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Abstract

In two-phase materials, each phase having a non-local response in time, it has
been found that for some driving fields the response somehow untangles at spe-
cific times, and allows one to directly infer useful information about the ge-
ometry of the material, such as the volume fractions of the phases. Motivated
by this, and to obtain an algorithm for designing appropriate driving fields, we
find approximate, measure independent, linear relations between the values that
Markov functions take at a given set of possibly complex points, not belonging
to the interval [-1,1] where the measure is supported. The problem is reduced
to simply one of polynomial approximation of a given function on the interval
[-1,1] and, to simplify the analysis, Chebyshev approximation is used. This al-
lows one to obtain explicit estimates of the error of the approximation, in terms
of the number of points and the minimum distance of the points to the interval
[-1,1]. Assuming this minimum distance is bounded below by a number greater
than 1/2, the error converges exponentially to zero as the number of points is in-
creased. Approximate linear relations are also obtained that incorporate a set of
moments of the measure. In the context of the motivating problem, the analysis
also yields bounds on the response at any particular time for any driving field,
and allows one to estimate the response at a given frequency using an appropri-
ately designed driving field that effectively is turned on only for a fixed interval
of time. The approximation extends directly to Markov-type functions with a
positive semidefinite operator valued measure, and this has applications to de-
termining the shape of an inclusion in a body from boundary flux measurements
at a specific time, when the time-dependent boundary potentials are suitably tai-
lored.
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timation, bounds on transient response, Calderon problem, Markov functions
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1 Introduction
Many systems have responses that are nonlocal in time as this is naturally a con-

sequence of the fact that it takes time for subelements of the system to respond.
Usually, this leads one to either: (1) examine the response at each, or one or more,
frequencies as the convolution in time characterizing the response of the system
becomes a simple multiplication in the frequency domain; or (2) examine the re-
sponse to a delta function or Heaviside function as this directly reveals the integral
kernel characterizing the response. In this paper we show that desired information
about the system can be directly obtained from selectively designed input signals
that are neither at constant frequency, nor delta or Heaviside functions.

Our initial motivation comes from the work [37, 39] where we derived micro-
structure-independent bounds on the viscoelastic response at a given time t of two-
phase periodic composites (in antiplane shear) with prescribed volume fractions f1
and f2 D 1 � f1 of the phases and with an applied average stress or strain pre-
scribed as a function of time. We found that the bounds were sometimes extremely
tight at particular times t D t0: see Figure 1.1. This was quite a surprise because
the response of each phase is nonlocal in time, yet somehow this response is untan-
gled at these particular times. Thus, the bounds could be used in an inverse fashion
to determine the volume fractions from measurements at time t0. Determining vol-
ume fractions of phases is important in the oil industry, where one wants to know
the proportions occupied by oil and water in the rock, to finding the porosity of
osteoporetic bone to detecting breast cancer, to assessing the porosity of sea-ice
and other materials, and even to determining the volume of holes in Swiss cheese.
Previous approaches to obtaining volume fraction information include using vol-
ume fraction dependent bounds on the complex dielectric constant at one or more
frequencies in an inverse way [16,18,41,42], estimation of the measure in the asso-
ciated Stieltjes function whose integral gives the volume fraction [14, 15, 17], and
estimation of the distributions of poles and zeros or poles and residues when the
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 3

measure is discrete or approximated by a discrete one [41,66]. These generally re-
quire measurements at many frequencies to yield accurate estimates of the volume
fraction. By contrast our approach only requires a single measurement at a specific
time with an applied field that has a carefully designed variation in time.

While our bounds [39] were very tight at specific times in some examples, they
were far from tight at all times in other examples: see Figure 1.2. At that time
it was totally unclear as to whether appropriate input signals could produce the
desired tight bounds at a specific time and, if so, what algorithm should be followed
to design these input signals. The primary goal of this paper is to address this
problem in the case where the input function has a finite number of frequencies. In
particular, for the example of Figure 1.2, our algorithm produces the much tighter
bounds of Figure 1.3. In [40] we show that one can find smooth input signals,
containing a continuum of frequencies, such that the response Re�v.t0/� of the
material at a specific moment of time t0 is totally measure independent, while
Re�v.t/� has a smooth dependence on t , with Re�v.t/�! 0 when t ! �1.

We emphasize that our results are applicable not just to determining the volume
fractions of the phases in a two-phase composite but also determining the volume
and shape of an inclusion in a body from exterior boundary measurements. This is
shown in Sections 5.3 and 5.4. It is a classical and important inverse problem with
a long history and many contributions: see [1, 3, 4, 9–11, 25, 28, 31–34, 52, 54, 55]
and references therein.

A secondary goal of this paper is to solve an accompanying mathematical ap-
proximation problem, which we now outline, and which is essential to achieve the
primary goal.

2 The Approximation Theory Question
It is the aim of this section to formulate and solve an approximation theory

question, directly relevant to our study. Specifically, we provide bounds that pro-
vide linear correlations on the values taken by certain Markov functions, that is,
Cauchy transforms of positive measures with compact support on the real line.
These functions map the upper half-plane to itself and arise as compressed resol-
vents of self-adjoint operators. For this very reason the rational approximation
theory of Markov functions was and remains a central topic of constructive func-
tion theory. Markov functions are also called, depending on the context, Herglotz
functions, or Nevanlinna functions, or Stieltjes transforms.

2.1 Evaluating Markov functions
Suppose F�.´/ is a Markov function having the integral representation

(2.1) F�.´/ D
Z 1

�1

d�.�/

� � ´
;
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FIGURE 1.1. Comparison between the lower and upper bounds on the
output average stress with an input applied average strain of H.t/, where
H.t/ is the Heaviside function, 0 for t < 0 and 1 for t � 0. This is called
a stress relaxation test. One phase is purely elastic (G D 6000), while
the other phase is viscoelastic and modeled by the Maxwell model (G D

12000 and � D 20000) (the results are normalized by the response of the
elastic phase). The following three cases are graphed: no information
about the composite is given; the volume fraction of the components is
known (f1 D 0:4); and the composite is isotropic with given volume
fractions. The bounds become tighter and tighter as more information
on the composite structure is included, so that if color is missing from
the figure the outermost pair of bounds are those with no information,
the middle pair include just the volume fraction, and the innermost pair
include both volume fraction and isotropy. Reproduced from Figure 6.2
in [39].

where the positive Borel measure � has unit mass:

(2.2)
Z 1

�1

d�.�/ D 1:

Given m (possibly complex) points ´1; ´2; : : : ; ´m not belonging to the inter-
val ��1; 1�, we are interested in finding complex constants �1; �2; : : : ; �m such
that

(2.3)
mX

kD1

�kF�.´k/ � 1
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 5
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FIGURE 1.2. Comparison between the lower and upper bounds on the
output stress relaxation in the “badly ordered case”, when the responses
on the pure phases as a function of time do not cross with an input applied
average strain of H.t/, where H.t/ is the Heaviside function. Here the
purely elastic phase has shear modulus G D 12000, while the Maxwell
parameters for the viscoelastic phase are G D 6000 and � D 20000

(again, the results are normalized by the response of the elastic phase).
The three subcases are the same as for the previous figure. However the
bounds remain quite wide except near t D 0. Reproduced from Figure
6.5 in [39]. The approach developed in this paper can yield tight bounds
with a suitably designed input function as shown in Figure 1.3.

for all probability measures �. Optimal bounds correlating the possible values of
the m-tuple .F�.´1/; F�.´2/; : : : ; F�.´m// as � varies over all probability mea-
sures are well-known, as derived from the well charted analysis of the Nevanlinna-
Pick interpolation problem [35]. Indeed, the nonlinear constraints among the val-
ues F�.´1/; F�.´2/; : : : ; F�.´m/ and standard convexity theory provide optimal
bounds on the range of the left-hand side of (2.3) for given constants �1; �2; : : : ; �m;
see [35] for details. But this is not our main concern.

We would rather like to choose m points ´1; ´2; : : : ; ´m, and find associated
constants �1; �2; : : : ; �m for every prescribed integer m, subject to a uniform esti-
mate

(2.4) sup
�

�����
mX

kD1

�kF�.´k/ � 1

����� � �m

for some computable bound �m that tends to zero as m ! 1. The geometry of
the locus of these points is obviously essential, and it will be detailed in the sequel.
The faster the convergence, the better.
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FIGURE 1.3. Comparison between the lower and upper bounds on the
output stress relaxation in the “badly ordered case” (G D 12 000 for
the elastic phase, and G D 6000 and � D 20; 000 for the viscoelas-
tic Maxwell phase), when the input function is chosen accordingly to
equation (2.10), which represents the main result of this paper. Specif-
ically, equation (2.10) provides the amplitude of the applied field that
gives extremely tight bounds at a chosen moment of time (here t D 0)
when the volume fraction is known. Indeed, the bounds incorporating
the volume fraction (the innermost bounds, in red) take the value 0:4 at
t D 0, which coincides exactly with the volume fraction of the viscoelas-
tic phase. Here, the applied loading is the sum of three time-harmonic
fields with frequencies ! D 0:1; 0:5; 1:5.

Since we deal with probability measures, condition (2.4) is equivalent to

(2.5) sup
�2��1;1�

�����
mX

kD1

�k

� � ´k
� 1

����� � �m:

And this is good news because we turn our focus to the minimal deviation from
one, on the interval ��1; 1�; of a rational function R.�/ satisfying R.1/ D 0

and possessing simple poles at the points ´1; : : : ; ´m. Or equivalently, denoting
q.�/ D .�� ´1/.�� ´2/ � � � .�� ´m/ and w.�/ D jq.�/j�1, we aim at finding the
minimal deviation from zero of a monic polynomial p of degree m, with respect to
the weighted norm kp wk1 D sup�2��1;1� jp.�/w.�/j:

Both perspectives align to well-known classical studies in approximation theory.
The first one is an extremal problem in rational approximation with prescribed
poles, a subject going back at least to Walsh [59]. A great deal of information
in this respect was systematized in Walsh’s book [60]. The second approach is
a genuine weighted Chebyshev approximation problem, and here we are on solid
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 7

ground. First, note that the functions

(2.6) w.�/; �w.�/; �2w.�/; : : :

form a Chebyshev system on the interval ��1; 1�; that is, they are linearly inde-
pendent and any linear combination of w.�/; �w.�/; �2w.�/; : : : ; �mw.�/ has at
most m zeros in ��1; 1�. Even more, a stronger so-called Markov property of this
system of functions holds. The classical Chebyshev approximation in the uniform
norm theorem has an analogue for such nonorthogonal bases [29, 35]. To be more
precise, there exists a unique monic polynomial p of degree m minimizing the
norm kp wk1: this polynomial is characterized by the fact that jp.�/j attains its
maximal value at mC 1 points, and the sign of p.�/ alternates there; see also [43].
In case w.�/ D 1, the optimal polynomial is of course the normalized Chebyshev
polynomial of the first kind: p.�/ D Tm.�/

2m
; Tm.cos x/ D cos.mx/; m � 0: The

constructive aspects of weighted Chebyshev approximation are rather involved;
see, for instance, the early works of Werner [62–64]. In the same vein, the asymp-
totics of the optimal bound of our minimization problem inherently involves po-
tential theory or operator theory concepts. We cite for a comparison basis a few
remarkable results of the same flavor [6, 22, 53].

Without seeking sharp bounds and guided by the specific applications we aim
at, we propose a compromise and relaxation of our extremal problem:

(2.7) inf
p
kp wk1 � kwk1 inf

p
kpk1:

At this point we can invoke Chebyshev original theorem and his polynomial Tm,
obtaining in this way the benefit, very useful for applications, of computing in
closed form the residues �k .

2.2 Main result
The present section contains the principal estimate which provides the theoreti-

cal foundation of our explorations. As explained in the introduction, we try to bal-
ance the computational accessibility and simplicity with the loss of sharp bounds.
A few comments about the versatility of the following theorem are elaborated after
its proof.

THEOREM 2.1. Let ´1; ´2; : : : ; ´m be mutually disjoint complex numbers, subject
to the assumption that the distances from ´k to the interval ��1; 1� given by

(2.8) d.´k/ D min
�2��1;1�

j� � ´kj

(2.8) are bounded from below by 1=2

(2.9) dmin D min
k

d.´k/ > 1=2:
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8 O. MATTEI, G. MILTON, AND M. PUTINAR

Then one can find complex constants �1; �2; : : : ; �m, each depending on m, such
that the estimate (2.4) holds with �m ! 0 as m!1. In particular, the values

(2.10) �k D � Tm.´k/

2m�1
Q
j¤k.´k � j́ /

;

where Tm.´/ is the Chebyshev polynomial of the first kind, of degree m, assure that
(2.4) holds with �m D 2=.2dmin/

m. Note that this bound converges exponentially
to zero as m!1.

PROOF. Recall that f .´/ D F�.´/ is the Cauchy transform of a probability
measure supported by the interval ��1; 1�. From

(2.11)

�����
mX

kD1

�kf .´k/ � 1

����� �
Z 1

�1

d�.�/

�����
mX

kD1

�k

� � ´k
� 1

����� :
we infer that equality is achieved in case � is a point mass

(2.12) �.�/ D �.� � �0/;

where �0 belongs to ��1; 1�. Equivalently, we note

(2.13)

inf
�

sup
�

�����
mX

kD1

�kf .´k/ � 1

����� D inf
�

sup
�

Z 1

�1

d�.�/

�����
mX

kD1

�k

� � ´k
� 1

�����
D inf

�
sup

�02��1;1�

�����
mX

kD1

�k

�0 � ´k
� 1

����� :
Therefore we seek a set of constants �1; �2; : : : ; �m (each dependent on m) and
upper bounds �m with the property that �m ! 0 as m!1 and

(2.14)

�����
mX

kD1

�k

� � ´k
� 1

����� � �m for all � 2 ��1; 1�:

More clearly, direct substitution of (2.14) into (2.11) shows that relation (2.4)
holds.

Write

(2.15)
mX

kD1

�k

� � ´k
D p.�/

q.�/
D R.�/;

where q.�/ is the prescribed monic polynomial

(2.16) q.�/ D
mY

jD1

.� � j́ /

of degree m, and p.�/ is a polynomial of degree at most m � 1 that remains to be
determined. The constants �k can then be identified with the residues at the poles
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 9

� D ´k of R.�/:

(2.17) �k D
p.´k/Q

j¤k.´k � j́ /
:

Consequently the problem becomes one of choosing p.�/ such that

(2.18) sup
�2��1;1�

����p.�/q.�/
� 1

���� D sup
�2��1;1�

jp.�/ � q.�/j
jq.�/j

is close to zero. Clearly, the problem is now one of polynomial approximation of
the monic polynomial q.�/ of degree m by the polynomial p.�/. A natural choice
is

(2.19) p.�/ D q.�/ � Tm.�/=2
m�1;

where Tm.�/=2m�1 is the Chebyshev polynomial Tm.�/ of degree m, normalized
to be monic. This choice minimizes the sup-norm of jp.�/�q.�/j over the interval
� 2 ��1; 1� and

(2.20) jp.�/ � q.�/j D jTm.�/=2m�1j � 1=2m�1

provides a bound on the numerator in (2.18). To bound the denominator, we have

(2.21) jq.�/j D
mY

kD1

j� � ´kj �
mY

kD1

d.´k/;

where d.´k/ is given by (2.8). Using (2.9) and the bounds (2.20) and (2.21) we see
that (2.4) is satisfied with �m D 2=.2dmin/

m. Finally, with p.�/ given by (2.19)
we see that the residues �k at the poles � D ´k of g.�/, given by (2.17) correspond
to those given by (2.10). □

REMARK 2.2. The use of Chebyshev polynomials is convenient as bounds on their
sup-norm over the interval ��1; 1� are readily available. An alternative approach,
also accessible from the numerical/computational point of view, is to work with
the L2 norm and find the polynomial p.�/ of degree m � 1 that approximates the
given monic polynomial q.�/ of degree m in the precise sense that

(2.22)
Z 1

�1

j.p.�/ � q.�/j2d�.�/ with d�.�/ D d�=jq.�/j2

is minimized. Subsequently, one has to invoke Bernstein-Markov’s inequality
which bounds an L2 norm by uniform norm. This first step is a standard prob-
lem in the theory of orthogonal polynomials: one chooses p.�/ � q.�/ to be the
monic polynomial of degree m that is orthogonal to all polynomials of degree at
most m � 1 with respect to the measure d�.�/. Separating the contribution of
the denominator, by selecting � to be the measure d�=

p
1 � �2 we recover the

Chebyshev polynomials we have advocated in the proof of the main result.
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10 O. MATTEI, G. MILTON, AND M. PUTINAR

REMARK 2.3. Assumption (2.9) is more than we really need. To underline the
dependence on n of all data we set

qn.´/ D .´ � ´1.n//.´ � ´2.n// � � � .´ � ´n.n//; n � 1;

and

wn.´/ D 1

jqn.´/j
:

For the proof of Theorem 2.1 above we only need

lim sup
n

kwnk1=n1 < 2:

That is, there exists r < 2, so that for large n, the inequality

wn.�/ � rn; � 2 ��1; 1�;
holds true.

By taking the natural logarithm, we are led to enforce the condition

lim sup
n

sup
�2��1;1�

1

n

nX
jD1

ln
1

j� � j́ .n/j
< ln 2:

That is, an evenly distributed probability mass on points ´1.n/; : : : ; ´n.n/ should
have its logarithmic potential asymptotically bounded from above by a prescribed
constant, on the interval ��1; 1�. Again, this turns out to be a rather typical problem
of approximation theory, at least when restricting the poles of qn to belong to some
Jordan curve surrounding ��1; 1�. A natural choice is an ellipse with foci at �1;
see also [6, 53].

2.3 Incorporating moments of the measure
Here we assume that the first n moments M1;M2; : : : ;Mn of the probability

measure d�, given by (2.1), are known, in addition to M0 D 1 and that m (possibly
complex) points ´1; ´2; : : : ; ´m not on the interval ��1; 1� are given. We seek
complex constants �1; �2; : : : ; �m and 
1; 
2; : : : ; 
n, with say 
n D 1 such that

(2.23)

�����
mX

kD1

�kf .´k/ �
nX

`D0


`M`

�����
is small for all probability measures�with the prescribed nmoments. The analysis
proceeds as before, only now we introduce the polynomial

(2.24) r.�/ D
nX

`D0


`�
`;

and set p.�/ and q.�/ to be the polynomials defined by (2.15) and (2.16). The goal
is now to choose polynomials p.�/ and r.�/ of degrees m� 1 and n, respectively,
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 11

such that r.�/ is monic and

(2.25) sup
�2��1;1�

����p.�/q.�/
� r.�/

���� D sup
�2��1;1�

jp.�/ � q.�/r.�/j
jq.�/j

is close to zero. We choose p.�/ and r.�/ such that

(2.26) TmCn.�/=2
mCn�1 D q.�/r.�/ � p.�/:

This is simply the Euclidean division of the normalized Chebyshev polynomial
TmCn.�/=2

mCn�1 by q.�/ with r.�/ being identified as the quotient polynomial
and �p.�/ being identified as the remainder polynomial. Then, assuming (2.9)
and using (2.21), we have

(2.27) sup
�2��1;1�

����p.�/q.�/
� r.�/

���� � �.n/m ; with �.n/m D 2

2n.2dmin/m

satisfying �
.n/
m ! 0 as m ! 1, with n being fixed. With constants �k given by

(2.17) and constants 
` being the coefficients of the polynomial r.�/, as in (2.24),
it follows that

sup
�

�����
mX

kD1

�kf .´k/ �
nX

`D0


`M`

�����
D sup

�

Z 1

�1

d�.�/

�����
mX

kD1

�k

� � ´k
�

nX
`D0


`�
`

����� � �.n/m :

(2.28)

2.4 Operator-valued measures
Mutatis mutandis, the results exposed in the previous sections extend immedi-

ately to the resolvent of a self-adjoint operator situation, via the spectral represen-
tation

(2.29) A D
Z
�.A/

�dP�;

where �.A/ is the spectrum of A, assumed to be contained in the interval ��1; 1�,
and dP� is an orthogonal projection valued measure satisfying

(2.30) I D
Z
�.A/

dP�:
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12 O. MATTEI, G. MILTON, AND M. PUTINAR

In this context we remark

inf
A







mX

kD1

�k�A � ´kI��1 �
nX

`D0


`A`







D sup

dP�







Z
�.A/

"
mX

kD1

�k

� � ´k
�

nX
`D0


`�
`

#
dP�







� sup

dP�







Z
�.A/

�����
mX

kD1

�k

� � ´k
�

nX
`D0


`�
`

����� dP�






 :
(2.31)

Choosing constants �1; �2; : : : ; �m and 
1; 
2; : : : 
n, with 
n D 1, as in the pre-
vious section, the bound (2.27) substituted in (2.31) implies that the desired bound

(2.32) inf
A







mX

kD1

�k�A � ´kI��1 �
nX

`D0


`A`






 � �.n/m ;

holds with �.n/m D 2=�2n.2dmin/
m� which goes to zero as m!1 provided dmin >

1=2.

3 Relevance of the Approximation Problem to Systems
with a Nonlocal Time Response

and the Viscoelasticity Problem in Particular
Without going into the specific details, as these will be provided later, in many

linear systems with an input function u.t/ varying with time t , of the form

(3.1) u.t/ D
mX

kD1

�ke
�i!k.t�t0/;

where the !k are a set of (possibly complex) frequencies and t0 is a given time, the
output function v.t/ takes the form

(3.2) v.t/ D
mX

kD1

�ka0F�.´.!k//e
�i!k.t�t0/;

in which the function F�.´/ is given by (2.1),

(3.3) �k D �kc.!k/;

and the functions ´.!/ and c.!/ depend on ! in some known way. The real con-
stant a0 > 0 and the unknown measure d� depend on the system. In our vis-
coelasticity study [39] the connection with Markov functions comes from the fact
that the effective shear modulus G�.!/, which relates the average stress to the av-
erage strain at frequency !, as a function of the shear moduli G1.!/ and G2.!/

of the two phases, has the property that �.G�=G1/ � 1�=.2f1/, in which f1 is the
volume fraction of phase 1 is a Markov function of ´ D .G1 C G2/=.G2 � G1/

taking the form (2.2) [7, 21, 44].
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 13

Henceforth we adopt the notational simplification

f .´/ D F�.´/:

Thus, at time t D t0, the output function is

(3.4) v.t0/ D a0

mX
kD1

�kf .´k/ with ´k D ´.!k/;

and we seek an input signal so that the output v.t0/ is almost system independent
with v.t0/ � a0. According to Theorem 2.1 this will be the case if the coefficients
�k are given by (2.10) and dmin > 1=2. So, by measuring v.t0/ we can determine
the system parameter a0. In the viscoelastic problem that we studied [37, 39], a0
is the volume fraction f1 (see also [7]), and it is useful to be able to determine this
from indirect measurements.

Typically, one may assume the frequencies !k have a positive imaginary part so
that the input signal u.t/ is essentially zero in the distant past. In (3.1) one could
just take a signal with m � 1 frequencies !k , k D 1; 2; : : : ; m � 1. Then, with the
coefficients �k being given by (2.10) and dmin > 1=2, we have

(3.5) v.t0/C �ma0f .´.!m// D a0

mX
kD1

�kf .´k/ � a0 with ´k D ´.!k/:

So, if a0 is known, a measurement of v.t0/ will allow us to estimate the output
a0f .´.!m//e

�i!m.t�t0/ at a desired (possibly real) frequency !m given the input
e�i!m.t�t0/.

It is often the situation, such as in the viscoelastic problem, that only the real
part of v.t/ has a direct physical significance and, hence, one might want to find
constants �k such that, say,

(3.6)

2Re�v.t0/� D a0

 
mX

kD1

�kf .´k/C
mX

kD1

�kf .´k/

!

D a0

 
mX

kD1

�kf .´k/C
mX

kD1

�kf .´k/

!
� a0;

where the overline denotes complex conjugation. This, again, reduces to a problem
of the form (2.3) where, after renumbering, the complex values of ´k come in pairs,
´k and ´kC1 D ´k , and we may take �kC1 D �k so that the left-hand side of (2.3)
is real.

We can gain more flexibility in the choice of the input signal if we replace
Tm.´k/ in the formula (2.10) for the residues �k with .´k � ´0/Tm�1.´k/, where
´0 is a prescribed real zero of p.�/ � q.�/ D .� � ´0/Tm�1.�/. In particular, we
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14 O. MATTEI, G. MILTON, AND M. PUTINAR

may choose ´0 to, say, minimize

(3.7) max
t�t0

jv.t/j=jv.t0/j � max
t�t0

�����
"

mX
kD1

�kf .´k/e
�i!k.t�t0/

#�����
to help ensure that the output signal is not too wild. If we are only interested in
Re�v.t/� so that the ´k come in complex conjugate pairs, then we may replace
Tm.´k/ in (2.10) with .´k � ´0/.´k � ´0/Tm�2.´k/, and choose ´0 to, say, mini-
mize

(3.8) max
t�t0

jRe�v.t/�j=jRe�v.t0/�j � max
t�t0

�����Re

"
mX

kD1

�kf .´k/e
�i!k.t�t0/

#����� :
In the first case, note that the signal u.t/ (3.1) is linear in ´0 while in the second
case it is linear in the real coefficients of the quadratic .��´0/.��´0/. So in either
case we have a linear space of possible signals (though j´0j should not be too large
for the approximation to hold at time t0). Also �k ! 0 as ´0 ! ´k so in this
limit the frequency !k is absent from the input and output signals. More generally,
to help minimize (3.7) or (3.8) one might replace Tm.´k/ with sM .´k/Tm�M .´k/

where sM .�/ is a polynomial of fixed degree M < m.
The results of Section 2.3 allow us to determine a relation between the n mo-

ments M1, M2, . . . , Mn and a0 if v.t0/ is measured. This can be useful when the
moments have a physical significance: in the viscoelastic problem, for instance,
M1 depends only on the volume fraction f1 if one assumes that the composite has
sufficient symmetry to ensure that its response remains invariant as the material
is rotated [7]. So, incorporating the moment M1 and measuring the response at
time t0 then allows us to obtain tighter bounds on f1, in a similar way to that done
in [37, 39].

The relevance of our inequality (2.32) for operator-valued measures is that in
many linear systems with an input field u.t/ varying with time t , of the form

(3.9) u.t/ D
mX

kD1

�ke
�i!k.t�t0/u0;

the output field v.t/ takes the form

(3.10) v.t/ D
mX

kD1

�ke
�i!k.t�t0/a0�A � ´.!k/I��1u0 with �k D �kc.!k/;

where the real constant a0 and the self-adjoint operator A characterize the response
of the system, and the system parameters ´.!/ and c.!/ depend on the frequency
! in some known way. Then, the bound (2.32) implies

(3.11)

�����v.t0/ � a0

nX
`D0


`A`u0

����� � a0�
.n/
m ju0j :
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 15

4 Applications of the Approximation Scheme
With the mathematical and physical backgrounds in place, we return to the

bounds of Markov functions. The notations are the same as in the approximation
theory section.

4.1 Bounds on the output function v.t/ at any time t
Supposing any constants �1; �2; : : : ; �m are given, it is easy to get bounds on

v.t/ given by (3.2) at any time t that incorporate the n known moments M1;M2;

: : : ;Mn. One introduces an angle � and Lagrange multipliers 
1; 
2; : : : ; 
n and
takes the minimum value of

(4.1)
Z 1

�1

d�.�/Re

"
ei�

mX
kD1

�ke
�i!k.t�t0/

� � ´.!k/
C

nX
`D1


`�
`

#
;

as � varies over all probability measures supported on ��1; 1� with unconstrained
moments. The minimum will be achieved by the point masses � D �.� � �0/,
where �0 may take one or more values. Typically we will need to choose the
Lagrange multipliers 
1; 
2; : : : ; 
n (that depend on � ) so that the minimum is
achieved at n values �0 D �

.`/
0 , ` D 1; 2; : : : ; n, and then adjust the measure to be

distributed at these points

(4.2) d�.�/ D
nX

`D1

w`�
�
� � �

.`/
0

�
;

with the nonnegative weights w`, that sum to 1, chosen so that the moments take
their desired values. Then with this measure we obtain the bound

(4.3) Re�ei�v.t/� � a0

nX
`D1

w` Re

"
ei�

mX
kD1

�ke
�i!k.t�t0/

�
.`/
0 � ´.!k/

#
:

By varying � from 0 to 2� we obtain bounds that confine v.t/ to a convex region
in the complex plane. Of course, if we are only interested in bounding Re�v.t/�,
then it suffices to take � D 0 or � .

Figure 4.1 and Figure 4.2 depict the lower and upper bounds on Re�v.t/� for two
systems (´.!/ D 2C i=! in Figure 4.1, thus mimicking the low-frequency dielec-
tric response of a lossy dielectric material, and ´.!/ D 2 � 2=!2 in Figure 4.2,
thus mimicking the dielectric response of a plasma), when the coefficients �k in
(4.3) are chosen such that the bounds are extremely tight at t0 D 0, according to
(2.10). For both systems, the bounds on Re�v.t/� are tighter the higher the amount
of pieces of information on the system is incorporated. Notice that the bounds col-
ored in black (the largest ones) correspond to the case where only the zeroth-order
moment M0 of the measure is known but not the value of a0: in such a case, as
shown by the zoomed graph in the blue box, at t D 0, the upper bound takes value 1
and the lower bound takes value 0, which are the smallest and the largest values a0
can take. On the other hand, when a0 is assigned, the value that the corresponding
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16 O. MATTEI, G. MILTON, AND M. PUTINAR
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FIGURE 4.1. (a) Bounds on the real part of the response of the system,
Re�v.t/� (4.3), when the system is such that ´.!/ D 2C i=! and the in-
put signal Re�u.t/� is the one depicted in (b) (with c.!/=1). We choose
the frequencies !k to be �1 C 1i I 0:5 C 0:3i I 2 C 0:5i �, and we select
the coefficients �k according to (2.10) so that the bounds are extremely
tight at t0 D 0, whereas the point masses �

.`/
0 and the weights w` are

chosen for each moment of time t such that the minimum value of (4.1)
is attained while the moments of the measure take their desired values.
Specifically, the bounds on Re�v.t/� are plotted for three different sce-
narios, as shown by the legend.

bounds take at t D 0 is exactly a0 D 0:6, as shown by the zoomed graph in the
blue box. The graphs show clearly that, in order to estimate the system parameter
a0, one has just to measure the response of the system at a specific moment of time
t0 (if the applied field is carefully chosen).

These are the type of bounds used in [39] to bound the temporal response of two-
phase composites in antiplane elasticity. It is not yet clear whether those bounds
can be derived from variational principles. In general, in the theory of composites,
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 17
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FIGURE 4.2. (a) Bounds on the real part of the response of the system,
Re�v.t/� (4.3), when the system is such that ´.!/ D 2 � 2=!2 and
the input signal Re�u.t/� is the one depicted in (b) (with c.!/=1). We
choose the frequencies !k to be �1C 1i I 0:5C 0:3i I 2C 0:5i �, as in the
case depicted in Figure 4.1.

variational methods have proven to be more powerful than analytic approaches.
Variational methods produce tighter bounds that often easily extend to multiphase
composites: see the books [2,13,46,56,57] and references therein. For example, the
variational approach gives tighter bounds on the complex permittivity at constant
frequency of two-phase lossy composites [30] than the bounds obtained by the
analytic approach [8, 44]. It also produces bounds on the complex effective bulk
and shear moduli of viscoelastic composites [20, 51]. An exception is bounds that
correlate the complex effective dielectric constant at more than two frequencies
[45] that have yet to be obtained by a systematic variational approach. Variational
bounds in the time domain are available [12, 38], but these are nonlocal in time.
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18 O. MATTEI, G. MILTON, AND M. PUTINAR

4.2 Using an appropriate input signal to predict the response at a given fre-
quency

Naturally, if one is interested in the response v0.t/ at a given (possibly complex)
frequency !0, the easiest solution is to take an input signal u0.t/ at that frequency.
However, it might not be easy to experimentally generate a signal at that frequency
or it might not be easy to measure the response at that frequency. The problem
becomes: find complex constants �1; �2; : : : ; �m such that

(4.4) sup
�2��1;1�

�����
mX

kD1

�k

� � ´k
� 1

� � ´0

����� � �m

with ´k D ´.!k/, k D 0; 1; : : : ; m. Defining the polynomials p.�/ and q.�/ as in
(2.15) and (2.16) one needs to find p.�/ of degree m � 1 such

(4.5) sup
�2��1;1�

����.� � ´0/p.�/ � q.�/

.� � ´0/q.�/

���� � �m:

Proceeding as before we choose

(4.6) .� � ´0/p.�/ D q.�/ � bmTm�1.�/ with bm D q.´0/=Tm�1.´0/;

where bm has been chosen so that the polynomial q.�/ � bmTm�1.�/ has a factor
of .� � ´0/. Then the residues of R.�/ D p.�/=q.�/ are given by

�k D �bm Tm�1.´k/

.´k � ´0/
Q
j¤k.´k � j́ /

D � Tm�1.´k/
Q
j¤0.´0 � j́ /

Tm�1.´0/.´k � ´0/
Q
j¤0;k.´k � j́ /

(4.7)

and

(4.8) sup
�2��1;1�

j.� � ´0/p.�/ � q.�/j D sup
�2��1;1�

jbmTm�1.�/j D jbmj;

so that (4.4) holds with

(4.9) �m D jbmj
d0 inf�2��1;1� jq.�/j

;

where d0 denotes the distance from ´0 to the interval [-1,1]. Joukowski’s map
yields

(4.10) ´0 D 1

2

�
�0 C 1

�0

�
with R D j�0j > 1;

whence

(4.11) Tm�1.´0/ D 1

2

 
�m�10 C 1

�m�10

!
:
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 19

Moreover, since �0 runs over a circle of radius R, we have

(4.12) d0 D inf
�2��1;1�

j�20 � 2�0�C 1j
2

� .R � 1/2

2R

and

(4.13) jTm�1.´0/j � 1

2
.Rm�1 �R1�m/; m � 2;

implying

(4.14) jbmj � 2jq.´0/j
Rm�1 �R1�m

:

All in all, the relevant bound �m satisfies

(4.15) j�mj � 4R

.R � 1/2
1

Rm�1 �R1�m
sup

�2��1;1�

jq.´0/j
jq.�/j :

We obtain an exponential decay �m ! 0 as m ! 1 provided the geometry of
the loci ´1; ´2; : : : ; ´m is subject to the following condition: for a positive constant
r < R, each j́ 2 H.r/ D H1.r/ [H2.r/ [H3.r/ where

H1.r/ D
�
´ W
����´ � ´0

´C 1

���� � r; Re ´ � �1
�
;

H2.r/ D
�
´ W
����´ � ´0

Im ´

���� � r; Re ´ 2 ��1; 1�
�
;

H3.r/ D
�
´ W
����´ � ´0

´ � 1

���� � r; Re ´ � 1

�
:

In other words, all of the j́ must be close to ´0 in the precise sense that j́ 2 H.r/.
Note that, as shown in Figure 4.3a, in case r < 1, H1 and H3 are sectors of disks,
while H2 is a portion of an ellipse. For r 2 .1; R/ these regions are complements
of disks/ellipse, containing the point ´0, as shown in Figure 4.3c. Some of these
regions can be empty, depending on the position of ´0.

A conservative choice would be r D 1 (see Figure 4.3b), in which situation
H1 and H3 are bounded by straight lines, while H2 is a parabola. To fix ideas,
let us assume ´0 D x0 C iy0 with x0 � 0 and y0 � 0, all other cases being
symmetrical. Then the euclidean region H.1/ where ´1; ´2; : : : ; ´m are allowed
consists of points ´ D x C iy subject to the constraints:

(4.16) x � 1 and dist.´; ´0/ � dist.´; 1/;

union with

(4.17) x 2 ��1; 1� and .x � x0/
2 C y20 � 2y0y:

If y0 D 0, then necessarily x0 > 1, and H is simply the right half-plane x > 1Cx0
2

,
while in the case y0 > 0, H.1/ is the interior of a parabola with vertex at .x0;

y0
2
/,

within the band jxj � 1, union with the polygonal region defined by the first
distance inequality (in x � 1).

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22082 by U

niversity O
f U

tah, W
iley O

nline Library on [19/07/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



20 O. MATTEI, G. MILTON, AND M. PUTINAR
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FIGURE 4.3. Representation of the loci ´k for a system for which ´0 D

0:308824 � 0:764706 i and R D 2:061.

Now with an input signal of the form (3.1), with �k D �k=c.!k/, generating
the output function v.t/ given by (3.2), (4.4) implies the bound

(4.18) jv.t0/ � v0.t0/j � a0�m;

where

(4.19) v0.t0/ D a0F�.´.!0//

is the response at time t0 to the single frequency input signal

(4.20) u0.t/ D e�i!0.t�t0/=c.!0/:

Of course, because this response v0.t/ is for a single frequency, v0.t0/ determines
v0.t/ for all t .
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 21

In Figure 4.4 we depict the response v0.t/ of a given system subject to an input
signal at the frequency !0 and we compare the value it takes at t0 D 0 with the
value taken by the bounds on the response v.t/ of a system having the same values
of the moments of the measure but subject to a multiple-frequency signal with
amplitudes �k chosen such that the bounds are extremely tight at t0 D 0: v0.t0/
lies, as expected, between the bounds on v.t/ at t D t0,

-2 -1.5 -1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

(A) ´ D 2 �
i

!

-2 -1.5 -1 -0.5 0 0.5 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(B) ´ D 2 �
2

!2

FIGURE 4.4. Comparison between the response v0.t/ of a given system
with point masses at �0:5 and 0:5, due to an input at the frequency !0 D

0:7i , and the upper and lower bounds on the response v.t/ of a system
having the same value of the moments of the measure Mi (M0 D 1 and
M1 D 0:4) and subject to an input signal of the type (3.1), with !k given
by �1C 1i I 0:5C 0:3i I 2C 0:5i � and coefficients �k chosen accordingly
to (3.3) and (4.7). Notice that in both cases the value of v0.t/ at t0 D 0

lies between the bounds on v.t/ at t0 D 0.

REMARK 4.1. The analysis is easily extended to the case where the response v0.t/
is known for a given !0 but one wants to predict the derivative

(4.21)
v0.t0/

d!0
D a0

dF�.´/

d´

����
´D´.!0/

d´.!0/

d!0
:

As

(4.22)
dF�.´/

d´
D
Z 1

�1

d�.�/

.� � ´/2
;

the problem becomes: find complex constants �0; �1; �2; : : : ; �n such that

(4.23) sup
�2��1;1�

������
mX

jD1

�j

� � j́
C �0

� � ´0
� 1

.� � ´0/2

������ � �m:
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22 O. MATTEI, G. MILTON, AND M. PUTINAR

Defining the polynomials p.�/ and q.�/ as in (2.15) and (2.16) one needs to find
p.�/ of degree m � 1 such that

(4.24) sup
�2��1;1�

����.� � ´0/
2p.�/ � q.�/�1 � �0.� � ´0/�

.� � ´0/2q.�/

���� � �m:

We now choose

(4.25) .� � ´0/
2p.�/ D q.�/�1 � �0.� � ´0/� � bmTm�1.�/;

with

(4.26) bm D q.´0/=Tm�1.´0/; �0 D
q0.�/ � bmT

0
m�1.�/

q.´0/
;

selected so that the polynomial on the right-hand side of (4.25) has a factor of
.� � ´0/

2, in which q0.�/ D dq.�/=d� and T 0m�1.�/ D dTm�1.�/=d�. So the
residues �k , for k ¤ 0, are now given by

�k D �bm Tm.´k/

.´k � ´0/2
Q
j¤k.´k � j́ /

D � Tm.´k/
Q
j¤0.´0 � j́ /

Tm.´0/.´k � ´0/2
Q
j¤0;k.´k � j́ /

;

(4.27)

where bm is still given by (4.6) and

sup
�2��1;1�

j.� � ´0/
2p.�/ � q.�/�1 � �0.� � ´0/�j

D sup
�2��1;1�

jbmTm�1.�/j D jbmj
(4.28)

so that (4.23) holds with

(4.29) �m D jbmj
d20 inf�2��1;1� jq.�/j

:

Apart from an extra factor of d0, this is exactly the same as the formula (4.9), and
so the convergence �m ! 0 as m!1 is assured provided for a positive constant
r < R, with each j́ 2 H.r/ D H1.r/ [H2.r/ [H3.r/.

5 A General Framework for a Wide Variety
of Time-Dependent Problems

The second part of the present article deals with a sketch of a unifying frame-
work that allows us to treat the conductivity or antiplane viscoelastic response of
bodies containing an inclusion in a matrix where one is interested in estimating the
volume and/or shape of the inclusion.
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 23

5.1 The general framework
Suppose that, in some Hilbert (or vector space) H , one is interested in solving

for J the equations

(5.1) J D LE; QJ D J; QE D E0;

for a prescribed field E0, where L W H ! H is an operator satisfying appropriate
boundedness and coercivity conditions, and Q is a self-adjoint projection onto a
subspace S of H , so that both E0 and J lie in S . Note that we can rewrite (5.1)
as

(5.2) J D LE0 � s; �1E0 D E0; �1J D 0;

with E0 D E � E0, s D �LE0 being the source term, and �1 D I � Q being the
projection onto the orthogonal complement of S in H . These equations arise in
the extended abstract theory of composites and apply to an enormous plethora of
linear continuum equations in physics: see, for example, the books [19,46] and the
articles [47–50].

The simplest example is for electrical conductivity (and equivalent equations),
where one has

(5.3)
j0.x/ D � .x/e.x/ � s.x/; �1e D e; �1j0 D 0;

with �1 D r.r2/�1r�;
where � .x/ is the conductivity tensor, while r � s, j D j0 C s, and e are the cur-
rent source, current and electric field, and .r2/�1 is the inverse Laplacian (there is
obviously considerable flexibility in the choice of s.x/, the only constraints being
square integrability and that r � s equals the current source). As current is con-
served, r � j D r � s, implying r � j0 D 0, which is clearly equivalent to �1j0 D 0.
In Fourier space �1.k/ D k 
 k=k2, and �1e D e implies the Fourier compo-
nents ye.k/ of e satisfy ye D �ik.ik � ye/=k2. So e is the gradient of a potential with
Fourier components �ik � ye=k2. In antiplane elasticity one takes a material with a
cross-section in the .x1; x2/-plane that is independent of x3, applies shearing in the
x3-direction and observes warping of the cross-section. The displacement u3.x/
in the x3-direction that is associated with this warping satisfies a conductivity-type
equation r � Gru3 D rs, where rs is a shearing source term (dependent on
.x1; x2/), G.x1; x2/ is the shear modulus, and correspondingly e D �ru3 and
j D Gru3. The antiplane response also governs the warping of rods under tor-
sion for rods that have a noncircular cylindrical shape and are composed of long
fibers aligned with the cylinder axis and embedded in a matrix such that the fiber
separation is much less than the cylinder circumference.

One approach to solving (5.1) is to apply Q to both sides of the relation E D
L�1J to obtain E0 D QL�1QJ, giving

(5.4) J D �QL�1Q��1E0;
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24 O. MATTEI, G. MILTON, AND M. PUTINAR

where the inverse is on the subspace S . In general, the operator L depends on the
frequency ! and E0 could depend on ! too. Then the response at this frequency is

(5.5) bJ.!/ D �Q.L.!//�1Q��1cE0.!/:

We are interested in the response in the time domain when cE0.!/ D �.!/E0 for
some complex amplitude �.!/ and E0 2 S does not depend on !. In particular,
for a sum of a finite number of (possibly complex) frequencies in the time domain
the input signal is

(5.6)
E0.t/ D

mX
kD1

e�i!k.t�t0/cE0.!k/ D
mX

kD1

�ke
�i!k.t�t0/E0

with �k D �.!k/:

The resulting field J.t/ is then

(5.7) J.t/ D
mX

kD1

�ke
�i!k.t�t0/�Q.L.!//�1Q��1E0;

and we want this to have a simple approximate formula at time t0.
To make progress we use another approach to solving (5.1). We introduce a

“reference medium” L0 D c0I where the real constant c0 is chosen so that L� L0

is coercive and introduce the so-called “polarization field”

(5.8) G D .L � L0/E D .L � c0I/E D J � c0E:

Applying the projection I �Q to this equation gives

(5.9) .I �Q/G D �c0.E � E0/ D c0E0 � c0.L � c0I/�1G;

and solving this for G yields

(5.10) G D c0�.I �Q/C c0.L � c0I/�1��1E0:

Finally, applying Q to both sides gives

(5.11) J D c0
�
QCQ�.I �Q/C c0.L � c0I/�1��1Q

	
E0:

By comparing (5.4) and (5.10) we have

�QL�1Q��1 D c0QC c0Q�.I �Q/C c0.L � c0I/�1��1Q

D c0
�
Q � 2Q�� � .LC c0I/.L � c0I/�1��1Q

	
;

where � D 2Q � I has eigenvalues �1. It is not obvious at all that the right-hand
side of (5.12) is independent of c0 but the preceding derivation shows this. This
type of solution using a reference medium L0 (that need not be proportional to I) is
well-known in the theory of composites: see, for example, chapter 14 of [46], [65],
and references therein.

Now assume L takes the form

(5.12) L D c1PC c2.I � P/;
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 25

where P is a projection operator onto a subspace P of H . In the theory of com-
posites for two phase composites, one frequently has

L D c1I�.x/C c2I.1 � �.x//;(5.13)

where the characteristic function �.x/ is 1 in phase 1 and 0 in phase 2, and c1
and c2 could be the material moduli. For the antiplane elasticity problem one has
c1 D G1 and c2 D G2, where G1 and G2 are the shear moduli of the phases. We
take the limit c0 ! c2 and then (5.12) becomes

�QL�1Q��1 D c2QC 2c2QP�P�P � ´P��1PQ;(5.14)

where the operator inverse is to be taken on the subspace P and

´ D c1 C c2

c1 � c2
:(5.15)

Note that P�P, like � , has norm at most 1. In general, the two moduli c1 and c2
depend on the frequency ! and hence ´ defined by (5.15) will also, i.e., ´ D ´.!/.
Given an input field of the form (5.6) and letting

J2.t/ D Q
mX

kD1

�kc2.!k/e
�i!k.t�t0/E0(5.16)

denote the response when P D 0, i.e., when L.!/ D c2.!/I, the corresponding
output field can be taken to be

v.t/ D J.t/ � J2.t/ D Q
mX

kD1

�ke
�i!k.t�t0/2P�P�P � ´kP��1PE0;(5.17)

with

(5.18) ´k D ´.!k/ D
c1.!k/C c2.!k/

c1.!k/ � c2.!k/
; �k D �kc2.!k/;

and we arrive back at the problem we have been studying. In particular, with
constants �k given by (2.10) the inequality .2.32/ with n D 0 implies

jJ.t0/ � J2.t0/ � 2QPE0j � 4jPE0j=.2dmin/
m:(5.19)

Alternatively, we could have chosen c0 D c1 and let

J1.t/ D Q
mX

kD1

�kc1.!k/e
�i!k.t�t0/E0(5.20)

denote the response when P D I, i.e. when L.!/ D c1.!/I. Then, similarly to
(5.17), we would have

J.t/ � J1.t/ D Q
mX

kD1

�ke
�i!k.t�t0/2P?�.P?�P? C ´kP?��1P?E0;(5.21)

where ´k is still given by (5.18), but now with �k D �kc1.!k/, where P? D I�P
is the projection onto the subspace perpendicular to P . The problem, with n D 0
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26 O. MATTEI, G. MILTON, AND M. PUTINAR

and with the same choice of coefficients �k , requires a different input signal, i.e., a
different choice of the �k given by �k D �k=c1.!k/, to ensure that

jJ.t0/ � J1.t0/C 2QP?E0j � 4jPE0j=.2dmin/
m:(5.22)

5.2 Implementation to the theory of composites and its generalizations
In the theory of composites and its generalizations, one can identify a subspace

of S that we call U of “source free” fields, and we may wish to confine E0 to this
subspace. Then (5.1) can be rewritten as

J D LE; �2E D 0; �1J D 0; �0E D E0;(5.23)

where �0 is the projection onto U , �1 is the projection onto E , defined as the
orthogonal complement of S , and �2 is the projection onto J , defined as the
orthogonal complement of U in the subspace S . Then Q D �0 C �2 and the
Hilbert space H has the decomposition

H D U � E �J ;(5.24)

and the projections onto these three subspaces are respectively �0, �1, and �2.
In particular, as observed independently in sections 2.4 and 2.5 of [23] and in

chapter 3 of [19], the Dirichlet-Neumann problem can be reformulated as a prob-
lem in the theory of composites. In the simplest case of electrical conductivity,
where one has an inclusion D (not necessarily simply connected) of (isotropic)
conductivity c1 in a simply connected body � having smooth boundary, with c2
being the (isotropic) conductivity of � nD, we may take H as the space of vector
fields that are square integrable with the usual normalized L2 inner product,

(5.25) .A1;A2/ D 1

j�j
Z
�

A1.x/ � A2.x/ dx;

where j�j is the volume of �, and take

� U to consist of gradients of harmonic fields u0 D �rV with r2V D 0

in �,
� E to consist of gradients e D �rV with V D 0 on the boundary @� of �,
� J to consist of divergent free vector fields j with r � j D 0 and j � n D 0

on @�, where n is the outwards normal to @�.

The conductivity of the body may be identified with L given by (5.12) where P
is the projection onto those fields that are zero outside D. As we are considering
time-dependent problems in the quasistatic limit, where the body is small com-
pared to the wavelength and attenuation lengths of electromagnetic waves at the
frequencies !k , the moduli c1 and c2 and the fields are typically complex and
frequency-dependent. The fields in U can be identified either by the values that V
takes on the boundary @� or by the values that the flux n � rV takes on the bound-
ary @�. Thus the equations (5.23) are nothing other than the Dirichlet problem in
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 27

the body �,

(5.26)
j D Le; e D �rV; r � j D 0; e0 D �rV0;

r2V0 D 0; V D V0; on @�;

and the mapping from �0e to �0j is nothing other than the Dirichlet to Neumann
map giving n � j in terms of V on @�.

For periodic two-phase conducting composites, with unit cell �, the framework
is similar. We take H as the space of vector fields that are �-periodic with the
usual normalized L2 inner product, given by (5.25), and take

� U to consist of gradients of constant fields u0 (that do not depend on x),
� E to consist of gradients e D �rV with V being an �-periodic potential,
� J to consist of �-periodic divergent-free vector fields j with r � j D 0,

having zero average over �.
The conductivity of the body may be identified with L given by (5.12) where P
is the projection onto those fields in H that are zero outside phase 1, and c1 is
the (isotropic) conductivity of phase 1 while c2 is the (isotropic) conductivity of
phase 2.

REMARK 5.1. More generally, the conductivity in the periodic composite could be
anisotropic, with the conductivity tensor having the special form

(5.27) L.!/ D c1.!/L0PC c2.!/L0.I � P/;

where L0 is a constant positive definite tensor. As L0 commutes with �0 and P,
we can define new orthogonal spaces

E 0 D L1=2
0 E ; J 0 D L�1=20 J ; U 0 D L1=2

0 U D L�1=20 U D U ;(5.28)

and rewrite (5.23) in the form

J0 D L0E0; � 02E0 D 0; � 01J0 D 0; � 00E0 D E00;(5.29)

where
aJ0 D L�1=20 J; E0 D L1=2

0 E; E00 D L1=2
0 E0;

L0 D L�1=20 LL�1=20 D c1.!/PC c2.!/.I � P/;
and

� 00 D �0; � 01 D L�1=20 �1.�1L0�1/
�1; � 02 D I � � 01 � � 02(5.30)

are the projections onto U 0 D U , E 0, and J 0, in which the inverse in the formula
for � 01 is to be taken on the subspace E . As L0 now takes the same form as (5.12)
we are back to the same problem.

Similarly, in a body where the conductivity tensor has the special form (5.27)
we may take

� U 0 to consist of gradients of fields u0 D �L1=2
0 rV with r � L0rV D 0

in �,
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28 O. MATTEI, G. MILTON, AND M. PUTINAR

� E 0 to consist of fields e0 D �L1=2
0 rV with V D 0 on the boundary @�

of �,
� J 0 to consist of fields j0 with r � L1=2

0 j0 D 0 and .L1=2
0 j0/ � n D 0 on @�,

where n is the outwards normal to @�

as our three orthogonal subspaces. Letting �0, �1, and �2 denote the projections
onto these three subspaces, respectively, and setting L0 D c1.!/PC c2.!/.I� P/,
the equations (5.28) hold and we may proceed as before.

5.3 Application to solving the Calderon problem with time varying fields
Let us now use ideas from the Calderon problem to solve the inverse problem

of finding the inclusion D from boundary measurements on @�. With � being a
three-dimensional body, we can take

V0 D eik�x with k1; k2 real and k3 D i

q
k21 C k22 ;(5.31)

where the last condition implies k �k D 0, which ensures that V0 is harmonic. Then
(5.19) implies

.J.t0/ � J1.t0/C 2QPE0;reik
0�x/ � 4jkjjk0j=.2dmin/

m(5.32)

for all real or complex k0. We now choose k0 with

k03 D �k3; k01; k
0
2 real and with .k01/

2 C .k01/
2 D k21 C k22(5.33)

to ensure that eik
0�x is harmonic, and so that

(5.34)

.2QPE0;reik
0�x/

D 2.PE0;Qreik
0�x/ D 2.PE0;reik

0�x/

D 2.k1k
0
1 C k2k

0
2 � k21 � k22/

1

j�j
Z
D

ei.k1�k
0

1
/x1Ci.k2�k

0

2
/x2 dx

only depends on the Fourier coefficients of the characteristic function associated
with D. Then, using integration by parts,

(5.35) .J.t0/ � J1.t0/;reik0�x/ D 1

j�j
Z
@�

�J.t0/ � J1.t0/� � n eik0�x dS;

where J.t0/ � n can be measured, while J1.t0/ � n can be computed. As there
is nothing special about the x3-axis, we may rotate the Cartesian coordinates to
get estimates of other Fourier coefficients of the characteristic function associated
with D. We may also take E0 as constant and replace reik0�x by E0 to get

(5.36)
.J.t0/ � J1.t0/C 2QPE0;E0/ D .J.t0/ � J1.t0/;E0/C jE0j2jDj=j�j

� 4jE0j2=.2dmin/
m;

thus giving an estimate of the volume fraction jDj=j�j that D occupies in the body
(i.e., the Fourier coefficient at k D 0).
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 29

With � being a two-dimensional body, the situation is similar. We take

k1 real and k2 D ik1; k01 D �k1; k02 D �ik1;(5.37)

and (5.34) is replaced by

.2QPE0;reik
0�x/ D �4k21

Z
D

e2ik1x1 dx;(5.38)

while (5.35) and (5.36) still hold. Again we approximately recover the Fourier
coefficients of the characteristic function associated with D from measurements of
J.t0/ � n and computations of J1.t0/ � n.

In the usual Calderon problem one solves the inverse problem by taking jkj to
be very large, according to the so-called complex geometric optics approach [55].
Here we see that there is no need to take jkj to be very large if we allow time-
dependent applied fields. For electromagnetism in nonmagnetic media, the mea-
surements are difficult as the time response is typically extremely rapid (from ta-
ble 7.7.1 in [24] we see that electromagnetic relaxation times in seconds for cop-
per, distilled water, corn oil, and mica are 1:5 � 10�19, 3:6 � 10�6, 0:55, and
5:1 � 104, respectively, and measurements would need to be taken on these time
scales). On the other hand, for the equivalent magnetic permeability, fluid per-
meability, or antiplane elasticity problems, the relaxation times are much more
reasonable [5,26,36] and measurements in the time domain become feasible. Even
in electrical systems one can get long relaxation times, such as the time to charge
a capacitor.

From an experimental perspective, even for antiplane elasticity, it would be diffi-
cult to obtain the high-order Fourier coefficients of D as the boundary fields needed
to retrieve this information have a very fast spatial decay which would be difficult
to generate and measure.

REMARK 5.2. Instead of taking E0.t/ D �0E.t/ and J.t/ as our input and output
fields, one could take J0.t/ D �0J.t/ and E.t/ as our input and output fields. Then
one has

(5.39) E D L�1J; �1J D 0; �2E D 0; �0J D J0;

which is exactly of the same form as (5.23), but with L replaced by L�1 and the
roles of �1, �2, and E and J, and E0 and J0 interchanged. So all the preceding
analysis immediately applies to this dual problem too.

5.4 Generalizations
In many problems of interest, the fields in H take values in a, say, s-dimensional

tensor space T and the operator L W H ! H in (5.1), appropriately defined, is
frequency dependent with the properties that

� L.!/ is an analytic function of ! in the upper half-plane Im.!/ > 0,
� Im�!L.!/� � 0 when Im.!/ > 0,
� L.!/ D L.�x!/ when Im.!/ > 0,
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30 O. MATTEI, G. MILTON, AND M. PUTINAR

where the overline denotes complex conjugation. By appropriately defined we
mean that L.!/ (and accordingly J) may need to be multiplied by a function of !,
for example i , !, or i!, to achieve these properties. In the case of materials where
L acts locally in real space, i.e., if Q D LP, then Q.x/ D L.x/P.x/ for some
L.x/, the first property is a consequence of causality, the second a consequence of
passivity (that the material does not generate energy—see, for example, [61]), and
the third a consequence of L.!/ being the Fourier transform of a real kernel. It
follows that L is an analytic function of �!2 with spectrum on the negative real
�!2 axis (corresponding to real values of !) having the implied properties that

� Im.L/ � 0 when Im.�!2/ � 0,
� L is real and L � 0 when !2 is real and �!2 � 0.

In other words, L.!/ is an operator-valued Stieltjes function of �!2. The operator
B D �QL�1Q��1 entering (5.4) has the property that it is an analytic function of L
with

(5.40)
Im.B/ � 0 when Im.L/ � 0;

B is real and B � 0 when L is real and L � 0:

Hence, the Stieltjes properties of L as a function of �!2 pass to those of B as a
function of �!2:

(5.41)
Im.B/ � 0 when Im.�!2/ � 0;

B is real and B � 0 when !2 is real and � !2 � 0:

Introducing

(5.42) ´ D !2 � c

!2 C c
D 1 � 2c

!2 C c
;

for some real c > 0, ensures that the spectrum of B.´/ is on the interval ��1; 1�
and

(5.43)
Im.B.´// � 0 when Im.´/ � 0;

B is real and B � 0 when ´ is real and ´ > 1 or ´ < �1:
Note that this choice of ´ is quite different to that in (5.15), and not restricted to
two-phase composites. Thus, B.´/ has the integral representation

B.´/ D B0 C
Z 1

�1

dM.�/

� � ´
;(5.44)

where B0 is a positive definite operator and dM.�/ is a positive definite real
operator-valued measure satisfying the constraintZ 1

�1

dM.�/

1 � �
� B0:(5.45)
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 31

To begin, suppose we are only interested in the quadratic form .BE0;E0/ associ-
ated with B. Then,

(5.46)
.B.´/E0;E0/ D k0

�
1C

Z 1

�1

.1 � �/d�.�/

� � ´

�
D k0

�
1C

Z 1

�1

�
�1C 1 � ´

� � ´

�
d�.�/

�
;

where k0 D .B0E0;E0/ is real and positive and

d�.�/ D .dM.�/E0;E0/=�k0.1 � �/�(5.47)

is a positive real-valued measure, satisfying the constraintZ 1

�1

d�.�/ � 1:(5.48)

Note that k0 can be identified with .B.´/E0;E0/ in the limit ´ ! 1, i.e., as
! ! i

p
c.

If we are interested in finding complex coefficients �k , k D 1; 2 : : : ; m, such
that

(5.49)

.B.´0/E0;E0/ �
mX

kD1

�k.B.´k/E0;E0/

D k0

(
.1 �

mX
kD1

�k/
�
1 �

Z 1

�1

d�.�/
�

C
Z 1

�1

"
1 � ´0

� � ´0
�

mX
kD1

�k.1 � ´k/

� � ´k

#
d�.�/

)
is small, we require that

sup
�2��1;1�

����� 1

� � ´0
�

mX
kD1

�k.1 � ´k/=.1 � ´0/

� � ´k

����� � �m:(5.50)

In particular, with � D 1, this implies�����1 �
mX

kD1

�k

����� � j1 � ´0j�m;(5.51)

and so we obtain

.B.´0/E0;E0/ �
mX

kD1

�k.B.´k/E0;E0/ � 2k0j1 � ´0j�m:(5.52)

By setting �k D �k.1 � ´k/=.1 � ´0/ we see this is exactly the problem encoun-
tered in Section 6, and we may take the coefficients �k to be given by (4.7). The
motivation for studying this problem is that the response at special frequencies can
sometimes directly reveal information about the geometry. This is the case for
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32 O. MATTEI, G. MILTON, AND M. PUTINAR

elastodynamics in the quasistatic limit when only two materials are present. The
material parameters are the bulk moduli �1.!/, �2.!/ and shear moduli �1.!/,
�2.!/ of the two phases. It may happen that �1.!0/ D �2.!0/ for certain com-
plex frequencies !0 and if �1.!0/ ¤ �2.!0/ the response at frequency !0 can
reveal the volume fraction of phase 1 in a composite, or more generally in a two-
phase body.

REMARK 5.3. It is not much more difficult to treat bilinear forms. Then we have

(5.53)

.B.´/E0;E00/

D .B.´/.E0 C E00/;E0 C E00/ � .B.´/.E0 � E00/;E0 � E00/

D k
.1/
0

�
1C

Z 1

�1

�
�1C 1 � ´

� � ´

�
d�1.�/

�
� k

.2/
0

�
1C

Z 1

�1

�
�1C 1 � ´

� � ´

�
d�2.�/

�
;

where

k
.1/
0 D .B0.E0 C E00/;E0 C E00/; k

.2/
0 D .B0.E0 � E00/;E0 � E00/;(5.54)

are both real and positive, while

(5.55)
d�1.�/ D .dM.�/.E0 C E00/;E0 C E00/=�k

.1/
0 .1 � �/�;

d�2.�/ D .dM.�/.E0 � E00/;E0 � E00/=�k
.2/
0 .1 � �/�

are positive real-valued measures, satisfying the constraints thatZ 1

�1

d�1.�/ � 1;

Z 1

�1

d�2.�/ � 1:(5.56)

We seek complex coefficients �k , k D 1; 2 : : : ; m, such that

(5.57)

.B.´0/E0;E00/ �
mX

kD1

�k.B.´k/E0;E00/

D k
.1/
0

(
.1 �

mX
kD1

�k/

�
1 �

Z 1

�1

d�1.�/

�
C
Z 1

�1

"
1 � ´0

� � ´0
�

mX
kD1

�k.1 � ´k/

� � ´k

#
d�1.�/

)
=4

� k
.2/
0

(
.1 �

mX
kD1

�k/

�
1 �

Z 1

�1

d�2.�/

�
C
Z 1

�1

"
1 � ´0

� � ´0
�

mX
kD1

�k.1 � ´k/

� � ´k

#
d�2.�/

)
=4

is small. Using the bounds (5.50) we obtain�����.B.´0/E0;E00/ �
mX

kD1

�k.B.´k/E0;E00/

����� � .k
.1/
0 C k

.2/
0 /j1 � ´0j�m=2:(5.58)
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 33

REMARK 5.4. Noting that

(5.59)

d

d´
.B.´/E0;E0/ D k0

Z 1

�1

.1 � �/d�.�/

.� � ´/2

D k0

Z 1

�1

1

� � ´

�
�1C 1 � ´

� � ´

�
d�.�/;

we can easily obtain bounds that correlate this derivative at ´0 with the values of
.B.´k/E0;E0/, k D 0; 1; 2 : : : ; m. We seek complex constants 
k , k D 0; 1; 2;

: : : ; m, such that

(5.60)

.B.´0/E0;E00/ �
mX

kD1

�k.B.´k/E0;E00/

D k
.1/
0

( 
1 �

mX
kD1

�k

!�
1 �

Z 1

�1

d�1.�/

�

C
Z 1

�1

"
1 � ´0

� � ´0
�

mX
kD1

�k.1 � ´k/

� � ´k

#
d�1.�/

)
=4

� k
.2/
0

( 
1 �

mX
kD1

�k

!"
1 �

Z 1

�1

d�2.�/

#

C
Z 1

�1

"
1 � ´0

� � ´0
�

mX
kD1

�k.1 � ´k/

� � ´k

#
d�2.�/

)
=4

is small. Using the bounds (5.50) we obtain

(5.61)

�����.B.´0/E0;E00/ �
mX

kD1

�k.B.´k/E0;E00/

����� � .k
.1/
0 C k

.2/
0 /j1 � ´0j�m=2:

is small, and this is ensured if

(5.62) sup
�2��1;1�

�����
mX

kD0

�k.1 � ´k/=.1 � ´0/

� � ´k
C �0 C �1=.1 � ´0/�

� � ´0
� 1

.� � ´0/2

����� � �m;

and �m ! 0 as m!1. Observe that (5.62) with � D 1 implies�����
mX

kD0

�k

����� � j1 � ´0j�m:(5.63)

Comparing (5.62) with (4.23) we see that we should choose

�0 D �0 � �1=.1 � ´0/�; �k D �k.1 � ´0/=.1 � ´k/;(5.64)
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34 O. MATTEI, G. MILTON, AND M. PUTINAR

and then, with bm and coefficients �k given by (4.26) and (4.27), (5.62) holds with
�m given by (4.29). Then

(5.65)

�����
�

d

d´0
.B.´0/E0;E0/

�
�

mX
kD0

�k.B.´k/E0;E0/

�����
� 2jk0jj1 � ´0j�m;

holds, and similarly one has

(5.66)

�����
�

d

d´0
.B.´0/E0;E00/

�
�

mX
kD0

�k.B.´k/E0;E00/

�����
� �k.1/0 C k

.2/
0

�j1 � ´0j�m:
The convergence of �m to zero as m ! 1 is again ensured provided for a posi-
tive constant r < R, where R is defined by (4.10), each ´k 2 H.r/ D H1.r/ [
H2.r/ [ H3.r/, where the regions Hi , i D 1; 2; 3, are given by (4.16). The
motivation for studying this problem is that the response may be trivial at certain
frequencies !0 while the derivative of the response with respect to ! at ! D !0
directly reveals some information about the body. This is the case for electromag-
netism when only two nonmagnetic materials are present (with magnetic perme-
abilities �1 D �2 D �0 where �0 is the permeability of the vacuum). It may
happen that the electric permittivities of the two phases satisfy "1.!0/ D "2.!0/

for certain complex frequencies !0. At this frequency !0 the body is homogeneous
and its response can be easily calculated. Using perturbation theory and assuming
d"1.!0/=d!0 ¤ d"2.!0/=d!0 the derivative of the response with respect to ! at
! D !0 reveals information about the distribution of the two phases in the body.
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