the weights {wy}. Finally, {R; ,(§)} and
{R; q(n)} are the NURBS basis functions based on B-Spline basis
functions, which themselves are defined on the knot vectors k; =

{80, &1, -+, Enypr1} and ky = {no, 11, -+ -, Mmgqrr)

The parametric derivatives of a NURBS surface are:
ZZR £)R; 4(1)Pj, (18a)
i=0 j=0

n m
=YY Riy€)R (18b)
i=0 j=0

For more information on NURBS, the reader is referred to [17].

The control point and weight arrays define the shape of the
NURBS representation. One of the most attractive properties of
NURBS parameterization is that NURBS can represent complex
shapes compactly with just a few control points.

Consider, for instance, a problem where the objective is to
determine the optimal shape to give to a hole at the center of
a plate. The profile (and, indeed, the entire geometry) can be
represented using a bi-variate NURBS. For examples of different
possible hole profiles that can be represented with NURBS curves,
see Fig. 3(a), where only one-quarter of the plate is considered for
reasons of symmetry. Through a NURBS representation, a wide
range of possible plate-hole designs can be represented and each

F. Mezzadri, J. Gasick and X. Qian Computer-Aided Design 160 (2023) 103520

3

(a) Example of three shapes Q1, Q2, and Q3 in the physical domain.

Q
(b) Identical parametric domains Q2 of Q1, Qo, and Q3.

Fig. 3. Different shapes are mapped to the same parametric domain.

of these is mapped to the same parametric domain. This idea is
shown in Fig. 3. The only alteration required to represent a geom-
etry shown in Fig. 3(a) to obtain the geometry shown in Fig. 3(b)
is the adjustment of a few of the control point coordinates in the
array Py.

2.5. Data generation via isogeometric analysis

Isogeometric analysis (IGA) is a computational analysis tool
used to approximate the solution to PDEs [18]. In contrast to
the finite element method, IGA utilizes CAGD principles to rep-
resent the geometry and solution. Typically, linear combinations
of NURBS basis functions are used in both capacities. Widely
discussed and notable advantages of IGA in a general setting
include its ability to exactly represent geometries and to obtain
higher order continuity in the representation of the solution.

For the purposes of this paper, IGA is perhaps the most natural
data collection method. Indeed, training data for distinct shapes
can easily be generated. In this regard, data generation follows
the following steps:

1. given a set of control points, use NURBS parameterization
build a map between physical shapes and a parametric
domain. Choose a set of collocation points in the parametric
domain;

2. generate a shape by adjusting the control point coordi-
nates;

3. apply IGA to compute the solution at the control point
coordinates

4. repeat points 2-3 for new shapes. The data for each shape
is thus generated simply by modifying the coordinates of
the control points and re-applying an otherwise identical
implementation of IGA

Sampling each solution at the same parametric coordinates also
introduces a certain level of standardization to the data collection
process despite the freeform nature of the domains of interest.
These features simplify the training and testing of the NNs and
PINNSs discussed in this paper.

3. Shape-parameterized NNs and PINNs

In this section, we present our shape-parameterized NNs and
PINNs. The proposed framework is based on the following key
elements:

e The inputs of the neural network are a set of parametric
coordinates (&£,7n) and a set of shape parameters p that
characterize the shape of the domain. In general, the shape
parameters are the coordinates of the control points P; of
a NURBS parameterization. Other shape parameters, such
as the length and width of a geometric feature, can also
be conveniently used as inputs when they can characterize
the shapes of the dataset of interest. See, for example, the
rectangular and the circular beam problems in Section 4.1.

e The output of the neural network is a prediction of the
solution of the PDE. In the case of the linear elasticity PDE,
the outputs are the displacements and the stresses evalu-
ated in the parametric domain. We denote such quantities
by iy, &, and by Gy, 6yy, 6xy for displacements and stresses,
respectively.

e The data used for training are displacements and stresses
as evaluated at a set of collocation points in the parametric
domain. We denote the training displacements by i}, ﬁ;‘ and
the training stresses by 65, 6,1, and 6,;.

e The loss functions are denoted by Lyy and Lpny depend-
ing on whether we consider a purely data-based loss or a
physics-informed loss, respectively.

e Additional parameters are required to compute the physics-
informed loss Lpyy. In particular, the material parameters
E, v (which represent the Young’s modulus and the Pois-
son’s ratio, respectively) are needed. In addition, the inverse
Jacobian J~! of the mapping between the physical and para-
metric domains is needed. This will be discussed later in this
section.

3.1. Formulation for shape-parameterized neural networks

We want to formulate a neural network that can predict the
solution of a PDE on a set of freeform domains. The first step is to

F. Mezzadri, J. Gasick and X. Qian

Computer-Aided Design 160 (2023) 103520

xX

x XX

x X
= X XXX
X% x XX

x x
x
X X X XXXXXXX % %

(b) Position of the collocation points in the physical domains 21, Qa, Q3.

Fig. 4. A set of collocation points with equal spacing in the parametric domain, and corresponding position of the points in a few physical domains.

use a NURBS parameterization to map a set of physical domains
of interest to the same parametric domain £2. When the physical
domain changes, the shape parameters p are modified, but Q
remains the same.

Next, a set of collocation points is selected in the parametric
domain 2. This set is denoted by ¢, and constitutes the points of
£2 where we want the neural network to evaluate the solution.
Notice that, working on the parametric domain, ¢, remain the
same irrespective of the physical domain. Fig. 4 illustrates this
concept considering, for instance, a set of evenly spaced colloca-
tion points in the parametric domain. Fig. 4 demonstrates that
collocation points only need to be specified in one parametric
domain. The mapping between each physical domain and the
parametric domain captured by the NURBS representation elim-
inates the need to formulate a method for specifying collocation
points in each individual and potentially unique physical do-
main. The shape parameters p are used to characterize different
physical domains on the same parametric domain.

Therefore, the aim of the neural network becomes to predict
the solution of the PDE on ¢, for any choice of the shape parame-
ters p. To do this, the inputs of the neural network are formulated
to be the parametric coordinates (£, n) of the collocation points
Cp and the shape parameters p. In the considered model prob-
lem of the linear elasticity PDE, the outputs are predictions of
the displacements uy, u, and of the stresses oy, oyy, 0y,. Notice
that we are interested in predicting displacements and stresses
along the physical directions (, y), but we evaluate them at the
parametric coordinates (&,) € §2. Therefore, for compactness of
notation, we denote the predictions of the network evaluated in
the parametric domain as

Uy == uy(&, 1, p). ﬁy =uy(&,n,p),
€ = €&, 1, D), '%yy = ep(&, 1, p), éxy = ey, 1, p),
O = o€, 1, D), &yy =oy,(&, n,p), 6xy =0y, n,p),
(19)

where (&, 1) € £ with & = £(x,y) and n = n(x,y) in accordance
with the mapping of the parameterization. These displacements,
deformations and stresses are the quantities of interest of the
considered elasticity problem. Several network settings can be
chosen to compute them. For instance, we could formulate a
neural network (or two independent networks) that outputs the
displacements il, and il,. Deformations and stresses could then be

calculated by differentiating the displacements. In alternative, in
the mixed formulation (see, e.g., [13]), either (ily, iy, €x, €yy, €xy)
or (i, iy, 6, Oyy, Gxy) can be considered as outputs of one or
multiple independent networks. We resort to this latter formu-
lation, producing the five outputs (i, iy, Gxx, Oyy, Gxy) Via five
separate networks. While, in principle, a sufficiently wide net-
work would allow to compute all the quantities of interest by
a single neural network, the use of separate networks simplifies
the work of the optimizer [13]. This structure also avoids the
conflation of weights and biases used to represent different solu-
tion fields. For example, by assigning one network to learn each
solution distribution, the specific weights and biases that define
the displacement fields do not interfere with the learning of the
weights and biases used to define the stress fields.

To train the network on multiple domains, data must be
available at least on a subset of the collocation points for several

choices of p. We denote the training data as %, ﬁ;, s Opys Oy
The training data can be either available from the boundary con-
ditions of the PDE (in case of forward solution of the differential
problem) or can be provided in the entire domain (in case of
inverse problems and surrogate modeling).

Finally, the loss function must be defined. For a non physics-
informed neural network, the loss is entirely composed of the
difference between the network-predicted solution distribution
at some point and the true solution value at the same point. As
such, the loss £yy can be formulated according to
ol

LNN = |ﬁx_ﬁ:| + |ﬁy _ﬁ;| + |6xx — Oxx

A

Gyl

A A~ A (20)

+ |Uyy - Uyy| + |<7xy -
In contrast, the loss of a physics-informed neural network in-
cludes residual terms as well, as mentioned in Section 2. Such loss
function contains three different types of terms: network outputs,
training data, and terms that are computed by taking derivatives
of the outputs with respect to physical coordinates. Under the
assumption of plane stress, the general loss function of a PINN
for linear elasticity becomes as in Eq. (21), where the different
terms are highlighted in different colors, see Box I.

The presence of derivatives with respect to physical coordi-
nates is the reason why computing Lpyy requires the inverse
Jacobian of the mapping between the physical and parametric
domains. This is discussed further in Section 3.2.

F. Mezzadri, J. Gasick and X. Qian Computer-Aided Design 160 (2023) 103520

Lpny = | ﬁx - ﬁ: | + | ﬁy - ﬁ; | + | &xx - Axt(| + | &yy - &Yf" | + | &xy - &x‘;/ |
A 2 * & A * 2 2 E 2
+ | Owx + Oxyy — f:x [+ Oxyx + Oyy — f;, | + Exx TV €y m — Oxx (21)

A A E A E A A
+|<v il)1—v2_ o ‘+‘(1+v) ST O ‘

= network outputs = training data = derivatives of output with respect to physical coordinates

Ly =|ite — 03] + |y — 5]
H60z — 6| + 16y — 67y

62y — 6%,

Geometry
parameterization

(z,y) < (&)

= input variables O = output
(a) Formulation of NN

LpINN =|tie — G| + |Gy — |

’ HGax — Opal + |Gyy — G4y
6oy — 62y

+|6ez,e + Oayy — fl*‘

+|a"ry,z + &yy,y - fljl

Geometry
parameterization

(,y) < (&:n)

. . E .
+‘(€g.-x + Vny)m — Oza

. . E .
+’(V€rw + éyy) 1,2 %w
‘ 19

v

oy

€xy — Oy

= input variables O = training parameters O = output
(b) Formulation of PINN

Fig. 5. Shape parameterized NN and PINN.

The scheme of the shape-parameterized NNs and PINNs is p, which specify the exact form of a geometry. Then, they pre-
represented in Fig. 5. The neural networks receive parametric dict physical displacement ily, il,, and stress distribution values
coordinates values & and #, in addition to the shape parameters G, Oxy and 6y,. To evaluate the PINN loss function, additional

F. Mezzadri, J. Gasick and X. Qian

information is required, like the physical information E and v,
and the inverse Jacobian at the specific values of (&, n) of the
collocation points.

3.2. Role of the inverse Jacobian in shape-parameterized PINN train-
ing

The previous section introduced a framework for a shape-
parameterized PINN. However, exactly how the strain terms and
the derivatives of the stresses in Eq. (21) can be obtained was not
explicitly described. In particular, consider the terms highlighted
in green in Eq. (21). The major difficulty in computing such terms
is that, as Eq. (19) established, these distributions are modeled as
functions of the parametric, not the physical, domain. As a result,
only the derivatives with respect to the parametric coordinates
can be obtained through automatic differentiation [21]. Thus, in
this section the definition and necessity of the inverse Jacobian is
discussed.

To obtain the physical derivatives of the displacements, the
chain rule is invoked. For instance, €,, can be computed as

o Ay Jug(E(x.y). n(x.y)) _ dux(E, m) 0§ dux(§.n)dn
T ek T ax 98 ax an ay’
(22)

Automatic differentiation in neural networks is used to obtain the
parametric derivatives duy(&€, n)/90& and du,(&, n)/dn in Eq. (22).
However, the derivatives of the parametric coordinates with re-
spect to the physical coordinates % and 3—" are geometry specific,
and must be supplied to the PINN during training as there is
no way to discover such relationships without external data. In

practice, this means importing/computing the entries of

9% 08

-1 9

I T (23)
ox ay

at the collocation points for all the training geometries. The

entities shown in Eq. (23) can be obtained in this case by inverting
the Jacobian of the two-dimensional, bivariate mapping:

x o
I=(5% ¥l (24)
9t Ay

Each of the components of the Jacobian can be computed using
one of the relationships shown in Section 2 during the introduc-
tion of the NURBS basis (i.e. Eq. (18)). Similar considerations
apply to the derivatives of the stresses.

It should be noted that ' is needed only during the training
of a shape-parameterized PINN. This is because physical deriva-
tives of network-predicted distributions must be computed only
to compute the loss. When we apply the trained network to make
predictions, instead, the PINN outputs the physical distributions
directly. It can also be observed from Eq. (20) that evaluating
the loss of a non physics-informed neural network requires no
Jacobian information.

Finally, we remark that, for simplicity and with no loss of
generality, in the following we neglect the residual terms that
include the derivatives of the stresses because body forces are
not present in our test problems.

3.3. Applications: from surrogate modeling to transfer learning

The proposed procedure enables several attractive applica-
tions. For instance, we may know the solution of the PDE in the
entire domain for a set of training geometries and we may want
to find the relationship that expresses how the solution changes
when the domain is changed. In this context, the shape-informed

Computer-Aided Design 160 (2023) 103520

neural network is used to build a surrogate model of the PDE
solution as the shape of the domain changes. This is the situation
that we are going to consider in the following.

Nonetheless, our formulation is general and we can apply
the shape-parameterized networks also under different circum-
stances. For instance, we may know the solution only at the
boundary conditions and want to use the shape-parameterized
PINN to forward solve the PDE on freeform domains. In this
context, a particularly interesting application consists in transfer
learning. Indeed, it is known that PINN is not competitive as
a PDE forward solver [13] and is often characterized by slow
convergence and other issues. Nonetheless, using the shape pa-
rameterization, we may exploit the information learnt by the
network on a given shape to accelerate the convergence of the
training on a different shape. In this setting, we first train a shape-
parameterized PINN on a given domain. Then, assume that we
want to predict the solution of the PDE on a different domain
(sufficiently similar to the first one) where we do not have any
data beyond the boundary conditions. In this case, we can aid
the convergence of the training of the shape-parameterized PINN
on the second shape by initializing the training using the opti-
mized weights and biases obtained on the first shape. This is the
situation that we consider when we study transfer learning in
Section 4.8.

In these situations, the computational advantage of NNs and
PINNs with respect to a direct application of IGA or FEA descends
from the fact that a trained neural network learns the relationship
that links inputs and outputs. Thus, in surrogate modeling, the
training phase can be computationally onerous but the trained
shape-parameterized neural network can then immediately pre-
dict the PDE solution on a variety of domains. In transfer learning,
we aid the solution of the PDE on a domain by the knowledge of
what the neural network has learnt on another domain.

4. Numerical experiments

In this section, we present several numerical experiments.
We consider problems with 1 to 20 shape parameters and we
compare PINN and NN in different situations.

4.1. Setting of the numerical experiments

As preliminary test cases, two distinct one-parameter prob-
lems are considered to demonstrate the efficacy of the shape-
parameterized neural networks. First, the ability of NNs and
PINNSs to predict the displacement and stress profiles of a loaded
rectangular beam is studied. A similar analysis is then performed
with regard to a loaded quarter-circle beam. The geometry of
the problems is parameterized by NURBS and the training data
is generated by IGA. All the shapes of the datasets can be charac-
terized by simple geometric parameters, which we use as inputs
of the shape-parameterized neural networks. In particular, the
beam length, L, is used as shape parameter of the rectangular
beam problem, and the inner radius a is used for the circular
beam problem.

For the rectangular beam problem, the fixed geometric and
mechanical parameters are P = 1, ¢ = 0.75,E = 4/3, v = 1/3.
The thickness is assumed to be unitary. The NURBS representation
of all cantilever beams is bi-quadratic, and is (C!, C°) continuous
in the (&, n) directions. For the circular beam problem, the fixed
geometric and mechanical parameters are P = 10, b = 10,
E = 1000, and v = 0.3. The NURBS representation is bi-quadratic
and is C! continuous in both parametric directions.

To generate data for the cantilever beam problem, the geomet-
ric shape variable L is varied uniformly between L = 2 and L = 10.
For each value of L, a coarse representation of the geometry is

F. Mezzadri, J. Gasick and X. Qian

formed. Knot bisection is then performed six and four times in the
& and 7 directions, respectively, yielding a refined representation
of the domain with 2048 elements. This discretization forms the
basis for IGA, which is used to obtain the NURBS coefficients
which define the geometries that are the best representations of
the true solution profiles of displacements and stresses. These ge-
ometries are sampled uniformly on the interior of the parametric
domain at 100? locations. This is the labeled data used to train
neural networks and PINNs for this problem. Similarly for the
quarter-circle problem, a is varied uniformly between a = 4 and
a = 8. For each value of a, a coarse representation of the domain
is formed. Five knot bisections are performed in both parametric
directions to obtain a 1024-element discrete representation of the
domain. In the same manner as described above, 10,000 labeled
data points are generated for each value of a through IGA.

Additionally, a more complex plate-hole problem is consid-
ered. In this case, the analytical solution is not available and both
the training and the validation data is computed by IGA. The
shape of the domain is described by multiple shape parameters,
depending on the exact analysis that is being performed. In
particular, we first consider cases where the shape is described
by the coordinates of 5 control points (corresponding to 8 shape
parameters for each shape). The dataset used 3 knot bisections
in the & and 7 directions to obtain a discrete representation of
the domain made of 384 elements. A total of 468 control points
was used. Then, in later experiments we used 11 control points
(corresponding to 20 shape parameters for each shape) to analyze
the effect of the continuity of the NURBS representation and of
the degree of the basis function on the accuracy of NN and PINN.

For all numerical examples, one neural network is used to rep-
resent each solution profile among uy, Uy, 0y, 0xy, 0y,. Each net-
work has 5 hidden layers with 20 neurons per layer. Hyperbolic
tangent activation functions are used for all experiments.

In our implementation, each term of the total loss is adaptively
weighted to avoid numerical difficulties produced by gradient
pathology. In particular, it is known that the terms with larger
derivatives tend to dominate the total loss gradient (e.g., see [22]).
This can be problematic in PINNs [23]. In order to reduce this
effect, each term of the loss can be weighted, i.e. the total loss
is viewed as

where £; denotes the ith individual term of the loss, A; is the
weight of the ith term, and n; is the number of terms of the loss.
The weight A; is generally computed either by a gradient scaling
algorithm (GradNorm, see [24]) or based on a neural tangent
kernel (NTK, see [5]). We choose this latter approach, adjusting
the NTK weights A; dynamically every 100 epochs. In particular,
the NTK can be viewed as a kernel that describes the evolution
during training of a neural network of infinite width. As regards
the NTK of PINN in particular, [5] proved that it “converges to
a deterministic kernel and remains constant during training via
gradient descent with an infinitesimally small learning rate”. The
subsequent analysis of PINNs via their limiting NTK showed that
different loss components have significant discrepancy in the
convergence rate. Adaptively weighting the loss terms based on
the NTK of PINN was then proposed as a strategy to calibrate the
convergence rate of the total training error. The reader is referred
to [5] for more information.

All the experiments are performed using Tensorflow [25]. The
nonlinear minimization problems or neural network trainings
are addressed using the Adam optimizer [26]. To simplify the
setting up of the network and the formulation of the adaptive
weights, the SciANN [27] library is used in all experiments. In
particular, SciANN is a Keras/Tensorflow wrapper that automates

Computer-Aided Design 160 (2023) 103520

the construction of PINNs while inheriting all Keras functionali-
ties. SCIANN functions can be used to abstractly define variables,
inputs, outputs, etc. of the network, and different training settings
(including the use of adaptive weights) can be chosen as options
of the training command of the SCiANN model.

4.2. Physics informed learning for one shape parameter problems

The boundary conditions and loadings for the rectangular and
the circular beam problems are shown in Fig. 6 for some choices
of L and a. The formal statement of the problems and their
analytical solution can be found, for instance, in [28,29]. Examples
of the NURBS parameterizations are reported in Appendix.

In this subsection, we train a PINN on these problems us-
ing L and a as shape parameters. A comparison with a shape
parameterized NN is later performed as well.

4.2.1. Training and validation of PINN

In this subsection, we demonstrate that a shape-parameterized
PINN can accurately learn the solution profiles to the one shape
parameter problems introduced in Section 4.1. For the rectangular
beam problem, the network was trained using the PINN loss
function of Eq. (21) and labeled data and collocation points from
four different cantilever beam geometries defined by L = 2,L =
3,L =5, and L = 10. With respect to the quarter-circle problem,
this consisted of training a network using the same loss function
using labeled data and collocation points from six geometries,
defined by a = 4.202, a = 5.4545, a = 6.2626, a = 7.0303,
a = 7.5556, and a = 8. The network was trained for 500 epochs
in both cases using a batch size of 100. The learning rate I, is
initialized at I, = 0.001 and halved every 50 epochs that do not
produce a decrease of the loss. Fig. 7 summarizes the convergence
curve of the networks for both the cantilever beam (Fig. 7(a)) and
for the quarter-circle problem (Fig. 7(b)).

A visual comparison of the analytical and PINN-predicted so-
lution profiles for the quarter-circle problem are shown in Fig. 8.
In Fig. 8, the network predicts on the geometry associated with
a = 5.697, which is not one of the geometries in the training
dataset. Analogous results are obtained with other choices of a
and for the rectangular beam problem.

Knowledge of the analytical solution (see [29]) of the problems
allows us to easily make quantitative evaluations as well. Indeed,
we can compare the predictions of the network against the ex-
pected solution for any choice of L and of a. For compactness of
notation, in the following analysis e(0) is used to denote the MSE
on the prediction OJ. For instance,

e(ux) = |uxy — u;ﬂ (25)

Fig. 9 plots the mean square error as defined in Eq. (6) for each of
the solution profiles for varying L or a in the case of the cantilever
beam and quarter-circle problems, respectively. The position of
the training geometries is identified by a dashed red line.

It can be seen that the error on displacements and stresses is
small at the training geometries and in their neighborhood. How-
ever, the error may become large between training geometries,
especially when they are far apart, such as for the cantilever beam
problem (see Fig. 9(a)). Using additional training values of L and
a would likely reduce the increases in error in between training
geometries shown in Fig. 9, as we later demonstrate considering
nine training geometries.

It is also worth noticing that the error is affected by the
complexity of the analytical solution. For instance, the analytical
stresses for the rectangular beam problem are quite simple (see,
for instance, [28,29]). We even have a;‘y = 0 everywhere in
the domain, for all shapes. Fig. 9(a) shows that the PINN is able
to predict oy, with an accuracy of about 107° and oy, with an

F. Mezzadri, J. Gasick and X. Qian Computer-Aided Design 160 (2023) 103520

o I 1A A

L L L

—
P

(b) The circular beam problem with different choices of the radius a of the inner circle.

Fig. 6. Test problems with known analytical solution. Variable shape parameters are marked in red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

10° 102 ‘
2] [2]
8 100t 8
9 10 ke
© =
o o
[t [

10-5 L

L L L 10-4 L L L L
0 100 200 300 400 500 0 100 200 300 400 500
Epochs

Epochs

(a) Loss of PINN for the rectangular beam problem (b) Loss of PINN for the circular beam problem

Fig. 7. Convergence curve of the loss function of PINN for the problems in Fig. 6.

_01 —0.1
—0.2 —-0.2
—0.3 -0.3
—0.4 —0.4
—-0.5 —0.5

(b) uy: real vs predicted

10
7.5
5

2.5
0
—2.5
-5

(e) owy: real vs predicted

(a) ug: real vs predicted

10

—10 —2 5
—20 Z75
—30 —10

(¢) owa: real vs predicted (d) oyy: real vs predicted

[=}

Fig. 8. Real (left) and PINN predicted (right) displacements and stresses for the circular beam problem with a = 5.697.

of L. Hence, as L increases, the magnitude of the solution field
increases, and small inaccuracies tend to produce large absolute
errors. Because of this, larger values of the shape parameter

accuracy of at least 1073 in the entire range of a when as few
as four training geometries are used. Displacements, on the other
hand, contain relations that depend on the square and on the cube

10

F. Mezzadri, J. Gasick and X. Qian

104.

102 4

10°+

L 10724

10*4 4

10—6_

(a) MSE rectangular beam from 4 training geometries

Computer-Aided Design 160 (2023) 103520

1071_

10—2_

10—3 o

10-54

1076 B

10-74

(b) MSE circular beam from 6 training geometries

Fig. 9. Mean square error on PINN-predicted displacements and stresses of the rectangular and of the circular beam problems.

(a) MSE of PINN for the rectangular beam

1074

(b) Normalized MSE of PINN for the rectangular beam

Fig. 10. Absolute and normalized MSE on displacements and stresses of the rectangular beam problem, when PINN is trained using 9 training geometries.

L for the cantilever beam problem is associated with greater
extrapolation error for the displacement profiles, as can be ob-
served from Fig. 9(a). Analogous observations can be made for
the quarter-circle problem: as the shape parameter a increases,
the displacement tends to increase, thus increasing the predictive
error. This also suggests that the choice of the geometries used
for the training may affect the accuracy of the network. For
instance, it is reasonable to use training geometries closer to one
another in ranges of the shape parameter where the solution
changes quickly. Instead, it is reasonable to use fewer geometries
in intervals of the shape parameter where the solution changes
more slowly.

To verify that the accuracy of the network can be increased
by using additional training geometries, the number of training
values of L is increased from four to nine. The results are shown
in Fig. 10, where we used equally spaced training lengths at L =
2,L=3,...,L=10.

Fig. 10(b) reports the absolute MSE on displacements and
stresses, denoted by e for compactness of notation. It can be
noticed that increasing the number of training geometries from
four to nine is enough to decrease the maximum error over
the entire range of lengths by four orders of magnitude. This
demonstrates that PINN can learn from the shape parameters,
and that a limited number of training geometries can ensure high
accuracy on a large range of shapes.

To account for the fact that the solution profile magnitude
tends to increase as the shape parameter L increases, Fig. 10(b)
shows a normalized measure of the error, where the MSE for all
points plotted in Fig. 10(a) is divided by the mean value of the
squared solution field. Considering, for instance, a field u, of n.

11

components, we compute the mean magnitude of the squared
solution field as
D P (e

iy = == (26)
C

and the normalized MSE is

_Juy =gl

e(uy) = —— (27)

*
X

It can be seen from Fig. 10(b) that the normalized MSE e remains
below 10~ for all values of L.

4.2.2. Comparison of the accuracy of PINN and NN

While the previous subsection focused on validating shape
parameterized PINNs, here we compare the accuracy of PINN and
NN. In particular, the aim is to understand whether PINN has
any advantage over standard NN they are trained to predict PDE
solutions over changing domain shapes. In this regard, Fig. 11
shows the error on displacements and stresses for the circular
beam problem after a training of 1500 epochs.

It can be seen from Fig. 11 that the PINN is generally a
better predictor of solution profiles compared to the traditional
NN. More precisely, Figs. 11(a) and 11(b) illustrate that PINN
predictions of the displacement profiles tend to be 1-3 orders
of magnitude more accurate than traditional NNs. The difference
is less pronounced for stress profiles (Figs. 11(c)-11(e)), but still
noticeable for oy and oyy. In all cases, however, the better per-
formances of the PINN seem to be linked to smaller error at the
training shapes, rather than to better extrapolation capabilities.
Indeed, the error of the PINN is smaller than that of the NN only

F. Mezzadri, J. Gasick and X. Qian

107t

107'{ — u, NN
—— u, PINN
1073 I
I
|
Lo 1
N \
w07 |/ \/
|
I
1
4 5

Computer-Aided Design 160 (2023) 103520

(a) Error on ug (b) Error on uy

10°
— o, NN | 1 1 — gy NN ! | I 1 [\\
1 1 1 \ 1 | | WA
100 LT PN | | A 10-1] T Gy PINN ‘ ‘ A
10 l 1 1 1 | l 1 | | 1o
= | I | | i | 1 | | i
107 I I 1 1 / 10-2 I 1 I I i
© L 107?y | | VA o I | I I 1
2 1 1 1 1 I 1 | I .
10 1 1 1 7 I [| N !
1073 1 I L 10737 70
10-3 [y L A 1 — v 1 1
L/ S~ | | _~ N~ ~t+ | | |
104 1 ! L L 104 (= 1 1] 1 |
4 5 6 7 4 5 6 7 8

(c) Error on oz

(d) Error on oyy

a

(e) Error on ogy

Fig. 11. Comparison of accuracy of a PINN and NN for quarter-circle problem.

Pt

rrrrrrrts

ﬁ

The plate-hole problem.

(a)

(b) Plate-hole shape with movable boundary pa-
rameterized by 5 control points.

\, e Lower bound geometry
Random geometry

Upper bound geometry

N\, L]
\ L]

¢) Highlight of the freeform
ghlig
geometry change.

Fig. 12. The plate-hole problem.

when e of PINN is smaller than e of NN at the training shapes. As
we get farther from a training shape, Fig. 11 shows that the error
tends to increase at a similar rate in PINN and NN.

This is reasonable because the PDE residual does not contain
any shape information. Therefore, when the shape is changed, the
error is affected by the choice of the network only indirectly, in
case PINN or NN is more accurate at the training geometries.

For the rectangular beam problem, the behavior is similar to
the one described above. In this case, the difference between PINN
and NN is even smaller, and NN even tends to be better than PINN
at predicting the stresses.

4.3. Training and validation of PINN for the plate-hole problem

The previous section showed the capabilities of shape param-
eterized PINNs and NNs for simple problems with a single shape
variable. In this section, a more complex plate-hole problem is
considered. See Fig. 12(a) for a representation of an example
domain for this problem. As shown in Fig. 12(b), in the follow-
ing experiments, the changing boundary is represented by the
position of 5 movable control points.

As was done with the one-parameter problems, the ability of
PINN to simply learn the solutions is verified first. To do this, a
PINN was trained to learn the solution profiles using the labeled
data and collocation points of 100 different geometries. Fig. 13

12

reports the convergence of the loss function in a training of 1200
epochs. The starting learning rate is I, = 0.001, which is gradually
decreased to [, = 0.0005 at iteration 300, [, = 0.0002 at iteration
700, and [, = 0.0001 at iteration 1100. A visual comparison of the
PINN predictions and the expected solution profile is reported in
Fig. 14.

As regards a more quantitative evaluation of the accuracy on
the validation geometry, for completeness, we hereafter report
the actual values of the error on displacements and stresses for
the shape of Fig. 14:

e(uy) = 2.6E-6 e(uy) = 2.5E-6 e(ow) = 2.1E-4
e(oyy) = 2.6E-4 e(oyy) = 1.1E-4.

Detailed quantitative analyses are performed in following sub-
sections on the effects of the number of training geometries,
continuity, and basis degree.

4.4. Comparison between PINNs and NNs for the plate-hole problem

The role of incorporating the physical information in the loss
function can be evaluated by comparing the accuracy and the data
efficiency of a PINN and a NN. This comparison is performed in
the context of the plate-hole problem.

To study the accuracy of the neural networks, by e; we here
denote the sum of the data-based mean square errors for a given

F. Mezzadri, J. Gasick and X. Qian

10°

Total loss
))
S iR

-
o
&

10—4 I I I .
0 200 400 600 800

Epochs

1000 1200

Fig. 13. Loss function of PINN for the plate-hole problem.

geometry, i.e.

eq = |y — ﬁ,ﬂ + |ﬁy - ﬁ;| + 6% — 6):<| + |&yy - &ym + |&xy - 0;:;'
(28)

Similarly, e, represents the sum of all the residual terms of the
loss, which, for a problem without body forces, is

N N E A N N A
e = ‘(exx + veyy)m — Oxx| + '(vexx + ny)m — Gy
by -6 (29)
————— &y — Oyy|-
(-1 +U) Xy Xy

These values are computed for each shape of the dataset. The
normalized quantities e; and e, are obtained by dividing, respec-
tively, eq and e, by the mean of the squared displacements and
stress fields. Note that this was also done in [30] for the purpose
of normalizing the results with respect to the magnitude of the
solution fields. Therefore, the normalization implies dividing ey
and e, corresponding to the kth geometry of the dataset by

1 (.

™ ((u;;)z LR 4 (6, + 60 + 6)2) (30)
i=1

of the kth geometry, where n is the number of collocation points

where displacements and stresses are evaluated.

In the following analysis, a dataset of 2500 geometries is
used and both neural networks are trained using the same 100
geometries. Figs. 15(a) and 15(b) report e4 and e, for the training
and validation geometries, respectively.

Figs. 15(a)-15(b) show that PINN predictions have residuals
that are roughly one order of magnitude lower than NN pre-
dictions. This applies to both training and validation geometries
and it occurs because of the PINN’s use of a residual term in the
loss function, which implies that a soft zero-residual condition
is explicitly enforced by PINN. Hence, the residual is explicitly
reduced by PINN. The data accuracy of PINN and NN is similar.
For the training subset, Fig. 15(a) shows that the data error is in
a particularly small range, with e; &~ ©(10%) in both cases.

Fig. 15(b) also demonstrates that our approach can effectively
predict PDE solutions on freeform shapes. Indeed, the predictions
in Fig. 15(b) occur on 2400 geometries that the networks did not
see during training. Since the data error is ©(1073)—©(10~4) and
the residual is either ©(10~2) or ©(10~*) depending on if a NN
or PINN is used (respectively), it can be concluded that the shape
parameterized networks are accurate.

Figs. 15(c) and 15(d) report the value of the mean e, in the
training and validation subsets as the number of geometries used

13

Computer-Aided Design 160 (2023) 103520

to train the NN and PINN is varied. In both subsets, the PINN
needs fewer training geometries than NN to achieve the same
residual accuracy. More specifically, the PINN achieves a mean
normalized residual of ©(10~2) with about 20 training geome-
tries. With the NN, about 100 training geometries are required
to achieve the same residual accuracy. Thus, Figs. 15(c)-15(d)
establish the importance of including a physics-based term in the
loss function to achieve better residual accuracy with the same
number of training geometries.

Assuming that we want a network with a given residual accu-
racy, PINNs training can be more computationally efficient than
traditional NNs. To show this, Table 1 compares the (wall clock)
time-to-train a PINN and a NN for one epoch on a local machine
for an increasing number of training geometries.

Table 1 shows that training PINN for one epoch is more expen-
sive than running one training epoch of NN when the same num-
ber of geometries is used. This is expected, since the additional
loss terms in the PINN necessitate that additional operations
be executed during training. However, the better data efficiency
of PINN can make it more computationally efficient. Based on
estimates derived from Figs. 15(c)-15(d), it is possible to train a
PINN using just 20-25 geometries to achieve the same residual
accuracy as a NN trained on 100 geometries. In this setting, one
epoch of PINN on 25 geometries would take around one third
of the computational time of NN trained on 100 geometries.
Therefore, while PINNs may be more expensive to train than
traditional NNs under an epoch-by-epoch comparison, they are
more efficient than NNs in some cases because of their increased
data efficiency.

4.5. Point-wise error of shape-parameterized PINNs and NNs

In the above analysis, we have analyzed average measures
of the error. This was made necessary not only by the consid-
eration of 2D fields, but also by the fact that we needed to
provide a measure of the error on hundreds of different domains.
Average measures of the error were then necessary to repre-
sent compactly the accuracy of the entire neural networks, as in
Fig. 15.

However, averaged results do not provide much information
on the local accuracy of the neural networks in each domain.
Therefore, for completeness, we here consider the same setting
of Section 4.4 and we provide the actual plots of the errors for
two of the considered domain. In particular, we report:

e the error for a random training domain,;
e the error for a random validation domain.

Such errors for the shape-parameterized PINNs and NNs are
shown in Figs. 16 and 17.

Consistently with Fig. 15, the magnitude of data errors is
similar in PINNs and NNs. Furthermore, the error has limited
variations in the domain: for instance, in both Figs. 16 and 17, the
errors on the displacements are in the order of 10~ everywhere.
Similarly, the errors on stresses are in the order of 1072 every-
where. These results suggest that the average errors considered
in previous subsections do not hide significantly large local errors
within each domain.

4.6. Effect of continuity and degree on the accuracy

As described at the beginning of Section 4, we generated the
training data through IGA. In this subsection, the role of the
continuity of the NURBS representation of the geometry and the
degree of the basis functions are investigated. In this regard, by
labels like “(C°, p 1)” we denote networks that have been
trained on datasets that have been generated using C° continuous

F. Mezzadri, J. Gasick and X. Qian Computer-Aided Design 160 (2023) 103520

-0.4

0.6
(a) ug, real vs predicted (b) uy, real vs predicted
8
6
4 4
2 0.5
) ozz, real vs predicted (d) oyy, real vs predicted (e) gy, real vs predicted

Fig. 14. Qualitative comparison between real (left) and PINN predicted (right) displacements and stresses for a random geometry of the plate-hole dataset. The shape
was not used for training.

107" ¢ 107 f

10°
e
10— ‘ ; P 10— ‘
1 1.5 2 25 3 35 10 103
éa x10™ €
(a) Training errors for PINN vs NN (b) Validation errors for PINN vs NN.
10 ——NN 1074 —NN |
——PINN ——PINN
Ny 2 — N
= 10 o402k
=) 210
< g
=1 =
3L
10
10°¢
20 40 60 80 100 20 40 60 80 100
Number of training geometries Number of training geometries

(c) Data efficiency for PDE residual - training sub- (d) Data efficiency for PDE residual - validation

set subset

Fig. 15. Data efficiency of PINN and NN for the plate-hole problem.

Table 1
Times to run one epoch of PINN and NN using different numbers of training geometries.
Number training geometries Time 1 epoch (train), NN [s] Time 1 epoch (train), PINN [s]
10 3 4
15 5 6
25 8 10
35 11 15
50 15 21
100 30 41

meshes and basis functions of degree p = q = 1. The plate-hole basis function degrees as high as p = q¢ = 5. A schematic of the
problem is re-analyzed using 11 control points (corresponding plate-hole problem when 11 control points are used is shown
to 20 shape variables), which is the minimum number of shape in Fig. 18. The increased number of shape variables is expected
variables that can be used to study continuities as high as C? and to lead to more dispersed data than those in Fig. 15, but it also

14

F. Mezzadri, J. Gasick and X. Qian

N, - <107
N 1
o
-
<A, i
(a) ug —uk, PINN vs NN
0.05
0
!' !
v g -’
.;./4' Sexl” ~ 7P

(¢) oge — 0y error, PINN vs NN

Computer-Aided Design 160 (2023) 103520

A

(d) oyy — oy, error, PINN vs NN

A ‘
“ B
N
oy o |-
x10°3
(b) uy — u error, PINN vs NN
0.1
0.05 002
0 0

(e) owy — o3, error, PINN vs NN

Fig. 16. Point-wise error for a training geometry of the plate-hole dataset.

k4

(¢) oge — ok, error, PINN vs NN 4

(d) oyy — o, error, PINN vs NN

o

x107°
(b) uy — uy, error, PINN vs NN

0.05 0.02

0 | 4 0

.

S 008 B] y‘ -0.02

> K & y)/ i -
= 0.1 £ __'.(& 0.04

(e) ozy — o, error, PINN vs NN

Fig. 17. Point-wise error for a validation geometry of the plate-hole dataset..

/

R

.

1

Gamaaay)

Fig. 18. The plate-hole problem with 11 control points.

allows us to evaluate the behavior of the network when many
shape parameters are used.

Fig. 19(a) shows the scatter plots of e; and e, of NN and PINN
for the 100 training shapes only when the degree of the basis
functions is changed. Fig. 19(b) reports the same results for the
2400 validation shapes of the dataset. Thus, Fig. 19(b) provides
an error analysis that includes hundreds of shapes that were not
used for training.

Fig. 19 shows that PINNs achieve an MSE residual that is
roughly one order of magnitude smaller than NNs. This further

15

demonstrates that PINNs produce more self-consistent solution
fields. Data MSE is, instead, roughly the same in NNs and PINNs.
Fig. 19 also shows that the accuracy of the network is affected by
the degree of the basis functions. Interestingly, we observe the
same behavior of the error both on the training (Fig. 19(a)) and
on the validation subsets (Fig. 19(b)).

In particular, Fig. 19 shows that the neural networks based on
the NURBS parameterization with (C°, p = 1) have less consistent
predictive accuracy than counterparts trained on data generated
using higher order basis functions. For instance, it can be seen in
Fig. 19(b) that a few of the predictions of the PINN trained on
data generated using linear basis functions have a large residual
and data error. Fig. 19(b) also illustrates that, in this example,
PINNs becomes steadily more accurate when the basis degree
used to generate data is increased, albeit at a decreasing rate.
Similar comments can be made for the NN predictions shown in
Fig. 19(b). However, since NN does not incorporate the residual
of the PDE, the residual accuracy is not strictly linked to the
data accuracy. This explains why, in Fig. 19, the NN based on the
NURBS parameterization with (C®, p = 2) characteristics appear
to have better residual accuracy compared to the NN trained on
data generated from IGA that has (C°, p = 3) characteristics.

This behavior suggests that (C°, p = 1) data is only partially
adequate to generate training data for the network. The low-order

F. Mezzadri, J. Gasick and X. Qian

100,

p = 2 PINN

-3 L |
10
1078

€d

(a) MSE on the training subset for different degrees of

the basis functions and fixed continuity C°.

Computer-Aided Design 160 (2023) 103520

10 103
€d
(b) MSE on the validation subset for different degrees
of the basis functions and fixed continuity C©.

Fig. 19. Effect of the degree of the basis functions on the accuracy of NN and PINN.

setting may lead to stress concentration or numerical difficul-
ties that hinder the learning process. When the basis degree
used to generate data is sufficiently high so as to avoid these
issues, further increasing the degree leads to smaller and smaller
improvements in the predictive accuracy of the trained PINN.

Considering the effect of both the type of network and of the
degree of the basis, Figs. 19(a) and 19(b) show that between
(C% p = 1)-NN and (C° p = 3)-PINN there is an improvement
of about 2 orders of magnitude in the residual accuracy and of
one order of magnitude in the data accuracy.

Finally, Fig. 19 also demonstrates that the proposed formu-
lation for shape-informed neural networks can handle problems
that use many shape parameters. Indeed, the networks used in
this subsection received 20 shape parameters as inputs, which
could be used to represent relatively complex shapes with a
NURBS curve. Despite the relatively large number of inputs com-
pared to a traditional (non shape-informed) PINN, both data and
residual accuracy of PINN are ©(10~3)—©(10~%) when continuity
and degree are sufficiently high.

4.7. Data requirements of PINN and NN

In this subsection, the role of the availability of data is studied.
In particular, we are interested in providing some remarks on the
data requirements of the shape-parameterized neural network
and on their differences when fewer training data are available.
In this context, we also aim at verifying whether PINN and NN
still have comparable data accuracy (as noticed in Sections 4.2.2
and 4.6) when only small amount of data is available.

First, we analyze the shape-parameterized PINN and NN can
be trained when data is only available at the boundaries of the
domain. In this regard, we consider the circular beam problem
with a single training geometry at a = 4.241. We assume that the
solution is known along the entire boundary of the domain, but
no data is available in the interior. Figs. 20(a) and 20(a) show the
convergence of the loss function of the training of NN and PINN,
respectively. Fig. 20(c) shows the MSE on the entire domain of
displacements and stresses of the NN predictions at the training
geometry and for nearby shapes. Fig. 20(d) provides the same
information for PINN. Finally, Fig. 20(e) visually compares the
solution u at the training geometry a = 4.241 with PINN and
NN predictions.

Figs. 20(c) and 20(d) show that both NN and PINN have large
errors in the domain when the network was trained using only
boundary data. This is especially evident for the displacements.

16

Table 2

MSE of NN and PINN predictions at the training geometry a =
4.241 when the neural networks are trained with a limited amount
of data on the interior of the domain.

NN PINN
e(iy) 1.19E—4 547E—7
e(uy) 121E-6 1.88E—7
(o) 0.062 0.05
e(oyy) 0.159 0.080
e(0yy) 0.124 0.042

Notwithstanding this, Fig. 20(e) shows that PINN may still quali-
tatively predict the solution (in this case, the displacement u,):
indeed, although some differences are noticeable between uj
and the PINN'’s prediction, the overall solution fields are similar.
This is due to the presence of the residual term in the PINN
loss, which contributes to improving the predictions even when
limited amount of data is available. The fields predicted by NN
is, instead, completely different from the expected solution. This
is reasonable, as there is no relationship that can be used by the
network to correctly predict the solution in the interior of the
domain. The difference between PINN and NN is apparent even
from the loss convergence: indeed, in PINN (Fig. 20(b)) the loss
converges slowly, as it is trying to reduce the residual and fit
the data. In NN, (Fig. 20(a)) the convergence is, instead, almost
immediate, as it is easy for the neural network to fit the small
amount of provided data. At the same time, however, this does
not allow to achieve predictive capabilities of the solution in the
interior of the domain.

In order to better explore the data requirements of the two
networks, we now provide some training data in the interior
of the domain as well. The network, nonetheless, will still be
required to make predictions on the entire grid or 100 x 100
collocation points.

In particular, we assume that the training data is available only
in the collocation points at &€ = 0.05, £ = 0.35, £ = 0.65, and
& = 0.95. Since we are using a grid of 100 x 100 uniformly
distributed collocation points, considering 4 locations of & means
that, during the training, only 4 x 100 = 400 collocation points
out of 10,000 are used as available labeled data. The training MSE
of displacements and stresses for PINN and NN are compared in
Table 2 for a network trained on a single geometry of the circular
beam problem with radius of the inner circle a = 4.241.

Table 2 shows that PINN errors are significantly smaller than
NN errors at training. In particular, e(uy) is smaller by more than
two orders of magnitude when PINN is used instead of NN. Errors

F. Mezzadri, J. Gasick and X. Qian

103

6x107*

4x107*

1000 1200 1400

1034

1024

1014

1004

(c) Accuracy of NN as a varies

XY

Computer-Aided Design 160 (2023) 103520

— loss

10!

100

107

102

D 200 400 600 800 1000 1200 1400

(b) Loss function of PINN training.

—— sxy

6.0 6.5 7.0 7.5 8.0

a
(d) Accuracy of PINN as a varies

0

-0.6

(e) From left to right: visual comparison between %, PINN-
predicted ugz, NN-predicted u, for the training geometry.

Fig. 20. Analysis of the accuracy of PINN and NN when training data is provided only at the boundaries of the domain.

on stresses are all smaller in the PINN as well. This increased
accuracy at the training shape propagates to nearby shapes. This
is shown in Fig. 21, which represents the mean square errors
on displacements and stresses when the shape parameter a is
changed. In the figure, the position of the only training geometry
used in this experiment is identified by the dashed red line. It
can be noticed that the error is smallest at the training geometry
in both PINN and NN. However, PINN error is generally much
smaller than NN error, and this difference propagates in a neigh-
borhood of the training value of a. When we get farther from the
training geometry, both networks become similarly inaccurate, as
it could be expected from the previous analysis.

If we use more than one training shape, the advantage of
shape parameterized PINN with little data becomes even more
apparent. Using, for instance, 6 training shapes, the displacements
can be predicted with a significantly higher accuracy by PINN
than by NN. This is shown in Fig. 22, where we notice that
PINN is significantly more, up to 2 orders of magnitude more,
accurate than NN in the entire range of geometries that we are
considering.

The advantage of data accuracy of PINN prediction over NN
prediction for small amount of data can be ascribed to the PDE
residual term used in the PINN loss function.

4.8. Transfer learning

One important feature of neural networks trained to predict
the solutions to parameterized PDEs is their ability to ‘transfer
learn’ or use what was learned in one scenario to accelerate
learning for a ‘nearby’ scenario.

To study this situation, the plate-hole problem is reconsidered.
However, an additional constraint is placed on the plate-hole
profiles: all profiles are exact ellipses. Because of this choice,
there are two shape parameters which are the lengths of the two
semi-axes of the ellipse, a; and a,, as shown in Fig. 23(a).

To study transfer learning, a PINN is trained to learn the
solution profiles for the case of a; = a, = 5. In the reference,
or non transfer learning, case a second PINN is then formed and
trained to learn the solution profiles for a; = 5, a, = 5.6 starting
from random hyperparameters. For the transfer learning case, a
PINN is trained to learn the solution profiles for a; = a, = 5, and
then the same PINN is trained to learn the solution profiles for
a; = 5, a; = 5.6. In both cases, the second PINN is trained using
only labeled data on the boundaries, i.e. no interior labeled data is
used. The training is run for a maximum of 2000 epochs starting
from a learning rate I, = 0.0025, which is halved every 50 epochs
that do not produce a sufficient reduction of the loss. Fig. 23(b)
reports the convergence curves of the loss for these trainings.

F. Mezzadri, J. Gasick and X. Qian Computer-Aided Design 160 (2023) 103520

4 5 6 7 8
a a

10°) — gy NN
—— O PINN
102 ,
|
1
o 10 !
|
10° !
|
|
107t [
1
4 5 6 7 8 4 5 6 7 8
a a
(c) Error on ogq (d) Error on oyy (e) Error on ogy

Fig. 21. Comparison of accuracy of a PINN and NN over varying radii a of the inner circle for the quarter-circle problem trained on a single geometry with limited
training data.

U NN | | | |
-1
07y PN | | |
1072 | | |
| | |
. I I
w10 ‘ oo
| |
1074 | |
| |
107 | |
Il ‘\
8
a
(a) Error on ug (b) Error on uy

Fig. 22. Comparison of accuracy of a PINN and NN over varying radii a for the quarter-circle problem trained on 6 training shapes with limited training data.

rrrrrrr " | | |
—— Without transfer
-
-
1072
€ q »
[
P 8
©
<« (o]
F o4t
P
< é\l
<« 108t
al -
<« % 0 500 1000 1500 2000
Epochs
(a) The plate-hole problem with ellip- (b) Convergence of PINN with and without trans-
tical hole. fer learning from a nearby shape.

Fig. 23. Definition of the plate-hole problem with elliptical hole and convergence of PINN with and without transfer learning from a nearby shape.

Fig. 23(b) shows that the value of the loss is smaller at all function with transfer learning is consistently smaller by about
epochs when we use the information of a; = a, = 5 to train two orders of magnitude with respect to the non-transfer
the network on the new shape. The difference in accuracy is learning loss function. This also leads to a faster convergence, as
significant: Fig. 23(b) shows that the value of the loss less epochs are needed to achieve the same loss function when

18

F. Mezzadri, J. Gasick and X. Qian

transfer learning is used. This shows that a shape-informed neural
network can transfer what it has learned about the solution
profiles on one geometry to another, nearby, geometry.

4.9. Shape optimization using shape-parameterized surrogate mod-
els

In this section, we show that the shape-parameterized neural
networks are attractive to solve shape optimization problems. In
this regard, consider the problem that consists in determining the
optimal shape to give to the plate-hole so that the compliance is
minimized under a volume constraint. The solution of this prob-
lem is known: in particular, the optimal shape for an infinitesimal
hole is circular.

To address this problem, a shape-parameterized neural net-
work is here trained on 100 different shapes characterized by
the same volume V 9600 (the entire plate is 100 x 100;
hence, the volume of a square plate would be 10000). The shape-
parameterized NN is used for simplicity, as the previous analysis
showed that the data accuracy of PINN and NN is similar for the
plate-hole problem. The shapes of the dataset were generated by
IGA using 5 control points (8 shape parameters) for the NURBS
parameterization.

For this problem, data generation consisted of a three-step
process.

1. Create a plate-hole geometry by randomly relocating the
control points which influence the hole profile shape, pg.
The volume of this geometry may not be close to V, the
desired volume.

2. Solve the following equality-constrained optimization
problem to adjust the original geometry’s control points,
pg, to obtain a new set of control points, p,, which corre-
spond to a geometry with a volume close to the desired

volume, V:

min |p, — pyll3 (31a)
Ph

2=V (31b)

3. Use IGA to compute the displacement profiles associated
with the new geometry, and sample the displacement and
stress fields uniformly in the parametric domain at 1002
points.

The motivation for the exact formulation of Eq. (31) is twofold.
First, a plate-hole geometry with a random hole profile will have
a volume that may not be near the desired volume V. To increase
the relevance of the training data used by the neural network
which will be used for shape optimization, it is desirable to find
a way to generate geometries with specific volumes near the
desired target volume. Solving Eq. (31) achieves this. Second, it
is desirable to generate representative samples of the types of
inputs which the network is expected to make predictions based
on for the purposes of training. In the context of this problem, this
corresponds to randomly sampling the design space. A represen-
tative geometry should be created by assigning random values
to pn between a lower and upper bound in such a way that the
volume of this geometry is V. However, it is difficult to analyti-
cally represent the space of plate-hole geometries with volumes
exactly equal to V. Instead, we generate a random geometry, then
find the minimal (with respect to the I,-norm) adjustment of the
control points of this geometry such that it has a volume of V.
After the training, the optimal shape to give to the hole is
sought by running 50 iterations of a constrained variation of a
trust-region quasi-Newton method on the surrogate model con-
stituted by the trained neural network. The volume constraint

19

Computer-Aided Design 160 (2023) 103520

Table 3
Values of the compliance and of the volume for the considered shape
optimization problem with V < 9600.

Initial Optimized IGA solution [31] Relative error
Compliance 484.55 467.24 466.57 0.14%
Volume 946536 9599.47 9600 0.0055%
Table 4

Values of the compliance and of the volume for the considered shape
optimization problem with V < 9700 based on training data of V = 9600.

Initial Optimized IGA solution Relative error
Compliance 486.62 454.85 453.65 0.26%
Volume 9465.15 9699.86 9700 0.0014%

V < 9600 is here imposed. The convergence of the optimization
and the optimized profile are reported in Fig. 24. In all cases, the
optimization required just a few seconds to be run. The IGA values
of compliance and volume are reported in Table 3.

The optimization converges and the optimized profiles re-
sembles the circle that represents the theoretically optimal hole
profile. Although Fig. 24(b) shows a visible difference between
the optimized and analytical hole profiles, the volume constraint
is respected and the optimized compliance is just larger than
the theoretical one reported in Table 3. Hence, the optimiza-
tion works successfully on the surrogate model constituted by
the trained neural network. The difference between the opti-
mized and the analytical profile can be explained by the fact that
the optimized profile already has a close-to-optimal compliance
and further improvements would require a more accurate train-
ing of the neural network. Therefore, the results of Fig. 24 and
Table 3 suggest that the shape-parameterized neural networks
are attractive for applications in shape optimization and in the
meta-optimization of geometry.

In this regard, it is interesting to evaluate what happens when
the volume constraint no longer coincides with the volume of
the shapes used to train the neural network. In particular, Fig. 25
shows the results of the optimization when V < 9700 is imposed.
The optimization is run on the same surrogate model as above,
which was created by considering shapes of volume V = 9600.
The corresponding values of the compliance and of the volume
are reported in Table 4. The deviation from the circle and the
relative error on the compliance are more significant than in the
V < 9600 case. However, this was expected, as the neural net-
work was trained with shapes of volume V = 9600. Furthermore,
Table 4 shows that the relative error remains in the order of 1073.

If the volume constraints is set farther away from the volume
of the training shapes, the shape optimization can no longer be
performed accurately without acting on the neural network. For
instance, consider a shape optimization problem with V < 9000.
Such volume is outside of the data normalization range used in
the previous experiments and a direct application of the previ-
ously trained network would mean asking the network to predict
the PDE solution for negative shape variable inputs, which were
not seen during training. Therefore, the shape-parameterized
neural network was re-trained to analyze this case. In particular,
the behavior of the neural network is here studied when the
training is performed in the following three situations:

e the training dataset is formed by 100 shapes of volume V =
9000. The training is run for 1200 epochs. We denote such
case by “9000”;

e the training dataset is formed by 100 shapes of volume V =
9000, and the training is run for just 100 epochs. We denote
such case by “9000199”;

F. Mezzadri, J. Gasick and X. Qian

480
F1.005
475 =
J] ju
g t1.000
£a70 £
3 5]
£ 465 F0.995 ¢
o 3
o
>
460 £0.990
455
0.985

0 10 20 30

Iterations

40 50
(a) Convergence of compliance and volume.

Fig. 24. Results of the shape

480
t1.000
475 &
[=
v 470 10.995 5
& 2
£ 265 t0.990 S
£ 460 £
IS t0.985 5
455 S
L 0.980
450
+0.975

0 10 20 30

Iterations

40 50

(a) Convergence of compliance and volume.

Computer-Aided Design 160 (2023) 103520

—— Initial hole profile
—— Optimal hole profile
---- Analytical hole profile

(b) Profiles of initial and optimized solutions.

optimization problem with V < 9600.

—— Initial hole profile
—— Optimal hole profile
---- Analytical hole profile

(b) Profiles of initial and optimized solutions.

Fig. 25. Results of the shape optimization problem with V < 9700 based on training data of V = 9600.

Table 5

Values of the compliance and of the volume for the considered shape optimization problem with V < 9000, from
different initial shapes. Different training settings of the neural network and different starting iterates of the shape
optimization are considered. In all cases, the exact IGA solution is 551.11.

Initial compliance, volume Case Final volume Optimized compliance Relative error
9000 8999.80 551.28 0.031%

560.73, 8937.23 9000409 8999.74 551.51 0.073%
9000T 8999.93 551.22 0.020%
9000T100 8999.69 551.26 0.027%
9000 8736.99 597.01 8.3%

580.70, 8810.79 9000100 8782.03 585.91 6.3%
9000T 8999.85 551.70 0.11%
9000T100 8999.44 552.80 0.31%

e the training dataset is formed by 100 shapes of volume V =
9000 and transfer learning is used. In particular, the training
is initialized from the final weights of a previous training
on a dataset made of 100 shapes of volume V = 9600. We
denote such case by “9000T";

e the training is conducted as in the case “9000T”, but the
procedure is stopped after just 100 epochs. We denote such
case by “9000Tgp".

The results of the optimization using different starting iterates are
reported in Table 5, where the relative errors are referred to the
compliance.

When the starting iterate is sufficiently close to the solution
(top row in Table 5), it shows that the value of the optimal
compliance can be computed quite accurately in all four cases.
However, when the starting iterate is set farther away from
the solution (bottom row in the table), the shape optimization
exhibits large errors in the “9000” and “9000i¢,” cases. The
optimization is here unsuccessful. However, when the shape op-
timization is run on neural networks that use transfer learning,
the results are still sufficiently accurate. This is particularly re-
markable in the “9000T;oo” case, where only 100 training epochs
were performed on shapes of volume V = 9000. This suggests

20

that transfer learning not only can be beneficial to the accuracy
of the optimization on larger sets of shapes, but it is also efficient,
requiring just few epochs of re-training.

Finally, we have trained a shape-parameterized neural net-
work using a training dataset made of 100 shapes of volume
V = 9000 and of 100 shapes of volume V = 9600. Then, we have
run the shape optimization setting V = 9000, V = 9400, and
V = 9600 for the volume constraint. In these experiments, when
V is set to a value that is represented in the training dataset, the
shape optimization is run using only the training shapes of such
volume. Indeed, performing the shape optimization considering
the entire training dataset can uselessly complicate the optimiza-
tion procedure. Instead, when we consider a volume that is not
present in the training dataset (such as V = 9400) we are trying
to extrapolate information to new volumes. Hence, in this case,
the shape optimization is performed considering all the shapes of
the training dataset. The results of these experiments are reported
in Table 6.

Table 6 shows that the shape optimization could be success-
fully run not only for V. = 9000 and V = 9600, but also for
V = 9400. In this context, it is particularly interesting to notice
that

F. Mezzadri, J. Gasick and X. Qian

Table 6

Computer-Aided Design 160 (2023) 103520

Values of the compliance and of the volume for the considered shape optimization problem with different choices
of V. The neural network is trained on a dataset containing shapes of volumes V = 9000 and V = 9600.

1% Initial compliance Final volume Optimized compliance IGA solution Relative error
9600 510.15 9599.39 466.64 466.57 0.015%
9400 518.34 9399.99 493.83 493.36 0.095%
9000 577.42 8685.07 551.23 551.11 0.022%

e in previous experiments (see Table 5) we were not able
to successfully solve the shape optimization problem with
V = 9000 without using transfer learning;

e no shape of volume V = 9400 was here used in the training
dataset.

Hence, datasets made of shapes of different volumes can produce
more general and robust surrogate models of the PDE solution on
different domains. Furthermore, they can help increase the accu-
racy of the predictions when the volume constraint is changed.
The main downside is that the training needs here to be per-
formed on larger datasets, which is computationally onerous.
Therefore, unless a very general surrogate model is needed, par-
tial re-training by transfer-learning can be an efficient alternative,
as earlier shown in Table 5.

5. Conclusions

We have presented a framework for physics-informed deep
learning over freeform domains. In our framework, shapes are
represented via NURBS and are parameterized to a common
parametric domain. The shape parameters can be the actual co-
ordinates of the control points or parameters with more intuitive
geometric meaning, such as the major and minor radii of an
ellipse. NNs and PINNs are used to predict PDE solutions over
the parametric domain. Learning is conducted via minimizing a
loss function where data error and PDE residuals are computed at
collocation points in the parametric domain. For training PINNs,
which requires the spatial derivative of physical quantities in
enforcing physical equilibrium equations, the Jacobian of the
geometric mapping is used to assist the evaluation of the spatial
derivative of the PDE solutions.

We have formulated PINN and NN networks in the framework
of linear elasticity and we have performed the training using
data computed by IGA. We have analyzed the convergence of the
training and we have shown that the trained neural networks
can predict displacements and stresses in shapes that were not
included in the training dataset. In this context, we have also
shown that the mean square residual of the elasticity PDE using
PINN'’s predictions is roughly one order of magnitude smaller than
when we use a traditional NN without physics information. This
has effects on the efficiency of the two networks. In particular,
we found that, for a plate-hole problem, NN trained using 100
geometries produces a PDE residual that is roughly as accurate as
PINN’s trained on 20 geometries.

Moreover, we have also considered the effect of the accuracy
of the training data. In particular, we have trained the network
using IGA data obtained using different choices of mesh continu-
ity and degree of the basis functions. We have noticed that the
degree p of the basis functions can have a significant effect on
the accuracy, especially when it is small. Indeed, we have noticed
that, in our problems, the data and residual accuracy of PINN
improves by roughly one order of magnitude if we use cubic data
in place of linear data. The effect of continuity is smaller, but is
noticeable on the training dataset.

Finally, we have noticed that PINN predictions of the PDE
solution are more accurate than NN when little training data is
available. In particular, PINN can make more accurate predictions
than NN on the training shapes when the solution is known in

21

just a small subset of the collocation points. This behavior can
be attributed to the PDE residual term in the PINN loss function.
We have observed that the increased accuracy of PINN at training
tends to propagate to predictions made on nearby shapes. The
effects of transfer learning and the applications of the shape-
parameterized neural networks to shape optimization were also
briefly discussed.

Our study suggests that our NURBS based framework can
be used to train NNs and PINNs to build surrogate models for
shape-parameterized PDE solutions. Our formulation for shape-
parameterized NNs and PINNs can be further developed in several
directions. First, they can be applied to a variety of physical
problems beyond linear elasticity. Second, the resulting NNs and
PINNs can be used in shape-dependent applications such as shape
optimization, where PDE-based sensitivity analysis [31] can be
replaced with the gradient from neural networks through auto-
matic differentiation. Furthermore, the results on transfer learn-
ing could be expanded to consider how and whether significantly
different shapes can accelerate the training of one another. This
could allow to devise strategies to warm-start the training of
PINN in general. Investigating examples that are challenging for
the NURBS representation (such as shapes with sharp corners or
high degree of curvature) is an interesting future work as well. Fi-
nally, although our numerical implementation uses IGA data, FEA
data can also be used for training when domain parameterization
is constructed and each FE mesh node is mapped to a parametric
point.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This work is supported in part by ONR, USA grant NOOO14-
18-1-2685 by National Science Foundation, USA grant 1941206
and by National Science Foundation, USA grant 2219931. J. Gasick
would like to acknowledge the support by the National Science
Foundation Graduate Research Fellowship Program, USA under
Grant No. DGE-1747503. F. Mezzadri would like to acknowledge
the support of Maria Cristina Murari, who made available the
computational resources to train the neural networks via the
Scientific Computing Unit of the University of Modena and Reggio
Emilia. Finally, all authors would like to thank the Reviewers for
their comments, which improved the quality of the paper.

Appendix. Examples of NURBS discretizations
Fig. 26 displays example NURBS discretizations of each geom-

etry shown in Fig. 6. In Fig. 26, p, q are the degrees of the NURBS
basis functions in the parametric coordinate directions £ and 7.

F. Mezzadri, J. Gasick and X. Qian

Computer-Aided Design 160 (2023) 103520

3

(a) Example of the relationship between the physical and the parametric
domains for the rectangular beam problem, with p = q = 2, k¢ =
{0,0,0,1/3,2/3,1,1,1}, k;, = {0,0,0,1/2,1,1,1}, Np¢ = 5, Np, = 4.

, L, . . .
X * ® X o ° ° °
(c) Example of mesh refinement, p = ¢ = 2. Left: k = k, =

{0,0,0,1/2,1,1,1}, N, ¢ = Npn = 4. Right: refined mesh, k¢ = k; =
{0,0,0,1/4,1/2,3/4,1,1,1}, N, ¢ = Np = 6.

(d) Example of the relationship between the physical and the parametric
domains for the circular beam problem, with p = ¢ = 2, k¢ = k; =
{0,0,0,1/2,1,1,1}, Np ¢ = Np.y = 4.

(e) Position of the control points for different inner radii of the circular beam.

Fig. 26. NURBS parameterization of the rectangular and circular beam problems.

The knot vectors in the & and n parametric directions are referred
to as k: and k,, respectively. The number of control points in the
& and 7 directions are N, and N, ,, respectively. Figs. 26(b) and
26(e) demonstrate how the position of the control points changes
when the length of the beam or the radius of the inner circle are

22

changed. Although more than one control point changes position
when L or a is varied, all changes to control point positions can
be uniquely specified by these geometric shape parameters. As
a result, L and a can be considered as the shape parameters for
these problems.

F. Mezzadri, J. Gasick and X. Qian

References

[1

[2]

3

14

[5]

Bergstra], Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter
optimization. In: Advances in neural information processing systems. 2011,
p. 2546-54.

Yang L, Shami A. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 2020;415:
295-316.

Franchini G, Ruggiero V, Porta F, Zanni L. Neural architecture search via
standard machine learning methodologies. Math Eng 2023;5(1):1-21.
Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. J] Comput Phys
2019;378:686-707.

Wang S, Yu X, Perdikaris P. When and why PINNs fail to train: A neural
tangent kernel perspective.] Comput Phys 2022;449(110768):1-28.

[6] Jagtap AD, Kharazmi E, Karniadakis GE. Conservative physics-informed

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

neural networks on discrete domains for conservation laws: Applications
to forward and inverse problems. Comput Methods Appl Mech Engrg
2020;365(113028):1-27.

Meng X, Li Z, Zhang D, Karniadakis GE. PPINN: Parareal physics-informed
neural network for time-dependent PDEs. Comput Methods Appl Mech
Engrg 2020;370(113250):1-16.

Pang G, Lu L, Karniadakis GE. fPINNs: Fractional physics-informed neural
networks. SIAM] Sci Comp 2019;41(4):2603-26.

Jin X, Cai S, Li H, Karniadakis GE. NSFnets (Navier-Stokes flow nets):
Physics-informed neural networks for the incompressible Navier-Stokes
equations.] Comput Phys 2021;426(109951):1-26.

Li L, Li Y, Du Q, Liu T, Xie Y. ReF-nets: Physics-informed neural network
for Reynolds equation of gas bearing. Comput Methods Appl Mech Engrg
2022;391(114524):1-26.

Mao Z, Jagtap AD, Karniadakis GE. Physics-informed neural net-
works for high-speed flows. Comput Methods Appl Mech Engrg
2020;360(112789):1-26.

Peng W, Pu J, Chen Y. PINN deep learning method for the Chen-Lee-Liu
equation: Rogue wave on the periodic background. Commun Nonlinear Sci
Numer Simul 2022;105(106067):1-15.

Haghighat E, Raissi M, Moure A, Gomez H, Juanes R. A physics-informed
deep learning framework for inversion and surrogate modeling in solid
mechanics. Comput Methods Appl Mech Engrg 2021;379:113741.

Wang Y, Liao Z, Shi S, Wang Z, Poh LH. Data-driven structural design
optimization for petal-shaped auxetics using isogeometric analysis. CMES
Comp Model Eng Sci 2020;122(2):433-58.

23

[15]

[16]

[17]
[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

Computer-Aided Design 160 (2023) 103520

Fuchi KW, Wolf EM, Makhija DS, Wukie NA, Schrock CR, Beran PS.
Investigation of analysis and gradient-based design optimization using
neural networks. In: SME 2020 conference on smart materials, adap-
tive structures and intelligent systems. 2020, http://dx.doi.org/10.1115/
SMASIS2020-2241.

Lu L, Meng X, Mao Z, Karniadakis GE. DeepXDE: A deep learning library
for solving differential equations. SIAM Rev 2021;63(1):208-28.

Piegl L, Tiller W. The NURBS book. New York: Springer-Verlag; 1997.
Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Comput Methods
Appl Mech Engrg 2005;194:4135-95.

Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are
universal approximators. Neural Netw 1989;2(5):359-66.

Gurney K. An introduction to neural networks. Philadelphia, PA, USA:
Taylor & Francis, Inc.; 1997.

Baydin AG, Pearlmutter BA, Radul AA, Siskind JM. Automatic differentiation
in machine learning: A survey.] Mach Learn Res 2018;18:1-43.

Wang S, Teng Y, Perdikaris P. Understanding and mitigating gradient
flow pathologies in physics-informed neural networks. SIAM] Sci Comput
2021;43(5):A3055-81.

Haghighat E, Amini D, Juanes R. Physics-informed neural network simu-
lation of multiphase poroelasticity using stress-split sequential training.
Comput Methods Appl Mech Engrg 2022;397:115141.

Chen Z, Badrinarayanan V, Lee C-Y, Rabinovich A. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In:
International conference on machine learning. PMLR; 2018, p. 794-803.
Abadi M, Agarwal A, Barham P, Brevdo E, et al. TensorFlow: Large-scale
machine learning on heterogeneous systems. 2015, Software available from
tensorflow.org. URL https://www.tensorflow.org/.

Kingma DP, Ba]J. Adam: A method for stochastic optimization. In: 3rd
international conference on learning representations. 2014.

Haghighat E, Juanes R. SciANN: A keras/TensorFlow wrapper for scientific
computations and physics-informed deep learning using artificial neural
networks. Comput Methods Appl Mech Engrg 2021;373:113552.
Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: Its basis
and fundamentals. 7th ed.. Butterworth-Heinemann; 2013.

Timoshenko S, Goodier JN. Theory of elasticity. McGraw-Hill; 1970.

Chen M, Lupoiu R, Mao C, Huang D-H, Jiang], Lalanne P, et al. WaveY-
Net: Physics-augmented deep learning for high-speed electromagnetic
simulation and optimization. 2022, http://dx.doi.org/10.48550/ARXIV.2203.
01248, URL https://arxiv.org/abs/2203.01248.

Qian X. Full analytical sensitivities in NURBS based isogeometric shape
optimization. Comput Methods Appl Mech Engrg 2010;199:2059-71.

http://refhub.elsevier.com/S0010-4485(23)00052-0/sb1
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb1
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb1
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb1
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb1
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb2
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb2
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb2
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb2
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb2
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb3
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb3
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb3
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb4
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb4
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb4
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb4
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb4
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb4
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb4
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb5
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb5
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb5
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb6
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb6
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb6
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb6
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb6
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb6
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb6
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb7
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb7
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb7
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb7
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb7
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb8
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb8
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb8
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb9
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb9
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb9
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb9
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb9
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb10
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb10
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb10
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb10
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb10
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb11
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb11
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb11
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb11
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb11
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb12
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb12
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb12
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb12
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb12
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb13
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb13
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb13
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb13
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb13
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb14
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb14
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb14
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb14
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb14
http://dx.doi.org/10.1115/SMASIS2020-2241
http://dx.doi.org/10.1115/SMASIS2020-2241
http://dx.doi.org/10.1115/SMASIS2020-2241
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb16
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb16
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb16
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb17
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb18
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb18
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb18
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb18
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb18
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb19
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb19
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb19
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb20
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb20
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb20
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb21
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb21
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb21
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb22
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb22
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb22
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb22
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb22
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb23
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb23
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb23
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb23
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb23
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb24
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb24
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb24
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb24
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb24
https://www.tensorflow.org/
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb26
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb26
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb26
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb27
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb27
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb27
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb27
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb27
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb28
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb28
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb28
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb29
http://dx.doi.org/10.48550/ARXIV.2203.01248
http://dx.doi.org/10.48550/ARXIV.2203.01248
http://dx.doi.org/10.48550/ARXIV.2203.01248
https://arxiv.org/abs/2203.01248
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb31
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb31
http://refhub.elsevier.com/S0010-4485(23)00052-0/sb31

	A Framework for Physics-Informed Deep Learning Over Freeform Domains
	Introduction
	Introduction to elasticity PDEs, neural networks, and NURBS
	The linear elasticity model
	Neural networks
	Physics-informed neural network for linear elasticity
	Parameterization by NURBS
	 Data generation via isogeometric analysis

	Shape-parameterized NNs and PINNs
	Formulation for shape-parameterized neural networks
	Role of the inverse Jacobian in shape-parameterized PINN training
	 Applications: from surrogate modeling to transfer learning

	Numerical experiments
	Setting of the numerical experiments
	Physics informed learning for one shape parameter problems
	Training and validation of PINN
	Comparison of the accuracy of PINN and NN

	Training and validation of PINN for the plate-hole problem
	Comparison between PINNs and NNs for the plate-hole problem
	 Point-wise error of shape-parameterized PINNs and NNs
	Effect of continuity and degree on the accuracy
	 Data requirements of PINN and NN
	Transfer learning
	 Shape optimization using shape-parameterized surrogate models

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Examples of NURBS discretizations
	References

