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Abstract. Photolithography is among the key phases in chip manufacturing. It is also among the most
expensive with manufacturing equipment valued at the hundreds of millions of dollars. It is paramount
that the process is ran efficiently, guaranteeing high resource utilization and low product cycle times. A
key element in the operation of a photolithography system is the effective management of the reticles that
are responsible for the imprinting of the circuit path on the wafers. Managing reticles means determining
which are appropriate to mount on the very expensive scanners as a function of the product types being
released to the system. Given the importance of the problem, several heuristic policies have been developed
in the industry practice in an attempt to guarantee that the expensive tools are never idle. However, such
policies have difficulties reacting to unforeseen events (e.g., unplanned failures, unavailability of reticles).
On the other hand, the technological advance of the semiconductor industry in sensing at system and
process level should be harnessed to improve on these "expert policies". In this manuscript, we develop
a system for the real time reticle management that not only is able to retrieve information from the real
system, but also is able to embed commonly used policies to improve upon them. We develop a new digital
twin for the photolithography process that efficiently and accurately predicts the system performance, thus
allowing our system to make predictions for future behaviors as a function of possible decisions. Our results
demonstrate the validity of the developed model, and the feasibility of the overall approach demonstrating

a statistically significant improvement of performance as compared to the current policy.

Keywords: Semiconductor manufacturing, reinforcement learning, reticle management, digital twin

1. Introduction layers of integrated circuits that form a mi-
crochip onto silicon wafers. These layers form

o ) the core of a microchip, thus making the pho-
Within silicon-based semiconductor manufac-
. ) ) tolithography process among the most critical

turing, the equipment required for the pho-
phases for the successful manufacturing of the

tolithography process is by far the most expen-
end product. In fact, the tool responsible for

sive single piece of machinery in the process,
) ) ) o the photolithography is among the most ex-

with typical machines costing in the tens to

hundreds of millions of dollars (Byrne 2007).

These machines utilize opaque reticles (also

pensive in a semiconductor factory (Sterling
2022, Schoolov 2022). ASML Holding, one

of the major producers of photolithography
referred to as masks) to imprint the different
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equipment, as of January 2022, was selling
its most advanced machines in current com-
mercial production, known as EUV lithogra-
phy systems because of the "Extreme Ultra-
violet" light waves they use to map out the
circuitry of computer chips, for around $150
million each (Sterling 2022). Among the cus-
tomers are the largest semiconductor compa-
nies, whose mission is to optimize the pro-
ductivity of such expensive resources. In par-
ticular, a successful management of the pho-
tolithography phase maximizes the utilization
of the photolithography machines, while guar-
anteeing low product cycle times and low de-
fects. While the last aspect is mainly managed
through maintenance policy, the first two are
highly impacted by the operational strategies
applied on the shop floor.

As previously mentioned, in the pho-
tolithography process, wafers undergo a se-
quence of operations responsible for imprint-
ing the pattern of a circuit layer. To achieve
the correct print, reticles are used by manufac-
turing machines, scanners, as step-and-repeat
aligners to transfer a pattern image of the in-
tegrated circuit onto the wafer (EESEMI 2005,
Byrne 2007). Figure 1 shows the principle un-
derlying the wafer printing through a reticle.
As it can be observed, the process works in
principle like a photo-negative, where a light
is shone through a mask containing the circuit
pattern, after which it goes through a series of
projection lenses for de-magnification before
reaching the wafer. This pattern transfer usu-
ally covers a small portion of the wafer. As
a result, the process will need to be repeated
multiple times until the entire wafer is covered

before moving onto the next wafer (Wikichip

2023).

Given the cost of the scanner, a major op-
erational imperative is to keep it utilized as
much as possible. This can be achieved with
a large number of reticles available for the tool
so that it can process continuously over several
patterns. While this in principle can address
utilization, it may hurt cycle times if the reti-
cles are not properly assigned to the tools. As
suggested in Park et al. (1999), on average, a
photolithography process will have hundreds
different product types, each requiring tens of
unique reticles due to the difference in circuit
designs. As a result, a realistic system may
have thousands of reticles to be managed at
each point in time. Hence, optimizing the al-
location of reticles is all but a simple problem
that, if handled improperly, creates an expen-
sive bottleneck for the entirety of the manu-
facturing process (Benzoni et al. 2020, Byrne
2007, Peters and Puharic 2003, Vitelli 2021). As
a result, the reticle management policy is a very
important component of the photolithography
management that determines how reticles are
allocated to the tools during production. Com-
pounding the issue of high dimensionality is
the need to setup reticles, i.e., inspect the qual-
ity of the designs when they start to be adopted
in line, and the uncertainty due to unexpected
failures of the resources (Carranza 1986, All-

geier et al. 2020).

Background and related approaches. While
the reticle management problem is unique to
semiconductors, it can be interpreted as a tool
management problem in traditional manufac-
turing domains. In this sense, approaches to
solve this class of problems have traditionally

fallen into three categories: (i) formulating
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Figure1 Schematic of the photolithography process

1

1 Source: Sun L, Chen X, Tomizuka M(2014). Selective iterative learning control to deal with iteration-dependent

disturbance. In Proceedings of ISCIE/ASME International Symposium on Flexible Automation (pp. 1-8) (Sun et al. 2014).

the problem as an optimal schedule, math-
ematical programming is used to formulate
and solve the problem; (ii) heuristic policies,
very common in industry practice, do not typi-
cally require expensive optimization tools, but
tend to be sub-optimal; (iii) the problem has
been formulated as optimal control, attempt-
ing to find the state dependent policy. In this
area, reinforcement learning has gained in-
creasing attention. Mathematical programming
has been used extensively to solve tool allo-
cation problems in general flexible Manufac-
turing Systems (FMS), and similar approaches
can be found in photolithography operations
2003, Turkcan

Therein, a deterministic mathemati-

scheduling (Turkcan et al.
2007).
cal model is solved for an optimal production
schedule constrained by tool and equipment
availability (De Diaz 2005). Approaches that
rely on heuristics rules for the allocation of reti-
cles are very common in the industry practice
and they have been extensively developed in
the tool literature in manufacturing (Hung and
Chen 1998, Li et al. 2014, Fathi and Barnette
2002). These rules typically aim to create a near

optimal product dispatching policy that maxi-

mizes the throughput of the system (Hung and
Chen 1998, Li et al. 2014). While, in princi-
ple, a plethora of such rules can be developed,
their performance is highly sensitive to process
changes (Randhawa and Kuo 1997, Randhawa
and Zeng 1996). Finally, tool management
has been modeled as an optimal control prob-
lem. In particular, reinforcement learning has
been recently adopted and analyzed as a so-
lution approach. Specifically, approximately
optimal policies are designed where dispatch-
ing decisions are made sequentially using in-
formation gained from the previous dispatch.
To do so, trained reinforcement learning de-
cision agents (typically a neutral network or
Deep-Q-Learning agent) estimate the reward
landscape at each step and take the action that
is predicted to maximize the model’s through-
put. Examples of this approach are Waschneck
etal. (2018), Park et al. (2020).

Contribution. In light of these challenges and
the high value of the tools, it comes with no sur-
prise that the semiconductor industry has led
the development of Industry 4.0 technologies,
enhancing sensing, and increasingly relying

on ever improving digital copies of the highly
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complex systems and processes happening in
the Fab, with key players such as Siemens
and Dassault Systemes making the develop-
ment of digital twin a key asset (Simens 2022,
Systéemes 2021).

to approach challenges in the optimization of

This calls for a new way

Fab operations with methods that can leverage
novel technologies. However, most of the ap-
proaches do not leverage detailed simulations
of the system, but, rather, focus on building
approximations of the reward of interest. This
is not aligned with the increasing availability
of digital copies of complex systems and pro-
cesses, as well as the plethora of information
that can be gathered from resources in real
time. On the other hand, heuristic policies
developed by industry experts should be ac-
counted for when generating potentially new
approaches. However, the approaches in the
literature do not have a way to embed policies

to guide the search.

Our collaboration with Intel Corporation
resulted in a novel approach to real time reticle
management, which we propose in this work.
Specifically, we propose a digital twin in the
loop method for reticle management that uses
a rollout algorithm to sequentially improve on
a base policy for the allocation of reticles to the
tools in the system. The method is able to take a
decision that leads to the reduction of the prod-
uct lead time each time a reticle is potentially
up for change. We not only use the informa-
tion on the state of the system that is available
in real time, but develop a digital twin that effi-
ciently and effectively evaluates the effect of the
reticle allocation choice. Our results show the
accuracy of the digital twin, and demonstrate

that the new approach achieves a statistically

improved performance over the base heuristic
policy for reticle change.

Organization of the paper.  The paper is
organized as follows: Section 2 presents the
relevant literature for the optimal reticle man-
agement problem; Section 3 describes the ret-
icle management problem; Section 4 presents
our approach, and Section 5 shows the main
empirical results obtained. Finally, conclud-

ing remarks,and potential avenues for further

work are discussed in Section 6.

2. Literature Review

Optimal reticle management can be seen
within the broader class of policies for tool
management in the semiconductor industry,
and, more in general, for Flexible Manufac-
turing Systems (FMSs). In fact, several ele-
ments of the reticle management problem can
be identified for many FMSs. Examples are the
central tool storage, identical machines with
tool magazines, and incoming products re-
quiring a series of predetermined operations.
As a result, in this section we review meth-
ods developed in the context of tool manage-
ment in FMSs. We then highlight shortcom-
ings with respect to the application of state-of-
the-art methods to our problem. We catego-
rize the proposed approaches into two main
methodological classes: 1) Static optimization
formulations that rely on exact mathematical
programming formulations to produce state-
independent solutions. For these approaches,
the problem of tool management is solved
through the use of deterministic mathemat-
ical modeling. 2) Simulation driven state-
based approaches. Within this class, simula-

tion models are used to model system behav-
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iors and uncertainty through sequential state
transitions. These simulation models are typi-
cally partnered with a machine learning algo-
rithm or a decision heuristic that creates a deci-
sion policy using information from the current
state.

Digital Twins vs Simulation. An important
observation to make is the distinction between
simulation and digital twin. Although both
involve the implementation and simulation of
whatis essentially a virtual version of the given
process, what separates the two is the ability
of a digital twin to collect current state infor-
mation of the physical system through sensors
and perform optimization to the physical sys-
tem in real-time (TWI Global 2022, Raghu-
nathan 2019). Simulation models are limited
due to the possible manual data collection and
difficulty in data interpretation which would
affect the timeliness of any necessary updates
needed to be made to the physical system (TWI
Global 2022, Raghunathan 2019). This there-
fore limits the scope where simulation models
could be used to solve problems (TWI Global
2022). This is where Digital Twins could help
fill the gap, where the real-time data is directly
inputted into a virtual model which enables
users to test different decision scenarios with
the current state of the system and ensure that
the best possible decision is selected at the ap-

propriate time (Raghunathan 2019).

2.1 Static Optimization Approaches for

Tool Management

In the context of complex manufacturing sys-
tems, the optimal tool management problem is
identical to the job assignment problem (Fathi

and Barnette 2002). As such, many static op-

timization problems have been formulated in
the context of optimal tool management con-
sidering (Tang and Denardo 1998, Zeballos

2010, Turkcan 2007, Klemmt et al. 2010, Ham
and Cho 2015, Bixby et al. 2006, Turkcan et
al. 2003). In these implementations, optimal is
usually defined as a minimization of cost or a
maximisation of throughput. The constraints
are typically each part requiring a particular
tool, each machine only processing one part
at a time, each station having a limited queue
capacity, each station having a limited tool ca-
pacity, and each part requiring completion by
specific time (Tang and Denardo 1998, Zebal-
los 2010, Turkcan et al. 2003, Turkcan 2007).
Mathematical programming is also adopted in
the industry practice, where work plans are
prepared daily according to the modelled op-
timal plan. The plan is then changed by the
line operators as a result of changes in the sys-
tem (e.g., machine failure, operator unavail-
ability) (Bradley et al. 1977). Methods differ
on the considered constraints, as well as on the
performance to be optimized. As an example,
the model implemented in Tang and Denardo
(1998) utilizes a deterministic model to mini-
mize tool switches in a flexible manufacturing
system by returning to storage the tool with
the lowest demand among known future prod-
ucts. For this problem, they use the sequence
in which jobs are processed and the set of tools
placed on each machine prior to each job as
their decision variables. These decisions are
constrained by the capacity of each machine
and the quantity of each tool. Similarly, Turk-
(2003), Turkcan (2007) utilize a

deterministic model to optimize a composite

can et al.

objective function of cost and tardiness. In this



Sivasubramanian et al.: DTFab: A Digital Twin based Approach for Optimal Reticle Management in Semiconductor Photolithography 325

problem, the decision variables are the opera-
tion parameters for each job, job assignments,
and tool assignments. Constraining these de-
cisions is the capacity of each station’s tool
magazine and queue and the life of each tool.
They, along with Tang and Denardo (1998),
propose a tool switching rule to aid in the min-
imization of switches in their systems. Ze-
ballos (2010) solves a tool management prob-
lem in a deterministic FMS system in the con-
text of four objective functions, minimization
of make-span, minimization of tardiness, mini-
mization of cost, and a multi-objective function
combining all three. To optimize this function,
this model decides an optimal tool and part al-
location schedule. This schedule is constrained
by machine capacity and tool quantity. Simi-
lar to Zeballos (2010), Turkcan et al. (2003),
Turkcan (2007), Bixby et al. (2006) solves a de-
terministic tool management problem through
mixed integer programming. In this model,
the throughput of the model is minimized
through the scheduling of product. Thisis con-
strained by the capacity of each station’s tool
(2010)

uses this optimal reticle management problem

magazine and queue. Klemmt et al.

as part of a multistage problem, where tool
and resist quantities are solved in stage one
and used as the constraints of the operational
tool management problem in stage two. In
this model, load balancing and throughput are
both used as the overall objective. For the tool
management optimization, the problem is con-
strained by the tool composition purchased in
stage one and the capacity of machines and the
decision variable is the production schedule. A
similar approach is demonstrated in Ham and

Cho (2015), where a deterministic mathemat-

ical model is combined with an automated lot
dispatching policy to optimize a composite ob-
jective function. In this system, the mathemat-
ical model solves for an optimal distribution
of lots to be assigned to each machine. This
is done through minimizing a composite ob-
jective of load balancing and cycle time. After
the model is solved, the automated dispatch
policy determines the order in which lots are
sent to their assigned machines. In an attempt
to account for the difficulty of capturing uncer-
tainty using this type of model (Mishra et al.

2006), Rai et al. (2002) utilize a fuzzy goal ap-
proach to solve the deterministic mathematical
model. In these approaches, they optimize the
tool and part allocation problem to minimize
the cost of the policy in an FMS system using
fuzzy goal optimization. This optimization is
constrained by tool allocations and machine

capacity.

A major challenge of the presented appr-
oaches resides in the fact that the mathemat-
ical models used are closed-form in nature
and computationally expensive. Fox (1983)
presents the job shop scheduling program-
ming model to be an NP-hard problem. At-
tempting to adapt a full manufacturing pro-
cess to fit within the bounds of a deterministic
mathematical model is difficult to do without
the model becoming exceedingly large. Tang
and Denardo (1998) summarizes the issue best,
with these models, it may become necessary
to make important assumptions regarding cer-
tain model parameters or behaviors, which in
turn may reduce the applicability of the solu-
tions to real-world systems. For these reasons,
this type of modeling is infeasible to meet the

requirements of clients where solutions may
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be required quickly. Therefore, an alternate

method is required to perform this task.

2.2 Simulation Driven State-based

Approaches for Tool Management

A different branch of the literature investigates
the performance of different policies, rather
than designing them. To do this, simulation
models are designed to mimic realistic condi-
tions that are then used to test the performance
of varying policies. Several examples of this
in the field of semiconductor manufacturing,
are De Diaz (2005), Hickie (1999), Park et al.
(1999). In these papers, the photolithogra-
phy phase of a semiconductor manufacturing
process is simulated in a stochastic model to
estimate the cycle time and load balancing of
the system in different scenarios where factors
such as product homogeneity, dispatching pol-
icy, forecasting, and station tool capacity are
varied. Notably, De Diaz (2005) tests the im-
pact of a reticle placement optimization sub-
problem on the performance of the simulation
model. In this experiment, a programming
model is used to solve for the optimal reti-
cle placements on equipment in six-hour in-
tervals. While De Diaz (2005) holds the most
relevance to the optimal reticle management
problem, the proposed approach is impractical
due to its computational cost and long period
of time required between decisions. The work
in Hickie (1999), Park et al. (1999), on the
other hand, deals with the model’s cycle time
and load balancing under varying dispatch-
ing policies similar to Randhawa and Zeng
(1996), Randhawa and Kuo (1997). These ap-
proaches evaluate the throughput, cumulative

tardiness, and number of tardy lots under the

lot dispatching policies earliest due-date, low-
est slack time, and shortest processing time.
Several other basic dispatching rules are also
examined by Hung and Chen (1998). They ex-
amine the effects of first-in-first-out, random,
shortest remaining time, shortest queue for
next operation, and shortest processing time
policies have on a stochastic wafer manufac-
turing simulation’s cycle time. Hung and Chen
(1998), Leachman et al.

utilize a dispatching method on a stochastic

(1988) propose and

simulation called the Queue Management pol-
icy. This policy uses information regarding the
lots in queue at a station to decide the optimal
time to release the next lot to that station. Li
et al. (2014) proposes a newly designed lot
dispatching rule to improve a stochastic semi-
conductor simulation model in three areas, cy-
cle time, tardiness, and WIP. Unfortunately,
these policies are static. Should the proper-
ties of a system change, a given rule-based
policy may increase or decrease in effective-
ness (Randhawa and Kuo 1997, Randhawa and
Zeng 1996). We seek a policy that will be ro-
bust to future changes that may be made to
the system, so this property is not ideal. The
simulation executed in Byrne (2007), on the
other hand, focuses on simulating two differ-
ent photolithography stepper types, each us-
ing different reticle sets and running in a low
volume, high product mix fab. The goal of
this simulation is the optimization of costs via
the determination of the amount of reticle cov-
erage required in order to effectively balance
utilisation and average lot wait times, and the
results of which are used to set the appropri-
ate reticle purchase plans. Another approach

within this category is reinforcement learning.
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Reinforcement learning aims to maximize the
performance of a model with respect to a cu-
mulative reward function. To do this, a deci-
sion agent sequentially chooses actions from
an action space derived from the current state
of the system. These approaches are almost
always used with stochastic models. The con-
tributions (Waschneck et al. 2018, Park et al.
2020, Kim et al.
this approach. In Waschneck et al.
Park et al.

2021) provide examples of
(2018),
(2020), the authors implement
neural network decision agents, while Kim et
al.  (2021) implements Deep Q-Learning to
make dispatching decisions in a semiconduc-
tor manufacturing process. In Waschneck et
al.  (2018), the authors utilize three neural
network decision agents to make product dis-
patching decisions for three sequential pro-
cesses based on the reward function of the cy-
cle time. The work in Park et al. (2020) on the
other hand, uses a single neural network dis-
patching agent whose goal is to minimize the
makespan of the system. The work in Zhang
and Dietterich (1995) is the earliest implemen-
tation of reinforcement learning to this type
of problem. They utilize this technique to opti-
mize dispatching a static job shop system in re-
gards to a special reward function called the re-
source dilation factor. The contributions (Zhang
2007 2012) address photolithography

job scheduling with minimal tardiness solv-

et al.

ing a reinforcement learning formulation of the

problem through Deep Q-Learning.

3. The Reticle Management Problem

Before defining the reticle management prob-
lem in mathematical terms, it is important to
first understand the problem in an intuitive
sense. As discussed in Section 1, each op-
eration within the photolithography process
requires a specific reticle to be used. This
presents an interesting problem since a given
fab may have hundreds to thousands of dif-
ferent reticles, while only being able to mount
a select few for use at a given time. Because
of this imbalance of reticles to tool space, some
kind of decision guide must be implemented to
manage which reticles are removed from tools
and which reticles are brought out of storage
between operations. To do this, we formulate
this problem as a stochastic control problem
leveraging the power of digital twin technol-
ogy to evaluate potential reticle swaps. To be-
gin, we present the key notations and defini-
tions. Later in the paper, Section 3.2 presents
the formal reticle management problem for-
mulated as a stochastic optimal control prob-
lem, the computational challenges are high-
lighted and the simulation based rollout algo-

rithm is justified in this context.
3.1 Notations and Definitions

The state of the system is xx = {Rg, Ly, Wk},
referring to the reticles, lots, and wafers states.

In particular:



328 Sivasubramanian et al.: DTFab: A Digital Twin based Approach for Optimal Reticle Management in Semiconductor Photolithography

0, if reticle in storage
-n, if reticle is loaded in n-th equipment and idle
Ri = {rix}, rix=1n, if reticle is loaded in n-th equipment and busy =1,

—(N*® +1), ifreticleisloaded at the inspection station and idle

N® +1, if reticle is loaded at the inspection station and busy
0, if lot is in the loading bay
-1, if lot is in the external loading bay
—(N?® +2), iflotis at the metrology station and idle ‘

Li = {lix}, ik ,j=1,--,N!
(N°+2), iflotis at the metrology station and busy
—(n+1), iflotisloaded in n-th equipment and idle
(n+1), if lot is loaded in n-th equipment and busy
0, if wafer located with its lot
Wy = {wz,k} , Wz =\-n, if wafer is loaded in n-th equipment and idle ,z=1,---,N®

n,  if wafer is loaded in n-th equipment and busy

where N, N!, N¥ and N°® represent the num-
ber of reticles, lots, wafers, and stations, respec-
tively. Additionally, let T; be the action space
at step k and the time at which lot j departs the
system, j =1,--- NI Finally, let uy, Uy, and
Hi(x, ur) be the control action at step k, the
collection of feasible actions at step k (U C uy),
and the reward for implementing the action uy

in state x; evaluated using the base heuristic .
3.2 Problem Formulation

The overall objective of the optimal reticle
management is to dynamically and adaptively
allocate reticles to the several slots available
at each equipment in a way that minimizes
the expected cycle time. Formally, we seek
an allocation policy m* such that, at each

state xg,- -+, xT, there exists a map of actions

{ y("), s, y*Tfl} to be taken at their respective
timek,k=0,---,T -1, that can guide the sys-
tem into sequential states that minimize the ex-
pected departure time of the final lot, E(TN h.
This expected time is a function of the origi-
nal state, xo and every action made during the
production run, {ug, -+, ur—1}. Thus the ob-
jective is

min E(TNZ) = f(xo,uo, "+ ,Ur-1) )

Because the time in equation (1) is a function of
every action made during the process, having
the policy n* that maps possible actions and
the states that they transition to, would allow
for an optimal value of E(TN ’) to be achieved.
To create this policy, we need to choose a vec-
tor of optimal control actions {ug, -+, u}_;},

so that the expected time at which the final

Nt
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lot departs the system beginning at that x is
minimized. To do this, each individual opti-
mal control action uy, k=0,---,T —1, must
be selected. At each decision step, the action
uy is to do nothing, or to swap the reticle on

the tool that has completed a specific operation

type, with another reticle from storage, more

formally:

Up = {un,p,s,k}n/p,q 2)

where:

0, if noswap is taken at step k on equipment 7 on slot s for reticle ID p

Un,p,sk =

®)

q, if at step k reticle p is removed from tool 7 on slot s and replaced by reticle g

where, in equation (3), ¢ = 1,--- ,N,p =
1,---,N',s =1,--- ,N¢ g # p, N® = station
reticle slots . An action in {u,,p sk }u,p,q is ac-
tive and contained in Uy only if, 7, x = —n, and
74k =0.

Hence, reticle management can be formu-
lated as a stochastic control problem, where we
seek the optimal policy for the adaptive assign-
ment of reticles to resources/storage. In partic-
ular, the system state x; at the k-th change re-
quested is such that xxy1 = fi (Xk, 1k, €x), k =
0,1,---,T — 1, where ¢} is the noise due to
the failures that can affect the equipment (e.g.,
scanners, coaters, manipulation robots). We
are looking to solve an optimization problem
over policies 1 (also referred to as closed loop
control, feedback policies). These policies are for-

mally a sequence of functions:

= {uo, -+, ur-1}

where i is a map from system states xj into
controls uj that satisfy the control constraints
(e.g., reticle availability) for all feasible states
Xk € Sk. Then the expected cost associated to a

policy m starting in state x is:

-1
Jr (x0) = E {gT (x7) + Z g (e, pk (Xk),ek)}

k=0
where g () is an appropriate cost function. In

this paper the function expresses the contri-

bution of the reticle allocation choice at the
k-th swap to the sample-path completion time.
More details on the evaluation of such cost will
be provided in Section 4.3.3. Since, we have a fi-
nite number of lots, we know that the dynamic
program for stochastic finite horizon problems

can be applied here. We have that:

Start with
Jr (x1) = g1 (x7)
Then fork =0,---,T —1, let
Ji (x1) = ur,?ellek E {gx (xk,  (xk), €x)

+lian e (e e (xi0) €x)) }-

If u; = u; () minimizes the right end side

(4)

of this equation, for each xj and step k, the

policy * = {y("), e, ‘u*Tfl} is optimal.

This optimal policy, 7* is incredibly diffi-
cult to solve for several reasons. Chiefly, the
E(TN I) does not have a closed form solution.
This is due to the fact that each successive state
is dependent on both the state before it, and
the action taken at that state; decisions made
in early states on can cascade down and create
significant variance in later system states and

the expectation E(TN l). Because of this, static



330 Sivasubramanian et al.: DTFab: A Digital Twin based Approach for Optimal Reticle Management in Semiconductor Photolithography

mathematical models and optimization tech-
niques are difficult to apply to this problem.
Instead, we propose the use of a rollout algo-
rithm that, rather than solving for the optimal
policy 7" all at once, solves for each element il;

sequentially.

4. Proposed Approach

Rather than solving the above optimal control
problem, we approach an approximate version
of this optimal allocation and solve it using the
rollout algorithm (Bertsekas 2020) partnered
with a digital twin. In particular, the rollout es-
tablishes a procedure that generates an action
and, given a base policy for reticle manage-
ment, and a digital twin, evaluates the action
so that the action with the best approximate re-
ward can be selected. The digital twin model
serves as a simulated replica of a real-life pro-
cess that works as a bridge between the opti-
mizer and the real manufacturing process. The
overall approach is depicted in Figure 2. Here,
Hy(xk, ug) denotes the value that the simula-
tion of the base heuristic associates to the ac-
tion ux and {q,h, g} are three feasible action
values selected from Uy at step k.

As shown in Figure 2, a rollout algorithm
requires two key components: the simulation
model and the selection of controls used to
achieve the result. The creation of the digi-
tal twin simulation model and base heuristic is
presented in Section 4.2, and the rollout algo-

rithm is presented in Section 4.3.

4.1 Process Overview

Figure 3 shows the conceptual model of how

products and reticles flow through the system

resources detailing the process summarized in

Section 1.

As shown by Figure 3, the unit being pro-
cessed by the resources across the several
phases of the photolithography process is the
wafer. Each wafer has attached a predeter-
mined set of coating and scanning operations
that are required to achieve the target print of
the desired circuit, and different target circuits
determine different product types and differ-
ent required tooling of the scanner (i.e., differ-
ent reticles are required). Wafers do not move
through the system independently, rather, they
are transported in lofs with a determined size
that groups wafers of the same type. When
a lot reaches an equipment to receive a spe-
cific coating-scanning step, the wafers are sep-
arated from the lot and are processed sequen-
tially. Once all wafers have completed the op-
eration, they are returned to the lot and leave
the station grouped again. Before a wafer
can be printed, the appropriate reticle must
be mounted on the scanner resource. In an
attempt to maximize the scanner utilization,
a single scanner typically holds mulitple reti-
cles. Each reticle can only perform a specific
print, henceforth can only process a specific
step of a specific product type. Reticles are
stored in an on-site main storage unit until they
are needed. When a reticle is needed, it is re-
moved from storage and added to the tool mag-
azine of a photolithography machine. Overall,
there are five primary locations that entities
can move between. These are the external load-
ing bay where lots wait before they enter the
system, the equipment loading, the photolithog-
raphy tools (equipment) containing the coater,

scanner and a robotic handling system is re-
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* Within this process behaviors function as follows (a) Lots in the loading bay are dispatched to equipment when

available. This is handled by an automatic dispatcher, no decision is made here. In (b) reticles from storage are swapped

with reticles on equipment to accommodate the needs of lots in the loading bay. This is the decision in the model. Finally,

in (c) lots in the equipment queues are served on a FIFO bases. No decision is made here.

sponsible for moving the wafers within the
equipment. The metrology station responsible
to check the quality of the prints, and the in-
spection station responsible to check the qual-
ity of thereticles. Alllots for a given simulation
run are created at the beginning and added to
the external loading bay. These lots are con-
sidered to be outside the system and will be
prevented from entering the system when it
is full. In the simulation there are a limited
number of lots that can be in process at the

same time. This means that the lots in the ex-

ternal loading bay will only enter the system
when there is space; when a lot leaves the sys-
tem, bringing the number of lots in the system
below capacity, a new lot will enter from the
external loading bay according to the predeter-

mined order.

4.2 DTFab: the Python-based Digital Twin
Model for the Photolithography

DTFab allows the user to create and charac-
terize as instance of five major classes in the

model (Figure 4 shows the entities, associ-
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ated attributes and relationships in DTFab):

Reticle, Lot, Equipment, Product, and Wafer.

The Reticle has the ID which is the pri-
mary key used to uniquely identify each object
of this class. The operation ID is a number
which matches the corresponding operation to
be performed on the Lot or Wafer. The prod-
uct type is a value denoting the product cor-
responding to the operation performed by the
reticle, and the number of scans denotes the
total scans performed by a reticle. In the Lot
class, the Lot ID is the primary key used to
uniquely identify the lot objects, and the cur-
rent operation is a number which is unique for
a specific layer of a wafer and matches with
the operation ID of the Reticle. The metrology
status attribute has boolean variables, True or
False, with true denoting that the lot needs to
undergo metrology while false denotes that the
lot does not require metrology. Similar to the
functionalities of the objects in the simulation
model, the attributes are assigned to each one.
Figure 4 is an Entity-Relationship model show-
ing the classes with its individual attributes,
along with their interrelationship. In figure 4,
PK denotes a primary key while FK denotes a
foreign key.

The model was developed in Python lan-
guage version 3.88. SimPy, which is a process-
based discrete-event simulation library was
used as the base for our libraries. The reasons
behind modeling in python, were the ease of
performing optimization using reinforcement
learning and the ability to create a customized
simulation library for semiconductor produc-
tion processes. While our current model im-
plementation is dedicated to the photolithog-

raphy process, we have designed our classes,

functions, and model logic in a way that the li-
brary can be easily customized for other semi-
conductor processes. The Python model is also
computationally efficient, which better enables
its utilization as part of the digital twin system,
since this requires quick decisions to be taken
in real-time. In fact, initially, a commercial dis-
crete event simulation software with detailed
animation was used and while that was very
helpful for ensuring correct process behavior,
the speed of the software precluded using it
for real-time look ahead simulations.

In the following sections, we detail the pro-

cesses being modeled in DTFab.

4.2.1 Lot Operations

Lot loading and Dispatching When a lot en-
ters the system, the lot will enter the inter-
nal loading bay. From this internal loading
bay, lots are dispatched to equipment based on
availability of the equipment and its ability to
perform the desired operation on the wafer. In
particular, when a lot is evaluated for dispatch-
ing, the system will check if an available equip-
ment has the reticle required by the lots next
operation mounted in its tool magazine. If the
reticle is present on an equipment with avail-
able space in its queue, the lot is dispatched
to that equipment. Otherwise, the lot is re-
turned to the back of the queue in the internal
loading bay. In the case of multiple equip-
ment with the required reticle having space in
queue, we prioritize dispatching to the system
with the smallest queue. Once a lot has been
dispatched to a tool, the lot enters a finite ca-
pacity queue. At the equipment level, lots are
served on a FIFO basis. Once a lot has been
processed, it leaves the machine to be sent to

three potential locations. If the reticle used to
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process the lot requires control, the lot is sent
to the metrology station (more details in Sec-
tion 4.2.2). Otherwise, the lot departs the sys-
tem if all of its operations have been completed,
or returns to the loading bay to be dispatched

again if additional operations are required.

Lot Inspection After an operation, lots can be
sent to metrology stations to check for poten-
tial defects. Typically, a fraction of the wafers
within a lot is inspected. After inspection, the
defective wafers are scrapped and the lot is sent

back carrying only the healthy wafers.

4.2.2 Reticle Operations

Two main processes characterize the operating
of reticles in the system: the setup, and the

inspection process.

Reticle Setup The setup of reticles is per-
formed to minimize the defects on wafers due
to wrong positioning and other defects on the
reticle. To ensure this, all reticle undergoes a
setup when they are initially mounted. Dur-
ing the setup, the scanner mounting the reticle

processes at lower speeds to allow for the veri-

fication of the quality of the print. The process-
ing rate is adaptively increased until the reticle
can work at regime. Due to the fact that such
setup is required the first time each reticle is

mounted, this impacts our allocation decision.

Reticle Inspection After each reticle has per-
formed a predetermined number of scans, they
are sent to an inspection station where the crit-
ical parameters are checked and verified. The
inspection time is modeled as a stochastic pro-
cess with a predetermined distribution. Post
inspection, there is a probability that the reti-
cle will still be defective and need repairing. If
this occurs, after inspection, the reticle is sent
to a repair station which has a constant pro-
cessing time. i.e., each repair process lasts the
same amount of time. After repair, the reticle
is sent to the main storage to be returned to

production use.

4.2.3 Description of Equipment

The tool comprises of several resources cor-
responding to different processes and robotic

arms. Initially when lots enter an equipment,



334 Sivasubramanian et al.: DTFab: A Digital Twin based Approach for Optimal Reticle Management in Semiconductor Photolithography

the wafers are removed by a robotic arm and
moved to a transition station. From the tran-
sition stations, the wafers are moved to bak-
ing ovens when there is available capacity to
process the wafers. The baking process has
a deterministic delay and a fixed capacity. A
common robotic arm is used to move wafers in
and out of the baking oven and coater. From
the baking ovens, wafers are transferred to the
coating process where the photoresist layer is
added to the wafer surface. The coating ma-
chine also has a finite capacity, and the delay is
deterministic. The resource has enough pho-
toresist material to process a fixed number of
wafers. When the amount of photoresist ma-
terial reaches a threshold, the photoresist ma-
terial is refilled to its original capacity. It is
assumed that this refilling process is instan-
taneous in the model. Once the photoresist
layer is added, the wafers are sent to a chiller
station for processing. After the chiller pro-
cess is completed, a robotic arm moves the
wafers to the scanner resource. In the scan-
ner resource, there are essentially two steps
that are performed and each of them are mod-
eled having a fixed capacity and deterministic
processing times. The two processes are mea-
suring and scanning. After the measure step
is completed, the wafers are internally moved
using a transporter. In the scanning process,
UV light is projected onto the wafer surface.
Between the UV light source and the Photore-
sist layer, a photomask or reticle is used which
allows UV light to pass through and project
onto the photoresist layer at certain areas. This
depends on the type of circuit pattern required
to be printing on the wafer surface. The scan-

ner can mount a single reticle and can hold a

fixed number of reticles in its slot at a given
time. When a reticle swap is required between
the mounted reticle and the slots to process in-
coming wafers, a robotic arm with a determin-
istic delay time and a fixed capacity, makes the
necessary swap. This swap occurs after all the
wafers in a given lot completes the scanning
process. This way, the scanner is ready with
the required reticle mounted to process the
next lot. If the reticle required is not mounted
nor available in any of the slots, a reticle swap
is made between the slots and the main reticle
storage. The reticle removed from the slots is
the one which is not required to process any
further incoming lots. This swap is done by a
robotic arm with a fixed capacity and a deter-
ministic delay. These swaps happen in parallel
with the scanning process and no waiting of
walfers is encountered. After scanning process
is completed, a transporter moves the wafer
from the scanner and a robotic arm is used
to move the wafer out of the scanner. The
model has two develop resources to process
the wafers. The wafers move to any of the de-
velop stations with a certain probability. Each
of the develop stations has a robotic arm to
transport the wafers in and out of the resource.
In the develop step, the activated photoresist
layer is dissolved in a developer solution and
the circuit patterns are formed. Once the de-
velop processes are completed, a robotic arm
is used to group the wafers in the lot, before

the lot exits the equipment.

4.3 Selecting Improved Reticle Alloca-

tions

The basic idea behind the approach is repre-
sented in Figure 5. In Figure 5, {q,h, g} are
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three feasible action values selected from U}, at
step k. Hy(xx, ux) denotes the evaluation of the
reward function obtained considering the sim-
ulated sample paths generated from each ac-
tion and completed using the base heuristic as
a policy each time a reticle change is requested.

As mentioned in Section 3.2, the overall
goal of the rollout algorithm is to solve for an
approximately optimal policy 7t*. This policy
consists of a series of actions iy, each taken to
optimize an approximation of the original ob-
jective. Rather than solving for the optimal pol-
icy m*, which is computationally prohibitive,
the rollout algorithm solves for each action se-
quentially.

The state space for the rollout algorithm is
identical to the original problem described in
Section 3.2, referred to as x; = (R, Ly, W), and
it is a function of the previous state, the action
chosen at k — 1, and some noise variables from

the previous state €x_1, namely:
Xk+1 = fr (Xk, uk, €xlex-1), k=0,1,---, T -1

where f; is the transition function for the pho-
tolithography system (such transition can be
executed through the simulation). A decision
step k occurs each time a lot completes a scan
operation and the equipment faces the choice
of the operation to perform next. In this sce-
nario, a reticle can potentially be changed in
the equipment before the next lot begins pro-
cessing. As a result of this, the time between
consecutive actions is not fixed.  To decide
between the potential feasible actions, the roll-
out algorithm evaluates the approximate re-
ward function using the DTFab simulator that
implements the base heuristic as a means to

manage reticle changes given an initial (state,

action) pair. This estimates the performance of
each action at a given state. This reward is a
function of both the current state of the system
k, and every action taken from k to the end of

the stimulation T — 1. That is,

Hy(xx, ug) = g(xg, g, -+, ur—1|€x, -+, €r-1)

More details on the estimation of the heuristic
reward are provided in Section 4.3.3.

Once the action at time k is decided, the
photolithography system moves to the next de-
cision step and the process is repeated. At the
end of the simulation, the rollout algorithm
will have generated a sequence of decisions:
7 = {ig, -+, 474} The overall procedure

is summarized in Algorithm 1. In summary,

Algorithm 1 Rollout Algorithm

Step 1: Create current action space U from feasi-

ble actions

Step 2: For each potential action in Uy, run a look
ahead function using the base heuristic i

Step 3: Select the control that maximizes the re-
ward function H(xg, ug) as i, and execute this
action (set uy = ﬁ;;)

Step 4: Update the state information and move to
Xk+1

Step 5: Repeat steps 1-4 until the simulation has
reached its terminating condition

Step 6: Return 7t = {ﬁs, e, aT—l}

based on the current state of the system, the
algorithm calls a procedure for the generation
of feasible actions (Section 4.3.1). For each se-
lected action (this can be a subset of the feasi-
ble decisions) the look ahead simulations (Sec-
tion 4.3.3) are performed using the base heuris-
tic (Section 4.3.2) to evaluate the effect of the

action.
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4.3.1 Defining the Action Space

The action space Uy contains all the reticle al-
locations that are feasible at decision step k.
In other words, at step k the system compiles
a list of every reticle switch that is feasible to
the current state. Each of these switches is
evaluated for potential, and a winner is cho-
sen to be executed based on its performance
in the look ahead function discussed in Sec-
tion 4.3.3. Before this can be done however, the
system must first create Uy from the current
state information To create the action space,
the first step the algorithm must perform is de-
termining which reticles are feasible to switch.
Given that the decision occurs at station # at
step k. The system defines two subsets of Ry,
O} and O}. Define O} (O € Ry) as the set
of reticles needed by lots in the loading bay
at step k, that is any reticle whose operation
number attribute matches the next operation
of any lot in the loading bay or the queue of
station n. Additionally, define O} (O} € R)

imizes reward function base heuristic evaluation H(xx,u,)—

lout Algorithm

as the set of reticles not needed by lots in the
loading bay at step k, that is any reticle whose
operation number attribute does not match the
next operation of any lot in the loading bay. In
set notation, this selection can be defined as
Uk = {tnpsitnpg i Tpx = 1,756 =0,7px €
Of, 1qk € O}(\’ }

The algorithm process is shown in algo-

rithm 2.

Algorithm 2 Creating the Action Space Uy

Step 1: Define the equipment where the decision
is being made as index n

Step 2: Add any actions fulfilling r, x = =1, 74 ¢ =
0, pk € O;{‘, qk € Ollc\] to the feasible action space
Uk

Step 3: Return the action space Uy

4.3.2 Reticle Management Base Heuristic

In the rollout algorithm, a base heuristic is
needed to control the decisions made in the
model within the look ahead simulations. In
the algorithm, the base heuristic i functions by

marking reticles in storage for a future swap.
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When a lot in equipment loading fails to find
the needed reticle on an available equipment,
one reticle matching the lots currently needed
in storage is marked. This is done by chang-
ing the reticle’s Swap status attribute to TRUE.
Let R;" be the subset of reticles in storage that
is currently marked, R}" C Rx. When a deci-
sion is made using i, the heuristic selects one
reticle the subset of marked reticles, and the
reticle from the equipment’s slots whose oper-
ation number is required the least by the next
operation of lots in the loading bay and queue.
Demand ties are broken by lowest slot index
c. If we define the location of the decision as
equipment n and the decision of the heuristic
at step k of the look ahead iix. The procedure
is reported in Algorithm 3.

Algorithm 3 Base Heuristic Procedure

Step 1: Define the equipment where the decision
is being made as index n

Step 2: Choose a feasible reticle from slots of # to
return

Step 3: Choose a reticle from RZ1 to be mounted
on equipment n. Change this reticle’s Swap status
to FALSE

Step 4: Set this action as i)

4.3.3 The Lookahead Evaluation

This step is necessary to choose an action from
the feasible set U. In particular, each element
of the set is evaluated using the look ahead
simulation. A number of replications are per-
formed, and for each replication, only the first
reticle allocation is decided through the action
uy, while all the forthcoming reticles are allo-
cated using the base policy. Once the simula-
tions have completed, the evaluation for each

action is made available as the base heuristic

reward Hy(xy, ux), and the action u; is cho-
sen such that Hy(xy, 1) is maximized. In our
specific application, each action is evaluated in
terms of the completion time of the lots cur-

rently present in the system.

More specifically, at each decision point
(i.e., reticle change request), the algorithm
evaluates all the actions uy € Ug. The reward
Hy(xy, uy) is then evaluated using the rollout
mechanism: look ahead simulations are initial-
ized with the current system state x; and the
action to be evaluated u; € Ur. Within each
lookahead simulation, when a reticle change
is requested the base heuristic is used to de-
termine the decision (Section 4.3.2). The sim-
ulations result in a number of trajectories 17 4
for the future states, which we use to estimate
the expected reward for each action. It is im-
portant to highlight that these replications are
run in parallel within our architecture. The
lookahead simulations run until a terminating
condition is reached. In this work, we propose
two alternative terminating conditions that re-

sult into two rollout policies.

Rollout Policy 1. The first implementation
has the simulations terminate when all the
lots present in the system at the time when
the reticle change is called for, are completed.
We refer to this completion time as TN |, with
r =1,---,npa. In this case, the reward is
H, = —-E (TN ’), which we estimate through
np4 replications.

Rollout Policy 2. The second implementation
has the simulations terminate when all the lots
present in the system at the time when the ret-
icle change is called for, complete their next
operation. We refer to this completion time

1 . .
as Oﬁ\I, with r = 1,--- ,nra. In this case
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—E (ONI), which we esti-

mate through np . replications. It is apparent

the reward H; =

that the second policy uses myopic simulations
only looking at the next operation, thus re-
sulting in potential computational savings (the
two policies become increasingly similar as the
state gets closer to the completion of the lots
operations).

Once all of the look ahead simulations have
concluded (irrespective of rollout policy cho-
sen), the actions are compared based on the
base heuristic evaluation Hy(xy, ux), and the
action uy maximizing Hy(xk, uy) is selected as

ity This process is summarized in Algorithm 4.

Algorithm 4 The Look Ahead Function

Step 1: For each possible action in Uy, create a

look ahead simulation.

Step 2: Run look ahead simulations to completion
Step 3: Return action uj from Uy such that the
base heuristic evaluation, Hj(x, uy), is maxi-

mized

*

Step 4: Set this action as i1,

4.4 Contribution

As highlighted from the literature analysis,
most of the approaches do not leverage de-
tailed simulations of the system, and rather
focus on building approximations of the re-
ward through surrogates. This is not aligned
with the increasing availability of digital copies
of complex systems and processes, and the
plethora of information that can be gathered
from resources in real time. On the other hand,
heuristic policies developed by industry ex-
perts should be accounted for when generat-

ing potentially new approaches. However, the

approaches in the literature do not have a way

to embed policies to guide the search.

In this manuscript, we focus on the prob-
lem of improving cycle times within the pho-
tolothography process in a semiconductor fab
with the goal to show that simulation driven re-
inforcement learning can lead to performance
improvement over the policies adopted in the
industry practice. Due to the fact that the loss
function is associated with the cycle time of the
lots in the system, we have no closed form re-
ward (similar to other Reinforcement Learning
approaches in the literature). This prevents us
from using exact stochastic dynamic program-
ming. Considering approximate dynamic pro-
gramming, we could have designed a surro-
gate for the cost function, i.e., a metamodel of
the cycle time as a function of the reticle choice.
Nonetheless, the categorical nature of the ac-
tion space does not make it amenable to most
learning models. Moreover, embedding base
policies of practical relevance that exist for the
reticle management problem is desired. To this
end, a rollout Bertsekas (2020) based frame-
work for reticle management is developed that:
(i) allows us to solve the control problem with-
out a analytical knowledge of the cost function;
(ii) can be applied to categorical decisions; (iii)
has a base heuristic as an immediate mecha-
nism to embed pre-existing policies and im-
prove them. In light of these observations, the

contribution of this paper is two-fold:

Contribution 1. We develop a Python simu-
lation that represents the digital copy of the
system under analysis. This digital copy can
take as input the state of the system at any
point in time and simulate any reticle alloca-

tion action by warm-starting a discrete event
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dynamical simulation of the photolithography
system. This allows, in principle, to estimate
multiple metrics of the system which we may
be interested in optimizing. The simulator is in
the DTFab package which will be made avail-
able with the published manuscript.

Contribution 2. We design a rollout algorithm
that can intelligently generate reticle alloca-
tions, while using the simulation to evaluate
them. Different from the approaches in the lit-
erature, we can directly use the simulator to
evaluate the performance of the system, with-
out estimating any surrogate of the response.
This approach eliminates the need to train a
surrogate model at the cost of requiring few on-
line simulations to evaluate the policy. Hence,
it is important to develop a computationally

efficient simulator.

5. Experimental Results

In this section, we present the main empirical
results shown for the proposed approach. In
particular, our experiments focus on two main
objectives: DTFab is validated statistically in
Section 5.1. We defined a set of experiments
with our industry partner with the objective to
evaluate the accuracy. The rollout-based ap-
proach is verified in Section 5.2, by evaluating
the performance gain introduced by the policy
in terms of average lot cycle time reduction.
The rollout algorithm and the results will be
publicly available in the form of a GitHub re-

port upon acceptance of the manuscript.
5.1 Model Validation

In collaboration with our partners at Intel,
we designed a test benchmark to statistically

demonstrate the validity of the simulator. In

particular, we evaluated the impact of two
main factors: (i) number of copies for each ret-
icle (i.e., reticles that can perform the same op-
eration); (ii) Lot release policies (i.e., the way
lots of different product types are loaded in
the external loading bay). For reticle copies,
we considered two different levels, running the
system with two and three copies, respectively.
For lot release policies, we consider two pos-
sible cases, batch release and cascade release:
(i) in the batch release case, lots enter the sys-
tem in homogeneous groups of a fixed size; (ii)
in the cascade case, lots enter the system se-
quenced at random. Table 1 reports the key

input parameters and associated levels.

5.1.1 System Metrics Formulation

We collected several performance metrics to
characterize the system level performance.
These performance metrics are collected in ex-

periments replicated 30 times, that is N" =

30. Let r represent the r-th replication, r
(1,---,N"). These metrics are, the cycle time
of each of the N’ lots LCTj,, j = (1,--- ,N),
the utilization of both the coater and scanner
on each of the N® stations, which we refer to
as UTCy p, withn =(1,--- ,N°*)and UTS, w,
n=(1,---,N*). In the following, we provide
the detailed calculation for each metric and the

obtained results.
; 1
LCT]',r =1ljr= E]',r,] = (1,' . ,N )
where T;, and E; ; denote the time where lot j
departs and enters the system in replication ,
respectively.
N o
D=1 Ziz1 fu jir = S jir
1
Y

denote the time at

UTC,, =

Where frfj” and s;jir

which lot j respectively finishes and starts pro-
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Table1 Model Input Parameters

Parameter Type Variable | Distribution | Value Units Description
Simulation run N! N/A 750 - Lots completed in simulation
parameters N© N/A 30 - Number of replications
Tool N¢ N/A 4 - Number of reticle storage slots
parameters N N/A 1 - Number of scanners (each
mounting a reticle)
N N/A 15 - Total number of equipment
Equipment N/A Uniform 0.5t06 Days Time between failure for
parameters coater/scanner
N/A Triangular 1to6 Hours | Repair time
N¢ N/A 5 - Lot capacity per equipment
NP N/A 30 - Number of product types
Product N° N/A 30 - Number of layers per product
parameters N/A Uniform 43.00 | Seconds | Coating time
N/A N/A 25 Seconds | Scanner time
Lot parameters N/ N/A 25 - Number of wafers per lot
N/A N/A 1350 - Total number of operations
across product types
Nt N/A 4050 - Total number of reticles in sys-
Reticle
parameters tem (3 copy case)
Nt N/A 2700 - Total number of reticles in sys-
tem (2 copy case)
N/A N/A 75 - Total number of reticles allo-
cated for use by all tools
N/A N/A 500 - Max number of scans per reticle
before inspection
N/A N/A 42 Seconds | Reticle swap time for storage to
slot
N/A N/A 21 Seconds | Reticle swap time for slot to
mount
Resist parameters N/A N/A 300 - Number of coating cycles before
refill
Inspection N/A Triangular | 5to15 | Minutes | Reticle inspection time
parameters N/A Triangular 2to3 Hours | Lotinspection time in metrology
Queuing policy N/A N/A N/A - FIFO
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cessing on the coater of station n for the ith

time in replication 7.

N oo s 5
B Zj:l i1 fn,j,i,r - Sn,]}i,f

urs,, =
TV
where f%.. and s .. denote the time at
n,j,i,r n,j,i,r

which lot j respectively finishes and starts pro-
cessing on the scanner of station n for the ith
time in replication 7.

To evaluate the performance of the overall
system, these metrics were then averaged into
system wide metrics using the following for-
mulations. The sample mean of each metric is

denoted by the bar notation. That is

NI
_ LCT;
LCT, = § ik

1
= N
—  &urc,,
UTCr = T
n=0
NS
— uTs, ,
uTs, = NE
n=0

For each replication r we also collect the
average per reticle swaps made between main
storage SWS,, the average per reticle swaps
made within equipment’s slots SWE,, and the

average scans per reticle ASC,. That is

. My
SWS, = Y =&
n=0

N
NS
= Zn,r
SWE, = )" 3x
n=0
R Cr
ASCr = ﬁ

where Y, , represents the number of swaps
made between equipment #n and storage; Z, ,
represents the number of times a reticle was
moved to equipment n’s reticle mount from
equipment slots; and C, represents the total

number of scans performed in replication 7.

The average quantity of wafers inspected, the
average number of wafers rejected by metrol-
ogy, and the average proportion of defective
wafers are collected per replication as well,
and these will be referred to as QTI,, WRM,,

and PDF,, respectively.
NIU
—_— uk,
QTI, = W
k=0
NZU
S Vi,r
WRMr = W
k=0
NZU
SHT Wi, r
PDFr = W
k=0

We then derive the averaged measures, and
associated confidence interval, across indepen-

dent macro-replications, namely:

NI ——— N’

fr— L(j]ﬂr fr— L[]X:r
[CT =) —- UIC=) —=
r=0 r=0
NV — NY —
e urs, =—= SWS,
UTS = ), —+,SWS =) >
r=0 r=0
— G SWE, + ASC,
SWE = , =
r=0 N7 r=0 N7
N’ N
—_— QTI, —— WRM,
QTI = ) 5" WRM = N
r=0 r=0
Nr
fr— l)l)Fr
PDF= ) —
r=0
5.1.2 Analysis

Table 2 shows the cycle time metrics across the
tested conditions, while Figure 6b reports box
plots giving information on the distribution of
the metrics. From the results, we can observe
that the average lot cycle times for the two
copies case is less than the three copies case
for both cascade and batch dispatch scenarios.
This can be explained by the fact that in the

three copies case, a greater number of reticles
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are required to undergo setup in the system.
This means that more number of lots are re-
quired to be sent to metrology to setup these
reticles. Figure 7a and Table 2 also show the
average cycle times of the lots that skip metrol-
ogy, which means that these lots are not used to
setup any reticles. This gives us an insight on
the absolute difference between the two lot dis-
patch scenarios. From the above table, we find
that among the two reticle cases, the average
lot cycle times are much lower for a two copies
case. The reason behind this is that in the two
copies case, there are a total of 2700 reticles
which complete setup much faster compared
to the 4050 reticles in the three copies case. We
find that even after removing the lots that go
to metrology for setup, we find a difference be-
tween batch and cascade scenarios where the
average lot cycle time for the cascade scenario
is much lesser compared to the batch for both
reticle cases. In the case of a batch dispatch
scenario, each product type arrives in batches
of size five. This means that during the initial
phase of the simulation, where the number of
reticles setup are less, more lots compete for
the same reticles. From Section 5, we know
that all reticles require setup. Due to this, in
the case of the batch scenario, the lots have a
higher waiting time in the system before a ret-
icle is setup and is available for process. In
the case of cascade, the lot product types are
evenly spaced out as they are assigned at ran-
dom among the 750 total lots. Since the lot
product types are evenly spaced out, there is
less competition among lots to use specific ret-
icles for process. In cascade, as further lots
of the same product types enter the system, it

encounters reticles that are setup for process

which reduces the wait time of lots.

Table 3 shows three metrics pertaining to
reticle swap, the average number of swaps be-
tween the main storage and the equipment
slots, the average number of swaps within the
equipment and the average number of scans
per reticle. The average value for the first met-
ric is calculated by dividing the total number
of reticle swaps done between the reticle and
the main storage, with the total number of ret-
icles in system. A two copies reticle case has
2700 reticles in system, while the three copies
case has 4050 reticles in system. The other
metrics are calculated in a similar fashion. The
results show that the number of reticle move-
ments between the main storage and the equip-
ment slots are higher for cascade by 65% in
the 2 reticle copies case, and this percentage
decreases to 42.8% in the three reticle copies
case. This can be accounted by the diversity
in product types in the case of cascade, which
would require a higher number of reticle swaps
from storage. This also explains the results ob-
tained for the average number of reticle swaps
from the waiting slots to begin operating on

the wafers.

Table 4 shows the performance metrics ob-
tained for the equipment. Figure 7b provides
the same results graphically to show the distri-
bution of the metric across independent sim-
ulation replications. From the results, we can
observe that the coater utilization is not statis-
tically impacted by the number of copies per
reticle. Furthermore, we notice that the coater
utilization is higher than the scanner across all
experiment conditions. As discussed in Sec-
tion 4, the busy time for the scanning process

in the tool is contributed by only two steps,
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Table2 Average Lot Cycle Time and Standard Error when Including All Lots, and Removing Lots That Are Sent

to Metrology

Reticle case Release policy CT =+ SE (with metrology) CT =+ SE (no metrology)
Batch 96.563 + 0.330 77.886 + 0.249
2 copies
Cascade 89.683 + 0.304 67.213 £ 0.285
Batch 107.098 + 0.096 92.259 +0.158
3 copies
Cascade 103.768 + 0.246 84.411 +£0.753
120 ' 120 :
[ With metrology
[ 1No metrology [_INo metrology
110 1 110 + .
==
=
100 - é 1 100 1
. —
90 - == B 90 % -
: =
80 % b 80} .
70+ T 70t t ]
E=
L
60 : : 80 : :
Batch Cascade Batch Cascade

(a) Case with two reticle copies

(b) Case with three reticle copies

Figure 6 Average Lot Cycle Times Analysis

while all other processes contribute to the busy
time of the coater. This reason contributes to
the higher utilizations for coater as compared
to the scanner in all cases.

Finally, Table 5 shows the proportion defec-
tive of wafers inspected in the metrology sta-
tion. We perform this study to verify the cor-
rectness of the wafer inspection process. Each
wafer that is inspected has the same probabil-
ity to fail an inspection according to the model.
This is reflected by the results showing that the
proportion defective value is statistically inde-

pendent from the condition.

5.2 Rollout Algorithm Experiments

To evaluate the impact of the novel reticle man-
agement framework, we study the impact of
the rollout-based policy when applied to a
photolithography system looking at the effect

of the number of the number of lots in the sys-
tem, the total number of machines, the total
number of layers per wafer (number of op-
erations), hence the number of reticles in the
system. In addition to the two rollout policies
introduced in Section 4.3.3, we consider the
following state of the art production control

rules:

e Shortest Processing Time (SPT): when
the swap is called for, if available, the
reticle associated to the lots requesting
the shortest cumulative processing time
is mounted,;

e Longest Processing Time (LPT): when
the swap is called for, if available, the ret-
icle associated to the lots requesting the
longest cumulative processing time is

mounted.
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Table 3 Reticle Swap Results across Experimental Conditions and Standard Error (se) across 30 Replications

SWS + SE

SWE + SE

ASC £+ SE

Reticle case Release policy
2 copies Batch 7.880 + 0.279 9.399 +£0.0584 | 324.921 +0.829
Cascade 13.078 £0.0434 | 12.420 +0.0329 | 326.300 + 0.7309
3 copies Batch 6.175+0.0376 | 6.329 +0.03169 | 216.702 +0.293
Cascade 8.818 + 0.067 8.250 £ 0.0319 | 217.745 +0.286

Table 4 Equipment Utilization Results across Experimental Conditions and Standard Error (se) across 30 Repli-

cations
Reticle case Release policy UTC = SE UTS + SE
Batch 0.872 +0.00193 | 0.808 + 0.002083
2 copies
Cascade 0.916 = 0.00282 | 0.879 +0.00153
Batch 0.877 +0.0187 0.837 + 0.00168
3 copies
Cascade 0.907 + 0.00248 0.86 +0.00164
1 : 1 . ‘

[ICoater [ICoater
[ 1Scanner [ ]Scanner

0.95F - 095}

=
0.9F . 0.9t ==
= == =
0.85+ . 085 %.
=
08 r % m 08 L
0.75 : : 0.75 : ‘
Batch Cascade Batch Cascade

(a) Case with 2 reticle copies

(b) Case with 3 reticle copies

Figure 7 Equipment Utilization Analysis

Table 5 Wafer Inspection Results across Experimental Conditions and Standard Error (se) across 30 Replications

Reticle case Release policy ﬁ +SE ﬁ +SE ﬁ +SE
2 copies Batch 234696.8 +1070.636 | 154.60 +=4.54 | 0.000658 + 0.00424
Cascade 182366.2 + 1846.128 | 122.1 +4.094 | 0.000669 + 0.00221
3 copies Batch 327398.4 £1560.437 | 218 £6.375 0.000665 + 0.00408
Cascade 258794.9 £ 3087.738 | 172.8 £5.968 | 0.000667 + 0.00193
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For the purpose of evaluating the quality
of the different policies, we collect five differ-
ent output metrics: the average lot cycle time
(in hours), equipment utilization for the scan-
ner and coater, the number of retciles swapped
between tools and storage, and the number of
reticle exchanged within equipment. For the
formulas used in the calculations of these met-
rics, please see Section 5.1.1. The resulting de-
sign of experiment factors and levels are pro-
vided in Table 6. We used n; 4 = 15 simulation
replications to evaluate the action effect online
for the rollout policies, and macro-replicated
all the experiments 15 times to calculate the

confidence intervals over the output metrics.

In the following, we discuss the results sep-

arately for the different output metrics.

Cycletime. Westartanalyzing the effect of the
policies on the cycle times which are optimized
by the rollout. The results are in Tables 7-8
(first column) for the small and larger system,
respectively, and Figures 8a-8b for the small
and large system respectively, the average cy-
cle times of the lots for the Base Heuristic, SPT
and LPT policies are similar with no statistical
difference considering a significance a = 0.05,
for both the smaller and larger systems. We ob-
serve that, compared with the Base Heuristic,
the Rolloutl policy results in an average cycle
time reduction of 6.93% for the smaller system
which increases to 13.45% for the larger sys-
tem. The Rollout2 results in the average lot
cycle time reducing by 7.30% for the smaller
system and by 13.30% for the larger system,
when compared with the Base Heuristic. We
can see that across all cases the rollout meth-
ods are statistically superior to the alternative

policies, with a computational advantage for

Rollout2 policy as discussed in Section 4.3.3.

Equipment Utilization. The equipment uti-
lization in Tables 7-8 is separately calculated
for the coater (ﬁ) and the scanner (ﬁ)

Figures 9a-9b show the performance for the

scanner in yellow and in blue for the coater.
We observe that the average scanner and coater
utilization for the Base Heuristic, SPT and LPT
policies are similar with no statistical differ-
ence with a significance a = 0.05, for both the
smaller and larger systems. We also see that
Rolloutl policy results in the average scanner
utilization increasing by 3.49% for the smaller
system and by 21.35% for the larger system,
when comparing with the Base Heuristic. The
Rollout2 policy results in the average scanner
utilization increasing by 13.37% for the smaller
system and by 19.66% for the larger system,
when comparing with the Base Heuristic. Sim-
ilarly, when using the Rolloutl policy, the av-
erage coater utilization increased by 4.15% for
the smaller system and by 23.47% for the larger
system. The Rollout2 policy results in the aver-
age coater utilization increasing by 35.84% for
the smaller system and by 21.51% for the larger
system.

Reticle Swaps. The reticle swaps are sepa-

rately reported in Tables 7-8 for the swaps with

storage (S WS ) and the and within equipment

(m) Figures 10a-10b show the swaps with
the storage in blue and within the equipment
in yellow. We observe that the average swaps
between main storage and slots remains almost
the same while the average swaps within the
equipment shows a statistically significant in-
crease for both the Rollout policies. This means
that to improve cycle time and utilization result

in increased movements of reticles within the
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Table 6 Rollout Experiments Parametrization®

Parameter Type Variable | Distribution | Value | Units | Description
Simulation run N! N/A [10,30] - Lots completed in simulation
parameters Nv N/A 15 - Number of replications
Tool parameters N¢ N/A 2 - Number of reticle storage
slots
Rollout parame- nraA N/A 15 - Number of replications for
ter rollout
Equipment
parameters N N/A [2,10] - Total number of equipment
Product NP N/A 3 - Number of product types
parameters N°¢ N/A [3,5] - Number of layers per prod-
uct
N/A N/A [9,15] - Total number of operations
Reticle
parameters across product types
Nt N/A [27,45] - Total number of reticles in
system (3 copy case)
N/A N/A [6,30] - Total number of reticles allo-
cated for use by all tools

“The parameters for the larger system are provided in bold, where no bold value is supplied the experiments were

run for the smaller system.

Table 7 Results for Smaller System across 15 Replications

Policy CT +SE UTC + SE UTS + SE SWS =+ SE SWE + SE
Base
Heuristic | 11.514 + 0.07718 | 0.505 + 0.00531 0.441 + 0.00349 0.703 + 0.00722 0.837 + 0.00484
SPT 11.455 +0.06245 | 0.492 +0.00746 0.433 + 0.00394 0.703 + 0.00626 0.837 + 0.00704
LPT 11.423 +0.06505 | 0.495 +0.00734 0.435 + 0.00405 0.698 +0.00710 0.832 +0.00493
Rollout 1 10.7157 + 0.015 0.526 +0.00397 | 0.4564 +0.00544 | 0.7596 + 0.00501 | 0.8467 +0.00518
Rollout2 | 10.673 +0.09316 | 0.686 + 0.01138 0.500 + 0.00779 0.756 + 0.00674 0.857 +0.00720
Table 8 Results for Larger System across 15 Replications
Policy CT +SE UTC + SE UTS £ SE SWS £+ SE SWE + SE
Base Heuristic | 18.013 +0.06807 | 0.409 +0.00390 | 0.295 +0.00318 | 0.547 +0.00675 | 1.395 +0.01338
SPT 18.021 £ 0.06785 | 0.398 +£0.00879 | 0.296 +0.00245 | 0.538 +0.01095 | 1.371 +0.01510
LPT 17.925 +£0.07109 | 0.404 +0.00386 | 0.299 + 0.00263 | 0.549 +0.00664 | 1.377 +0.01812
Rollout 1 15.589 + 0.07492 | 0.505 + 0.00581 0.358 + 0.00403 | 2.035+ 0.03871 1.759 + 0.02306
Rollout 2 15.616 + 0.09378 | 0.497 + 0.00612 | 0.353 + 0.00421 | 1.955 + 0.04821 1.638 + 0.01644
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system. Figures 10a-10b show that the average
swaps between main storage and slots, and the
average swaps within the equipment increases
substantially for both the Rollout policies in the
larger system. The bold results in Tables 7-8 are
statistically significant at « = 0.05, signifying
that the increased movement of reticles result-
ing from the Rollout policies is a significant

effect of the introduced control.

6. Conclusion and Future Work

In this paper, we presented a digital twin-

driven rollout method for the reticle manage-

ment problem for photolithography in chip
manufacturing. To this end, a novel digital
twin discrete-event simulation model of the
photolithography process was developed and
validated. We analyzed and statistically vali-
dated the simulation model designing a set of
experimental conditions that varied the num-
ber of copies of each reticle type, and the lot
release policy. We observed statistics on lot
cycle times, resource utilization, reticles move-
ments and verified the robustness of the results
for the different conditions. These experiments

were run considering a heuristic rule for reti-
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cles management that was inspired to the real
system thanks to the collaboration with the co-
authors at Intel. Given the verified simulator,
we proceeded to apply the rollout and evalu-
ated the empirical effect of the new policy. We
observed a significant improvement in the av-
erage lot cycle time when the rollout algorithm
was utilized over the base heuristic policy. Al-
though the approach presented in this paper
proved to be successful for a scaled model, it
exposed the need for further work to be done
to scale the algorithmic platform. Addition-
ally, the implementation of the Python digi-
tal twin model has been designed with future
growth in mind. Extending the current im-
plementation of the Photolithography process
to encompass other processes is another major

step currently under way.
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