
Computer-Aided Design 160 (2023) 103520

R
R
A

n
d
p
w
a
a
o
f
h
i
a
i

q

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

A Framework for Physics-InformedDeep Learning Over Freeform
Domains
Francesco Mezzadri a, Joshua Gasick b, Xiaoping Qian b,∗

a Department of Engineering ‘‘Enzo Ferrari’’, University of Modena and Reggio Emilia, via P. Vivarelli 10/1, Building 26, I-41125, Modena, Italy
b Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI, 53706 - 1572, USA

a r t i c l e i n f o

Article history:
eceived 25 October 2022
eceived in revised form 28 February 2023
ccepted 29 March 2023

Keywords:
Physics-informed deep learning
Neural network
NURBS
Computer-aided design
Partial differential equations

a b s t r a c t

Deep learning is a popular approach for approximating the solutions to partial differential equations
(PDEs) over different material parameters and boundary conditions. However, no work has yet been
reported on learning PDE solutions over changing shapes of the underlying domain.

We present a framework to train neural networks (NN) and physics-informed neural networks
(PINNs) to learn the solutions to PDEs defined over varying freeform domains. This is made possible
through our adoption of a parametric non-uniform rational B-Spline (NURBS) representation of the
underlying physical shape. Distinct physical domains are mapped to a common parametric space via
NURBS parameterization. In our approach, we formulate NNs and PINNs that learn the solutions to
PDEs as a function of the shape of the domain itself through shape parameters.

Under this formulation, the loss function is based on an unchanging parametric domain that maps
to a variable physical domain. Residual computation in PINNs is made possible through the Jacobian
of the mapping.

Numerical results show that our networks can be trained to predict the solutions to a PDE defined
over an entire set of shapes. We focus on the linear elasticity PDE and show how we can build
a surrogate model that is able to predict displacements and stresses over a variety of freeform
domains. To assess the efficacy of all networks in this work, data efficiency, network accuracy, and
the capacity of networks to extrapolate are considered and compared between NNs and PINNs. The
comparison includes cases where little training data is available. Transfer learning and applications
to shape optimization are analyzed as well. A selection of the used codes and datasets is provided at
https://github.com/fmezzadri/shape_parameterized.git.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Computational approaches based on machine learning and
eural networks have been widely studied in recent years. In-
eed, the growing availability of computational power and a
roliferation of data have made it possible to apply neural net-
orks to increasingly complex problems. Further, the generality
nd relative simplicity of neural networks have cemented them
s powerful tools in diverse fields. To meet the demands of many
f these environments, neural networks have been adapted, re-
ormulated, and re-structured. For instance, many recent works
ave focused on optimizing hyperparameters to improve learn-
ng [1–3]. Other researchers have proposed alternative network
rchitectures and loss formulations to address difficulties in train-
ng.
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ian@engr.wisc.edu (X. Qian).
https://doi.org/10.1016/j.cad.2023.103520
0010-4485/© 2023 Elsevier Ltd. All rights reserved.
In this context, physics-informed neural networks (PINNs)
have been recently introduced [4] to solve forward and inverse
problems involving partial differential equations (PDEs). These
networks are characterized by the incorporation of an additional
loss term that represents the residual of the neural network-
predicted solution with respect to the governing equations them-
selves. The total loss of a typical physics-informed neural network
is then composed of two parts: a data-based term and a residual-
or physics-based term. The data term captures the extent to
which the PINN predicted solution interpolates the data whereas
the physics term identifies the adherence of the predicted solu-
tion to some underlying physical equations. The explicit inclusion
of the residual of the PDE in the loss acts as a regularization
mechanism and can lead to more physically consistent solution
fields. Although the training can be an issue in some cases [5],
PINNs have proven to be an effective tool especially for inverse
problems and surrogate modeling. Variations of the formulation
of PINNs have been proposed, such as PINNs designed to satisfy
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onservation laws [6], PINNs that decompose a long-time prob-
em into many independent short-time problems [7], and PINNs
or fractional derivatives [8].

Physics-informed neural networks have also been applied to a
ariety of physical problems. Examples include the Navier–Stokes
quation [9], the Reynolds equation [10], high-speed flows [11],
he Chen–Lee–Liu equations [12], and the equations of linear
lasticity. With respect to the final of these, PINNs were trained to
erve as surrogate models for problems in solid mechanics in [13].
or example, Haghighat et al. in [13] trained PINNs to learn
he solution to the equations of linear elasticity for a problem
ver a simple, square domain as a function of the physical Lamè
arameter µ. It was also empirically shown that the trained PINNs
ould accurately predict the solution of the PDE for wide ranges
f µ, including those which were not considered during training.
While [13] and other works [14,15] have shown the useful-

ess of training PINNs and NNs to model the solutions to PDEs
s a function of varying material properties (PDE coefficients),
ittle research has been done to extend this approach to model
olutions as a function of varying domain shapes. Further, the ne-
essity to formulate neural networks that can work with freeform
omains is called for in the literature. For instance, the support
f accurate descriptions of complex curvilinear boundaries is
entioned as a possible future development of the DeepXDE

ool [16]. To address these needs, in this paper, we propose a
ormulation for NNs and PINNs that can predict PDE solutions as a
unction of domain shape. In our formulation, the loss functions of
eural networks are based on an unchanging parametric domain
hat maps to a variable physical domain. Residual computation in
INNs is made possible by the use the Jacobian of the mapping.
he Jacobian is needed only for physics-informed loss compu-
ation during the training, and is not needed for PINN-based
olution query.
Fig. 1 summarizes our approach. In the figure, a generic phys-

ical domain Ω with coordinates (x, y) is mapped on a parametric
omain Ω̂ . The parametric coordinates are denoted by (ξ, η). In

our approach, the mapping between Ω and Ω̂ is constructed
hrough non-uniform rational B-splines (NURBS) [17]. Our choice
f NURBS parameterization of shapes is due to several reasons.
irst, NURBS are a common shape representation widely used in
AD systems and represent shape changes compactly. Second,
URBS parameterization of the physical domain is the basis of
popular analysis approach, isogeometric analysis [18]. Finally,
ue to the use of a common parametric domain, NURBS allow for
onvenient querying of point-wise data-based errors or physics-
ased residuals over varying physical domains. The geometric
apping between the domains is based on the coordinates of a
et of control points, which we denote as Pij. As represented in
ig. 1, a set of collocation points is then selected in Ω̂ . Working
n the parametric domain, the parametric coordinates of the
ollocation points will not change even when the physical domain
s modified. Under the assumption that we have access to the
olution u∗(ξ, η) of a PDE at these collocation points for one or
ore training shapes, we can train a neural network that is a
urrogate model of the solution of the PDE on different domains.
he inputs of such neural network are the parametric coordinates
ξ, η) along with the shape parameters that characterize the
hape of the domains. The training data is constituted by the
olution u∗(ξ, η) of the PDE in the training domains. Since we
mploy a NURBS parameterization, we can conveniently generate
he data by isogeometric analysis (IGA) [18]. With this infor-
ation, a NN loss function (completely based on the training
ata) or a PINN loss function (where physics-based terms are
lso included) can be formulated. The trained neural network can
redict a solution u(ξ, η) of the PDE defined on any domain when

he network is inputted with a set of coordinates (ξ, η) and with

2

the shape parameters, such as NURBS control points or geometric
parameters such as axes of ellipses.

To demonstrate the efficacy of this approach, linear elastic-
ity problems defined over domains of varying complexities are
addressed. Background information on elasticity, neural network
and NURBS are introduced in Section 2. Neural networks for
parameterized shapes are then introduced in Section 3. Section 4
ontains several numerical experiments. The comparative effi-
iencies and accuracies of NNs and PINNs are also assessed in
ection 4, alongside an analysis of the role of the continuity and
he degree of the parameterization on learning. The accuracy of
he two types of neural network when little data is available is
lso compared and analyzed. Transfer learning and applications
o shape optimization are finally considered as well. In Section 5,
oncluding remarks are made and an outline for future work is
escribed.

. Introduction to elasticity PDEs, neural networks, and
URBS

In this section, a model for linear elasticity, a mathemati-
al summary of the structure of neural networks and physics-
nformed neural networks, and an overview of NURBS represen-
ation are discussed.

.1. The linear elasticity model

Throughout this paper, the 2D equations of linear elasticity
re studied under the plane stress assumption. The constitutive
quations are:

xx = (ϵxx + νϵyy)
E

1− ν2 , (1)

σyy = (νϵxx + ϵyy)
E

1− ν2 , (2)

σxy =
E

(1+ ν)
ϵxy, (3)

where E denotes the Young’s stiffness modulus, ν denotes the
Poisson’s ratio of the material, σij, i, j ∈ {x, y}, is the stress tensor
and ϵij is the strain tensor. By the kinematic relations, this last
term can be written as

ϵij =
1
2
(ui,j + uj,i), (4)

for i, j ∈ {x, y}, where ui denotes the displacements and the
omma in the subscripts indicates a partial derivative.
Finally, in general, the linear elasticity model includes a mo-

entum balance

ij,j + fi = 0, (5)

where fi, i ∈ {x, y}, denotes the body forces.

.2. Neural networks

A neural network is a mathematical tool that can be trained to
epresent the relationship between data or datasets. For example,
neural network can be trained to associate images with classes,
r to predict the solution to a PDE based on a set of spatial
oordinates.
A fundamental feature of neural networks is that they are

omposed of different layers of neurons. Fig. 2 shows a simple
xample of a neural network where there are two inputs x1, x2,
wo hidden (or intermediate) layers with two neurons each and
ne output u. The neurons of the hidden layer are named a(k)j ,

which is the jth neuron of the kth hidden layer. Finally, nk denotes
(k) (k)
the cardinality of the weights wij of the kth layer, bj is a bias, fk
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Fig. 1. NURBS-based domain parameterization for physics-informed deep learning over freeform shapes. Different physical domains are parameterized to a common
domain Ω̂ by means of the control points Pij of a NURBS representation. The solution u∗ of a PDE defined on the freeform shape is then evaluated in a set of
collocation points in the parametric domain. Finally, the data is passed to a neural network for training. The trained network can make predictions u of the solution
u∗ even when the shape of the domain is changed.
e

denotes an activation function, u∗ denotes the expected solution,
and |□| denotes the mean square error, which, for a general
output vector u of n components, is

|u− u∗| =
1
n

n∑
i=1

(ui − u∗i )
2. (6)

The weights and the biases are variables which can be adjusted
or ‘trained’ such that the neural network predicts a certain output
when given a certain input. During training, the network predicts
on some inputs for which the correct output is known. The output
predicted by the network is then compared with the expected
output by means of the loss function L. The training of the
weights is achieved by solving an unconstrained minimization
problem to reduce the loss, or, equivalently, to improve the
accuracy of the network:

min
b,w

L. (7)

During each iteration of the optimization algorithm, the weights
are then tuned by means of a ‘‘backpropagation’’ procedure. If
there exists a continuous, bounded relationship between the in-

put and output data, a neural network that is an arbitrarily n

3

good model of this input–output relationship can be formed and
trained [19]. For more information on the neural networks the
reader is referred to [20].

2.3. Physics-informed neural network for linear elasticity

Consider a PDE of the form

Du = b, (8)

where D denotes a partial differential operator that acts on a
distribution u in some domain Ω with boundary ∂Ω . The solution
to the PDE can be modeled by neural networks for forward or
inverse problems.

Physics-informed deep learning [4] supplements generic neu-
ral network training by including a PDE-specific residual term in
the loss function. A PINN loss function can thus be written as
follows, where a superscript ‘∗’ denotes given information/data:

LPINN = |u− u∗|Ω + |Du− b∗| + |u− u∗0|t=0 + |u− u∗|∂Ω . (9)

The physics-informed component of the loss is the term |Du− b∗|
in Eq. (9). The terms |u− u∗0|t=0 and |u− u∗|∂Ω represent the
nforcement of initial and boundary conditions, respectively. Fi-

∗
ally, the term |u− u |Ω represents a data-driven contribution
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Fig. 2. Outline of the mathematical setting of a generic neural network.
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hat is based on the knowledge of u in some points of the
nterior of the domain. Naturally, not all these data-based terms
re always present. For instance, if a PINN is used to forward
olve a differential problem, the only available data will be at the
oundary and at the initial time. Conversely, in inverse problems
nd surrogate modeling, the solution to the PDE may be known
t some points on the interior of the domain but potentially not
t the boundaries.

.4. Parameterization by NURBS

Let {Bi,p}, i = 0, . . . , n, be the B-spline function of degree p
efined on the knot vector

ξ = {ξ0, ξ1, . . . , ξn+p+1}.

uch B-spline functions can be defined recursively. In particular,
or the generic ith B-spline function, we have

i,p(ξ ) =
(ξ − ξi)Bi,p−1(ξ )

ξi+p − ξi
+

(ξi+p+1 − ξ )Bi+1,p−1(ξ )
ξi+p+1 − ξi+1

,

B0,p(ξ ) =
{

1 ξi ≤ ξ ≤ ξi+1,

0 otherwise.

(10)

he derivative of a B-Spline basis function, B′i,p(ξ ), is:

′

i,p(ξ ) =
p

ξi+p − ξi
Bi,p−1(ξ )−

p
ξi+p+1 − ξi+1

Bi+1,p−1(ξ ). (11)

A NURBS curve of degree p can be defined as

(ξ ) =
∑n

i=0 Bi,p(ξ )wiPi∑n
j=0 Bj,p(ξ )wj

, (12)

where {Pi}, i = 0, . . . , n, represents the coordinates of a set of
control points, wi, i = 0, . . . , n, is the corresponding weight, and
∈ [0, 1] is the parametric variable.
Eq. (12) can written more concisely using NURBS basis func-

ions:

(ξ ) =
n∑

i=0

Ri,p(ξ )Pi. (13)

n Eq. (13), Ri,p(ξ ) is defined according to:

i,p(ξ ) =
Bi,p(ξ )wi∑n . (14)

j=0 Bj,p(ξ )wj

4

The derivative of a NURBS curve is simply:

xξ (ξ ) =
n∑

i=0

R′i,p(ξ )Pi. (15)

In Eq. (15), the NURBS basis function derivative is:

R′i,p(ξ ) =
B′i,p(ξ )wi∑n
j=0 Bj,p(ξ )wj

−
Bi,p(ξ )wi

(∑n
j=0 B

′

j,p(ξ )wj
)(∑n

j=0 Bj,p(ξ )wj
)2 . (16)

Similarly, it is possible to define a NURBS surface of degree p
n the first parametric direction ξ and of degree q in the second
arametric direction η as

(ξ, η) =
n∑

i=0

m∑
j=0

Ri,p(ξ )Rj,q(η)Pij, (17)

where the control points {Pij} form a {(n+ 1)× (m+ 1)} control
et and are associated to the weights {wij}. Finally, {Ri,p(ξ )} and
Rj,q(η)} are the NURBS basis functions based on B-Spline basis
unctions, which themselves are defined on the knot vectors kξ =

ξ0, ξ1, . . . , ξn+p+1} and kη = {η0, η1, . . . , ηm+q+1}.
The parametric derivatives of a NURBS surface are:

ξ (ξ ) =
n∑

i=0

m∑
j=0

R′i,p(ξ )Rj,q(η)Pij, (18a)

η(η) =
n∑

i=0

m∑
j=0

Ri,p(ξ )R′j,q(η)Pij. (18b)

For more information on NURBS, the reader is referred to [17].
The control point and weight arrays define the shape of the

URBS representation. One of the most attractive properties of
URBS parameterization is that NURBS can represent complex
hapes compactly with just a few control points.
Consider, for instance, a problem where the objective is to

etermine the optimal shape to give to a hole at the center of
plate. The profile (and, indeed, the entire geometry) can be

epresented using a bi-variate NURBS. For examples of different
ossible hole profiles that can be represented with NURBS curves,
ee Fig. 3(a), where only one-quarter of the plate is considered for
easons of symmetry. Through a NURBS representation, a wide
ange of possible plate-hole designs can be represented and each
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f these is mapped to the same parametric domain. This idea is
hown in Fig. 3. The only alteration required to represent a geom-
try shown in Fig. 3(a) to obtain the geometry shown in Fig. 3(b)
s the adjustment of a few of the control point coordinates in the
rray Pij.

.5. Data generation via isogeometric analysis

Isogeometric analysis (IGA) is a computational analysis tool
sed to approximate the solution to PDEs [18]. In contrast to
he finite element method, IGA utilizes CAGD principles to rep-
esent the geometry and solution. Typically, linear combinations
f NURBS basis functions are used in both capacities. Widely
iscussed and notable advantages of IGA in a general setting
nclude its ability to exactly represent geometries and to obtain
igher order continuity in the representation of the solution.
For the purposes of this paper, IGA is perhaps the most natural

ata collection method. Indeed, training data for distinct shapes
an easily be generated. In this regard, data generation follows
he following steps:

1. given a set of control points, use NURBS parameterization
build a map between physical shapes and a parametric
domain. Choose a set of collocation points in the parametric
domain;

2. generate a shape by adjusting the control point coordi-
nates;

3. apply IGA to compute the solution at the control point
coordinates

4. repeat points 2–3 for new shapes. The data for each shape
is thus generated simply by modifying the coordinates of
the control points and re-applying an otherwise identical
implementation of IGA

ampling each solution at the same parametric coordinates also
ntroduces a certain level of standardization to the data collection
rocess despite the freeform nature of the domains of interest.
hese features simplify the training and testing of the NNs and

INNs discussed in this paper. s

5

3. Shape-parameterized NNs and PINNs

In this section, we present our shape-parameterized NNs and
PINNs. The proposed framework is based on the following key
elements:

• The inputs of the neural network are a set of parametric
coordinates (ξ, η) and a set of shape parameters p that
characterize the shape of the domain. In general, the shape
parameters are the coordinates of the control points Pij of
a NURBS parameterization. Other shape parameters, such
as the length and width of a geometric feature, can also
be conveniently used as inputs when they can characterize
the shapes of the dataset of interest. See, for example, the
rectangular and the circular beam problems in Section 4.1.

• The output of the neural network is a prediction of the
solution of the PDE. In the case of the linear elasticity PDE,
the outputs are the displacements and the stresses evalu-
ated in the parametric domain. We denote such quantities
by ûx, ûy and by σ̂xx, σ̂yy, σ̂xy for displacements and stresses,
respectively.

• The data used for training are displacements and stresses
as evaluated at a set of collocation points in the parametric
domain. We denote the training displacements by û∗x , û

∗
y and

the training stresses by σ̂ ∗
xx, σ̂

∗
yy, and σ̂ ∗

xy.
• The loss functions are denoted by LNN and LPINN depend-

ing on whether we consider a purely data-based loss or a
physics-informed loss, respectively.

• Additional parameters are required to compute the physics-
informed loss LPINN . In particular, the material parameters
E, ν (which represent the Young’s modulus and the Pois-
son’s ratio, respectively) are needed. In addition, the inverse
Jacobian J−1 of the mapping between the physical and para-
metric domains is needed. This will be discussed later in this
section.

.1. Formulation for shape-parameterized neural networks

We want to formulate a neural network that can predict the

olution of a PDE on a set of freeform domains. The first step is to
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c
t
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use a NURBS parameterization to map a set of physical domains
of interest to the same parametric domain Ω̂ . When the physical
domain changes, the shape parameters p are modified, but Ω̂

emains the same.
Next, a set of collocation points is selected in the parametric

omain Ω̂ . This set is denoted by ĉp and constitutes the points of
ˆ where we want the neural network to evaluate the solution.
otice that, working on the parametric domain, ĉp remain the
ame irrespective of the physical domain. Fig. 4 illustrates this
oncept considering, for instance, a set of evenly spaced colloca-
ion points in the parametric domain. Fig. 4 demonstrates that
ollocation points only need to be specified in one parametric
omain. The mapping between each physical domain and the
arametric domain captured by the NURBS representation elim-
nates the need to formulate a method for specifying collocation
oints in each individual and potentially unique physical do-
ain. The shape parameters p are used to characterize different
hysical domains on the same parametric domain.
Therefore, the aim of the neural network becomes to predict

he solution of the PDE on ĉp for any choice of the shape parame-
ers p. To do this, the inputs of the neural network are formulated
o be the parametric coordinates (ξ, η) of the collocation points
ˆp and the shape parameters p. In the considered model prob-
em of the linear elasticity PDE, the outputs are predictions of
he displacements ux, uy and of the stresses σxx, σyy, σxy. Notice
hat we are interested in predicting displacements and stresses
long the physical directions (x, y), but we evaluate them at the
arametric coordinates (ξ, η) ∈ Ω̂ . Therefore, for compactness of
otation, we denote the predictions of the network evaluated in
he parametric domain as

ûx := ux(ξ, η, p), ûy := uy(ξ, η, p),
ϵ̂xx := ϵxx(ξ, η, p), ϵ̂yy := ϵyy(ξ, η, p), ϵ̂xy := ϵxy(ξ, η, p),
ˆxx := σxx(ξ, η, p), σ̂yy := σyy(ξ, η, p), σ̂xy := σxy(ξ, η, p),

(19)

here (ξ, η) ∈ Ω̂ with ξ = ξ (x, y) and η = η(x, y) in accordance
ith the mapping of the parameterization. These displacements,
eformations and stresses are the quantities of interest of the
onsidered elasticity problem. Several network settings can be
hosen to compute them. For instance, we could formulate a
eural network (or two independent networks) that outputs the
isplacements û and û . Deformations and stresses could then be
x y

6

alculated by differentiating the displacements. In alternative, in
he mixed formulation (see, e.g., [13]), either (ûx, ûy, ϵ̂xx, ϵ̂yy, ϵ̂xy)
r (ûx, ûy, σ̂xx, σ̂yy, σ̂xy) can be considered as outputs of one or

multiple independent networks. We resort to this latter formu-
lation, producing the five outputs (ûx, ûy, σ̂xx, σ̂yy, σ̂xy) via five
separate networks. While, in principle, a sufficiently wide net-
work would allow to compute all the quantities of interest by
a single neural network, the use of separate networks simplifies
the work of the optimizer [13]. This structure also avoids the
conflation of weights and biases used to represent different solu-
tion fields. For example, by assigning one network to learn each
solution distribution, the specific weights and biases that define
the displacement fields do not interfere with the learning of the
weights and biases used to define the stress fields.

To train the network on multiple domains, data must be
available at least on a subset of the collocation points for several
choices of p. We denote the training data as û∗x , û

∗
y, σ̂

∗
xx, σ̂

∗
yy, σ̂

∗
xy.

The training data can be either available from the boundary con-
ditions of the PDE (in case of forward solution of the differential
problem) or can be provided in the entire domain (in case of
inverse problems and surrogate modeling).

Finally, the loss function must be defined. For a non physics-
informed neural network, the loss is entirely composed of the
difference between the network-predicted solution distribution
at some point and the true solution value at the same point. As
such, the loss LNN can be formulated according to

LNN = |ûx − û∗x | + |ûy − û∗y | + |σ̂xx − σ̂ ∗

xx|

+ |σ̂yy − σ̂ ∗

yy| + |σ̂xy − σ̂ ∗

xy|,
(20)

In contrast, the loss of a physics-informed neural network in-
cludes residual terms as well, as mentioned in Section 2. Such loss
function contains three different types of terms: network outputs,
training data, and terms that are computed by taking derivatives
of the outputs with respect to physical coordinates. Under the
assumption of plane stress, the general loss function of a PINN
for linear elasticity becomes as in Eq. (21), where the different
terms are highlighted in different colors, see Box I.

The presence of derivatives with respect to physical coordi-
nates is the reason why computing LPINN requires the inverse
Jacobian of the mapping between the physical and parametric
domains. This is discussed further in Section 3.2.
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r
c

LPINN = | ûx − û∗x | + | ûy − û∗y | + | σ̂xx − σ̂ ∗
xx | + | σ̂yy − σ̂ ∗

yy | + | σ̂xy − σ̂ ∗
xy |

+ | σ̂xx,x + σ̂xy,y − f ∗x | + | σ̂xy,x + σ̂yy,y − f ∗y | +

⏐⏐⏐( ϵ̂xx + ν ϵ̂yy

) E
1− ν2 − σ̂xx

⏐⏐⏐
+

⏐⏐⏐(ν ϵ̂xx + ϵ̂yy

) E
1− ν2 − σ̂yy

⏐⏐⏐+ ⏐⏐⏐ E
(1+ ν)

ϵ̂xy − σ̂xy

⏐⏐⏐
(21)

= network outputs = training data = derivatives of output with respect to physical coordinates

Box I.
Fig. 5. Shape parameterized NN and PINN.
The scheme of the shape-parameterized NNs and PINNs is
epresented in Fig. 5. The neural networks receive parametric
oordinates values ξ and η, in addition to the shape parameters
 σ

7

p, which specify the exact form of a geometry. Then, they pre-
dict physical displacement ûx, ûy, and stress distribution values
ˆ , σ̂ and σ̂ . To evaluate the PINN loss function, additional
xx xy yy
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nformation is required, like the physical information E and ν,
nd the inverse Jacobian at the specific values of (ξ, η) of the
ollocation points.

.2. Role of the inverse Jacobian in shape-parameterized PINN train-
ng

The previous section introduced a framework for a shape-
arameterized PINN. However, exactly how the strain terms and
he derivatives of the stresses in Eq. (21) can be obtained was not
xplicitly described. In particular, consider the terms highlighted
n green in Eq. (21). The major difficulty in computing such terms
s that, as Eq. (19) established, these distributions are modeled as
unctions of the parametric, not the physical, domain. As a result,
nly the derivatives with respect to the parametric coordinates
an be obtained through automatic differentiation [21]. Thus, in
his section the definition and necessity of the inverse Jacobian is
iscussed.
To obtain the physical derivatives of the displacements, the

hain rule is invoked. For instance, ϵ̂xx can be computed as

ˆxx =
∂ ûx

∂x
=

∂ux(ξ (x, y), η(x, y))
∂x

=
∂ux(ξ, η)

∂ξ

∂ξ

∂x
+

∂ux(ξ, η)
∂η

∂η

∂y
.

(22)

utomatic differentiation in neural networks is used to obtain the
arametric derivatives ∂ux(ξ, η)/∂ξ and ∂ux(ξ, η)/∂η in Eq. (22).
owever, the derivatives of the parametric coordinates with re-
pect to the physical coordinates ∂ξ

∂x and ∂η

∂y are geometry specific,
nd must be supplied to the PINN during training as there is
o way to discover such relationships without external data. In
ractice, this means importing/computing the entries of

−1
=

(
∂ξ

∂x
∂ξ

∂y
∂η

∂x
∂η

∂y

)
(23)

t the collocation points for all the training geometries. The
ntities shown in Eq. (23) can be obtained in this case by inverting
he Jacobian of the two-dimensional, bivariate mapping:

=

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
. (24)

ach of the components of the Jacobian can be computed using
ne of the relationships shown in Section 2 during the introduc-
ion of the NURBS basis (i.e. Eq. (18)). Similar considerations
pply to the derivatives of the stresses.
It should be noted that J−1 is needed only during the training

f a shape-parameterized PINN. This is because physical deriva-
ives of network-predicted distributions must be computed only
o compute the loss. When we apply the trained network to make
redictions, instead, the PINN outputs the physical distributions
irectly. It can also be observed from Eq. (20) that evaluating
he loss of a non physics-informed neural network requires no
acobian information.

Finally, we remark that, for simplicity and with no loss of
enerality, in the following we neglect the residual terms that
nclude the derivatives of the stresses because body forces are
ot present in our test problems.

.3. Applications: from surrogate modeling to transfer learning

The proposed procedure enables several attractive applica-
ions. For instance, we may know the solution of the PDE in the
ntire domain for a set of training geometries and we may want
o find the relationship that expresses how the solution changes

hen the domain is changed. In this context, the shape-informed

8

eural network is used to build a surrogate model of the PDE
olution as the shape of the domain changes. This is the situation
hat we are going to consider in the following.

Nonetheless, our formulation is general and we can apply
he shape-parameterized networks also under different circum-
tances. For instance, we may know the solution only at the
oundary conditions and want to use the shape-parameterized
INN to forward solve the PDE on freeform domains. In this
ontext, a particularly interesting application consists in transfer
earning. Indeed, it is known that PINN is not competitive as
PDE forward solver [13] and is often characterized by slow

onvergence and other issues. Nonetheless, using the shape pa-
ameterization, we may exploit the information learnt by the
etwork on a given shape to accelerate the convergence of the
raining on a different shape. In this setting, we first train a shape-
arameterized PINN on a given domain. Then, assume that we
ant to predict the solution of the PDE on a different domain
sufficiently similar to the first one) where we do not have any
ata beyond the boundary conditions. In this case, we can aid
he convergence of the training of the shape-parameterized PINN
n the second shape by initializing the training using the opti-
ized weights and biases obtained on the first shape. This is the
ituation that we consider when we study transfer learning in
ection 4.8.
In these situations, the computational advantage of NNs and

INNs with respect to a direct application of IGA or FEA descends
rom the fact that a trained neural network learns the relationship
hat links inputs and outputs. Thus, in surrogate modeling, the
raining phase can be computationally onerous but the trained
hape-parameterized neural network can then immediately pre-
ict the PDE solution on a variety of domains. In transfer learning,
e aid the solution of the PDE on a domain by the knowledge of
hat the neural network has learnt on another domain.

. Numerical experiments

In this section, we present several numerical experiments.
e consider problems with 1 to 20 shape parameters and we

ompare PINN and NN in different situations.

.1. Setting of the numerical experiments

As preliminary test cases, two distinct one-parameter prob-
ems are considered to demonstrate the efficacy of the shape-
arameterized neural networks. First, the ability of NNs and
INNs to predict the displacement and stress profiles of a loaded
ectangular beam is studied. A similar analysis is then performed
ith regard to a loaded quarter-circle beam. The geometry of
he problems is parameterized by NURBS and the training data
s generated by IGA. All the shapes of the datasets can be charac-
erized by simple geometric parameters, which we use as inputs
f the shape-parameterized neural networks. In particular, the
eam length, L, is used as shape parameter of the rectangular
eam problem, and the inner radius a is used for the circular

beam problem.
For the rectangular beam problem, the fixed geometric and

mechanical parameters are P = 1, c = 0.75, E = 4/3, ν = 1/3.
he thickness is assumed to be unitary. The NURBS representation
f all cantilever beams is bi-quadratic, and is (C1, C0) continuous

in the (ξ, η) directions. For the circular beam problem, the fixed
geometric and mechanical parameters are P = 10, b = 10,
E = 1000, and ν = 0.3. The NURBS representation is bi-quadratic
and is C1 continuous in both parametric directions.

To generate data for the cantilever beam problem, the geomet-
ric shape variable L is varied uniformly between L = 2 and L = 10.

For each value of L, a coarse representation of the geometry is
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f
ξ

ormed. Knot bisection is then performed six and four times in the
and η directions, respectively, yielding a refined representation

of the domain with 2048 elements. This discretization forms the
basis for IGA, which is used to obtain the NURBS coefficients
which define the geometries that are the best representations of
the true solution profiles of displacements and stresses. These ge-
ometries are sampled uniformly on the interior of the parametric
domain at 1002 locations. This is the labeled data used to train
neural networks and PINNs for this problem. Similarly for the
quarter-circle problem, a is varied uniformly between a = 4 and
a = 8. For each value of a, a coarse representation of the domain
is formed. Five knot bisections are performed in both parametric
directions to obtain a 1024-element discrete representation of the
domain. In the same manner as described above, 10,000 labeled
data points are generated for each value of a through IGA.

Additionally, a more complex plate-hole problem is consid-
ered. In this case, the analytical solution is not available and both
the training and the validation data is computed by IGA. The
shape of the domain is described by multiple shape parameters,
depending on the exact analysis that is being performed. In
particular, we first consider cases where the shape is described
by the coordinates of 5 control points (corresponding to 8 shape
parameters for each shape). The dataset used 3 knot bisections
in the ξ and η directions to obtain a discrete representation of
the domain made of 384 elements. A total of 468 control points
was used. Then, in later experiments we used 11 control points
(corresponding to 20 shape parameters for each shape) to analyze
the effect of the continuity of the NURBS representation and of
the degree of the basis function on the accuracy of NN and PINN.

For all numerical examples, one neural network is used to rep-
resent each solution profile among ux, uy, σxx, σxy, σyy. Each net-
work has 5 hidden layers with 20 neurons per layer. Hyperbolic
tangent activation functions are used for all experiments.

In our implementation, each term of the total loss is adaptively
weighted to avoid numerical difficulties produced by gradient
pathology. In particular, it is known that the terms with larger
derivatives tend to dominate the total loss gradient (e.g., see [22]).
This can be problematic in PINNs [23]. In order to reduce this
effect, each term of the loss can be weighted, i.e. the total loss
is viewed as

L =

nt∑
i=1

λiLi,

where Li denotes the ith individual term of the loss, λi is the
weight of the ith term, and nt is the number of terms of the loss.
The weight λi is generally computed either by a gradient scaling
algorithm (GradNorm, see [24]) or based on a neural tangent
kernel (NTK, see [5]). We choose this latter approach, adjusting
the NTK weights λi dynamically every 100 epochs. In particular,
the NTK can be viewed as a kernel that describes the evolution
during training of a neural network of infinite width. As regards
the NTK of PINN in particular, [5] proved that it ‘‘converges to
a deterministic kernel and remains constant during training via
gradient descent with an infinitesimally small learning rate’’. The
subsequent analysis of PINNs via their limiting NTK showed that
different loss components have significant discrepancy in the
convergence rate. Adaptively weighting the loss terms based on
the NTK of PINN was then proposed as a strategy to calibrate the
convergence rate of the total training error. The reader is referred
to [5] for more information.

All the experiments are performed using Tensorflow [25]. The
nonlinear minimization problems or neural network trainings
are addressed using the Adam optimizer [26]. To simplify the
setting up of the network and the formulation of the adaptive
weights, the SciANN [27] library is used in all experiments. In
particular, SciANN is a Keras/Tensorflow wrapper that automates
9

the construction of PINNs while inheriting all Keras functionali-
ties. SciANN functions can be used to abstractly define variables,
inputs, outputs, etc. of the network, and different training settings
(including the use of adaptive weights) can be chosen as options
of the training command of the SciANN model.

4.2. Physics informed learning for one shape parameter problems

The boundary conditions and loadings for the rectangular and
the circular beam problems are shown in Fig. 6 for some choices
of L and a. The formal statement of the problems and their
analytical solution can be found, for instance, in [28,29]. Examples
of the NURBS parameterizations are reported in Appendix.

In this subsection, we train a PINN on these problems us-
ing L and a as shape parameters. A comparison with a shape
parameterized NN is later performed as well.

4.2.1. Training and validation of PINN
In this subsection, we demonstrate that a shape-parameterized

PINN can accurately learn the solution profiles to the one shape
parameter problems introduced in Section 4.1. For the rectangular
beam problem, the network was trained using the PINN loss
function of Eq. (21) and labeled data and collocation points from
four different cantilever beam geometries defined by L = 2, L =

3, L = 5, and L = 10. With respect to the quarter-circle problem,
this consisted of training a network using the same loss function
using labeled data and collocation points from six geometries,
defined by a = 4.202, a = 5.4545, a = 6.2626, a = 7.0303,
a = 7.5556, and a = 8. The network was trained for 500 epochs
in both cases using a batch size of 100. The learning rate lr is
initialized at lr = 0.001 and halved every 50 epochs that do not
produce a decrease of the loss. Fig. 7 summarizes the convergence
curve of the networks for both the cantilever beam (Fig. 7(a)) and
for the quarter-circle problem (Fig. 7(b)).

A visual comparison of the analytical and PINN-predicted so-
lution profiles for the quarter-circle problem are shown in Fig. 8.
In Fig. 8, the network predicts on the geometry associated with
a = 5.697, which is not one of the geometries in the training
dataset. Analogous results are obtained with other choices of a
and for the rectangular beam problem.

Knowledge of the analytical solution (see [29]) of the problems
allows us to easily make quantitative evaluations as well. Indeed,
we can compare the predictions of the network against the ex-
pected solution for any choice of L and of a. For compactness of
notation, in the following analysis e(□) is used to denote the MSE
on the prediction □. For instance,

e(ux) = |ux − u∗x |. (25)

Fig. 9 plots the mean square error as defined in Eq. (6) for each of
the solution profiles for varying L or a in the case of the cantilever
beam and quarter-circle problems, respectively. The position of
the training geometries is identified by a dashed red line.

It can be seen that the error on displacements and stresses is
small at the training geometries and in their neighborhood. How-
ever, the error may become large between training geometries,
especially when they are far apart, such as for the cantilever beam
problem (see Fig. 9(a)). Using additional training values of L and
a would likely reduce the increases in error in between training
geometries shown in Fig. 9, as we later demonstrate considering
nine training geometries.

It is also worth noticing that the error is affected by the
complexity of the analytical solution. For instance, the analytical
stresses for the rectangular beam problem are quite simple (see,
for instance, [28,29]). We even have σ ∗

yy = 0 everywhere in
the domain, for all shapes. Fig. 9(a) shows that the PINN is able
to predict σ with an accuracy of about 10−6 and σ with an
yy xy
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a
a
h

Fig. 6. Test problems with known analytical solution. Variable shape parameters are marked in red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 7. Convergence curve of the loss function of PINN for the problems in Fig. 6.
Fig. 8. Real (left) and PINN predicted (right) displacements and stresses for the circular beam problem with a = 5.697.
ccuracy of at least 10−3 in the entire range of a when as few
s four training geometries are used. Displacements, on the other
and, contain relations that depend on the square and on the cube
10
of L. Hence, as L increases, the magnitude of the solution field
increases, and small inaccuracies tend to produce large absolute
errors. Because of this, larger values of the shape parameter
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Fig. 9. Mean square error on PINN-predicted displacements and stresses of the rectangular and of the circular beam problems.
Fig. 10. Absolute and normalized MSE on displacements and stresses of the rectangular beam problem, when PINN is trained using 9 training geometries.
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for the cantilever beam problem is associated with greater
xtrapolation error for the displacement profiles, as can be ob-
erved from Fig. 9(a). Analogous observations can be made for
he quarter-circle problem: as the shape parameter a increases,
he displacement tends to increase, thus increasing the predictive
rror. This also suggests that the choice of the geometries used
or the training may affect the accuracy of the network. For
nstance, it is reasonable to use training geometries closer to one
nother in ranges of the shape parameter where the solution
hanges quickly. Instead, it is reasonable to use fewer geometries
n intervals of the shape parameter where the solution changes
ore slowly.
To verify that the accuracy of the network can be increased

y using additional training geometries, the number of training
alues of L is increased from four to nine. The results are shown
n Fig. 10, where we used equally spaced training lengths at L =
, L = 3, . . . , L = 10.
Fig. 10(b) reports the absolute MSE on displacements and

tresses, denoted by e for compactness of notation. It can be
oticed that increasing the number of training geometries from
our to nine is enough to decrease the maximum error over
he entire range of lengths by four orders of magnitude. This
emonstrates that PINN can learn from the shape parameters,
nd that a limited number of training geometries can ensure high
ccuracy on a large range of shapes.
To account for the fact that the solution profile magnitude

ends to increase as the shape parameter L increases, Fig. 10(b)
hows a normalized measure of the error, where the MSE for all
oints plotted in Fig. 10(a) is divided by the mean value of the

quared solution field. Considering, for instance, a field ux of nc

11
omponents, we compute the mean magnitude of the squared
olution field as

¯
∗

x =

∑nc
i=1(u

∗
xi )

2

nc
(26)

nd the normalized MSE is

¯(ux) =
|ux − u∗x |

ū∗x
. (27)

t can be seen from Fig. 10(b) that the normalized MSE ē remains
elow 10−4 for all values of L.

.2.2. Comparison of the accuracy of PINN and NN
While the previous subsection focused on validating shape

arameterized PINNs, here we compare the accuracy of PINN and
N. In particular, the aim is to understand whether PINN has
ny advantage over standard NN they are trained to predict PDE
olutions over changing domain shapes. In this regard, Fig. 11
hows the error on displacements and stresses for the circular
eam problem after a training of 1500 epochs.
It can be seen from Fig. 11 that the PINN is generally a

etter predictor of solution profiles compared to the traditional
N. More precisely, Figs. 11(a) and 11(b) illustrate that PINN
redictions of the displacement profiles tend to be 1–3 orders
f magnitude more accurate than traditional NNs. The difference
s less pronounced for stress profiles (Figs. 11(c)–11(e)), but still
oticeable for σxx and σxy. In all cases, however, the better per-
ormances of the PINN seem to be linked to smaller error at the
raining shapes, rather than to better extrapolation capabilities.
ndeed, the error of the PINN is smaller than that of the NN only
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Fig. 11. Comparison of accuracy of a PINN and NN for quarter-circle problem.
Fig. 12. The plate-hole problem.
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hen e of PINN is smaller than e of NN at the training shapes. As
e get farther from a training shape, Fig. 11 shows that the error
ends to increase at a similar rate in PINN and NN.

This is reasonable because the PDE residual does not contain
ny shape information. Therefore, when the shape is changed, the
rror is affected by the choice of the network only indirectly, in
ase PINN or NN is more accurate at the training geometries.
For the rectangular beam problem, the behavior is similar to

he one described above. In this case, the difference between PINN
nd NN is even smaller, and NN even tends to be better than PINN
t predicting the stresses.

.3. Training and validation of PINN for the plate-hole problem

The previous section showed the capabilities of shape param-
terized PINNs and NNs for simple problems with a single shape
ariable. In this section, a more complex plate-hole problem is
onsidered. See Fig. 12(a) for a representation of an example
omain for this problem. As shown in Fig. 12(b), in the follow-
ng experiments, the changing boundary is represented by the
osition of 5 movable control points.
As was done with the one-parameter problems, the ability of

INN to simply learn the solutions is verified first. To do this, a
INN was trained to learn the solution profiles using the labeled

ata and collocation points of 100 different geometries. Fig. 13

12
eports the convergence of the loss function in a training of 1200
pochs. The starting learning rate is lr = 0.001, which is gradually
ecreased to lr = 0.0005 at iteration 300, lr = 0.0002 at iteration
00, and lr = 0.0001 at iteration 1100. A visual comparison of the
INN predictions and the expected solution profile is reported in
ig. 14.
As regards a more quantitative evaluation of the accuracy on

he validation geometry, for completeness, we hereafter report
he actual values of the error on displacements and stresses for
he shape of Fig. 14:

(ux) = 2.6E-6 e(uy) = 2.5E-6 e(σxx) = 2.1E-4
(σyy) = 2.6E-4 e(σxy) = 1.1E-4.

etailed quantitative analyses are performed in following sub-
ections on the effects of the number of training geometries,
ontinuity, and basis degree.

.4. Comparison between PINNs and NNs for the plate-hole problem

The role of incorporating the physical information in the loss
unction can be evaluated by comparing the accuracy and the data
fficiency of a PINN and a NN. This comparison is performed in
he context of the plate-hole problem.

To study the accuracy of the neural networks, by ed we here
enote the sum of the data-based mean square errors for a given
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Fig. 13. Loss function of PINN for the plate-hole problem.

eometry, i.e.

d := |ûx − û∗x |+ |ûy − û∗y |+ |σ̂xx − σ̂ ∗

xx|+ |σ̂yy − σ̂ ∗

yy|+ |σ̂xy − σ̂ ∗

xy|.

(28)

imilarly, er represents the sum of all the residual terms of the
oss, which, for a problem without body forces, is

r :=

⏐⏐⏐(ϵ̂xx + νϵ̂yy)
E

1− ν2 − σ̂xx

⏐⏐⏐+ ⏐⏐⏐(νϵ̂xx + ϵ̂yy)
E

1− ν2 − σ̂yy

⏐⏐⏐
+

⏐⏐⏐ E
(1+ ν)

ϵ̂xy − σ̂xy

⏐⏐⏐. (29)

These values are computed for each shape of the dataset. The
normalized quantities ēd and ēr are obtained by dividing, respec-
tively, ed and er by the mean of the squared displacements and
stress fields. Note that this was also done in [30] for the purpose
of normalizing the results with respect to the magnitude of the
solution fields. Therefore, the normalization implies dividing ed
and er corresponding to the kth geometry of the dataset by

1
5n

nc∑
i=1

(
(û∗xi )

2
+ (û∗yi )

2
+ (σ̂ ∗

xxi )
2
+ (σ̂ ∗

yyi )
2
+ (σ̂ ∗

xyi )
2
)

(30)

f the kth geometry, where n is the number of collocation points
here displacements and stresses are evaluated.
In the following analysis, a dataset of 2500 geometries is

sed and both neural networks are trained using the same 100
eometries. Figs. 15(a) and 15(b) report ēd and ēr for the training
nd validation geometries, respectively.
Figs. 15(a)–15(b) show that PINN predictions have residuals

hat are roughly one order of magnitude lower than NN pre-
ictions. This applies to both training and validation geometries
nd it occurs because of the PINN’s use of a residual term in the
oss function, which implies that a soft zero-residual condition
s explicitly enforced by PINN. Hence, the residual is explicitly
educed by PINN. The data accuracy of PINN and NN is similar.
or the training subset, Fig. 15(a) shows that the data error is in
particularly small range, with ēd ≈ O(10−4) in both cases.
Fig. 15(b) also demonstrates that our approach can effectively

redict PDE solutions on freeform shapes. Indeed, the predictions
n Fig. 15(b) occur on 2400 geometries that the networks did not
ee during training. Since the data error is O(10−3)−O(10−4) and
he residual is either O(10−2) or O(10−4) depending on if a NN
r PINN is used (respectively), it can be concluded that the shape
arameterized networks are accurate.
Figs. 15(c) and 15(d) report the value of the mean er in the

raining and validation subsets as the number of geometries used
13
o train the NN and PINN is varied. In both subsets, the PINN
eeds fewer training geometries than NN to achieve the same
esidual accuracy. More specifically, the PINN achieves a mean
ormalized residual of O(10−2) with about 20 training geome-

tries. With the NN, about 100 training geometries are required
to achieve the same residual accuracy. Thus, Figs. 15(c)–15(d)
establish the importance of including a physics-based term in the
loss function to achieve better residual accuracy with the same
number of training geometries.

Assuming that we want a network with a given residual accu-
racy, PINNs training can be more computationally efficient than
traditional NNs. To show this, Table 1 compares the (wall clock)
time-to-train a PINN and a NN for one epoch on a local machine
for an increasing number of training geometries.

Table 1 shows that training PINN for one epoch is more expen-
sive than running one training epoch of NN when the same num-
ber of geometries is used. This is expected, since the additional
loss terms in the PINN necessitate that additional operations
be executed during training. However, the better data efficiency
of PINN can make it more computationally efficient. Based on
estimates derived from Figs. 15(c)–15(d), it is possible to train a
PINN using just 20–25 geometries to achieve the same residual
accuracy as a NN trained on 100 geometries. In this setting, one
epoch of PINN on 25 geometries would take around one third
of the computational time of NN trained on 100 geometries.
Therefore, while PINNs may be more expensive to train than
traditional NNs under an epoch-by-epoch comparison, they are
more efficient than NNs in some cases because of their increased
data efficiency.

4.5. Point-wise error of shape-parameterized PINNs and NNs

In the above analysis, we have analyzed average measures
of the error. This was made necessary not only by the consid-
eration of 2D fields, but also by the fact that we needed to
provide a measure of the error on hundreds of different domains.
Average measures of the error were then necessary to repre-
sent compactly the accuracy of the entire neural networks, as in
Fig. 15.

However, averaged results do not provide much information
on the local accuracy of the neural networks in each domain.
Therefore, for completeness, we here consider the same setting
of Section 4.4 and we provide the actual plots of the errors for
two of the considered domain. In particular, we report:

• the error for a random training domain;
• the error for a random validation domain.

Such errors for the shape-parameterized PINNs and NNs are
shown in Figs. 16 and 17.

Consistently with Fig. 15, the magnitude of data errors is
similar in PINNs and NNs. Furthermore, the error has limited
variations in the domain: for instance, in both Figs. 16 and 17, the
errors on the displacements are in the order of 10−3 everywhere.
Similarly, the errors on stresses are in the order of 10−2 every-
where. These results suggest that the average errors considered
in previous subsections do not hide significantly large local errors
within each domain.

4.6. Effect of continuity and degree on the accuracy

As described at the beginning of Section 4, we generated the
training data through IGA. In this subsection, the role of the
continuity of the NURBS representation of the geometry and the
degree of the basis functions are investigated. In this regard, by
labels like ‘‘(C0, p = 1)’’ we denote networks that have been
trained on datasets that have been generated using C0 continuous
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w

Fig. 14. Qualitative comparison between real (left) and PINN predicted (right) displacements and stresses for a random geometry of the plate-hole dataset. The shape
as not used for training.
Fig. 15. Data efficiency of PINN and NN for the plate-hole problem.
Table 1
Times to run one epoch of PINN and NN using different numbers of training geometries.
Number training geometries Time 1 epoch (train), NN [s] Time 1 epoch (train), PINN [s]

10 3 4
15 5 6
25 8 10
35 11 15
50 15 21

100 30 41
meshes and basis functions of degree p = q = 1. The plate-hole
problem is re-analyzed using 11 control points (corresponding
to 20 shape variables), which is the minimum number of shape
variables that can be used to study continuities as high as C2 and
14
basis function degrees as high as p = q = 5. A schematic of the
plate-hole problem when 11 control points are used is shown
in Fig. 18. The increased number of shape variables is expected
to lead to more dispersed data than those in Fig. 15, but it also



F. Mezzadri, J. Gasick and X. Qian Computer-Aided Design 160 (2023) 103520

a
s

Fig. 16. Point-wise error for a training geometry of the plate-hole dataset.
Fig. 17. Point-wise error for a validation geometry of the plate-hole dataset..
Fig. 18. The plate-hole problem with 11 control points.

llows us to evaluate the behavior of the network when many
hape parameters are used.
Fig. 19(a) shows the scatter plots of ēd and ēr of NN and PINN

for the 100 training shapes only when the degree of the basis
functions is changed. Fig. 19(b) reports the same results for the
2400 validation shapes of the dataset. Thus, Fig. 19(b) provides
an error analysis that includes hundreds of shapes that were not
used for training.

Fig. 19 shows that PINNs achieve an MSE residual that is
roughly one order of magnitude smaller than NNs. This further
15
demonstrates that PINNs produce more self-consistent solution
fields. Data MSE is, instead, roughly the same in NNs and PINNs.
Fig. 19 also shows that the accuracy of the network is affected by
the degree of the basis functions. Interestingly, we observe the
same behavior of the error both on the training (Fig. 19(a)) and
on the validation subsets (Fig. 19(b)).

In particular, Fig. 19 shows that the neural networks based on
the NURBS parameterization with (C0, p = 1) have less consistent
predictive accuracy than counterparts trained on data generated
using higher order basis functions. For instance, it can be seen in
Fig. 19(b) that a few of the predictions of the PINN trained on
data generated using linear basis functions have a large residual
and data error. Fig. 19(b) also illustrates that, in this example,
PINNs becomes steadily more accurate when the basis degree
used to generate data is increased, albeit at a decreasing rate.
Similar comments can be made for the NN predictions shown in
Fig. 19(b). However, since NN does not incorporate the residual
of the PDE, the residual accuracy is not strictly linked to the
data accuracy. This explains why, in Fig. 19, the NN based on the
NURBS parameterization with (C0, p = 2) characteristics appear
to have better residual accuracy compared to the NN trained on
data generated from IGA that has (C0, p = 3) characteristics.

This behavior suggests that (C0, p = 1) data is only partially
adequate to generate training data for the network. The low-order
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Fig. 19. Effect of the degree of the basis functions on the accuracy of NN and PINN.
ξ
d
t

etting may lead to stress concentration or numerical difficul-
ies that hinder the learning process. When the basis degree
sed to generate data is sufficiently high so as to avoid these
ssues, further increasing the degree leads to smaller and smaller
mprovements in the predictive accuracy of the trained PINN.

Considering the effect of both the type of network and of the
egree of the basis, Figs. 19(a) and 19(b) show that between
C0, p = 1)-NN and (C0, p = 3)-PINN there is an improvement
of about 2 orders of magnitude in the residual accuracy and of
one order of magnitude in the data accuracy.

Finally, Fig. 19 also demonstrates that the proposed formu-
lation for shape-informed neural networks can handle problems
that use many shape parameters. Indeed, the networks used in
this subsection received 20 shape parameters as inputs, which
could be used to represent relatively complex shapes with a
NURBS curve. Despite the relatively large number of inputs com-
pared to a traditional (non shape-informed) PINN, both data and
residual accuracy of PINN are O(10−3)−O(10−4) when continuity
nd degree are sufficiently high.

.7. Data requirements of PINN and NN

In this subsection, the role of the availability of data is studied.
n particular, we are interested in providing some remarks on the
ata requirements of the shape-parameterized neural network
nd on their differences when fewer training data are available.
n this context, we also aim at verifying whether PINN and NN
till have comparable data accuracy (as noticed in Sections 4.2.2
nd 4.6) when only small amount of data is available.
First, we analyze the shape-parameterized PINN and NN can

e trained when data is only available at the boundaries of the
omain. In this regard, we consider the circular beam problem
ith a single training geometry at a = 4.241. We assume that the
olution is known along the entire boundary of the domain, but
o data is available in the interior. Figs. 20(a) and 20(a) show the
onvergence of the loss function of the training of NN and PINN,
espectively. Fig. 20(c) shows the MSE on the entire domain of
isplacements and stresses of the NN predictions at the training
eometry and for nearby shapes. Fig. 20(d) provides the same
nformation for PINN. Finally, Fig. 20(e) visually compares the
olution u∗x at the training geometry a = 4.241 with PINN and
N predictions.
Figs. 20(c) and 20(d) show that both NN and PINN have large

rrors in the domain when the network was trained using only
oundary data. This is especially evident for the displacements.
16
Table 2
MSE of NN and PINN predictions at the training geometry a =

4.241 when the neural networks are trained with a limited amount
of data on the interior of the domain.

NN PINN

e(ux) 1.19E−4 5.47E−7
e(uy) 1.21E−6 1.88E−7
e(σxx) 0.062 0.05
e(σyy) 0.159 0.080
e(σxy) 0.124 0.042

Notwithstanding this, Fig. 20(e) shows that PINN may still quali-
tatively predict the solution (in this case, the displacement ux):
indeed, although some differences are noticeable between u∗x
and the PINN’s prediction, the overall solution fields are similar.
This is due to the presence of the residual term in the PINN
loss, which contributes to improving the predictions even when
limited amount of data is available. The fields predicted by NN
is, instead, completely different from the expected solution. This
is reasonable, as there is no relationship that can be used by the
network to correctly predict the solution in the interior of the
domain. The difference between PINN and NN is apparent even
from the loss convergence: indeed, in PINN (Fig. 20(b)) the loss
converges slowly, as it is trying to reduce the residual and fit
the data. In NN, (Fig. 20(a)) the convergence is, instead, almost
immediate, as it is easy for the neural network to fit the small
amount of provided data. At the same time, however, this does
not allow to achieve predictive capabilities of the solution in the
interior of the domain.

In order to better explore the data requirements of the two
networks, we now provide some training data in the interior
of the domain as well. The network, nonetheless, will still be
required to make predictions on the entire grid or 100 × 100
collocation points.

In particular, we assume that the training data is available only
in the collocation points at ξ = 0.05, ξ = 0.35, ξ = 0.65, and

= 0.95. Since we are using a grid of 100 × 100 uniformly
istributed collocation points, considering 4 locations of ξ means
hat, during the training, only 4 × 100 = 400 collocation points
out of 10,000 are used as available labeled data. The training MSE
of displacements and stresses for PINN and NN are compared in
Table 2 for a network trained on a single geometry of the circular
beam problem with radius of the inner circle a = 4.241.

Table 2 shows that PINN errors are significantly smaller than
NN errors at training. In particular, e(ux) is smaller by more than

two orders of magnitude when PINN is used instead of NN. Errors
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Fig. 20. Analysis of the accuracy of PINN and NN when training data is provided only at the boundaries of the domain.
n stresses are all smaller in the PINN as well. This increased
ccuracy at the training shape propagates to nearby shapes. This
s shown in Fig. 21, which represents the mean square errors
n displacements and stresses when the shape parameter a is
hanged. In the figure, the position of the only training geometry
sed in this experiment is identified by the dashed red line. It
an be noticed that the error is smallest at the training geometry
n both PINN and NN. However, PINN error is generally much
maller than NN error, and this difference propagates in a neigh-
orhood of the training value of a. When we get farther from the
raining geometry, both networks become similarly inaccurate, as
t could be expected from the previous analysis.

If we use more than one training shape, the advantage of
hape parameterized PINN with little data becomes even more
pparent. Using, for instance, 6 training shapes, the displacements
an be predicted with a significantly higher accuracy by PINN
han by NN. This is shown in Fig. 22, where we notice that
INN is significantly more, up to 2 orders of magnitude more,
ccurate than NN in the entire range of geometries that we are
onsidering.
The advantage of data accuracy of PINN prediction over NN

rediction for small amount of data can be ascribed to the PDE
esidual term used in the PINN loss function.
17
4.8. Transfer learning

One important feature of neural networks trained to predict
the solutions to parameterized PDEs is their ability to ‘transfer
learn’ or use what was learned in one scenario to accelerate
learning for a ‘nearby’ scenario.

To study this situation, the plate-hole problem is reconsidered.
However, an additional constraint is placed on the plate-hole
profiles: all profiles are exact ellipses. Because of this choice,
there are two shape parameters which are the lengths of the two
semi-axes of the ellipse, a1 and a2, as shown in Fig. 23(a).

To study transfer learning, a PINN is trained to learn the
solution profiles for the case of a1 = a2 = 5. In the reference,
or non transfer learning, case a second PINN is then formed and
trained to learn the solution profiles for a1 = 5, a2 = 5.6 starting
from random hyperparameters. For the transfer learning case, a
PINN is trained to learn the solution profiles for a1 = a2 = 5, and
then the same PINN is trained to learn the solution profiles for
a1 = 5, a2 = 5.6. In both cases, the second PINN is trained using
only labeled data on the boundaries, i.e. no interior labeled data is
used. The training is run for a maximum of 2000 epochs starting
from a learning rate lr = 0.0025, which is halved every 50 epochs
that do not produce a sufficient reduction of the loss. Fig. 23(b)
reports the convergence curves of the loss for these trainings.
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Fig. 21. Comparison of accuracy of a PINN and NN over varying radii a of the inner circle for the quarter-circle problem trained on a single geometry with limited
training data.
Fig. 22. Comparison of accuracy of a PINN and NN over varying radii a for the quarter-circle problem trained on 6 training shapes with limited training data.
Fig. 23. Definition of the plate-hole problem with elliptical hole and convergence of PINN with and without transfer learning from a nearby shape.
f
t
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Fig. 23(b) shows that the value of the loss is smaller at all
pochs when we use the information of a1 = a2 = 5 to train
he network on the new shape. The difference in accuracy is
ignificant: Fig. 23(b) shows that the value of the loss
 l

18
unction with transfer learning is consistently smaller by about
wo orders of magnitude with respect to the non-transfer
earning loss function. This also leads to a faster convergence, as
ess epochs are needed to achieve the same loss function when
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ransfer learning is used. This shows that a shape-informed neural
etwork can transfer what it has learned about the solution
rofiles on one geometry to another, nearby, geometry.

.9. Shape optimization using shape-parameterized surrogate mod-
ls

In this section, we show that the shape-parameterized neural
etworks are attractive to solve shape optimization problems. In
his regard, consider the problem that consists in determining the
ptimal shape to give to the plate-hole so that the compliance is
inimized under a volume constraint. The solution of this prob-

em is known: in particular, the optimal shape for an infinitesimal
ole is circular.
To address this problem, a shape-parameterized neural net-

ork is here trained on 100 different shapes characterized by
he same volume V = 9600 (the entire plate is 100 × 100;
ence, the volume of a square plate would be 10000). The shape-
arameterized NN is used for simplicity, as the previous analysis
howed that the data accuracy of PINN and NN is similar for the
late-hole problem. The shapes of the dataset were generated by
GA using 5 control points (8 shape parameters) for the NURBS
arameterization.
For this problem, data generation consisted of a three-step

rocess.

1. Create a plate-hole geometry by randomly relocating the
control points which influence the hole profile shape, p0

h .
The volume of this geometry may not be close to V , the
desired volume.

2. Solve the following equality-constrained optimization
problem to adjust the original geometry’s control points,
p0
h , to obtain a new set of control points, ph, which corre-

spond to a geometry with a volume close to the desired
volume, V :

min
ph

∥ph − p0
h∥

2
2 (31a)

|Ω| = V (31b)

3. Use IGA to compute the displacement profiles associated
with the new geometry, and sample the displacement and
stress fields uniformly in the parametric domain at 1002

points.

he motivation for the exact formulation of Eq. (31) is twofold.
First, a plate-hole geometry with a random hole profile will have
a volume that may not be near the desired volume V . To increase
he relevance of the training data used by the neural network
hich will be used for shape optimization, it is desirable to find
way to generate geometries with specific volumes near the
esired target volume. Solving Eq. (31) achieves this. Second, it
s desirable to generate representative samples of the types of
nputs which the network is expected to make predictions based
n for the purposes of training. In the context of this problem, this
orresponds to randomly sampling the design space. A represen-
ative geometry should be created by assigning random values
o ph between a lower and upper bound in such a way that the
olume of this geometry is V . However, it is difficult to analyti-
ally represent the space of plate-hole geometries with volumes
xactly equal to V . Instead, we generate a random geometry, then
ind the minimal (with respect to the l2-norm) adjustment of the
ontrol points of this geometry such that it has a volume of V .
After the training, the optimal shape to give to the hole is

sought by running 50 iterations of a constrained variation of a
trust-region quasi-Newton method on the surrogate model con-
stituted by the trained neural network. The volume constraint
19
Table 3
Values of the compliance and of the volume for the considered shape
optimization problem with V̄ ≤ 9600.

Initial Optimized IGA solution [31] Relative error

Compliance 484.55 467.24 466.57 0.14%
Volume 9465.36 9599.47 9600 0.0055%

Table 4
Values of the compliance and of the volume for the considered shape
optimization problem with V̄ ≤ 9700 based on training data of V = 9600.

Initial Optimized IGA solution Relative error

Compliance 486.62 454.85 453.65 0.26%
Volume 9465.15 9699.86 9700 0.0014%

V̄ ≤ 9600 is here imposed. The convergence of the optimization
and the optimized profile are reported in Fig. 24. In all cases, the
optimization required just a few seconds to be run. The IGA values
of compliance and volume are reported in Table 3.

The optimization converges and the optimized profiles re-
sembles the circle that represents the theoretically optimal hole
profile. Although Fig. 24(b) shows a visible difference between
he optimized and analytical hole profiles, the volume constraint
s respected and the optimized compliance is just larger than
he theoretical one reported in Table 3. Hence, the optimiza-
ion works successfully on the surrogate model constituted by
he trained neural network. The difference between the opti-
ized and the analytical profile can be explained by the fact that

he optimized profile already has a close-to-optimal compliance
nd further improvements would require a more accurate train-
ng of the neural network. Therefore, the results of Fig. 24 and
able 3 suggest that the shape-parameterized neural networks
re attractive for applications in shape optimization and in the
eta-optimization of geometry.
In this regard, it is interesting to evaluate what happens when

he volume constraint no longer coincides with the volume of
he shapes used to train the neural network. In particular, Fig. 25
hows the results of the optimization when V̄ ≤ 9700 is imposed.
he optimization is run on the same surrogate model as above,
hich was created by considering shapes of volume V = 9600.
he corresponding values of the compliance and of the volume
re reported in Table 4. The deviation from the circle and the
elative error on the compliance are more significant than in the
¯ ≤ 9600 case. However, this was expected, as the neural net-
ork was trained with shapes of volume V = 9600. Furthermore,
able 4 shows that the relative error remains in the order of 10−3.
If the volume constraints is set farther away from the volume

f the training shapes, the shape optimization can no longer be
erformed accurately without acting on the neural network. For
nstance, consider a shape optimization problem with V̄ ≤ 9000.
uch volume is outside of the data normalization range used in
he previous experiments and a direct application of the previ-
usly trained network would mean asking the network to predict
he PDE solution for negative shape variable inputs, which were
ot seen during training. Therefore, the shape-parameterized
eural network was re-trained to analyze this case. In particular,
he behavior of the neural network is here studied when the
raining is performed in the following three situations:

• the training dataset is formed by 100 shapes of volume V =

9000. The training is run for 1200 epochs. We denote such
case by ‘‘9000’’;

• the training dataset is formed by 100 shapes of volume V =

9000, and the training is run for just 100 epochs. We denote
such case by ‘‘9000 ’’;
100



F. Mezzadri, J. Gasick and X. Qian Computer-Aided Design 160 (2023) 103520

T
r
c

(
c
H
t
e
o
t
t
m
w

Fig. 24. Results of the shape optimization problem with V̄ ≤ 9600.
Fig. 25. Results of the shape optimization problem with V̄ ≤ 9700 based on training data of V = 9600.
Table 5
Values of the compliance and of the volume for the considered shape optimization problem with V̄ ≤ 9000, from
different initial shapes. Different training settings of the neural network and different starting iterates of the shape
optimization are considered. In all cases, the exact IGA solution is 551.11.
Initial compliance, volume Case Final volume Optimized compliance Relative error

560.73, 8937.23
9000 8999.80 551.28 0.031%
9000100 8999.74 551.51 0.073%
9000T 8999.93 551.22 0.020%
9000T100 8999.69 551.26 0.027%

580.70, 8810.79
9000 8736.99 597.01 8.3%
9000100 8782.03 585.91 6.3%
9000T 8999.85 551.70 0.11%
9000T100 8999.44 552.80 0.31%
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• the training dataset is formed by 100 shapes of volume V =

9000 and transfer learning is used. In particular, the training
is initialized from the final weights of a previous training
on a dataset made of 100 shapes of volume V = 9600. We
denote such case by ‘‘9000T’’;

• the training is conducted as in the case ‘‘9000T’’, but the
procedure is stopped after just 100 epochs. We denote such
case by ‘‘9000T100’’.

he results of the optimization using different starting iterates are
eported in Table 5, where the relative errors are referred to the
ompliance.
When the starting iterate is sufficiently close to the solution

top row in Table 5), it shows that the value of the optimal
ompliance can be computed quite accurately in all four cases.
owever, when the starting iterate is set farther away from
he solution (bottom row in the table), the shape optimization
xhibits large errors in the ‘‘9000’’ and ‘‘9000100’’ cases. The
ptimization is here unsuccessful. However, when the shape op-
imization is run on neural networks that use transfer learning,
he results are still sufficiently accurate. This is particularly re-
arkable in the ‘‘9000T100’’ case, where only 100 training epochs
ere performed on shapes of volume V = 9000. This suggests
 t

20
hat transfer learning not only can be beneficial to the accuracy
f the optimization on larger sets of shapes, but it is also efficient,
equiring just few epochs of re-training.

Finally, we have trained a shape-parameterized neural net-
ork using a training dataset made of 100 shapes of volume
= 9000 and of 100 shapes of volume V = 9600. Then, we have

un the shape optimization setting V̄ = 9000, V̄ = 9400, and
¯ = 9600 for the volume constraint. In these experiments, when
¯ is set to a value that is represented in the training dataset, the
hape optimization is run using only the training shapes of such
olume. Indeed, performing the shape optimization considering
he entire training dataset can uselessly complicate the optimiza-
ion procedure. Instead, when we consider a volume that is not
resent in the training dataset (such as V̄ = 9400) we are trying
o extrapolate information to new volumes. Hence, in this case,
he shape optimization is performed considering all the shapes of
he training dataset. The results of these experiments are reported
n Table 6.

Table 6 shows that the shape optimization could be success-
ully run not only for V̄ = 9000 and V̄ = 9600, but also for
¯ = 9400. In this context, it is particularly interesting to notice
hat
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Table 6
Values of the compliance and of the volume for the considered shape optimization problem with different choices
of V̄ . The neural network is trained on a dataset containing shapes of volumes V = 9000 and V = 9600.
V̄ Initial compliance Final volume Optimized compliance IGA solution Relative error

9600 510.15 9599.39 466.64 466.57 0.015%
9400 518.34 9399.99 493.83 493.36 0.095%
9000 577.42 8685.07 551.23 551.11 0.022%
• in previous experiments (see Table 5) we were not able
to successfully solve the shape optimization problem with
V̄ = 9000 without using transfer learning;

• no shape of volume V = 9400 was here used in the training
dataset.

Hence, datasets made of shapes of different volumes can produce
more general and robust surrogate models of the PDE solution on
different domains. Furthermore, they can help increase the accu-
racy of the predictions when the volume constraint is changed.
The main downside is that the training needs here to be per-
formed on larger datasets, which is computationally onerous.
Therefore, unless a very general surrogate model is needed, par-
tial re-training by transfer-learning can be an efficient alternative,
as earlier shown in Table 5.

5. Conclusions

We have presented a framework for physics-informed deep
learning over freeform domains. In our framework, shapes are
represented via NURBS and are parameterized to a common
parametric domain. The shape parameters can be the actual co-
ordinates of the control points or parameters with more intuitive
geometric meaning, such as the major and minor radii of an
ellipse. NNs and PINNs are used to predict PDE solutions over
the parametric domain. Learning is conducted via minimizing a
loss function where data error and PDE residuals are computed at
collocation points in the parametric domain. For training PINNs,
which requires the spatial derivative of physical quantities in
enforcing physical equilibrium equations, the Jacobian of the
geometric mapping is used to assist the evaluation of the spatial
derivative of the PDE solutions.

We have formulated PINN and NN networks in the framework
of linear elasticity and we have performed the training using
data computed by IGA. We have analyzed the convergence of the
training and we have shown that the trained neural networks
can predict displacements and stresses in shapes that were not
included in the training dataset. In this context, we have also
shown that the mean square residual of the elasticity PDE using
PINN’s predictions is roughly one order of magnitude smaller than
when we use a traditional NN without physics information. This
has effects on the efficiency of the two networks. In particular,
we found that, for a plate-hole problem, NN trained using 100
geometries produces a PDE residual that is roughly as accurate as
PINN’s trained on 20 geometries.

Moreover, we have also considered the effect of the accuracy
of the training data. In particular, we have trained the network
using IGA data obtained using different choices of mesh continu-
ity and degree of the basis functions. We have noticed that the
degree p of the basis functions can have a significant effect on
the accuracy, especially when it is small. Indeed, we have noticed
that, in our problems, the data and residual accuracy of PINN
improves by roughly one order of magnitude if we use cubic data
in place of linear data. The effect of continuity is smaller, but is
noticeable on the training dataset.

Finally, we have noticed that PINN predictions of the PDE
solution are more accurate than NN when little training data is
available. In particular, PINN can make more accurate predictions
than NN on the training shapes when the solution is known in
21
just a small subset of the collocation points. This behavior can
be attributed to the PDE residual term in the PINN loss function.
We have observed that the increased accuracy of PINN at training
tends to propagate to predictions made on nearby shapes. The
effects of transfer learning and the applications of the shape-
parameterized neural networks to shape optimization were also
briefly discussed.

Our study suggests that our NURBS based framework can
be used to train NNs and PINNs to build surrogate models for
shape-parameterized PDE solutions. Our formulation for shape-
parameterized NNs and PINNs can be further developed in several
directions. First, they can be applied to a variety of physical
problems beyond linear elasticity. Second, the resulting NNs and
PINNs can be used in shape-dependent applications such as shape
optimization, where PDE-based sensitivity analysis [31] can be
replaced with the gradient from neural networks through auto-
matic differentiation. Furthermore, the results on transfer learn-
ing could be expanded to consider how and whether significantly
different shapes can accelerate the training of one another. This
could allow to devise strategies to warm-start the training of
PINN in general. Investigating examples that are challenging for
the NURBS representation (such as shapes with sharp corners or
high degree of curvature) is an interesting future work as well. Fi-
nally, although our numerical implementation uses IGA data, FEA
data can also be used for training when domain parameterization
is constructed and each FE mesh node is mapped to a parametric
point.
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Appendix. Examples of NURBS discretizations

Fig. 26 displays example NURBS discretizations of each geom-
etry shown in Fig. 6. In Fig. 26, p, q are the degrees of the NURBS

basis functions in the parametric coordinate directions ξ and η.
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he knot vectors in the ξ and η parametric directions are referred
o as kξ and kη , respectively. The number of control points in the
ξ and η directions are Np,ξ and Np,η , respectively. Figs. 26(b) and
6(e) demonstrate how the position of the control points changes
hen the length of the beam or the radius of the inner circle are
 t

22
hanged. Although more than one control point changes position
hen L or a is varied, all changes to control point positions can
e uniquely specified by these geometric shape parameters. As
result, L and a can be considered as the shape parameters for

hese problems.
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