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Abstract

In two-phase materials, each phase having a non-local response in time, it has
been found that for some driving fields the response somehow untangles at spe-
cific times, and allows one to directly infer useful information about the ge-
ometry of the material, such as the volume fractions of the phases. Motivated
by this, and to obtain an algorithm for designing appropriate driving fields, we
find approximate, measure independent, linear relations between the values that
Markov functions take at a given set of possibly complex points, not belonging
to the interval [-1,1] where the measure is supported. The problem is reduced
to simply one of polynomial approximation of a given function on the interval
[-1,1] and, to simplify the analysis, Chebyshev approximation is used. This al-
lows one to obtain explicit estimates of the error of the approximation, in terms
of the number of points and the minimum distance of the points to the interval
[-1,1]. Assuming this minimum distance is bounded below by a number greater
than 1/2, the error converges exponentially to zero as the number of points is in-
creased. Approximate linear relations are also obtained that incorporate a set of
moments of the measure. In the context of the motivating problem, the analysis
also yields bounds on the response at any particular time for any driving field,
and allows one to estimate the response at a given frequency using an appropri-
ately designed driving field that effectively is turned on only for a fixed interval
of time. The approximation extends directly to Markov-type functions with a
positive semidefinite operator valued measure, and this has applications to de-
termining the shape of an inclusion in a body from boundary flux measurements
at a specific time, when the time-dependent boundary potentials are suitably tai-
lored.
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1 Introduction

Many systems have responses that are nonlocal in time as this is naturally a con-
sequence of the fact that it takes time for subelements of the system to respond.
Usually, this leads one to either: (1) examine the response at each, or one or more,
frequencies as the convolution in time characterizing the response of the system
becomes a simple multiplication in the frequency domain; or (2) examine the re-
sponse to a delta function or Heaviside function as this directly reveals the integral
kernel characterizing the response. In this paper we show that desired information
about the system can be directly obtained from selectively designed input signals
that are neither at constant frequency, nor delta or Heaviside functions.

Our initial motivation comes from the work [37,39] where we derived micro-
structure-independent bounds on the viscoelastic response at a given time ¢ of two-
phase periodic composites (in antiplane shear) with prescribed volume fractions f;
and f» = 1 — fi of the phases and with an applied average stress or strain pre-
scribed as a function of time. We found that the bounds were sometimes extremely
tight at particular times ¢ = #y: see Figure 1.1. This was quite a surprise because
the response of each phase is nonlocal in time, yet somehow this response is untan-
gled at these particular times. Thus, the bounds could be used in an inverse fashion
to determine the volume fractions from measurements at time #y. Determining vol-
ume fractions of phases is important in the oil industry, where one wants to know
the proportions occupied by oil and water in the rock, to finding the porosity of
osteoporetic bone to detecting breast cancer, to assessing the porosity of sea-ice
and other materials, and even to determining the volume of holes in Swiss cheese.
Previous approaches to obtaining volume fraction information include using vol-
ume fraction dependent bounds on the complex dielectric constant at one or more
frequencies in an inverse way [16,18,41,42], estimation of the measure in the asso-
ciated Stieltjes function whose integral gives the volume fraction [14, 15, 17], and
estimation of the distributions of poles and zeros or poles and residues when the
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measure is discrete or approximated by a discrete one [41,66]. These generally re-
quire measurements at many frequencies to yield accurate estimates of the volume
fraction. By contrast our approach only requires a single measurement at a specific
time with an applied field that has a carefully designed variation in time.

While our bounds [39] were very tight at specific times in some examples, they
were far from tight at all times in other examples: see Figure 1.2. At that time
it was totally unclear as to whether appropriate input signals could produce the
desired tight bounds at a specific time and, if so, what algorithm should be followed
to design these input signals. The primary goal of this paper is to address this
problem in the case where the input function has a finite number of frequencies. In
particular, for the example of Figure 1.2, our algorithm produces the much tighter
bounds of Figure 1.3. In [40] we show that one can find smooth input signals,
containing a continuum of frequencies, such that the response Re[v(¢p)] of the
material at a specific moment of time 7o is totally measure independent, while
Re[v(#)] has a smooth dependence on ¢, with Re[v(¢)] — 0 when ¢ — —o0.

We emphasize that our results are applicable not just to determining the volume
fractions of the phases in a two-phase composite but also determining the volume
and shape of an inclusion in a body from exterior boundary measurements. This is
shown in Sections 5.3 and 5.4. It is a classical and important inverse problem with
a long history and many contributions: see [1,3,4,9-11,25,28,31-34,52,54,55]
and references therein.

A secondary goal of this paper is to solve an accompanying mathematical ap-
proximation problem, which we now outline, and which is essential to achieve the
primary goal.

2 The Approximation Theory Question

It is the aim of this section to formulate and solve an approximation theory
question, directly relevant to our study. Specifically, we provide bounds that pro-
vide linear correlations on the values taken by certain Markov functions, that is,
Cauchy transforms of positive measures with compact support on the real line.
These functions map the upper half-plane to itself and arise as compressed resol-
vents of self-adjoint operators. For this very reason the rational approximation
theory of Markov functions was and remains a central topic of constructive func-
tion theory. Markov functions are also called, depending on the context, Herglotz
functions, or Nevanlinna functions, or Stieltjes transforms.

2.1 Evaluating Markov functions

Suppose F,(z) is a Markov function having the integral representation

ey)
-1 A—2z '

@2.1) Fu(z) =
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FIGURE 1.1. Comparison between the lower and upper bounds on the
output average stress with an input applied average strain of H (¢), where
H () is the Heaviside function, O for # < 0 and 1 for ¢ > 0. This is called
a stress relaxation test. One phase is purely elastic (G = 6000), while
the other phase is viscoelastic and modeled by the Maxwell model (G =
12000 and n = 20000) (the results are normalized by the response of the
elastic phase). The following three cases are graphed: no information
about the composite is given; the volume fraction of the components is
known (f; = 0.4); and the composite is isotropic with given volume
fractions. The bounds become tighter and tighter as more information
on the composite structure is included, so that if color is missing from
the figure the outermost pair of bounds are those with no information,
the middle pair include just the volume fraction, and the innermost pair
include both volume fraction and isotropy. Reproduced from Figure 6.2
in [39].

where the positive Borel measure p has unit mass:

1
2.2) / du(d) = 1.
-1

Given m (possibly complex) points z1, Z2, ..., Zm not belonging to the inter-
val [—1, 1], we are interested in finding complex constants oy, ®z, ..., 0, such
that

m

(2.3) > Fu(ze) ~ 1

k=1

ASUAOIT suowwo)) aAnear) aiqesrjdde ay) £q pauloAoS are sa[d1IR YO ‘ash JO SN 10§ AIeIqI duluQ AO[IA U0 (SUONIPUOI-pUE-SULI)/wod KM’ Areiqijaurjuo//:sdny) suonipuo)) pue suLd |, 3yl 908 ‘[£207/L0/61] uo Areiqry auruQ A3[ip ‘yein JO Ansiaatun £q 780z edo/z001°01/10p/woo Kaim  Kreiqrjaurjuo//:sdny woay papeojumo( ‘0 ‘z1€0L601



ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 5

15 T T T

—— No information

—— Volume fraction

—— Volume fraction and isotropy

stress

ASUAOIT suowwo)) aAnear) aiqesrjdde ay) £q pauloAoS are sa[d1IR YO ‘ash JO SN 10§ AIeIqI duluQ AO[IA U0 (SUONIPUOI-pUE-SULI)/wod KM’ Areiqijaurjuo//:sdny) suonipuo)) pue suLd |, 3yl 908 ‘[£207/L0/61] uo Areiqry auruQ A3[ip ‘yein JO Ansiaatun £q 780z edo/z001°01/10p/woo Kaim  Kreiqrjaurjuo//:sdny woay papeojumo( ‘0 ‘z1€0L601

0.5

FIGURE 1.2. Comparison between the lower and upper bounds on the
output stress relaxation in the “badly ordered case”, when the responses
on the pure phases as a function of time do not cross with an input applied
average strain of H(¢), where H(t) is the Heaviside function. Here the
purely elastic phase has shear modulus G = 12000, while the Maxwell
parameters for the viscoelastic phase are G = 6000 and n = 20000
(again, the results are normalized by the response of the elastic phase).
The three subcases are the same as for the previous figure. However the
bounds remain quite wide except near ¢t = 0. Reproduced from Figure
6.5 in [39]. The approach developed in this paper can yield tight bounds
with a suitably designed input function as shown in Figure 1.3.

for all probability measures p. Optimal bounds correlating the possible values of
the m-tuple (F,(z1), Fi.(22), ..., F;,(2m)) as p varies over all probability mea-
sures are well-known, as derived from the well charted analysis of the Nevanlinna-
Pick interpolation problem [35]. Indeed, the nonlinear constraints among the val-

ues Fy(z1), Fy(22). ..., Fu(zm) and standard convexity theory provide optimal
bounds on the range of the left-hand side of (2.3) for given constants a1, &z, . . . , O}
see [35] for details. But this is not our main concern.

We would rather like to choose m points z1, Z2,...,Zm, and find associated
constants o1, @2, . . ., 0y, for every prescribed integer m, subject to a uniform esti-
mate

m
(2.4) sup Z arFu(zg) — 1| < em
olke=1

for some computable bound ¢, that tends to zero as m — oo. The geometry of
the locus of these points is obviously essential, and it will be detailed in the sequel.
The faster the convergence, the better.
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FIGURE 1.3. Comparison between the lower and upper bounds on the
output stress relaxation in the “badly ordered case” (G = 12000 for
the elastic phase, and G = 6000 and n = 20,000 for the viscoelas-
tic Maxwell phase), when the input function is chosen accordingly to
equation (2.10), which represents the main result of this paper. Specif-
ically, equation (2.10) provides the amplitude of the applied field that
gives extremely tight bounds at a chosen moment of time (here ¢ = 0)
when the volume fraction is known. Indeed, the bounds incorporating
the volume fraction (the innermost bounds, in red) take the value 0.4 at
t = 0, which coincides exactly with the volume fraction of the viscoelas-
tic phase. Here, the applied loading is the sum of three time-harmonic
fields with frequencies w = 0.1, 0.5, 1.5.

Since we deal with probability measures, condition (2.4) is equivalent to

o
(2.5) sup -1

A€[—1,1]

<€m.
A—2Zg a

k=1
And this is good news because we turn our focus to the minimal deviation from
one, on the interval [—1, 1], of a rational function R(A) satisfying R(co) = 0
and possessing simple poles at the points z1,...,Zm,. Or equivalently, denoting
gA) =L —z1)A—22) - (A —2zmm) and w(A) = |g(1)|~!, we aim at finding the
minimal deviation from zero of a monic polynomial p of degree m, with respect to
the weighted norm || p wlloo = supyej—1,1712(AD)w(A)].

Both perspectives align to well-known classical studies in approximation theory.
The first one is an extremal problem in rational approximation with prescribed
poles, a subject going back at least to Walsh [59]. A great deal of information
in this respect was systematized in Walsh’s book [60]. The second approach is
a genuine weighted Chebyshev approximation problem, and here we are on solid
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ground. First, note that the functions
(2.6) w(A), Aw(r), A2w(R), ...

form a Chebyshev system on the interval [—1, 1]; that is, they are linearly inde-
pendent and any linear combination of w(1), Aw(A), A2w(X), ..., A™w(A) has at
most m zeros in [—1, 1]. Even more, a stronger so-called Markov property of this
system of functions holds. The classical Chebyshev approximation in the uniform
norm theorem has an analogue for such nonorthogonal bases [29,35]. To be more
precise, there exists a unique monic polynomial p of degree m minimizing the
norm || p w||eo: this polynomial is characterized by the fact that | p(1)| attains its
maximal value at m + 1 points, and the sign of p(A) alternates there; see also [43].
In case w(A) = 1, the optimal polynomial is of course the normalized Chebyshev
polynomial of the first kind: p(X) = T'g,Ef), Ty (cosx) = cos(mx), m > 0. The
constructive aspects of weighted Chebyshev approximation are rather involved;
see, for instance, the early works of Werner [62—64]. In the same vein, the asymp-
totics of the optimal bound of our minimization problem inherently involves po-
tential theory or operator theory concepts. We cite for a comparison basis a few
remarkable results of the same flavor [6,22,53].

Without seeking sharp bounds and guided by the specific applications we aim
at, we propose a compromise and relaxation of our extremal problem:

2.7) igfllp Wlleo = IIWIlooigfllplloo.

At this point we can invoke Chebyshev original theorem and his polynomial 7,
obtaining in this way the benefit, very useful for applications, of computing in
closed form the residues oy

2.2 Main result

The present section contains the principal estimate which provides the theoreti-
cal foundation of our explorations. As explained in the introduction, we try to bal-
ance the computational accessibility and simplicity with the loss of sharp bounds.
A few comments about the versatility of the following theorem are elaborated after
its proof.

THEOREM 2.1. Let 21,22, ..., Zm be mutually disjoint complex numbers, subject
to the assumption that the distances from 7y, to the interval [—1, 1] given by

(2.8) d(zx) = min
re[—1

5

A — 2kl
1]

(2.8) are bounded from below by 1/2

(2.9 Amin = rr}cind(zk) > 1/2.
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Then one can find complex constants oy, 2, ..., 0, each depending on m, such
that the estimate (2.4) holds with €5, — 0 as m — oo. In particular, the values

T (Zk)
2 (2 — 27)
where Ty, (2) is the Chebyshev polynomial of the first kind, of degree m, assure that

(2.4) holds with €3 = 2/ (2dmin)™. Note that this bound converges exponentially
to zero as m — o0.

(2.10) o = —

PROOF. Recall that f(z) = Fy(z) is the Cauchy transform of a probability
measure supported by the interval [—1, 1]. From

/ e

we infer that equahty is achieved in case p is a point mass

(2.12) p(A) = 8(A = Ao),

@.11)

Zakf(zk)—l Z _ka —1/.

k=1

where Ag belongs to [—1, 1]. Equivalently, we note

m 1 m
. 4773
mfsu Zr) — 1| = infsu / di(A) —1
pg o f(2) nfsup | du( kZ::l)‘_Zk

(2.13) m
=inf sup Pk _ 1.
¢ hoel-1,11 [ Ao — 2k

Therefore we seek a set of constants oy, «a, ..., o, (each dependent on m) and

upper bounds €, with the property that €, — 0 as m — oo and
m

Z A — 1
k=1 %k

More clearly, direct substitution of (2.14) into (2.11) shows that relation (2.4)
holds.

(2.14)

<epn foralle[-1,1].

Write
_ri)
(2.15) = R(L),
Z )
where g (A) is the prescrlbed monic polynomial
m
(2.16) g =[x -z
J=1

of degree m, and p(A) is a polynomial of degree at most m — 1 that remains to be
determined. The constants o can then be identified with the residues at the poles
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A =z of R(A):
P (k)
[1zk(ze —25)
Consequently the problem becomes one of choosing p(A) such that

O P() — (M)

= sup

q() ‘ rel-11]  19(A)]

is close to zero. Clearly, the problem is now one of polynomial approximation of
the monic polynomial g(4) of degree m by the polynomial p(A). A natural choice
is

(2.19) pPA) = qA) = Tm(A) /2",

where T}, (1)/2™~! is the Chebyshev polynomial T, (A) of degree m, normalized
to be monic. This choice minimizes the sup-norm of | p(A) —g(X4)| over the interval
A€[-1,1]and

(2.17) a =

(2.18)

S
re[-1,1]

(2.20) P =g = |Tw(R)/2" 71 < 1/2"71
provides a bound on the numerator in (2.18). To bound the denominator, we have
m m
2.21) g = T 1=zl = [ 4z
k=1 k=1

where d(zy) is given by (2.8). Using (2.9) and the bounds (2.20) and (2.21) we see
that (2.4) is satisfied with €™ = 2/(2dnin)™. Finally, with p(4) given by (2.19)
we see that the residues o at the poles A = z of g(4), given by (2.17) correspond
to those given by (2.10). O

REMARK 2.2. The use of Chebyshev polynomials is convenient as bounds on their
sup-norm over the interval [—1, 1] are readily available. An alternative approach,
also accessible from the numerical/computational point of view, is to work with
the L2 norm and find the polynomial p(1) of degree m — 1 that approximates the
given monic polynomial ¢(A) of degree m in the precise sense that

1
(2.22) /_1 [(p(A) —gW)Pdv(R)  with dv(A) = dA/lg(M)[?

is minimized. Subsequently, one has to invoke Bernstein-Markov’s inequality
which bounds an L? norm by uniform norm. This first step is a standard prob-
lem in the theory of orthogonal polynomials: one chooses p(A) — g(A) to be the
monic polynomial of degree m that is orthogonal to all polynomials of degree at
most m — 1 with respect to the measure dv(A). Separating the contribution of
the denominator, by selecting v to be the measure d1/+'1 — A2 we recover the
Chebyshev polynomials we have advocated in the proof of the main result.
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REMARK 2.3. Assumption (2.9) is more than we really need. To underline the
dependence on n of all data we set

gn(2) = (2 —z1(M))(z —z22(n)) -~ (2 —z2n(n)), n > 1,

and
1

|gn(2)]
For the proof of Theorem 2.1 above we only need

wn(2) =

lim sup ||wn||}x/)” < 2.
n

That is, there exists » < 2, so that for large n, the inequality
wy,(A) <r", A e[-1,1],

holds true.
By taking the natural logarithm, we are led to enforce the condition

1 n
limsup sup -— In —— < In2.
no el-1,11" ; A =z ()]

That is, an evenly distributed probability mass on points z1(n), ..., Z,(n) should
have its logarithmic potential asymptotically bounded from above by a prescribed
constant, on the interval [—1, 1]. Again, this turns out to be a rather typical problem
of approximation theory, at least when restricting the poles of g, to belong to some
Jordan curve surrounding [—1, 1]. A natural choice is an ellipse with foci at £1;
see also [6,53].

2.3 Incorporating moments of the measure

Here we assume that the first » moments M, M», ..., M, of the probability
measure d i, given by (2.1), are known, in addition to My = 1 and that m (possibly
complex) points Z1,Z22,...,2m not on the interval [—1, 1] are given. We seek
complex constants o1, a2, ..., 0y and y1, V2, ..., Yn, with say y, = 1 such that

m n
(2.23) D e flzi) =) veMy
k=1 £{=0

is small for all probability measures p with the prescribed n moments. The analysis
proceeds as before, only now we introduce the polynomial

(2.24) r() =) redt,
£=0

and set p(A) and ¢g(A) to be the polynomials defined by (2.15) and (2.16). The goal
is now to choose polynomials p(4) and r(A) of degrees m — 1 and n, respectively,
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such that r (1) is monic and

rA)
q)

P(A) —q(M)rA)]

(2.25) sup
)Le[ 1 ] lg(A)]

A€[—1,1]

(/\)‘

is close to zero. We choose p(A) and r(A) such that

(2.26) Tinan(X) /27T = q()r(d) — pR).

This is simply the Euclidean division of the normalized Chebyshev polynomial
Tinn(2)/2m17 =1 by g(1) with (1) being identified as the quotient polynomial
and —p(A) being identified as the remainder polynomial. Then, assuming (2.9)
and using (2.21), we have

rA) )

q)

<e(”) with €% = 2

2.27 _
( ) e " 2" (2dmin)m

A€[—1,1]

satisfying e( " 5 0asm — oo, with n being fixed. With constants o given by
(2.17) and constants y; being the coefficients of the polynomial (1), as in (2.24),
it follows that

m n
sup Z e f(zK) — Y veMy
(2.28) k=1 £=0
sup/ di(A) < e,(,’:).
k=1

2.4 Operator-valued measures

Mutatis mutandis, the results exposed in the previous sections extend immedi-
ately to the resolvent of a self-adjoint operator situation, via the spectral represen-
tation

(2.29) A=/ AdP),.
a(A)

where 0 (A) is the spectrum of A, assumed to be contained in the interval [—1, 1],
and d P, is an orthogonal projection valued measure satisfying

(2.30) I= / dP;.
(a)
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12 O. MATTEIL G. MILTON, AND M. PUTINAR

In this context we remark

mf Zak[A—ZkI ZygAE
k=1
L
(2.31) / YeA” | dPy,
ar, (A)|: )‘_Zk ;)
n
< sup / yg/\Z dP;
av; |Jo@) | /\—ck ;

Choosing constants oy, &g, . . ., 0y and Y1, V2s...Yn, With y, = 1, as in the pre-
vious section, the bound (2.27) substituted in (2.31) implies that the desired bound

Z o [A =z 1] Z yeA*

k=1 £=0

(2.32) inf <,

holds with 6,(,’; ) =2 /12" (2dmin)™] which goes to zero as m — oo provided dpin >
1/2.

3 Relevance of the Approximation Problem to Systems
with a Nonlocal Time Response
and the Viscoelasticity Problem in Particular

Without going into the specific details, as these will be provided later, in many
linear systems with an input function u(¢) varying with time ¢, of the form

m
3.1) u(t) =y Pre k),
k=1
where the wy, are a set of (possibly complex) frequencies and #y is a given time, the
output function v(¢) takes the form

m
(3.2) v(t) = D agaoFy(z(wy))e ok =10),
k=1
in which the function F,(z) is given by (2.1),
3.3) ar = Brelwp).

and the functions z (w) and ¢(w) depend on w in some known way. The real con-
stant a9 > 0 and the unknown measure du depend on the system. In our vis-
coelasticity study [39] the connection with Markov functions comes from the fact
that the effective shear modulus G« (w), which relates the average stress to the av-
erage strain at frequency w, as a function of the shear moduli G1(w) and G2 (w)
of the two phases, has the property that [(G«/G1) — 1]/(2f1), in which f7 is the
volume fraction of phase 1 is a Markov function of z = (G + G2)/(G2 — G1)
taking the form (2.2) [7,21,44].

ASUAOIT suowwo)) aAnear) aiqesrjdde ay) £q pauloAoS are sa[d1IR YO ‘ash JO SN 10§ AIeIqI duluQ AO[IA U0 (SUONIPUOI-pUE-SULI)/wod KM’ Areiqijaurjuo//:sdny) suonipuo)) pue suLd |, 3yl 908 ‘[£207/L0/61] uo Areiqry auruQ A3[ip ‘yein JO Ansiaatun £q 780z edo/z001°01/10p/woo Kaim  Kreiqrjaurjuo//:sdny woay papeojumo( ‘0 ‘z1€0L601



ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 13

Henceforth we adopt the notational simplification

f(2) = Fu(2).

Thus, at time ¢ = tg, the output function is

(3.4) v(to) = ao Y _ ay f(zx) with 2 = z(wy),
k=1

and we seek an input signal so that the output v(#) is almost system independent
with v(tp) ~ ag. According to Theorem 2.1 this will be the case if the coefficients
oy are given by (2.10) and din > 1/2. So, by measuring v(#9) we can determine
the system parameter ag. In the viscoelastic problem that we studied [37,39], ag
is the volume fraction fi (see also [7]), and it is useful to be able to determine this
from indirect measurements.

Typically, one may assume the frequencies wy have a positive imaginary part so
that the input signal u(#) is essentially zero in the distant past. In (3.1) one could
just take a signal with m — 1 frequencies wg, kK = 1,2,...,m — 1. Then, with the
coefficients og being given by (2.10) and dyin > 1/2, we have

(3.5 v(to) + amao f(z(wm)) = ao Y _ o f(zx) ~ ag  with zg = z(wy).
k=1

So, if ag is known, a measurement of v(zp) will allow us to estimate the output
ao f(z(wm))e 1@mE=10) gt a desired (possibly real) frequency wp, given the input
e_iwm (t_tO)_

It is often the situation, such as in the viscoelastic problem, that only the real
part of v(¢) has a direct physical significance and, hence, one might want to find
constants o such that, say,

2Re[v(tg)] = ag (Z o f(zg) + Z@f(zk))

k=1 k=1
= ag (Z oy f(zx) + Z@f@) ~ ao,
k=1 k=1

where the overline denotes complex conjugation. This, again, reduces to a problem
of the form (2.3) where, after renumbering, the complex values of z; come in pairs,
Zk and Zp4+1 = Zg, and we may take ax; = @ so that the left-hand side of (2.3)
is real.

We can gain more flexibility in the choice of the input signal if we replace
Ty (Zx) in the formula (2.10) for the residues o with (2 — 20)Tm—1(2%), where
Zo is a prescribed real zero of p(A) — g(A) = (A — z0) Tu—1(X). In particular, we

3.6)
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14 O. MATTEIL G. MILTON, AND M. PUTINAR

may choose z¢ to, say, minimize

m
~ —iwy (t—to)
(3.7) max [v(0)|/|v(fo)| ~ max L; a f(zr)e }

to help ensure that the output signal is not too wild. If we are only interested in
Re[v(?)] so that the z; come in complex conjugate pairs, then we may replace
Tm(zg) in (2.10) with (zx — 20)(zx — Z0) Tm—2(2k ), and choose z¢ to, say, mini-
mize

(3.8)  max|Refv(n)]|/| Refv(1o)]| ~ max |Re L;ak f(me—iwk(f—fo)} .

In the first case, note that the signal u(¢) (3.1) is linear in zy while in the second
case it is linear in the real coefficients of the quadratic (A —z¢)(A —Zg). So in either
case we have a linear space of possible signals (though |z¢| should not be too large
for the approximation to hold at time #p). Also o — 0 as zg — Zx so in this
limit the frequency wy, is absent from the input and output signals. More generally,
to help minimize (3.7) or (3.8) one might replace 75, (zx) with sas(2x) Trm—n (Zk)
where 537 (1) is a polynomial of fixed degree M < m.

The results of Section 2.3 allow us to determine a relation between the n mo-
ments My, M, ..., M, and ag if v(¢p) is measured. This can be useful when the
moments have a physical significance: in the viscoelastic problem, for instance,
M depends only on the volume fraction f7 if one assumes that the composite has
sufficient symmetry to ensure that its response remains invariant as the material
is rotated [7]. So, incorporating the moment M; and measuring the response at
time 7o then allows us to obtain tighter bounds on f7, in a similar way to that done
in [37,39].

The relevance of our inequality (2.32) for operator-valued measures is that in
many linear systems with an input field u(z) varying with time ¢, of the form

m
3.9) u(t) = Z ﬂke_i‘”k(t_tO)uo,
k=1

the output field v(¢) takes the form

m
(3.10) (1) = Z age tOR =10 g o TA — z ()l tug  with o = Brc(wy),
k=1
where the real constant ag and the self-adjoint operator A characterize the response
of the system, and the system parameters z(w) and c¢(w) depend on the frequency
w in some known way. Then, the bound (2.32) implies

n
(3.11) v(to) —ao Z veAbug| < agel™ |ug) .
£=0
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 15

4 Applications of the Approximation Scheme

With the mathematical and physical backgrounds in place, we return to the
bounds of Markov functions. The notations are the same as in the approximation
theory section.

4.1 Bounds on the output function v(¢) at any time ¢

Supposing any constants o1, &2, .. ., &y, are given, it is easy to get bounds on
v(t) given by (3.2) at any time ¢ that incorporate the n known moments My, M>,

., M. One introduces an angle 6 and Lagrange multipliers y1, y2,..., Yy and
takes the minimum value of

4.1) / du(3) Re [e"’ A Fke +y mf} ,
=1

as u varies over all probability measures supported on [—1, 1] with unconstrained
moments. The minimum will be achieved by the point masses u = §(A — Ap),
where Ao may take one or more values. Typically we will need to choose the

—iwg (t—to)

— z(wg)

Lagrange multipliers Y1, y2,..., Vs (that depend on 6) so that the minimum is
achieved at n values A9 = Ag ), £ =1,2,...,n, and then adjust the measure to be
distributed at these points
n
[/
4.2) du() =Y wes(r — 1),
=1

with the nonnegative weights wy, that sum to 1, chosen so that the moments take
their desired values. Then with this measure we obtain the bound

N o age —iwi (t—to)
4.3) Refe'”v(1)] >aoZW€Re {el Z A“)

By varying 6 from O to 277 we obtain bounds that conﬁne v(t) to a convex region
in the complex plane. Of course, if we are only interested in bounding Re[v(¢)],
then it suffices to take 6 = 0 or .

Figure 4.1 and Figure 4.2 depict the lower and upper bounds on Re[v(¢)] for two
systems (z(w) = 2+ i /w in Figure 4.1, thus mimicking the low-frequency dielec-
tric response of a lossy dielectric material, and z(w) = 2 — 2/w? in Figure 4.2,
thus mimicking the dielectric response of a plasma), when the coefficients oy in
(4.3) are chosen such that the bounds are extremely tight at 9 = 0, according to
(2.10). For both systems, the bounds on Re[v(¢)] are tighter the higher the amount
of pieces of information on the system is incorporated. Notice that the bounds col-
ored in black (the largest ones) correspond to the case where only the zeroth-order
moment My of the measure is known but not the value of aq: in such a case, as
shown by the zoomed graph in the blue box, at¢ = 0, the upper bound takes value 1
and the lower bound takes value 0, which are the smallest and the largest values ag
can take. On the other hand, when ag is assigned, the value that the corresponding

— z(wg)
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7—M0 =1
—Mg = 1,(10 =0.6
6 —MU = 1,M1 = 0.4,(10 =0.6

0.5

(a)

(B)

FIGURE 4.1. (a) Bounds on the real part of the response of the system,
Re[v(?)] (4.3), when the system is such that z(w) = 2 + i /w and the in-
put signal Re[u(#)] is the one depicted in (b) (with c(w)=1). We choose
the frequencies wy to be [1 + 1i;0.5 + 0.3i;2 + 0.5i], and we select
the coefficients oy according to (2.10) so that the bounds are extremely
tight at #p = 0, whereas the point masses k(()[) and the weights wy are
chosen for each moment of time ¢ such that the minimum value of (4.1)
is attained while the moments of the measure take their desired values.
Specifically, the bounds on Re[v(¢)] are plotted for three different sce-
narios, as shown by the legend.

bounds take at # = 0 is exactly ag = 0.6, as shown by the zoomed graph in the
blue box. The graphs show clearly that, in order to estimate the system parameter
ag, one has just to measure the response of the system at a specific moment of time
to (if the applied field is carefully chosen).

These are the type of bounds used in [39] to bound the temporal response of two-
phase composites in antiplane elasticity. It is not yet clear whether those bounds
can be derived from variational principles. In general, in the theory of composites,
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—My=1
L —MO = 17110 =0.6
—Mg = 1,M1 = 0.4,(10 =0.6

(B)

FIGURE 4.2. (a) Bounds on the real part of the response of the system,
Re[v(t)] (4.3), when the system is such that z(w) = 2 — 2/w? and
the input signal Re[u(?)] is the one depicted in (b) (with ¢(w)=1). We
choose the frequencies wg to be [1 + 1i;0.5 + 0.3i;2 + 0.5{], as in the
case depicted in Figure 4.1.

variational methods have proven to be more powerful than analytic approaches.
Variational methods produce tighter bounds that often easily extend to multiphase
composites: see the books [2,13,46,56,57] and references therein. For example, the
variational approach gives tighter bounds on the complex permittivity at constant
frequency of two-phase lossy composites [30] than the bounds obtained by the
analytic approach [8,44]. It also produces bounds on the complex effective bulk
and shear moduli of viscoelastic composites [20,51]. An exception is bounds that
correlate the complex effective dielectric constant at more than two frequencies
[45] that have yet to be obtained by a systematic variational approach. Variational
bounds in the time domain are available [12,38], but these are nonlocal in time.
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18 O. MATTEIL G. MILTON, AND M. PUTINAR

4.2 Using an appropriate input signal to predict the response at a given fre-
quency

Naturally, if one is interested in the response v () at a given (possibly complex)
frequency wy, the easiest solution is to take an input signal u(¢) at that frequency.
However, it might not be easy to experimentally generate a signal at that frequency
or it might not be easy to measure the response at that frequency. The problem

becomes: find complex constants o, &2, . . ., &y such that
” o 1
“4.4) sup — < é€m
rel-L1l A~ A= 20

with 2z = z(wg), kK = 0, 1,...,m. Defining the polynomials p(A) and g(A) as in
(2.15) and (2.16) one needs to find p(A) of degree m — 1 such
(A —20)p() —q() | _
=~ em.
(A —z0)g(1)

4.5) sup
Ar€e[—1,1]

Proceeding as before we choose
4.6)  (A—2z0pAA) =qA) —bmTm-1(1) with by, = q(z0)/ Tm-1(20),

where b, has been chosen so that the polynomial g(A) — b,, T;,—1(A) has a factor
of (A — zp). Then the residues of R(A) = p(A)/q(A) are given by

Tm—1(zk)
"2k —z0) [ 2k — 7))

Olk=—b

4.7
@D . Tn—1(z1) [ £0(z0 — 2j)
Tm—1(z0)(zk — 20) [ 0.k (2k — 25)
and
(4.8) sup [(A —z0)p(A) —q(A)| = sup |bpTm-1(A)| = |bml,
A€[—1,1] A€[—1,1]
so that (4.4) holds with
b
(4.9) €m 1Br|

 doinfrei—117lgM)|’

where do denotes the distance from zgo to the interval [-1,1]. Joukowski’s map
yields

1 1 .
(4.10) Z0 = —(§0+—) with R = |{o| > 1,
2 o
whence
| 1
“4.11) Tim—1(z0) = 5 0 + F .
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 19

Moreover, since (o runs over a circle of radius R, we have
63— 260A +1] _ (R—1)?

4.12 do = inf
( ) 0 Ae%gl,l] 2 - 2R
and
1
(4.13) Tn-1(20)] = S(R™™H = RIT™), m =2,
implying
2lq(zo)|

(4.14) bm| = 27— gi=m
All in all, the relevant bound ¢,, satisfies

4R 1 .
wis) o< 4z0)

Su .
S R-D2ZRT R, 3 g

We obtain an exponential decay €, — 0 as m — oo provided the geometry of
the loci 21, 22, . . ., Zm 1S subject to the following condition: for a positive constant
r < R,eachz; € H(r) = Hi(r) U Hy(r) U H3(r) where

H(r)—{z' Sy <r Rez<—1}
1 s Z_.l_l . ) S J— 9

Z—20
Imz

A

H>(r) = {z : r, Rez e [-1, 1]},

z—1

H3(r):{z: fT%0 <r, Rezzl}.

In other words, all of the z; must be close to z¢ in the precise sense that z; € H(r).
Note that, as shown in Figure 4.3a, in case r < 1, H; and H3 are sectors of disks,
while Hj is a portion of an ellipse. For r € (1, R) these regions are complements
of disks/ellipse, containing the point zg, as shown in Figure 4.3c. Some of these
regions can be empty, depending on the position of zg.

A conservative choice would be r = 1 (see Figure 4.3b), in which situation
H{ and H3 are bounded by straight lines, while H» is a parabola. To fix ideas,
let us assume zo9 = xo + iyo with xo > 0 and yp > 0, all other cases being
symmetrical. Then the euclidean region H(1) where 21,22, ..., 2 are allowed
consists of points z = x + iy subject to the constraints:

(4.16) x>1 and dist(z,zp) < dist(z, 1),
union with

4.17) xe[-1,1] and (x—x)*+ y% <2ypy.

_ . .. . 1+
If yo = 0, then necessarily xo > 1, and H is simply the right half-plane x > %,

while in the case yg > 0, H(1) is the interior of a parabola with vertex at (xg, %),
within the band |x| < 1, union with the polygonal region defined by the first
distance inequality (in x > 1).

ASUAOIT suowwo)) aAnear) aiqesrjdde ay) £q pauloAoS are sa[d1IR YO ‘ash JO SN 10§ AIeIqI duluQ AO[IA U0 (SUONIPUOI-pUE-SULI)/wod KM’ Areiqijaurjuo//:sdny) suonipuo)) pue suLd |, 3yl 908 ‘[£207/L0/61] uo Areiqry auruQ A3[ip ‘yein JO Ansiaatun £q 780z edo/z001°01/10p/woo Kaim  Kreiqrjaurjuo//:sdny woay papeojumo( ‘0 ‘z1€0L601



20 O. MATTEI, G. MILTON, AND M. PUTINAR
r=20.9 r=1
4 4
2 2
w ®
0
E ER
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‘ 1 Hy H,| H, Hs
-4f, : : . -4
-4 -2 0 2 4 -4 -2 0 2 4
Rez Rez
(A) (B)
r=2

()
) (
()

H, H, Hsy

(©)

FIGURE 4.3. Representation of the loci z; for a system for which z¢ =
0.308824 — 0.764706i and R = 2.061.

Now with an input signal of the form (3.1), with 8 = o /c(wy), generating
the output function v(¢) given by (3.2), (4.4) implies the bound

(4.18) [v(t0) — vo(to)| < ao€m,

where

4.19) vo(to) = aoF(z(wo))

is the response at time £y to the single frequency input signal
(4.20) uo(t) = e 19010 /e(wg).

Of course, because this response vg(¢) is for a single frequency, v (o) determines
vo(z) for all z.
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 21

In Figure 4.4 we depict the response vg(¢) of a given system subject to an input
signal at the frequency wg and we compare the value it takes at o = 0 with the
value taken by the bounds on the response v(¢) of a system having the same values
of the moments of the measure but subject to a multiple-frequency signal with
amplitudes a chosen such that the bounds are extremely tight at 19 = 0: vg(Zo)
lies, as expected, between the bounds on v(¢) at t = ¢,

0.5 T T T T - 0

-0.1 ¢

0.2+

-0.3

04+

15 —Re[uo(t)] \ 0.5 |—Refvo(?)]
—Bounds on Re[v(t)] —Bounds on Re[v(t)]
- ‘ ‘ ‘ ‘ ‘ 0.6 ‘ ‘ ‘ ‘ ‘
2—2 -1.5 -1 -05 0 0.5 1 -2 -1.5 -1 -0.5 0 0.5 1
t t
i 2
(Az=2-— ®z=2—-—

w w

FIGURE 4.4. Comparison between the response vg(¢) of a given system
with point masses at —0.5 and 0.5, due to an input at the frequency wy =
0.7i, and the upper and lower bounds on the response v(¢) of a system
having the same value of the moments of the measure M; (Mo = 1 and
M; = 0.4) and subject to an input signal of the type (3.1), with wg given
by [1 + 1i;0.5 + 0.3i;2 + 0.5i] and coefficients B3 chosen accordingly
to (3.3) and (4.7). Notice that in both cases the value of vy (¢) attyp = 0
lies between the bounds on v(¢) at ty = 0.

REMARK 4.1. The analysis is easily extended to the case where the response vg ()
is known for a given wg but one wants to predict the derivative

vo(fo) _ OdF/L(Z)

@21 —a dz(o)

dwg dz z=2(w0) dwg
As
dF,(z Udu(a

(4.22) ﬂ = / L)Z’

dz -1 (A — Z)
the problem becomes: find complex constants ag, @1, &2, . . . , &, such that

oj Qo 1
(4.23) sup

— <ém.
rel-11 [ A= A— 2o (A —z0)? "
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22 O. MATTEIL G. MILTON, AND M. PUTINAR

Defining the polynomials p(A) and g(A) as in (2.15) and (2.16) one needs to find
p(A) of degree m — 1 such that

(A —20)?P(M) —qW)[1 —a0(A —20)]| _

4.24) sup

Ae[—1,1] (A —z20)%2g(N) < €m.
We now choose
4.25) (A — Z0)2P(/\) =qgM)[1 —ao(r — 20)] = b Tn_1 (1),
with
"(A) = b T _ (A
(4.26) b = q(20)/ Tm-1(20), o = q'(4) e

q(zo)
selected so that the polynomial on the right-hand side of (4.25) has a factor of
(A — z0)?, in which ¢’(A) = dq(A)/dA and T),_;(A) = d T,u—1(X)/dA. So the
residues ay, for k # 0, are now given by
T (Zk)

m

(zk —20)* [ 12 2k — 25)
_ Tin(zie) [1j20(20 — 2)

Tm(z0)(zk — 20)* [ 1j 20,4 2k — 2j)

ar = —b
4.27)

where by, is still given by (4.6) and
sup  |(A —20)*p(A) —g(M)[1 — o (A — 20)]|

(4.28) Ael-11]
= sup |buTm—1(A)| = |bm|
Ae[—1,1]
so that (4.23) holds with
b
(4.29) €m 1P|

 dginfier117lg(M)]

Apart from an extra factor of dp, this is exactly the same as the formula (4.9), and
so the convergence €,;, — 0 as m — oo is assured provided for a positive constant
r < R,witheach z; € H(r) = Hi(r) U Ha(r) U H3(r).

5 A General Framework for a Wide Variety
of Time-Dependent Problems

The second part of the present article deals with a sketch of a unifying frame-
work that allows us to treat the conductivity or antiplane viscoelastic response of
bodies containing an inclusion in a matrix where one is interested in estimating the
volume and/or shape of the inclusion.
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 23

5.1 The general framework

Suppose that, in some Hilbert (or vector space) ¢, one is interested in solving
for J the equations

(5.1) J=LE, QJ=J. QE=E,,

for a prescribed field Eg, where L : 5 — 7 is an operator satisfying appropriate
boundedness and coercivity conditions, and Q is a self-adjoint projection onto a
subspace . of 7, so that both E¢g and J lie in .. Note that we can rewrite (5.1)
as

5.2) J=LE —s, T/1E=E, TIiJ=0,

with E' = E — Eg, s = —LE being the source term, and I'y = I — Q being the
projection onto the orthogonal complement of . in 7. These equations arise in
the extended abstract theory of composites and apply to an enormous plethora of
linear continuum equations in physics: see, for example, the books [19,46] and the
articles [47-50].

The simplest example is for electrical conductivity (and equivalent equations),
where one has

jx) =o(xex) —s(x), Tie=e Tj =0,

5.3
©3) with '} = V(V?)~lv.,

where o (x) is the conductivity tensor, while V -s, j = j’ + s, and e are the cur-
rent source, current and electric field, and (V?)~! is the inverse Laplacian (there is
obviously considerable flexibility in the choice of s(x), the only constraints being
square integrability and that V - s equals the current source). As current is con-
served, V- j = V -s, implying V - j = 0, which is clearly equivalent to T'1j’ = 0.
In Fourier space T'; (k) = k ® k/k?, and I'1e = e implies the Fourier compo-
nents é(k) of e satisfy € = —ik(ik - €)/ k2. So e is the gradient of a potential with
Fourier components —ik - €/ k2. In antiplane elasticity one takes a material with a
cross-section in the (x1, x»)-plane that is independent of x3, applies shearing in the
x3-direction and observes warping of the cross-section. The displacement u3(x)
in the x3-direction that is associated with this warping satisfies a conductivity-type
equation V - GVus = Vs, where Vs is a shearing source term (dependent on
(x1,x2)), G(x1,x2) is the shear modulus, and correspondingly e = —Vus and
J = GVus. The antiplane response also governs the warping of rods under tor-
sion for rods that have a noncircular cylindrical shape and are composed of long
fibers aligned with the cylinder axis and embedded in a matrix such that the fiber
separation is much less than the cylinder circumference.

One approach to solving (5.1) is to apply Q to both sides of the relation E =
L~'J to obtain Eg = QL~'QJ, giving

(54) J = [QL'Q]'E,,
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24 O. MATTEIL G. MILTON, AND M. PUTINAR

where the inverse is on the subspace .#. In general, the operator L. depends on the
frequency w and E¢ could depend on w too. Then the response at this frequency is

(5.5) J(@) = [Q(L(»))"'QI'Eg(w).

We are interested in the response in the time domain when E;(a)) = B(w)E, for
some complex amplitude B(w) and E, € .% does not depend on w. In particular,
for a sum of a finite number of (possibly complex) frequencies in the time domain
the input signal is

m m
Eo(1) = ) e T (wp) = ) fre ' TE,
k=1 k=1
with B = B(wy).

(5.6)

The resulting field J(¢) is then

m
(57) J©) =) pre QL) QI E,.
k=1
and we want this to have a simple approximate formula at time 7.
To make progress we use another approach to solving (5.1). We introduce a
“reference medium” Lo = col where the real constant cg is chosen so that L — L
is coercive and introduce the so-called “polarization field”

(5.8) G = (L—-Lo)E = (L —¢oDE = J — ¢oE.
Applying the projection I — Q to this equation gives

(5.9) (I~ Q)G = —co(E —Eo) = ¢oEp — co(L — oD ' G,
and solving this for G yields

(5.10) G = ¢o[(I— Q) + co(L — col) ] Ey.
Finally, applying Q to both sides gives

(5.11) J =0 {Q+ QI - Q) + co(L — col) '] Q} Eo.

By comparing (5.4) and (5.10) we have
[QL™'QI™! = coQ + coQII ~ Q) + co(L. — oD '17'Q
=0 {Q —2Q[¥ — (L + coD(L — ¢oD~']7'Q}..
where ¥ = 2Q — I has eigenvalues £ 1. It is not obvious at all that the right-hand
side of (5.12) is independent of cq but the preceding derivation shows this. This
type of solution using a reference medium L¢ (that need not be proportional to I) is
well-known in the theory of composites: see, for example, chapter 14 of [46], [65],

and references therein.
Now assume L takes the form

(5.12) L =cP+c(I-P),
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where P is a projection operator onto a subspace & of 7. In the theory of com-
posites for two phase composites, one frequently has

(5.13) L = c1Ix(x) 4+ c2I(1 — x(x)),

where the characteristic function y(x) is 1 in phase 1 and O in phase 2, and c;
and c3 could be the material moduli. For the antiplane elasticity problem one has
¢1 = G1 and ¢p = Gy, where G and G, are the shear moduli of the phases. We
take the limit cg — ¢, and then (5.12) becomes

(5.14) [QL™'QI™" = ¢2Q + 2c2QP[P¥P — zP]'PQ,
where the operator inverse is to be taken on the subspace & and
(5.15) g=ate

Cc1 —C2

Note that P¥P, like ¥, has norm at most 1. In general, the two moduli ¢; and c¢»
depend on the frequency w and hence z defined by (5.15) will also, i.e., z = z(w).
Given an input field of the form (5.6) and letting

m
(5.16) J2(1) = QY Prea(wp)e IR,
k=1
denote the response when P = 0, i.e., when L(w) = c2(w)I, the corresponding
output field can be taken to be

m

(5.17) V() =IO = Ja() = Q ) ae™ U TO2PPUP — 2P| ' PE,,

k=1
with
c1(wg) + c2(wg)
c1(wg) — c2(wg)’
and we arrive back at the problem we have been studying. In particular, with
constants o given by (2.10) the inequality (2.32) with n = 0 implies
(5.19) [J(10) — J2(t0) — 2QPEq| < 4[PE¢|/(2dmin)™.

Alternatively, we could have chosen ¢y = ¢; and let

(5.18) 2k = z(wg) = o = Brea(wg),

m
(5.20) J1() = Q) Brer(wp)e Tk TR,
k=1
denote the response when P = I, i.e. when L(w) = ci(w)I. Then, similarly to
(5.17), we would have

m
(21 JO)—=J1() = Q) age kTP [(PLWP, + 74 P11 PLE,,
k=1
where 7 is still given by (5.18), but now with o = frci(wg), where Py = 1—P
is the projection onto the subspace perpendicular to &?. The problem, with n = 0
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26 O. MATTEIL G. MILTON, AND M. PUTINAR

and with the same choice of coefficients «y, requires a different input signal, i.e., a
different choice of the B given by B = B /c1(wg), to ensure that

(5.22) [J(t0) — J1(t0) + 2QPLE,| < 4[PE|/(2dmin)™.

5.2 Implementation to the theory of composites and its generalizations

In the theory of composites and its generalizations, one can identify a subspace
of . that we call  of “source free” fields, and we may wish to confine Eg to this
subspace. Then (5.1) can be rewritten as

(5.23) J=LE, T,E=0, T;J=0, T(E=E,,

where T’ is the projection onto %/, I'; is the projection onto &, defined as the
orthogonal complement of ., and I'; is the projection onto _#, defined as the
orthogonal complement of %/ in the subspace .. Then Q = I'g + I'; and the
Hilbert space .7¢ has the decomposition

(5.24) H=UBESD F,

and the projections onto these three subspaces are respectively I'g, I' 1, and T'».

In particular, as observed independently in sections 2.4 and 2.5 of [23] and in
chapter 3 of [19], the Dirichlet-Neumann problem can be reformulated as a prob-
lem in the theory of composites. In the simplest case of electrical conductivity,
where one has an inclusion D (not necessarily simply connected) of (isotropic)
conductivity ¢; in a simply connected body €2 having smooth boundary, with ¢,
being the (isotropic) conductivity of Q2 \ D, we may take . as the space of vector
fields that are square integrable with the usual normalized L? inner product,

1 -
(5.25) (A1, Ag) = — / A1) - Aa () dx.
12| Jo

where |2] is the volume of €2, and take

e 7 to consist of gradients of harmonic fields ug = —VV with V2V = 0
in 2,

e & to consist of gradients e = —VV with V' = 0 on the boundary 92 of 2,

e 7 to consist of divergent free vector fields j with V- j=0and j-n =0
on 0€2, where n is the outwards normal to 9€2.

The conductivity of the body may be identified with L. given by (5.12) where P
is the projection onto those fields that are zero outside D. As we are considering
time-dependent problems in the quasistatic limit, where the body is small com-
pared to the wavelength and attenuation lengths of electromagnetic waves at the
frequencies wy, the moduli ¢; and ¢, and the fields are typically complex and
frequency-dependent. The fields in % can be identified either by the values that V
takes on the boundary 0€2 or by the values that the flux n- VV takes on the bound-
ary 2. Thus the equations (5.23) are nothing other than the Dirichlet problem in
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ON THE INTERNAL GEOMETRY OF TWO-PHASE MATERIALS 27

the body €2,
j=Le, e=-VV, V.j=0, e =-VVp,
VVo=0, V=1V, ondQ,

and the mapping from I' ge to I' ¢j is nothing other than the Dirichlet to Neumann
map giving n - j in terms of V on 9€2.

For periodic two-phase conducting composites, with unit cell €2, the framework
is similar. We take .77 as the space of vector fields that are 2-periodic with the
usual normalized L2 inner product, given by (5.25), and take

(5.26)

e 7/ to consist of gradients of constant fields ug (that do not depend on x),
e & to consist of gradients e = —VV with V being an Q-periodic potential,
e 7 to consist of Q-periodic divergent-free vector fields j with V - j = 0,
having zero average over 2.
The conductivity of the body may be identified with L. given by (5.12) where P
is the projection onto those fields in 7 that are zero outside phase 1, and c; is
the (isotropic) conductivity of phase 1 while c; is the (isotropic) conductivity of
phase 2.

REMARK 5.1. More generally, the conductivity in the periodic composite could be
anisotropic, with the conductivity tensor having the special form

(5.27) L(w) = c1(w)LoP + c2(w)Lo(I—P),
where Ly is a constant positive definite tensor. As Ly commutes with I'g and P,
we can define new orthogonal spaces
(528) & =LV*¢. 7 =177 ' =LV =1v'"*w =%,
and rewrite (5.23) in the form
(5.29) J=LE, T,E=0 T.J=0 T(E =E
where
a =Lg"%), E =L)?E, Ej=L}E,,
L' =Ly ”LLy""? = ¢1(0)P + c2(w)A - P),
and
(530) Tp=Ty T)=Ly"’T (I Lel)~". T)=1-T,—-T)

are the projections onto %’ = %, &”,and ¢, in which the inverse in the formula
for I"1 is to be taken on the subspace &. As L’ now takes the same form as (5.12)
we are back to the same problem.

Similarly, in a body where the conductivity tensor has the special form (5.27)
we may take

e 7/’ to consist of gradients of fields ug = —L(l)/ 2VV with V - LoVV =0
in €2,
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28 O. MATTEIL G. MILTON, AND M. PUTINAR

e &’ to consist of fields ¢ = —L(l)/ 2VV with V = 0 on the boundary 92
of Q,
e 7' to consist of fields j’ with V- Ly/2%j’ = 0 and (Ly/j’) -n = 0 on 9%,
where n is the outwards normal to 92
as our three orthogonal subspaces. Letting I'g, I' 1, and I'» denote the projections
onto these three subspaces, respectively, and setting L = ¢ (w)P + c2(w)(I—P),
the equations (5.28) hold and we may proceed as before.

5.3 Application to solving the Calderon problem with time varying fields

Let us now use ideas from the Calderon problem to solve the inverse problem
of finding the inclusion D from boundary measurements on 2. With Q being a
three-dimensional body, we can take

(5.31) Vo = e'®* withky,kpreal and k3 =i\/k? + k2,

where the last condition implies k-k = 0, which ensures that V) is harmonic. Then
(5.19) implies

(532)  (I(to) — J1(to) +2QPEq. Ve'™) < 4[K||K'|/ (2lmin)™

for all real or complex k’. We now choose kK’ with

(5.33) ki = —ks, ki, kb realand with (k})? + (k)? = k? + k3
ik/x

to ensure that e is harmonic, and so that

(2QPE,, Ve'*™)

534) = 2(PE;.QVe¥™) = 2(PE,, Ve'k™)
= 2(k1k/1 + k2k£ — k% — k%)i ei(kl—k’l)xl+i(k2_k/2)x2 dX
2] Jp

only depends on the Fourier coefficients of the characteristic function associated
with D. Then, using integration by parts,

. 1 -
(535 (Jto) = J1(to), Ve ™) = = f W(to) = J1(t0)] -me™ > dS,
1€2] Jaq

where J(Zp) - n can be measured, while J;(#p) - n can be computed. As there
is nothing special about the x3-axis, we may rotate the Cartesian coordinates to
get estimates of other Fourier coefficients of the characteristic function associated
with D. We may also take E as constant and replace Velk'x by E, to get

(5:36) (J(to) — J1(to) + 2QPEy. Eg) = (J(to) — J1(t0). Eg) + |Eo|*|D|/|Q|
‘ < 4Eo)?/ 2dmin)™,

thus giving an estimate of the volume fraction | D|/|€2| that D occupies in the body
(i.e., the Fourier coefficient at k = 0).
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With 2 being a two-dimensional body, the situation is similar. We take
(5.37) kl real andkz = ikl, 1 = —kl, k; = —ikl,
and (5.34) is replaced by

(5.38) (2QPE,. Ve'* %) = —4k? / e2ikixy gy

D
while (5.35) and (5.36) still hold. Again we approximately recover the Fourier
coefficients of the characteristic function associated with D from measurements of
J(?0) - n and computations of J;(¢p) - n.

In the usual Calderon problem one solves the inverse problem by taking |k| to
be very large, according to the so-called complex geometric optics approach [55].
Here we see that there is no need to take |k| to be very large if we allow time-
dependent applied fields. For electromagnetism in nonmagnetic media, the mea-
surements are difficult as the time response is typically extremely rapid (from ta-
ble 7.7.1 in [24] we see that electromagnetic relaxation times in seconds for cop-
per, distilled water, corn oil, and mica are 1.5 x 1071°, 3.6 x 1076, 0.55, and
5.1 x 104, respectively, and measurements would need to be taken on these time
scales). On the other hand, for the equivalent magnetic permeability, fluid per-
meability, or antiplane elasticity problems, the relaxation times are much more
reasonable [5,26,36] and measurements in the time domain become feasible. Even
in electrical systems one can get long relaxation times, such as the time to charge
a capacitor.

From an experimental perspective, even for antiplane elasticity, it would be diffi-
cult to obtain the high-order Fourier coefficients of D as the boundary fields needed
to retrieve this information have a very fast spatial decay which would be difficult
to generate and measure.

REMARK 5.2. Instead of taking Eo(¢) = I'oE(¢) and J(¢) as our input and output
fields, one could take Jo(z) = I'¢J(¢) and E(¢) as our input and output fields. Then
one has

(5.39) E=L"'J, T1J=0, TL,E=0 ToJ=Jo.

which is exactly of the same form as (5.23), but with L replaced by L™! and the
roles of I'1, T'5, and E and J, and E¢ and Jy interchanged. So all the preceding
analysis immediately applies to this dual problem too.

5.4 Generalizations

In many problems of interest, the fields in .77 take values in a, say, s-dimensional
tensor space .7 and the operator L : 5Z — 7 in (5.1), appropriately defined, is
frequency dependent with the properties that

e L(w) is an analytic function of w in the upper half-plane Im(w) > 0,
e Im[wL(w)] > 0 when Im(w) > 0,
e L(w) = L(—®) when Im(w) > 0,
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where the overline denotes complex conjugation. By appropriately defined we
mean that L(w) (and accordingly J) may need to be multiplied by a function of w,
for example i, w, or i w, to achieve these properties. In the case of materials where
L acts locally in real space, i.e., if Q = LP, then Q(x) = L(x)P(x) for some
L(x), the first property is a consequence of causality, the second a consequence of
passivity (that the material does not generate energy—see, for example, [61]), and
the third a consequence of L(w) being the Fourier transform of a real kernel. It
follows that L is an analytic function of —w? with spectrum on the negative real

—w? axis (corresponding to real values of w) having the implied properties that

e Im(L) > 0 when Im(—w?) <0,
e L isreal and L > 0 when w? is real and —w? > 0.

In other words, L(w) is an operator-valued Stieltjes function of —w?. The operator
B = [QL'Q] ! entering (5.4) has the property that it is an analytic function of L
with

Im(B) >0 when Im(L) > 0,

(5.40) Bisrealand B >0 whenLisrealand L < 0.

Hence, the Stieltjes properties of L as a function of —w? pass to those of B as a
function of —w?:

Im(B) > 0 when Im(—w?) <0,

(5.41) ) 5. )
Bisrealand B >0 when w” isreal and — w“ > 0.
Introducing
(5.42) _ w? —c _ 2c
' S +c¢ w? +c’

for some real ¢ > 0, ensures that the spectrum of B(z) is on the interval [—1, 1]
and

Im(B(z)) >0 when Im(z) > 0,

(5.43) Bisrealand B> 0 whenzisrealandz > lorz < —1.

Note that this choice of z is quite different to that in (5.15), and not restricted to
two-phase composites. Thus, B(z) has the integral representation
L dM(})

(5.44) B(z) =By + )
-1 A—2z

where By is a positive definite operator and dM(A) is a positive definite real
operator-valued measure satisfying the constraint

L aM()
(5.45) /_1 —5 <Bo.
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To begin, suppose we are only interested in the quadratic form (BEg, E¢) associ-
ated with B. Then,

11—
(B(z)Eo.Eo) = ko [1 + /_1 U/&#}

1 1 —
SN EE )
-1 A—2zZ
where kg = (BgEog, Eg) is real and positive and
(5.47) dn(A) = (dM(M)Eo, Eg)/[ko(1 — A)]

is a positive real-valued measure, satisfying the constraint

(5.46)

1
(5.48) / dn(d) < 1.
-1
Note that k¢ can be identified with (B(z)Eg, Eg) in the limit 7 — oo, i.e., as
w —i./c.
If we are interested in finding complex coefficients &, k = 1,2...,m, such
that

(B(z0)Eo,Eo) — ) _ & (B(zx)Eo, Eo)

k=1
m 1
(5.49) =k0;(1— Zé-‘k)[l—f_ldn()t)]
1—zo Sk(l Zk)
+/_ [ — Z - }dn(k)}

is small, we require that

Z Ex (1 —zg)/(1 — Zo)

5.50
(5.50) sup e

r€[—1,1]

In particular, with A = 1, this 1mphes
m
1=
k=1

(5.51) < |1 —zolem.

and so we obtain

m
(5:52)  (B(z0)Eo.Eo) — ) 6k (B(zx)Eo. Eo) < 2ko|l — Zolem.
k=1
By setting oy = & (1 — z)/(1 — zo) we see this is exactly the problem encoun-
tered in Section 6, and we may take the coefficients oy to be given by (4.7). The
motivation for studying this problem is that the response at special frequencies can
sometimes directly reveal information about the geometry. This is the case for
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elastodynamics in the quasistatic limit when only two materials are present. The
material parameters are the bulk moduli x1(w), k2(w) and shear moduli 1 (w),
U2 (w) of the two phases. It may happen that 1 (wo) = p2(we) for certain com-
plex frequencies wg and if k1(wg) # k2(wg) the response at frequency wg can
reveal the volume fraction of phase 1 in a composite, or more generally in a two-
phase body.

REMARK 5.3. It is not much more difficult to treat bilinear forms. Then we have

(B(2)Eo. Eg)

= (B(z)(Eo + Eg), Eg + Ej)) — (B(z)(Eo — Ej). Eg — Ej)

1 _
(5.53) _ k((,l) {1 +/ [_1 + l_z} dm(/\)}
B A—1zZ

1

1 l—Z
—k(z)%w/ [—1+
0 1 A—z

(5.54) k" = (Bo(Eo + Ep). Eo + Ej). kS = Bo(Eo —E}). Eo — Ej).

] dnz(x)} ,

where

are both real and positive, while

dni(A) = (dM(A)(Eo + Ep), Eg + Ep) /[P (1 = 1),

(5.55) , , @
dnz(A) = (dM(A)(Eo — Eg). Eo — Eg)/[k™ (1 = A)]

are positive real-valued measures, satisfying the constraints that

1 1

(5.56) [amw =t [ aney =1
—1 —1

We seek complex coefficients £, k = 1,2...,m, such that

(B(z0)Eo. Ep) — ) & (B(zx)Eo, Ep)
k=1

m 1 L . m .
(lzgk)[lfldmm}r/l[i;zZM} dm(k)§/4
= - B T k=1 .
m 1 1 m
,k(2) - [7 d A] 1—107 £.(1 = z) N
0 %(1 kgl&) 1 L n2(3) +L —-y 020 | g4

<0 4o

(5.57) =¥

is small. Using the bounds (5.50) we obtain

(B(z0)Eo. Eg) — Y £ (B(z4)Eo. Ep)| < (k" + k§™)[1 — zolem/2.

k=1

(5.58)
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REMARK 5.4. Noting that

)y L (1= 2dn()
— (B(z)Eo, Eo) = ko /_1 ﬁ

dz
D | l1—z
=k —1 “dn(A
0/_11_2‘[ +A—Z] n(4),

we can easily obtain bounds that correlate this derivative at zg with the values of
(B(zx)Eo,Ep), kK = 0,1,2...,m. We seek complex constants yz, k = 0,1, 2,
..., m, such that

(5.59)

(B(z0)Eo. Ef) — > & (B(zx)Eo. Ef)

k=1
m 1
- k(1)§<1 ~ gk> [1 ~ dm(x)]
1-z0 &&(1—zp)
(5.60) +/_1 |:)L—Zo —kgl ﬁ} d’]l@)}/‘1

_ k(()z)

(o)l Lo

"l-z0 O~ E(—zp)
+f [A_Zo—gl — i|d7)2(l)}/4

-1

is small. Using the bounds (5.50) we obtain

(B(z0)E0. Ep) — Y & (B(24)E0. Ep)| < (k§" + k51 — zolem/2.

k=1

(5.61)

is small, and this is ensured if

g (l—z1)/(1—20) &0 +[1/(1—2z0)] 1
+ - E 6n’la
A—Zk A—2Zo (A —z0)?

(5.62) sup
A€[—1,1]

k=0

and €, — 0 as m — o00. Observe that (5.62) with A = 1 implies

> &

k=0

(5.63) <|1—2zol€m.

Comparing (5.62) with (4.23) we see that we should choose

(5.64) So=ao—[1/(0 —zo)]. & = ax(l —z0)/(1 —2k),
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and then, with by, and coefficients a given by (4.26) and (4.27), (5.62) holds with
€m given by (4.29). Then

d m
—(B Eo.Eg) | — B Eo.E
(565) |:dZ0( (ZO) 0, O):| kgoék( (Zk) 0 0)
< 2|kol|1 — zol€m.

holds, and similarly one has

d m
4 B(z0)Eo. E, )} =3 & (B(z4)Fo. E))
(5.66) [dZo i 0

< (k§” + k)1 = zolem.

The convergence of €, to zero as m — oo is again ensured provided for a posi-
tive constant r < R, where R is defined by (4.10), each z; € H(r) = Hi(r) U
Hy(r) U Hs(r), where the regions H;, i = 1,2,3, are given by (4.16). The
motivation for studying this problem is that the response may be trivial at certain
frequencies wg while the derivative of the response with respect to w at @ = wy
directly reveals some information about the body. This is the case for electromag-
netism when only two nonmagnetic materials are present (with magnetic perme-
abilities 1 = o = o where ug is the permeability of the vacuum). It may
happen that the electric permittivities of the two phases satisfy €1 (wg) = e2(wg)
for certain complex frequencies wg. At this frequency wg the body is homogeneous
and its response can be easily calculated. Using perturbation theory and assuming
dey(wo)/dwo # dea(we)/dwy the derivative of the response with respect to w at
w = wy reveals information about the distribution of the two phases in the body.
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