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Abstract. Photolithography is among the key phases in chip manufacturing. It is also among the most

expensive with manufacturing equipment valued at the hundreds of millions of dollars. It is paramount

that the process is ran efficiently, guaranteeing high resource utilization and low product cycle times. A

key element in the operation of a photolithography system is the effective management of the reticles that

are responsible for the imprinting of the circuit path on the wafers. Managing reticles means determining

which are appropriate to mount on the very expensive scanners as a function of the product types being

released to the system. Given the importance of the problem, several heuristic policies have been developed

in the industry practice in an attempt to guarantee that the expensive tools are never idle. However, such

policies have difficulties reacting to unforeseen events (e.g., unplanned failures, unavailability of reticles).

On the other hand, the technological advance of the semiconductor industry in sensing at system and

process level should be harnessed to improve on these "expert policies". In this manuscript, we develop

a system for the real time reticle management that not only is able to retrieve information from the real

system, but also is able to embed commonly used policies to improve upon them. We develop a new digital

twin for the photolithography process that efficiently and accurately predicts the system performance, thus

allowing our system to make predictions for future behaviors as a function of possible decisions. Our results

demonstrate the validity of the developed model, and the feasibility of the overall approach demonstrating

a statistically significant improvement of performance as compared to the current policy.

Keywords: Semiconductor manufacturing, reinforcement learning, reticle management, digital twin

1. Introduction

Within silicon-based semiconductor manufac-

turing, the equipment required for the pho-

tolithography process is by far the most expen-

sive single piece of machinery in the process,

with typical machines costing in the tens to

hundreds of millions of dollars (Byrne 2007).

These machines utilize opaque reticles (also

referred to as masks) to imprint the different

layers of integrated circuits that form a mi-

crochip onto silicon wafers. These layers form

the core of a microchip, thus making the pho-

tolithography process among the most critical

phases for the successful manufacturing of the

end product. In fact, the tool responsible for

the photolithography is among the most ex-

pensive in a semiconductor factory (Sterling

2022, Schoolov 2022). ASML Holding, one

of the major producers of photolithography
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equipment, as of January 2022, was selling

its most advanced machines in current com-

mercial production, known as EUV lithogra-

phy systems because of the "Extreme Ultra-

violet" light waves they use to map out the

circuitry of computer chips, for around $150

million each (Sterling 2022). Among the cus-

tomers are the largest semiconductor compa-

nies, whose mission is to optimize the pro-

ductivity of such expensive resources. In par-

ticular, a successful management of the pho-

tolithography phase maximizes the utilization

of the photolithography machines, while guar-

anteeing low product cycle times and low de-

fects. While the last aspect is mainly managed

through maintenance policy, the first two are

highly impacted by the operational strategies

applied on the shop floor.

As previously mentioned, in the pho-

tolithography process, wafers undergo a se-

quence of operations responsible for imprint-

ing the pattern of a circuit layer. To achieve

the correct print, reticles are used by manufac-

turing machines, scanners, as step-and-repeat

aligners to transfer a pattern image of the in-

tegrated circuit onto the wafer (EESEMI 2005,

Byrne 2007). Figure 1 shows the principle un-

derlying the wafer printing through a reticle.

As it can be observed, the process works in

principle like a photo-negative, where a light

is shone through a mask containing the circuit

pattern, after which it goes through a series of

projection lenses for de-magnification before

reaching the wafer. This pattern transfer usu-

ally covers a small portion of the wafer. As

a result, the process will need to be repeated

multiple times until the entire wafer is covered

before moving onto the next wafer (Wikichip

2023).

Given the cost of the scanner, a major op-

erational imperative is to keep it utilized as

much as possible. This can be achieved with

a large number of reticles available for the tool

so that it can process continuously over several

patterns. While this in principle can address

utilization, it may hurt cycle times if the reti-

cles are not properly assigned to the tools. As

suggested in Park et al. (1999), on average, a

photolithography process will have hundreds

different product types, each requiring tens of

unique reticles due to the difference in circuit

designs. As a result, a realistic system may

have thousands of reticles to be managed at

each point in time. Hence, optimizing the al-

location of reticles is all but a simple problem

that, if handled improperly, creates an expen-

sive bottleneck for the entirety of the manu-

facturing process (Benzoni et al. 2020, Byrne

2007, Peters and Puharic 2003, Vitelli 2021). As

a result, the reticle management policy is a very

important component of the photolithography

management that determines how reticles are

allocated to the tools during production. Com-

pounding the issue of high dimensionality is

the need to setup reticles, i.e., inspect the qual-

ity of the designs when they start to be adopted

in line, and the uncertainty due to unexpected

failures of the resources (Carranza 1986, All-

geier et al. 2020).

Background and related approaches. While

the reticle management problem is unique to

semiconductors, it can be interpreted as a tool

management problem in traditional manufac-

turing domains. In this sense, approaches to

solve this class of problems have traditionally

fallen into three categories: (i) formulating
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Figure 1 Schematic of the photolithography process1

1 Source: Sun L, Chen X, Tomizuka M(2014). Selective iterative learning control to deal with iteration-dependent

disturbance. In Proceedings of ISCIE/ASME International Symposium on Flexible Automation (pp. 1-8) (Sun et al. 2014).

the problem as an optimal schedule, math-

ematical programming is used to formulate

and solve the problem; (ii) heuristic policies,

very common in industry practice, do not typi-

cally require expensive optimization tools, but

tend to be sub-optimal; (iii) the problem has

been formulated as optimal control, attempt-

ing to find the state dependent policy. In this

area, reinforcement learning has gained in-

creasing attention. Mathematical programming
has been used extensively to solve tool allo-

cation problems in general flexible Manufac-

turing Systems (FMS), and similar approaches

can be found in photolithography operations

scheduling (Turkcan et al. 2003, Turkcan

2007). Therein, a deterministic mathemati-

cal model is solved for an optimal production

schedule constrained by tool and equipment

availability (De Diaz 2005). Approaches that

rely on heuristics rules for the allocation of reti-

cles are very common in the industry practice

and they have been extensively developed in

the tool literature in manufacturing (Hung and

Chen 1998, Li et al. 2014, Fathi and Barnette

2002). These rules typically aim to create a near

optimal product dispatching policy that maxi-

mizes the throughput of the system (Hung and

Chen 1998, Li et al. 2014). While, in princi-

ple, a plethora of such rules can be developed,

their performance is highly sensitive to process

changes (Randhawa and Kuo 1997, Randhawa

and Zeng 1996). Finally, tool management

has been modeled as an optimal control prob-
lem. In particular, reinforcement learning has

been recently adopted and analyzed as a so-

lution approach. Specifically, approximately

optimal policies are designed where dispatch-

ing decisions are made sequentially using in-

formation gained from the previous dispatch.

To do so, trained reinforcement learning de-

cision agents (typically a neutral network or

Deep-Q-Learning agent) estimate the reward

landscape at each step and take the action that

is predicted to maximize the model’s through-

put. Examples of this approach are Waschneck

et al. (2018), Park et al. (2020).

Contribution. In light of these challenges and

the high value of the tools, it comes with no sur-

prise that the semiconductor industry has led

the development of Industry 4.0 technologies,

enhancing sensing, and increasingly relying

on ever improving digital copies of the highly
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complex systems and processes happening in

the Fab, with key players such as Siemens

and Dassault Systèmes making the develop-

ment of digital twin a key asset (Simens 2022,

Systèmes 2021). This calls for a new way

to approach challenges in the optimization of

Fab operations with methods that can leverage

novel technologies. However, most of the ap-

proaches do not leverage detailed simulations

of the system, but, rather, focus on building

approximations of the reward of interest. This

is not aligned with the increasing availability

of digital copies of complex systems and pro-

cesses, as well as the plethora of information

that can be gathered from resources in real

time. On the other hand, heuristic policies

developed by industry experts should be ac-

counted for when generating potentially new

approaches. However, the approaches in the

literature do not have a way to embed policies

to guide the search.

Our collaboration with Intel Corporation

resulted in a novel approach to real time reticle

management, which we propose in this work.

Specifically, we propose a digital twin in the

loop method for reticle management that uses

a rollout algorithm to sequentially improve on

a base policy for the allocation of reticles to the

tools in the system. The method is able to take a

decision that leads to the reduction of the prod-

uct lead time each time a reticle is potentially

up for change. We not only use the informa-

tion on the state of the system that is available

in real time, but develop a digital twin that effi-

ciently and effectively evaluates the effect of the

reticle allocation choice. Our results show the

accuracy of the digital twin, and demonstrate

that the new approach achieves a statistically

improved performance over the base heuristic

policy for reticle change.

Organization of the paper. The paper is

organized as follows: Section 2 presents the

relevant literature for the optimal reticle man-

agement problem; Section 3 describes the ret-

icle management problem; Section 4 presents

our approach, and Section 5 shows the main

empirical results obtained. Finally, conclud-

ing remarks,and potential avenues for further

work are discussed in Section 6.

2. Literature Review

Optimal reticle management can be seen

within the broader class of policies for tool

management in the semiconductor industry,

and, more in general, for Flexible Manufac-

turing Systems (FMSs). In fact, several ele-

ments of the reticle management problem can

be identified for many FMSs. Examples are the

central tool storage, identical machines with

tool magazines, and incoming products re-

quiring a series of predetermined operations.

As a result, in this section we review meth-

ods developed in the context of tool manage-

ment in FMSs. We then highlight shortcom-

ings with respect to the application of state-of-

the-art methods to our problem. We catego-

rize the proposed approaches into two main

methodological classes: 1) Static optimization

formulations that rely on exact mathematical

programming formulations to produce state-

independent solutions. For these approaches,

the problem of tool management is solved

through the use of deterministic mathemat-

ical modeling. 2) Simulation driven state-

based approaches. Within this class, simula-

tion models are used to model system behav-
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iors and uncertainty through sequential state

transitions. These simulation models are typi-

cally partnered with a machine learning algo-

rithm or a decision heuristic that creates a deci-

sion policy using information from the current

state.

Digital Twins vs Simulation. An important

observation to make is the distinction between

simulation and digital twin. Although both

involve the implementation and simulation of

what is essentially a virtual version of the given

process, what separates the two is the ability

of a digital twin to collect current state infor-

mation of the physical system through sensors

and perform optimization to the physical sys-

tem in real-time (TWI Global 2022, Raghu-

nathan 2019). Simulation models are limited

due to the possible manual data collection and

difficulty in data interpretation which would

affect the timeliness of any necessary updates

needed to be made to the physical system (TWI

Global 2022, Raghunathan 2019). This there-

fore limits the scope where simulation models

could be used to solve problems (TWI Global

2022). This is where Digital Twins could help

fill the gap, where the real-time data is directly

inputted into a virtual model which enables

users to test different decision scenarios with

the current state of the system and ensure that

the best possible decision is selected at the ap-

propriate time (Raghunathan 2019).

2.1 Static Optimization Approaches for
Tool Management

In the context of complex manufacturing sys-

tems, the optimal tool management problem is

identical to the job assignment problem (Fathi

and Barnette 2002). As such, many static op-

timization problems have been formulated in

the context of optimal tool management con-

sidering (Tang and Denardo 1998, Zeballos

2010, Turkcan 2007, Klemmt et al. 2010, Ham

and Cho 2015, Bixby et al. 2006, Turkcan et

al. 2003). In these implementations, optimal is

usually defined as a minimization of cost or a

maximisation of throughput. The constraints

are typically each part requiring a particular

tool, each machine only processing one part

at a time, each station having a limited queue

capacity, each station having a limited tool ca-

pacity, and each part requiring completion by

specific time (Tang and Denardo 1998, Zebal-

los 2010, Turkcan et al. 2003, Turkcan 2007).

Mathematical programming is also adopted in

the industry practice, where work plans are

prepared daily according to the modelled op-

timal plan. The plan is then changed by the

line operators as a result of changes in the sys-

tem (e.g., machine failure, operator unavail-

ability) (Bradley et al. 1977). Methods differ

on the considered constraints, as well as on the

performance to be optimized. As an example,

the model implemented in Tang and Denardo

(1998) utilizes a deterministic model to mini-

mize tool switches in a flexible manufacturing

system by returning to storage the tool with

the lowest demand among known future prod-

ucts. For this problem, they use the sequence

in which jobs are processed and the set of tools

placed on each machine prior to each job as

their decision variables. These decisions are

constrained by the capacity of each machine

and the quantity of each tool. Similarly, Turk-

can et al. (2003), Turkcan (2007) utilize a

deterministic model to optimize a composite

objective function of cost and tardiness. In this
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problem, the decision variables are the opera-

tion parameters for each job, job assignments,

and tool assignments. Constraining these de-

cisions is the capacity of each station’s tool

magazine and queue and the life of each tool.

They, along with Tang and Denardo (1998),

propose a tool switching rule to aid in the min-

imization of switches in their systems. Ze-

ballos (2010) solves a tool management prob-

lem in a deterministic FMS system in the con-

text of four objective functions, minimization

of make-span, minimization of tardiness, mini-

mization of cost, and a multi-objective function

combining all three. To optimize this function,

this model decides an optimal tool and part al-

location schedule. This schedule is constrained

by machine capacity and tool quantity. Simi-

lar to Zeballos (2010), Turkcan et al. (2003),

Turkcan (2007), Bixby et al. (2006) solves a de-

terministic tool management problem through

mixed integer programming. In this model,

the throughput of the model is minimized

through the scheduling of product. This is con-

strained by the capacity of each station’s tool

magazine and queue. Klemmt et al. (2010)

uses this optimal reticle management problem

as part of a multistage problem, where tool

and resist quantities are solved in stage one

and used as the constraints of the operational

tool management problem in stage two. In

this model, load balancing and throughput are

both used as the overall objective. For the tool

management optimization, the problem is con-

strained by the tool composition purchased in

stage one and the capacity of machines and the

decision variable is the production schedule. A

similar approach is demonstrated in Ham and

Cho (2015), where a deterministic mathemat-

ical model is combined with an automated lot

dispatching policy to optimize a composite ob-

jective function. In this system, the mathemat-

ical model solves for an optimal distribution

of lots to be assigned to each machine. This

is done through minimizing a composite ob-

jective of load balancing and cycle time. After

the model is solved, the automated dispatch

policy determines the order in which lots are

sent to their assigned machines. In an attempt

to account for the difficulty of capturing uncer-

tainty using this type of model (Mishra et al.

2006), Rai et al. (2002) utilize a fuzzy goal ap-

proach to solve the deterministic mathematical

model. In these approaches, they optimize the

tool and part allocation problem to minimize

the cost of the policy in an FMS system using

fuzzy goal optimization. This optimization is

constrained by tool allocations and machine

capacity.

A major challenge of the presented appr-

oaches resides in the fact that the mathemat-

ical models used are closed-form in nature

and computationally expensive. Fox (1983)

presents the job shop scheduling program-

ming model to be an NP-hard problem. At-

tempting to adapt a full manufacturing pro-

cess to fit within the bounds of a deterministic

mathematical model is difficult to do without

the model becoming exceedingly large. Tang

and Denardo (1998) summarizes the issue best,

with these models, it may become necessary

to make important assumptions regarding cer-

tain model parameters or behaviors, which in

turn may reduce the applicability of the solu-

tions to real-world systems. For these reasons,

this type of modeling is infeasible to meet the

requirements of clients where solutions may
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be required quickly. Therefore, an alternate

method is required to perform this task.

2.2 Simulation Driven State-based
Approaches for Tool Management

A different branch of the literature investigates

the performance of different policies, rather

than designing them. To do this, simulation

models are designed to mimic realistic condi-

tions that are then used to test the performance

of varying policies. Several examples of this

in the field of semiconductor manufacturing,

are De Diaz (2005), Hickie (1999), Park et al.

(1999). In these papers, the photolithogra-

phy phase of a semiconductor manufacturing

process is simulated in a stochastic model to

estimate the cycle time and load balancing of

the system in different scenarios where factors

such as product homogeneity, dispatching pol-

icy, forecasting, and station tool capacity are

varied. Notably, De Diaz (2005) tests the im-

pact of a reticle placement optimization sub-

problem on the performance of the simulation

model. In this experiment, a programming

model is used to solve for the optimal reti-

cle placements on equipment in six-hour in-

tervals. While De Diaz (2005) holds the most

relevance to the optimal reticle management

problem, the proposed approach is impractical

due to its computational cost and long period

of time required between decisions. The work

in Hickie (1999), Park et al. (1999), on the

other hand, deals with the model’s cycle time

and load balancing under varying dispatch-

ing policies similar to Randhawa and Zeng

(1996), Randhawa and Kuo (1997). These ap-

proaches evaluate the throughput, cumulative

tardiness, and number of tardy lots under the

lot dispatching policies earliest due-date, low-

est slack time, and shortest processing time.

Several other basic dispatching rules are also

examined by Hung and Chen (1998). They ex-

amine the effects of first-in-first-out, random,

shortest remaining time, shortest queue for

next operation, and shortest processing time

policies have on a stochastic wafer manufac-

turing simulation’s cycle time. Hung and Chen

(1998), Leachman et al. (1988) propose and

utilize a dispatching method on a stochastic

simulation called the Queue Management pol-

icy. This policy uses information regarding the

lots in queue at a station to decide the optimal

time to release the next lot to that station. Li

et al. (2014) proposes a newly designed lot

dispatching rule to improve a stochastic semi-

conductor simulation model in three areas, cy-

cle time, tardiness, and WIP. Unfortunately,

these policies are static. Should the proper-

ties of a system change, a given rule-based

policy may increase or decrease in effective-

ness (Randhawa and Kuo 1997, Randhawa and

Zeng 1996). We seek a policy that will be ro-

bust to future changes that may be made to

the system, so this property is not ideal. The

simulation executed in Byrne (2007), on the

other hand, focuses on simulating two differ-

ent photolithography stepper types, each us-

ing different reticle sets and running in a low

volume, high product mix fab. The goal of

this simulation is the optimization of costs via

the determination of the amount of reticle cov-

erage required in order to effectively balance

utilisation and average lot wait times, and the

results of which are used to set the appropri-

ate reticle purchase plans. Another approach

within this category is reinforcement learning.
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Reinforcement learning aims to maximize the

performance of a model with respect to a cu-

mulative reward function. To do this, a deci-

sion agent sequentially chooses actions from

an action space derived from the current state

of the system. These approaches are almost

always used with stochastic models. The con-

tributions (Waschneck et al. 2018, Park et al.

2020, Kim et al. 2021) provide examples of

this approach. In Waschneck et al. (2018),

Park et al. (2020), the authors implement

neural network decision agents, while Kim et

al. (2021) implements Deep Q-Learning to

make dispatching decisions in a semiconduc-

tor manufacturing process. In Waschneck et

al. (2018), the authors utilize three neural

network decision agents to make product dis-

patching decisions for three sequential pro-

cesses based on the reward function of the cy-

cle time. The work in Park et al. (2020) on the

other hand, uses a single neural network dis-

patching agent whose goal is to minimize the

makespan of the system. The work in Zhang

and Dietterich (1995) is the earliest implemen-

tation of reinforcement learning to this type

of problem. They utilize this technique to opti-

mize dispatching a static job shop system in re-

gards to a special reward function called the re-
source dilation factor. The contributions (Zhang

et al. 2007 2012) address photolithography

job scheduling with minimal tardiness solv-

ing a reinforcement learning formulation of the

problem through Deep Q-Learning.

3. The Reticle Management Problem

Before defining the reticle management prob-

lem in mathematical terms, it is important to

first understand the problem in an intuitive

sense. As discussed in Section 1, each op-

eration within the photolithography process

requires a specific reticle to be used. This

presents an interesting problem since a given

fab may have hundreds to thousands of dif-

ferent reticles, while only being able to mount

a select few for use at a given time. Because

of this imbalance of reticles to tool space, some

kind of decision guide must be implemented to

manage which reticles are removed from tools

and which reticles are brought out of storage

between operations. To do this, we formulate

this problem as a stochastic control problem

leveraging the power of digital twin technol-

ogy to evaluate potential reticle swaps. To be-

gin, we present the key notations and defini-

tions. Later in the paper, Section 3.2 presents

the formal reticle management problem for-

mulated as a stochastic optimal control prob-

lem, the computational challenges are high-

lighted and the simulation based rollout algo-

rithm is justified in this context.

3.1 Notations and Definitions

The state of the system is xk � {Rk , Lk ,Wk},
referring to the reticles, lots, and wafers states.

In particular:
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Rk �
{

ri ,k
}
, ri ,k �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if reticle in storage

−n , if reticle is loaded in n-th equipment and idle

n , if reticle is loaded in n-th equipment and busy

−(Ns + 1), if reticle is loaded at the inspection station and idle

Ns + 1, if reticle is loaded at the inspection station and busy

, i � 1, · · · ,Nt

Lk �
{

l j,k
}
, l j,k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if lot is in the loading bay

−1, if lot is in the external loading bay

−(Ns + 2), if lot is at the metrology station and idle

(Ns + 2), if lot is at the metrology station and busy

−(n + 1), if lot is loaded in n-th equipment and idle

(n + 1), if lot is loaded in n-th equipment and busy

, j � 1, · · · ,Nl

Wk �
{

wz ,k
}
, wz ,k �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if wafer located with its lot

−n , if wafer is loaded in n-th equipment and idle

n , if wafer is loaded in n-th equipment and busy

, z � 1, · · · ,Nw

where Nt , Nl , Nw and Ns represent the num-

ber of reticles, lots, wafers, and stations, respec-

tively. Additionally, let Tj be the action space

at step k and the time at which lot j departs the

system, j � 1, · · · ,Nl . Finally, let uk , Uk , and

Hk(xk , uk) be the control action at step k, the

collection of feasible actions at step k (Uk ⊆ uk),

and the reward for implementing the action uk

in state xk evaluated using the base heuristic ũ.

3.2 Problem Formulation

The overall objective of the optimal reticle

management is to dynamically and adaptively

allocate reticles to the several slots available

at each equipment in a way that minimizes

the expected cycle time. Formally, we seek

an allocation policy π∗ such that, at each

state x0 , · · · , xT , there exists a map of actions

{
μ∗

0
, · · · , μ∗T−1

}
to be taken at their respective

time k, k � 0, · · · , T − 1, that can guide the sys-

tem into sequential states that minimize the ex-

pected departure time of the final lot, E(TNl ).
This expected time is a function of the origi-

nal state, x0 and every action made during the

production run, {u0 , · · · , uT−1}. Thus the ob-

jective is

min E(TNl ) � f (x0 , u0 , · · · , uT−1) (1)

Because the time in equation (1) is a function of

every action made during the process, having

the policy π∗ that maps possible actions and

the states that they transition to, would allow

for an optimal value of E(TNl ) to be achieved.

To create this policy, we need to choose a vec-

tor of optimal control actions {u∗
0
, · · · , u∗

T−1
},

so that the expected time at which the final
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lot departs the system beginning at that x0 is

minimized. To do this, each individual opti-

mal control action u∗
k , k � 0, · · · , T − 1, must

be selected. At each decision step, the action

uk is to do nothing, or to swap the reticle on

the tool that has completed a specific operation

type, with another reticle from storage, more

formally:

uk �
{

un ,p ,s ,k
}

n ,p ,q (2)

where:

un ,p ,s ,k �

⎧⎪⎪⎨⎪⎪⎩
0, if no swap is taken at step k on equipment n on slot s for reticle ID p

q , if at step k reticle p is removed from tool n on slot s and replaced by reticle q
(3)

where, in equation (3), q � 1, · · · ,Nt , p �

1, · · · ,Nt , s � 1, · · · ,Nc , q � p, Nc � station

reticle slots . An action in {un ,p ,s ,k}n ,p ,q is ac-

tive and contained in Uk only if, rp ,k � −n, and

rq ,k � 0.

Hence, reticle management can be formu-

lated as a stochastic control problem, where we

seek the optimal policy for the adaptive assign-

ment of reticles to resources/storage. In partic-

ular, the system state xk at the k-th change re-

quested is such that xk+1 � fk (xk , uk , εk) , k �

0, 1, · · · , T − 1, where εk is the noise due to

the failures that can affect the equipment (e.g.,

scanners, coaters, manipulation robots). We

are looking to solve an optimization problem

over policies π (also referred to as closed loop
control, feedback policies). These policies are for-

mally a sequence of functions:

π �
{
μ0 , · · · , μT−1

}
where μk is a map from system states xk into

controls uk that satisfy the control constraints

(e.g., reticle availability) for all feasible states

xk ∈ Sk . Then the expected cost associated to a

policy π starting in state x0 is:

Jπ (x0) � E

{
gT (xT) +

T−1∑
k�0

gk
(
xk , μk (xk) , εk

)}

where g (·) is an appropriate cost function. In

this paper the function expresses the contri-

bution of the reticle allocation choice at the

k-th swap to the sample-path completion time.

More details on the evaluation of such cost will

be provided in Section 4.3.3. Since, we have a fi-

nite number of lots, we know that the dynamic

program for stochastic finite horizon problems

can be applied here. We have that:

Start with

J∗T (xT) � gT (xT)

Then for k � 0, · · · , T − 1, let

J∗k (xT) � min
uk∈Uk

E
{

gk
(
xk , μk (xk) , εk

)
+J∗k+1

(
fk
(
xk , μk (xk) , εk

) )}
.

(4)

If u∗
k � μ∗k () minimizes the right end side

of this equation, for each xk and step k, the

policy π∗ �
{
μ∗

0
, · · · , μ∗T−1

}
is optimal.

This optimal policy, π∗ is incredibly diffi-

cult to solve for several reasons. Chiefly, the

E(TNl ) does not have a closed form solution.

This is due to the fact that each successive state

is dependent on both the state before it, and

the action taken at that state; decisions made

in early states on can cascade down and create

significant variance in later system states and

the expectation E(TNl ). Because of this, static
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mathematical models and optimization tech-

niques are difficult to apply to this problem.

Instead, we propose the use of a rollout algo-

rithm that, rather than solving for the optimal

policy π∗ all at once, solves for each element û∗
k

sequentially.

4. Proposed Approach

Rather than solving the above optimal control

problem, we approach an approximate version

of this optimal allocation and solve it using the

rollout algorithm (Bertsekas 2020) partnered

with a digital twin. In particular, the rollout es-

tablishes a procedure that generates an action

and, given a base policy for reticle manage-

ment, and a digital twin, evaluates the action

so that the action with the best approximate re-

ward can be selected. The digital twin model

serves as a simulated replica of a real-life pro-

cess that works as a bridge between the opti-

mizer and the real manufacturing process. The

overall approach is depicted in Figure 2. Here,

Hk(xk , uk) denotes the value that the simula-

tion of the base heuristic associates to the ac-

tion uk and
{

q , h , g
}

are three feasible action

values selected from Uk at step k.

As shown in Figure 2, a rollout algorithm

requires two key components: the simulation

model and the selection of controls used to

achieve the result. The creation of the digi-

tal twin simulation model and base heuristic is

presented in Section 4.2, and the rollout algo-

rithm is presented in Section 4.3.

4.1 Process Overview

Figure 3 shows the conceptual model of how

products and reticles flow through the system

resources detailing the process summarized in

Section 1.

As shown by Figure 3, the unit being pro-

cessed by the resources across the several

phases of the photolithography process is the

wafer. Each wafer has attached a predeter-

mined set of coating and scanning operations

that are required to achieve the target print of

the desired circuit, and different target circuits

determine different product types and differ-

ent required tooling of the scanner (i.e., differ-

ent reticles are required). Wafers do not move

through the system independently, rather, they

are transported in lots with a determined size

that groups wafers of the same type. When

a lot reaches an equipment to receive a spe-

cific coating-scanning step, the wafers are sep-

arated from the lot and are processed sequen-

tially. Once all wafers have completed the op-

eration, they are returned to the lot and leave

the station grouped again. Before a wafer

can be printed, the appropriate reticle must

be mounted on the scanner resource. In an

attempt to maximize the scanner utilization,

a single scanner typically holds mulitple reti-

cles. Each reticle can only perform a specific

print, henceforth can only process a specific

step of a specific product type. Reticles are

stored in an on-site main storage unit until they

are needed. When a reticle is needed, it is re-

moved from storage and added to the tool mag-

azine of a photolithography machine. Overall,

there are five primary locations that entities

can move between. These are the external load-
ing bay where lots wait before they enter the

system, the equipment loading, the photolithog-

raphy tools (equipment) containing the coater,

scanner and a robotic handling system is re-
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Figure 2 A Digital Twin Method for the Optimal Reticle Management

Figure 3 Semiconductor Manufacturing Process∗
∗ Within this process behaviors function as follows (a) Lots in the loading bay are dispatched to equipment when

available. This is handled by an automatic dispatcher, no decision is made here. In (b) reticles from storage are swapped

with reticles on equipment to accommodate the needs of lots in the loading bay. This is the decision in the model. Finally,

in (c) lots in the equipment queues are served on a FIFO bases. No decision is made here.

sponsible for moving the wafers within the

equipment. The metrology station responsible

to check the quality of the prints, and the in-

spection station responsible to check the qual-

ity of the reticles. All lots for a given simulation

run are created at the beginning and added to

the external loading bay. These lots are con-

sidered to be outside the system and will be

prevented from entering the system when it

is full. In the simulation there are a limited

number of lots that can be in process at the

same time. This means that the lots in the ex-

ternal loading bay will only enter the system

when there is space; when a lot leaves the sys-

tem, bringing the number of lots in the system

below capacity, a new lot will enter from the

external loading bay according to the predeter-

mined order.

4.2 DTFab: the Python-based Digital Twin
Model for the Photolithography

DTFab allows the user to create and charac-

terize as instance of five major classes in the

model (Figure 4 shows the entities, associ-
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ated attributes and relationships in DTFab):

Reticle, Lot, Equipment, Product, and Wafer.

The Reticle has the ID which is the pri-

mary key used to uniquely identify each object

of this class. The operation ID is a number

which matches the corresponding operation to

be performed on the Lot or Wafer. The prod-

uct type is a value denoting the product cor-

responding to the operation performed by the

reticle, and the number of scans denotes the

total scans performed by a reticle. In the Lot

class, the Lot ID is the primary key used to

uniquely identify the lot objects, and the cur-

rent operation is a number which is unique for

a specific layer of a wafer and matches with

the operation ID of the Reticle. The metrology

status attribute has boolean variables, True or

False, with true denoting that the lot needs to

undergo metrology while false denotes that the

lot does not require metrology. Similar to the

functionalities of the objects in the simulation

model, the attributes are assigned to each one.

Figure 4 is an Entity-Relationship model show-

ing the classes with its individual attributes,

along with their interrelationship. In figure 4,

PK denotes a primary key while FK denotes a

foreign key.

The model was developed in Python lan-

guage version 3.88. SimPy, which is a process-

based discrete-event simulation library was

used as the base for our libraries. The reasons

behind modeling in python, were the ease of

performing optimization using reinforcement

learning and the ability to create a customized

simulation library for semiconductor produc-

tion processes. While our current model im-

plementation is dedicated to the photolithog-

raphy process, we have designed our classes,

functions, and model logic in a way that the li-

brary can be easily customized for other semi-

conductor processes. The Python model is also

computationally efficient, which better enables

its utilization as part of the digital twin system,

since this requires quick decisions to be taken

in real-time. In fact, initially, a commercial dis-

crete event simulation software with detailed

animation was used and while that was very

helpful for ensuring correct process behavior,

the speed of the software precluded using it

for real-time look ahead simulations.

In the following sections, we detail the pro-

cesses being modeled in DTFab.

4.2.1 Lot Operations

Lot loading and Dispatching When a lot en-

ters the system, the lot will enter the inter-

nal loading bay. From this internal loading

bay, lots are dispatched to equipment based on

availability of the equipment and its ability to

perform the desired operation on the wafer. In

particular, when a lot is evaluated for dispatch-

ing, the system will check if an available equip-

ment has the reticle required by the lots next

operation mounted in its tool magazine. If the

reticle is present on an equipment with avail-

able space in its queue, the lot is dispatched

to that equipment. Otherwise, the lot is re-

turned to the back of the queue in the internal

loading bay. In the case of multiple equip-

ment with the required reticle having space in

queue, we prioritize dispatching to the system

with the smallest queue. Once a lot has been

dispatched to a tool, the lot enters a finite ca-

pacity queue. At the equipment level, lots are

served on a FIFO basis. Once a lot has been

processed, it leaves the machine to be sent to

three potential locations. If the reticle used to



Sivasubramanian et al.: DTFab: A Digital Twin based Approach for Optimal Reticle Management in Semiconductor Photolithography 333

Figure 4 Entity-Relationship Model for the Classes

process the lot requires control, the lot is sent

to the metrology station (more details in Sec-

tion 4.2.2). Otherwise, the lot departs the sys-

tem if all of its operations have been completed,

or returns to the loading bay to be dispatched

again if additional operations are required.

Lot Inspection After an operation, lots can be

sent to metrology stations to check for poten-

tial defects. Typically, a fraction of the wafers

within a lot is inspected. After inspection, the

defective wafers are scrapped and the lot is sent

back carrying only the healthy wafers.

4.2.2 Reticle Operations

Two main processes characterize the operating

of reticles in the system: the setup, and the

inspection process.

Reticle Setup The setup of reticles is per-

formed to minimize the defects on wafers due

to wrong positioning and other defects on the

reticle. To ensure this, all reticle undergoes a

setup when they are initially mounted. Dur-

ing the setup, the scanner mounting the reticle

processes at lower speeds to allow for the veri-

fication of the quality of the print. The process-

ing rate is adaptively increased until the reticle

can work at regime. Due to the fact that such

setup is required the first time each reticle is

mounted, this impacts our allocation decision.

Reticle Inspection After each reticle has per-

formed a predetermined number of scans, they

are sent to an inspection station where the crit-

ical parameters are checked and verified. The

inspection time is modeled as a stochastic pro-

cess with a predetermined distribution. Post

inspection, there is a probability that the reti-

cle will still be defective and need repairing. If

this occurs, after inspection, the reticle is sent

to a repair station which has a constant pro-

cessing time. i.e., each repair process lasts the

same amount of time. After repair, the reticle

is sent to the main storage to be returned to

production use.

4.2.3 Description of Equipment

The tool comprises of several resources cor-

responding to different processes and robotic

arms. Initially when lots enter an equipment,
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the wafers are removed by a robotic arm and

moved to a transition station. From the tran-

sition stations, the wafers are moved to bak-

ing ovens when there is available capacity to

process the wafers. The baking process has

a deterministic delay and a fixed capacity. A

common robotic arm is used to move wafers in

and out of the baking oven and coater. From

the baking ovens, wafers are transferred to the

coating process where the photoresist layer is

added to the wafer surface. The coating ma-

chine also has a finite capacity, and the delay is

deterministic. The resource has enough pho-

toresist material to process a fixed number of

wafers. When the amount of photoresist ma-

terial reaches a threshold, the photoresist ma-

terial is refilled to its original capacity. It is

assumed that this refilling process is instan-

taneous in the model. Once the photoresist

layer is added, the wafers are sent to a chiller

station for processing. After the chiller pro-

cess is completed, a robotic arm moves the

wafers to the scanner resource. In the scan-

ner resource, there are essentially two steps

that are performed and each of them are mod-

eled having a fixed capacity and deterministic

processing times. The two processes are mea-

suring and scanning. After the measure step

is completed, the wafers are internally moved

using a transporter. In the scanning process,

UV light is projected onto the wafer surface.

Between the UV light source and the Photore-

sist layer, a photomask or reticle is used which

allows UV light to pass through and project

onto the photoresist layer at certain areas. This

depends on the type of circuit pattern required

to be printing on the wafer surface. The scan-

ner can mount a single reticle and can hold a

fixed number of reticles in its slot at a given

time. When a reticle swap is required between

the mounted reticle and the slots to process in-

coming wafers, a robotic arm with a determin-

istic delay time and a fixed capacity, makes the

necessary swap. This swap occurs after all the

wafers in a given lot completes the scanning

process. This way, the scanner is ready with

the required reticle mounted to process the

next lot. If the reticle required is not mounted

nor available in any of the slots, a reticle swap

is made between the slots and the main reticle

storage. The reticle removed from the slots is

the one which is not required to process any

further incoming lots. This swap is done by a

robotic arm with a fixed capacity and a deter-

ministic delay. These swaps happen in parallel

with the scanning process and no waiting of

wafers is encountered. After scanning process

is completed, a transporter moves the wafer

from the scanner and a robotic arm is used

to move the wafer out of the scanner. The

model has two develop resources to process

the wafers. The wafers move to any of the de-

velop stations with a certain probability. Each

of the develop stations has a robotic arm to

transport the wafers in and out of the resource.

In the develop step, the activated photoresist

layer is dissolved in a developer solution and

the circuit patterns are formed. Once the de-

velop processes are completed, a robotic arm

is used to group the wafers in the lot, before

the lot exits the equipment.

4.3 Selecting Improved Reticle Alloca-
tions

The basic idea behind the approach is repre-

sented in Figure 5. In Figure 5,
{

q , h , g
}

are
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three feasible action values selected from Uk at

step k. Hk(xk , uk) denotes the evaluation of the

reward function obtained considering the sim-

ulated sample paths generated from each ac-

tion and completed using the base heuristic as

a policy each time a reticle change is requested.

As mentioned in Section 3.2, the overall

goal of the rollout algorithm is to solve for an

approximately optimal policy π̂∗. This policy

consists of a series of actions û∗
k , each taken to

optimize an approximation of the original ob-

jective. Rather than solving for the optimal pol-

icy π∗, which is computationally prohibitive,

the rollout algorithm solves for each action se-

quentially.

The state space for the rollout algorithm is

identical to the original problem described in

Section 3.2, referred to as xk � (Rk , Lk ,Wk), and

it is a function of the previous state, the action

chosen at k − 1, and some noise variables from

the previous state εk−1, namely:

xk+1 � fk (xk , uk , εk |εk−1) , k � 0, 1, · · · , T − 1

where fk is the transition function for the pho-

tolithography system (such transition can be

executed through the simulation). A decision

step k occurs each time a lot completes a scan

operation and the equipment faces the choice

of the operation to perform next. In this sce-

nario, a reticle can potentially be changed in

the equipment before the next lot begins pro-

cessing. As a result of this, the time between

consecutive actions is not fixed. To decide

between the potential feasible actions, the roll-

out algorithm evaluates the approximate re-

ward function using the DTFab simulator that

implements the base heuristic as a means to

manage reticle changes given an initial (state,

action) pair. This estimates the performance of

each action at a given state. This reward is a

function of both the current state of the system

k, and every action taken from k to the end of

the stimulation T − 1. That is,

Hk(xk , uk) � g(xk , uk , · · · , uT−1 |εk , · · · , εT−1)

More details on the estimation of the heuristic

reward are provided in Section 4.3.3.

Once the action at time k is decided, the

photolithography system moves to the next de-

cision step and the process is repeated. At the

end of the simulation, the rollout algorithm

will have generated a sequence of decisions:

π̂∗ � {û∗
0
, · · · , û∗

T−1
}. The overall procedure

is summarized in Algorithm 1. In summary,

Algorithm 1 Rollout Algorithm

Step 1: Create current action space Uk from feasi-

ble actions

Step 2: For each potential action in Uk , run a look

ahead function using the base heuristic ũ

Step 3: Select the control that maximizes the re-

ward function Hk(xk , uk) as û∗
k and execute this

action (set uk � û∗
k )

Step 4: Update the state information and move to

xk+1

Step 5: Repeat steps 1-4 until the simulation has

reached its terminating condition

Step 6: Return π̂∗ � {û∗
0
, · · · , û∗

T−1
}

based on the current state of the system, the

algorithm calls a procedure for the generation

of feasible actions (Section 4.3.1). For each se-

lected action (this can be a subset of the feasi-

ble decisions) the look ahead simulations (Sec-

tion 4.3.3) are performed using the base heuris-

tic (Section 4.3.2) to evaluate the effect of the

action.
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Figure 5 Rollout Algorithm

4.3.1 Defining the Action Space

The action space Uk contains all the reticle al-

locations that are feasible at decision step k.

In other words, at step k the system compiles

a list of every reticle switch that is feasible to

the current state. Each of these switches is

evaluated for potential, and a winner is cho-

sen to be executed based on its performance

in the look ahead function discussed in Sec-

tion 4.3.3. Before this can be done however, the

system must first create Uk from the current

state information To create the action space,

the first step the algorithm must perform is de-

termining which reticles are feasible to switch.

Given that the decision occurs at station n at

step k. The system defines two subsets of Rk ,

On
k and Ou

k . Define On
k (On

k ⊆ Rk) as the set

of reticles needed by lots in the loading bay

at step k, that is any reticle whose operation

number attribute matches the next operation

of any lot in the loading bay or the queue of

station n. Additionally, define Ou
k (Ou

k ⊆ Rk)

as the set of reticles not needed by lots in the

loading bay at step k, that is any reticle whose

operation number attribute does not match the

next operation of any lot in the loading bay. In

set notation, this selection can be defined as

Uk � {{un ,p ,s ,k}n ,p ,q : rp ,k � −n , rq ,k � 0, rp ,k ∈
Ou

k , rq ,k ∈ ON
k }

The algorithm process is shown in algo-

rithm 2.

Algorithm 2 Creating the Action Space Uk

Step 1: Define the equipment where the decision

is being made as index n

Step 2: Add any actions fulfilling rp ,k � −n , rq ,k �

0, rp ,k ∈ Ou
k , rq ,k ∈ ON

k to the feasible action space

Uk

Step 3: Return the action space Uk

4.3.2 Reticle Management Base Heuristic

In the rollout algorithm, a base heuristic is

needed to control the decisions made in the

model within the look ahead simulations. In

the algorithm, the base heuristic ũ functions by

marking reticles in storage for a future swap.
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When a lot in equipment loading fails to find

the needed reticle on an available equipment,

one reticle matching the lots currently needed

in storage is marked. This is done by chang-

ing the reticle’s Swap status attribute to TRUE.

Let Rm
k be the subset of reticles in storage that

is currently marked, Rm
k ⊆ Rk . When a deci-

sion is made using ũ, the heuristic selects one

reticle the subset of marked reticles, and the

reticle from the equipment’s slots whose oper-

ation number is required the least by the next

operation of lots in the loading bay and queue.

Demand ties are broken by lowest slot index

c. If we define the location of the decision as

equipment n and the decision of the heuristic

at step k of the look ahead ũk . The procedure

is reported in Algorithm 3.

Algorithm 3 Base Heuristic Procedure

Step 1: Define the equipment where the decision

is being made as index n

Step 2: Choose a feasible reticle from slots of n to

return

Step 3: Choose a reticle from Rm
k to be mounted

on equipment n. Change this reticle’s Swap status

to FALSE

Step 4: Set this action as ũk

4.3.3 The Lookahead Evaluation

This step is necessary to choose an action from

the feasible set Uk . In particular, each element

of the set is evaluated using the look ahead

simulation. A number of replications are per-

formed, and for each replication, only the first

reticle allocation is decided through the action

uk , while all the forthcoming reticles are allo-

cated using the base policy. Once the simula-

tions have completed, the evaluation for each

action is made available as the base heuristic

reward Hk(xk , uk), and the action uk is cho-

sen such that Hk(xk , uk) is maximized. In our

specific application, each action is evaluated in

terms of the completion time of the lots cur-

rently present in the system.

More specifically, at each decision point

(i.e., reticle change request), the algorithm

evaluates all the actions uk ∈ Uk . The reward

Hk(xk , uk) is then evaluated using the rollout

mechanism: look ahead simulations are initial-

ized with the current system state xk and the

action to be evaluated uk ∈ Uk . Within each

lookahead simulation, when a reticle change

is requested the base heuristic is used to de-

termine the decision (Section 4.3.2). The sim-

ulations result in a number of trajectories nLA

for the future states, which we use to estimate

the expected reward for each action. It is im-

portant to highlight that these replications are

run in parallel within our architecture. The

lookahead simulations run until a terminating

condition is reached. In this work, we propose

two alternative terminating conditions that re-

sult into two rollout policies.

Rollout Policy 1. The first implementation

has the simulations terminate when all the

lots present in the system at the time when

the reticle change is called for, are completed.

We refer to this completion time as TNl

r , with

r � 1, · · · , nLA. In this case, the reward is

Hk � −E
(
TNl

)
, which we estimate through

nLA replications.

Rollout Policy 2. The second implementation

has the simulations terminate when all the lots

present in the system at the time when the ret-

icle change is called for, complete their next

operation. We refer to this completion time

as ONl

r , with r � 1, · · · , nLA. In this case
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the reward Hk � −E
(
ONl

)
, which we esti-

mate through nLA replications. It is apparent

that the second policy uses myopic simulations

only looking at the next operation, thus re-

sulting in potential computational savings (the

two policies become increasingly similar as the

state gets closer to the completion of the lots

operations).

Once all of the look ahead simulations have

concluded (irrespective of rollout policy cho-

sen), the actions are compared based on the

base heuristic evaluation Hk(xk , uk), and the

action uk maximizing Hk(xk , uk) is selected as

û∗
k . This process is summarized in Algorithm 4.

Algorithm 4 The Look Ahead Function

Step 1: For each possible action in Uk , create a

look ahead simulation.

Step 2: Run look ahead simulations to completion

Step 3: Return action uk from Uk such that the

base heuristic evaluation, Hk(xk , uk), is maxi-

mized

Step 4: Set this action as û∗
k

4.4 Contribution

As highlighted from the literature analysis,

most of the approaches do not leverage de-

tailed simulations of the system, and rather

focus on building approximations of the re-

ward through surrogates. This is not aligned

with the increasing availability of digital copies

of complex systems and processes, and the

plethora of information that can be gathered

from resources in real time. On the other hand,

heuristic policies developed by industry ex-

perts should be accounted for when generat-

ing potentially new approaches. However, the

approaches in the literature do not have a way

to embed policies to guide the search.

In this manuscript, we focus on the prob-

lem of improving cycle times within the pho-

tolothography process in a semiconductor fab

with the goal to show that simulation driven re-

inforcement learning can lead to performance

improvement over the policies adopted in the

industry practice. Due to the fact that the loss

function is associated with the cycle time of the

lots in the system, we have no closed form re-

ward (similar to other Reinforcement Learning

approaches in the literature). This prevents us

from using exact stochastic dynamic program-

ming. Considering approximate dynamic pro-

gramming, we could have designed a surro-

gate for the cost function, i.e., a metamodel of

the cycle time as a function of the reticle choice.

Nonetheless, the categorical nature of the ac-

tion space does not make it amenable to most

learning models. Moreover, embedding base

policies of practical relevance that exist for the

reticle management problem is desired. To this

end, a rollout Bertsekas (2020) based frame-

work for reticle management is developed that:

(i) allows us to solve the control problem with-

out a analytical knowledge of the cost function;

(ii) can be applied to categorical decisions; (iii)

has a base heuristic as an immediate mecha-

nism to embed pre-existing policies and im-

prove them. In light of these observations, the

contribution of this paper is two-fold:

Contribution 1. We develop a Python simu-

lation that represents the digital copy of the

system under analysis. This digital copy can

take as input the state of the system at any

point in time and simulate any reticle alloca-

tion action by warm-starting a discrete event
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dynamical simulation of the photolithography

system. This allows, in principle, to estimate

multiple metrics of the system which we may

be interested in optimizing. The simulator is in

the DTFab package which will be made avail-

able with the published manuscript.

Contribution 2. We design a rollout algorithm

that can intelligently generate reticle alloca-

tions, while using the simulation to evaluate

them. Different from the approaches in the lit-

erature, we can directly use the simulator to

evaluate the performance of the system, with-

out estimating any surrogate of the response.

This approach eliminates the need to train a

surrogate model at the cost of requiring few on-

line simulations to evaluate the policy. Hence,

it is important to develop a computationally

efficient simulator.

5. Experimental Results

In this section, we present the main empirical

results shown for the proposed approach. In

particular, our experiments focus on two main

objectives: DTFab is validated statistically in

Section 5.1. We defined a set of experiments

with our industry partner with the objective to

evaluate the accuracy. The rollout-based ap-

proach is verified in Section 5.2, by evaluating

the performance gain introduced by the policy

in terms of average lot cycle time reduction.

The rollout algorithm and the results will be

publicly available in the form of a GitHub re-

port upon acceptance of the manuscript.

5.1 Model Validation

In collaboration with our partners at Intel,

we designed a test benchmark to statistically

demonstrate the validity of the simulator. In

particular, we evaluated the impact of two

main factors: (i) number of copies for each ret-

icle (i.e., reticles that can perform the same op-

eration); (ii) Lot release policies (i.e., the way

lots of different product types are loaded in

the external loading bay). For reticle copies,

we considered two different levels, running the

system with two and three copies, respectively.

For lot release policies, we consider two pos-

sible cases, batch release and cascade release:

(i) in the batch release case, lots enter the sys-

tem in homogeneous groups of a fixed size; (ii)

in the cascade case, lots enter the system se-

quenced at random. Table 1 reports the key

input parameters and associated levels.

5.1.1 System Metrics Formulation
We collected several performance metrics to

characterize the system level performance.

These performance metrics are collected in ex-

periments replicated 30 times, that is Nr �

30. Let r represent the r-th replication, r �

(1, · · · ,Nr). These metrics are, the cycle time

of each of the Nl lots LCTj,r , j � (1, · · · ,Nl),
the utilization of both the coater and scanner

on each of the Ns stations, which we refer to

as UTCn ,w , with n � (1, · · · ,Ns) and UTSn ,w ,

n � (1, · · · ,Ns) . In the following, we provide

the detailed calculation for each metric and the

obtained results.

LCTj,r � Tj,r − Ej,r , j � (1, · · · ,Nl)
where Tj,r and Ej,r denote the time where lot j

departs and enters the system in replication r,

respectively.

UTCn ,r �

∑Nl

j�1

∑∞
i�1 f c

n , j,i ,r − sc
n , j,i ,r

TNl
r

Where f c
n , j,i ,r and sc

n , j,i ,r denote the time at

which lot j respectively finishes and starts pro-



340 Sivasubramanian et al.: DTFab: A Digital Twin based Approach for Optimal Reticle Management in Semiconductor Photolithography

Table 1 Model Input Parameters

Parameter Type Variable Distribution Value Units Description

Simulation run
parameters

Nl N/A 750 - Lots completed in simulation

Nw N/A 30 - Number of replications

Tool
parameters

Nc N/A 4 - Number of reticle storage slots

Nm
s N/A 1 - Number of scanners (each

mounting a reticle)

Equipment

parameters

Ns N/A 15 - Total number of equipment

N/A Uniform 0.5 to 6 Days Time between failure for

coater/scanner

N/A Triangular 1 to 6 Hours Repair time

Nc N/A 5 - Lot capacity per equipment

Product
parameters

Np N/A 30 - Number of product types

No N/A 30 - Number of layers per product

N/A Uniform 43.00 Seconds Coating time

N/A N/A 25 Seconds Scanner time

Lot parameters N f N/A 25 - Number of wafers per lot

Reticle
parameters

N/A N/A 1350 - Total number of operations

across product types

Nt N/A 4050 - Total number of reticles in sys-

tem (3 copy case)

Nt N/A 2700 - Total number of reticles in sys-

tem (2 copy case)

N/A N/A 75 - Total number of reticles allo-

cated for use by all tools

N/A N/A 500 - Max number of scans per reticle

before inspection

N/A N/A 42 Seconds Reticle swap time for storage to

slot

N/A N/A 21 Seconds Reticle swap time for slot to

mount

Resist parameters N/A N/A 300 - Number of coating cycles before

refill

Inspection

parameters
N/A Triangular 5 to 15 Minutes Reticle inspection time

N/A Triangular 2 to 3 Hours Lot inspection time in metrology

Queuing policy N/A N/A N/A - FIFO
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cessing on the coater of station n for the ith

time in replication r.

UTSn ,r �

∑Nl

j�1

∑∞
i�1 f s

n , j,i ,r − ss
n , j,i ,r

TNl
r

where f s
n , j,i ,r and ss

n , j,i ,r denote the time at

which lot j respectively finishes and starts pro-

cessing on the scanner of station n for the ith

time in replication r.

To evaluate the performance of the overall

system, these metrics were then averaged into

system wide metrics using the following for-

mulations. The sample mean of each metric is

denoted by the bar notation. That is

LCTr �

Nl∑
j�0

LCTj,r

Nl

UTCr �

Ns∑
n�0

UTCn ,r

Ns

UTSr �

Ns∑
n�0

UTSn ,r

Ns

For each replication r we also collect the

average per reticle swaps made between main

storage SWSr , the average per reticle swaps

made within equipment’s slots SWEr , and the

average scans per reticle ASCr . That is

SWSr �

Ns∑
n�0

Yn ,r

Nt

SWEr �

Ns∑
n�0

Zn ,r

Nt

ASCr �
Cr

Nt

where Yn ,r represents the number of swaps

made between equipment n and storage; Zn ,r

represents the number of times a reticle was

moved to equipment n’s reticle mount from

equipment slots; and Cr represents the total

number of scans performed in replication r.

The average quantity of wafers inspected, the

average number of wafers rejected by metrol-

ogy, and the average proportion of defective

wafers are collected per replication as well,

and these will be referred to as QTIr , WRMr ,

and PDFr , respectively.

QTIr �

Nw∑
k�0

Uk ,r

Nw

WRMr �

Nw∑
k�0

Vk ,r

Nw

PDFr �

Nw∑
k�0

Wk ,r

Nw

We then derive the averaged measures, and

associated confidence interval, across indepen-

dent macro-replications, namely:

LCT �

Nr∑
r�0

LCTr

Nr ,UTC �

Nr∑
r�0

UTCr

Nr

UTS �

Nr∑
r�0

UTSr

Nr , SWS �

Nr∑
r�0

SWSr

Nr

SWE �

Nr∑
r�0

SWEr

Nr ,ASC �

Nr∑
r�0

ASCr

Nr

QTI �
Nr∑
r�0

QTIr

Nr ,WRM �

Nr∑
r�0

WRMr

Nr

PDF �

Nr∑
r�0

PDFr

Nr

5.1.2 Analysis
Table 2 shows the cycle time metrics across the

tested conditions, while Figure 6b reports box

plots giving information on the distribution of

the metrics. From the results, we can observe

that the average lot cycle times for the two

copies case is less than the three copies case

for both cascade and batch dispatch scenarios.

This can be explained by the fact that in the

three copies case, a greater number of reticles
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are required to undergo setup in the system.

This means that more number of lots are re-

quired to be sent to metrology to setup these

reticles. Figure 7a and Table 2 also show the

average cycle times of the lots that skip metrol-

ogy, which means that these lots are not used to

setup any reticles. This gives us an insight on

the absolute difference between the two lot dis-

patch scenarios. From the above table, we find

that among the two reticle cases, the average

lot cycle times are much lower for a two copies

case. The reason behind this is that in the two

copies case, there are a total of 2700 reticles

which complete setup much faster compared

to the 4050 reticles in the three copies case. We

find that even after removing the lots that go

to metrology for setup, we find a difference be-

tween batch and cascade scenarios where the

average lot cycle time for the cascade scenario

is much lesser compared to the batch for both

reticle cases. In the case of a batch dispatch

scenario, each product type arrives in batches

of size five. This means that during the initial

phase of the simulation, where the number of

reticles setup are less, more lots compete for

the same reticles. From Section 5, we know

that all reticles require setup. Due to this, in

the case of the batch scenario, the lots have a

higher waiting time in the system before a ret-

icle is setup and is available for process. In

the case of cascade, the lot product types are

evenly spaced out as they are assigned at ran-

dom among the 750 total lots. Since the lot

product types are evenly spaced out, there is

less competition among lots to use specific ret-

icles for process. In cascade, as further lots

of the same product types enter the system, it

encounters reticles that are setup for process

which reduces the wait time of lots.

Table 3 shows three metrics pertaining to

reticle swap, the average number of swaps be-

tween the main storage and the equipment

slots, the average number of swaps within the

equipment and the average number of scans

per reticle. The average value for the first met-

ric is calculated by dividing the total number

of reticle swaps done between the reticle and

the main storage, with the total number of ret-

icles in system. A two copies reticle case has

2700 reticles in system, while the three copies

case has 4050 reticles in system. The other

metrics are calculated in a similar fashion. The

results show that the number of reticle move-

ments between the main storage and the equip-

ment slots are higher for cascade by 65% in

the 2 reticle copies case, and this percentage

decreases to 42.8% in the three reticle copies

case. This can be accounted by the diversity

in product types in the case of cascade, which

would require a higher number of reticle swaps

from storage. This also explains the results ob-

tained for the average number of reticle swaps

from the waiting slots to begin operating on

the wafers.

Table 4 shows the performance metrics ob-

tained for the equipment. Figure 7b provides

the same results graphically to show the distri-

bution of the metric across independent sim-

ulation replications. From the results, we can

observe that the coater utilization is not statis-

tically impacted by the number of copies per

reticle. Furthermore, we notice that the coater

utilization is higher than the scanner across all

experiment conditions. As discussed in Sec-

tion 4, the busy time for the scanning process

in the tool is contributed by only two steps,
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Table 2 Average Lot Cycle Time and Standard Error when Including All Lots, and Removing Lots That Are Sent

to Metrology

Reticle case Release policy CT ± SE (with metrology) CT ± SE (no metrology)

2 copies
Batch 96.563 ± 0.330 77.886 ± 0.249

Cascade 89.683 ± 0.304 67.213 ± 0.285

3 copies
Batch 107.098 ± 0.096 92.259 ± 0.158

Cascade 103.768 ± 0.246 84.411 ± 0.753

(a) Case with two reticle copies (b) Case with three reticle copies

Figure 6 Average Lot Cycle Times Analysis

while all other processes contribute to the busy

time of the coater. This reason contributes to

the higher utilizations for coater as compared

to the scanner in all cases.

Finally, Table 5 shows the proportion defec-

tive of wafers inspected in the metrology sta-

tion. We perform this study to verify the cor-

rectness of the wafer inspection process. Each

wafer that is inspected has the same probabil-

ity to fail an inspection according to the model.

This is reflected by the results showing that the

proportion defective value is statistically inde-

pendent from the condition.

5.2 Rollout Algorithm Experiments

To evaluate the impact of the novel reticle man-

agement framework, we study the impact of

the rollout-based policy when applied to a

photolithography system looking at the effect

of the number of the number of lots in the sys-

tem, the total number of machines, the total

number of layers per wafer (number of op-

erations), hence the number of reticles in the

system. In addition to the two rollout policies

introduced in Section 4.3.3, we consider the

following state of the art production control

rules:

• Shortest Processing Time (SPT): when

the swap is called for, if available, the

reticle associated to the lots requesting

the shortest cumulative processing time

is mounted;

• Longest Processing Time (LPT): when

the swap is called for, if available, the ret-

icle associated to the lots requesting the

longest cumulative processing time is

mounted.
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Table 3 Reticle Swap Results across Experimental Conditions and Standard Error (se) across 30 Replications

Reticle case Release policy SWS ± SE SWE ± SE ASC ± SE

2 copies
Batch 7.880 ± 0.279 9.399 ± 0.0584 324.921 ± 0.829

Cascade 13.078 ± 0.0434 12.420 ± 0.0329 326.300 ± 0.7309

3 copies
Batch 6.175 ± 0.0376 6.329 ± 0.03169 216.702 ± 0.293

Cascade 8.818 ± 0.067 8.250 ± 0.0319 217.745 ± 0.286

Table 4 Equipment Utilization Results across Experimental Conditions and Standard Error (se) across 30 Repli-

cations

Reticle case Release policy UTC ± SE UTS ± SE

2 copies
Batch 0.872 ± 0.00193 0.808 ± 0.002083

Cascade 0.916 ± 0.00282 0.879 ± 0.00153

3 copies
Batch 0.877 ± 0.0187 0.837 ± 0.00168

Cascade 0.907 ± 0.00248 0.86 ± 0.00164

(a) Case with 2 reticle copies (b) Case with 3 reticle copies

Figure 7 Equipment Utilization Analysis

Table 5 Wafer Inspection Results across Experimental Conditions and Standard Error (se) across 30 Replications

Reticle case Release policy QTI ± SE WRM ± SE PDF ± SE

2 copies
Batch 234696.8 ± 1070.636 154.60 ± 4.54 0.000658 ± 0.00424

Cascade 182366.2 ± 1846.128 122.1 ± 4.094 0.000669 ± 0.00221

3 copies
Batch 327398.4 ± 1560.437 218 ± 6.375 0.000665 ± 0.00408

Cascade 258794.9 ± 3087.738 172.8 ± 5.968 0.000667 ± 0.00193
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For the purpose of evaluating the quality

of the different policies, we collect five differ-

ent output metrics: the average lot cycle time

(in hours), equipment utilization for the scan-

ner and coater, the number of retciles swapped

between tools and storage, and the number of

reticle exchanged within equipment. For the

formulas used in the calculations of these met-

rics, please see Section 5.1.1. The resulting de-

sign of experiment factors and levels are pro-

vided in Table 6. We used nLA � 15 simulation

replications to evaluate the action effect online

for the rollout policies, and macro-replicated

all the experiments 15 times to calculate the

confidence intervals over the output metrics.

In the following, we discuss the results sep-

arately for the different output metrics.

Cycle time. We start analyzing the effect of the

policies on the cycle times which are optimized

by the rollout. The results are in Tables 7-8

(first column) for the small and larger system,

respectively, and Figures 8a-8b for the small

and large system respectively, the average cy-

cle times of the lots for the Base Heuristic, SPT

and LPT policies are similar with no statistical

difference considering a significance α � 0.05,

for both the smaller and larger systems. We ob-

serve that, compared with the Base Heuristic,

the Rollout1 policy results in an average cycle

time reduction of 6.93% for the smaller system

which increases to 13.45% for the larger sys-

tem. The Rollout2 results in the average lot

cycle time reducing by 7.30% for the smaller

system and by 13.30% for the larger system,

when compared with the Base Heuristic. We

can see that across all cases the rollout meth-

ods are statistically superior to the alternative

policies, with a computational advantage for

Rollout2 policy as discussed in Section 4.3.3.

Equipment Utilization. The equipment uti-

lization in Tables 7-8 is separately calculated

for the coater
(
UTC

)
and the scanner

(
UTS

)
.

Figures 9a-9b show the performance for the

scanner in yellow and in blue for the coater.

We observe that the average scanner and coater

utilization for the Base Heuristic, SPT and LPT

policies are similar with no statistical differ-

ence with a significance α � 0.05, for both the

smaller and larger systems. We also see that

Rollout1 policy results in the average scanner

utilization increasing by 3.49% for the smaller

system and by 21.35% for the larger system,

when comparing with the Base Heuristic. The

Rollout2 policy results in the average scanner

utilization increasing by 13.37% for the smaller

system and by 19.66% for the larger system,

when comparing with the Base Heuristic. Sim-

ilarly, when using the Rollout1 policy, the av-

erage coater utilization increased by 4.15% for

the smaller system and by 23.47% for the larger

system. The Rollout2 policy results in the aver-

age coater utilization increasing by 35.84% for

the smaller system and by 21.51% for the larger

system.

Reticle Swaps. The reticle swaps are sepa-

rately reported in Tables 7-8 for the swaps with

storage
(
SWS

)
and the and within equipment(

SWE
)
. Figures 10a-10b show the swaps with

the storage in blue and within the equipment

in yellow. We observe that the average swaps

between main storage and slots remains almost

the same while the average swaps within the

equipment shows a statistically significant in-

crease for both the Rollout policies. This means

that to improve cycle time and utilization result

in increased movements of reticles within the
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Table 6 Rollout Experiments Parametrization∗

Parameter Type Variable Distribution Value Units Description

Simulation run
parameters

Nl N/A [10, 30] - Lots completed in simulation

Nw N/A 15 - Number of replications

Tool parameters Nc N/A 2 - Number of reticle storage

slots

Rollout parame-

ter

nLA N/A 15 - Number of replications for

rollout
Equipment

parameters Ns N/A [2, 10] - Total number of equipment

Product
parameters

Np N/A 3 - Number of product types

No N/A [3, 5] - Number of layers per prod-

uct

Reticle
parameters

N/A N/A [9, 15] - Total number of operations

across product types

Nt N/A [27, 45] - Total number of reticles in

system (3 copy case)

N/A N/A [6, 30] - Total number of reticles allo-

cated for use by all tools

∗The parameters for the larger system are provided in bold, where no bold value is supplied the experiments were

run for the smaller system.

Table 7 Results for Smaller System across 15 Replications

Policy CT ± SE UTC ± SE UTS ± SE SWS ± SE SWE ± SE

Base
Heuristic 11.514 ± 0.07718 0.505 ± 0.00531 0.441 ± 0.00349 0.703 ± 0.00722 0.837 ± 0.00484

SPT 11.455 ± 0.06245 0.492 ± 0.00746 0.433 ± 0.00394 0.703 ± 0.00626 0.837 ± 0.00704

LPT 11.423 ± 0.06505 0.495 ± 0.00734 0.435 ± 0.00405 0.698 ± 0.00710 0.832 ± 0.00493

Rollout 1 10.7157 ± 0.015 0.526 ± 0.00397 0.4564 ± 0.00544 0.7596 ± 0.00501 0.8467 ± 0.00518

Rollout 2 10.673 ± 0.09316 0.686 ± 0.01138 0.500 ± 0.00779 0.756 ± 0.00674 0.857 ± 0.00720

Table 8 Results for Larger System across 15 Replications

Policy CT ± SE UTC ± SE UTS ± SE SWS ± SE SWE ± SE

Base Heuristic 18.013 ± 0.06807 0.409 ± 0.00390 0.295 ± 0.00318 0.547 ± 0.00675 1.395 ± 0.01338

SPT 18.021 ± 0.06785 0.398 ± 0.00879 0.296 ± 0.00245 0.538 ± 0.01095 1.371 ± 0.01510

LPT 17.925 ± 0.07109 0.404 ± 0.00386 0.299 ± 0.00263 0.549 ± 0.00664 1.377 ± 0.01812

Rollout 1 15.589 ± 0.07492 0.505 ± 0.00581 0.358 ± 0.00403 2.035 ± 0.03871 1.759 ± 0.02306

Rollout 2 15.616 ± 0.09378 0.497 ± 0.00612 0.353 ± 0.00421 1.955 ± 0.04821 1.638 ± 0.01644
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Figure 8 Cycle Time Performance Across Competing Policies
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Figure 9 Scanner Utilization Across Competing Policies

system. Figures 10a-10b show that the average

swaps between main storage and slots, and the

average swaps within the equipment increases

substantially for both the Rollout policies in the

larger system. The bold results in Tables 7-8 are

statistically significant at α � 0.05, signifying

that the increased movement of reticles result-

ing from the Rollout policies is a significant

effect of the introduced control.

6. Conclusion and Future Work

In this paper, we presented a digital twin-

driven rollout method for the reticle manage-

ment problem for photolithography in chip

manufacturing. To this end, a novel digital

twin discrete-event simulation model of the

photolithography process was developed and

validated. We analyzed and statistically vali-

dated the simulation model designing a set of

experimental conditions that varied the num-

ber of copies of each reticle type, and the lot

release policy. We observed statistics on lot

cycle times, resource utilization, reticles move-

ments and verified the robustness of the results

for the different conditions. These experiments

were run considering a heuristic rule for reti-
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Figure 10 Reticle Swaps Across Competing Policies

cles management that was inspired to the real

system thanks to the collaboration with the co-

authors at Intel. Given the verified simulator,

we proceeded to apply the rollout and evalu-

ated the empirical effect of the new policy. We

observed a significant improvement in the av-

erage lot cycle time when the rollout algorithm

was utilized over the base heuristic policy. Al-

though the approach presented in this paper

proved to be successful for a scaled model, it

exposed the need for further work to be done

to scale the algorithmic platform. Addition-

ally, the implementation of the Python digi-

tal twin model has been designed with future

growth in mind. Extending the current im-

plementation of the Photolithography process

to encompass other processes is another major

step currently under way.

Acknowledgments

The authors thank the reviewers for the in-

sightful comments that helped improving the

manuscript. This work was partially sup-

ported by the Intel Research under Grant

No.00035705, and the NSF-CISE under Grant

No.2000792.

Data Availability

The datasets generated during and/or anal-

ysed during the current study are available

from the corresponding author on reasonable

request.

References
Allgeier H, Flechsig C, Lohmer J, Lasch R, Schneider G,

Zettler B (2020). Simulation-based evaluation of lot re-

lease policies in a power semiconductor facility - A case

study. 2020 Winter Simulation Conference (WSC). USA.

Benzoni A, Yugma C, Bect P, Planchais A (2020). Allocat-

ing reticles in an automated stocker for semiconductor

manufacturing facility. 2020 Winter Simulation Confer-
ence (WSC).USA.

Bertsekas D (2020). Rollout, Policy Iteration, and Distributed
Reinforcement Learning. Athena Scientific, Belmont, Mas-

sachusetts, USA.

Bixby R, Burda R, Miller D (2006). Short-interval detailed

production scheduling in 300mm semiconductor man-

ufacturing using mixed integer and constraint program-

ming. The 17th Annual SEMI/IEEE ASMC 2006 Confer-
ence. USA.

Bradley S, Hax A, Magnanti T (1977). Applied Mathematical
Programming. Addison-Wesley, USA.

Byrne P (2007). An analysis of semiconductor reticle man-

agement using discrete event simulation. Proceedings of
the 2007 Summer Computer Simulation Conference. USA.

Carranza R (1986). Silicon Run LITE, an overview

film that introduces semiconductor manufacturing.



Sivasubramanian et al.: DTFab: A Digital Twin based Approach for Optimal Reticle Management in Semiconductor Photolithography 349

NationalElectrical.https://siliconrun.com/our-films/sil

icon-run-lite/.

Dantzig G, Thapa M (1997). Linear Programming. Springer,

USA.

Derbyshire K (2015). EUV: Cost killer or savior? Semicon-
ductor Engineering. https://semiengineering.com/euv-c

ost-killer-or-cost-savior/.

De Diaz S, Fowler J, Pfund M, Mackulak G, Hickie M

(2005). Evaluating the impacts of reticle requirements

in semiconductor wafer fabrication. IEEE Transactions
on Semiconductor Manufacturing 18: 622-632.

EESEMI (2005). Mask and ceticles: Tools for pattern for-

mation on semiconductor wafers. EESEMI. https://ees

emi.com/masks-reticles.html.

Fathi Y, Barnette K (2002). Heuristic procedures for the par-

allel machine problem with tool switches. International
Journal Of Production Research 40: 151-164.

Fox M (1983). Constraint-directed search: A case study

of Job-Shop scheduling. PhD thesis, Carnegie-Mellon

University.

Hadash G, Kermany E, Carmeli B, Lavi O, Kour G, Jacovi

A (2018). Estimate and replace: A novel approach to

integrating deep neural networks with existing appli-

cations. ArXiv Preprint ArXiv:1804.09028.

Ham A, Cho M (2015). A practical two-phase approach

to scheduling of photolithography production. IEEE
Transactions on Semiconductor Manufacturing 28: 367-373.

Haße H, Li B, Weißenberg N, Cirullies J, Otto B (2019).

Digital twin for real-time data processing in logistics.

Artificial Intelligence and Digital Transformation in Sup-
ply Chain Management: Innovative Approaches for Supply
Chains. Proceedings of the Hamburg International Confer-
ence of Logistics (HICL) 27: 4-28.

Hickie M (1999). Improving photolithography reticle man-

agement with network modeling and discrete event

simulation. PhD thesis, Arizona State University.

Hung Y, Chen I (1998). A simulation study of dispatch

rules for reducing flow times in semiconductor wafer

fabrication. Production Planning & Control 9: 714-722.

Kim T, Kim H, Lee T, Morrison J, Kim, E (2021). On schedul-

ing a photolithograhy toolset based on a deep reinforce-

ment learning approach with action filter. 2021 Winter
Simulation Conference (WSC). USA.

Klemmt A, Lange J, Weigert G, Lehmann F, Seyfert J

(2010). A multistage mathematical programming based

scheduling approach for the photolithography area in

semiconductor manufacturing. Proceedings of the 2010
Winter Simulation Conference. USA.

Kour G, Saabne R (2014). Real-time segmentation of on-line

handwritten Arabic script. 2014 14th International Con-
ference on Frontiers in Handwriting Recognition (ICFHR).
Greece.

Kour G, Saabne R (2014). Fast classification of handwritten

on-line Arabic characters. 2014 6th International Confer-
ence of Soft Computing and Pattern Recognition (SoCPaR).
Tunisia.

Leachman R, Glassey R, Solorzano J (1988). A queue man-

agement policy for the release of factory work orders.

Research Report. Engineering Systems Research Center,

University of California, Berkeley, USA.

Li Y, Jiang Z, Jia W (2014). An integrated release and dis-

patch policy for semiconductor wafer fabrication. Inter-
national Journal of Production Research 52: 2275-2292.

Mishra S, Prakash, Tiwari M, Lashkari R (2006). A fuzzy

goal-programming model of machine-tool selection

and operation allocation problem in FMS: A quick con-

verging simulated annealing-based approach. Interna-
tional Journal of Production Research 44: 43-76.

Morra J (2017). At ASML, orders pile up for ex-

treme ultraviolet lithography. Electronic Design.

https://www.electronicdesign.com/technologies/emb

edded-revolution/article/21805342/at-asml-orders-pil

e-up-for-extreme-ultraviolet-lithography.

Park S, Fowler J, Carlyle M, Hickie M (1999). Assessment of

potential gains in productivity due to proactive reticle

management using discrete event simulation. Proceed-
ings of the 31st Conference on Winter Simulation: Simula-
tion - A Bridge to the Future - Volume 1. Phoenix, Arizona,

USA.

Park I, Huh J, Kim J, Park J (2020). A reinforcement learn-

ing approach to robust scheduling of semiconductor

manufacturing facilities. IEEE Transactions on Automa-
tion Science and Engineering 17: 1420-1431.

Peters M, Puharic B (2003). Extending reticle life through

better cleaning budgets. Semiconductor Manufactur-
ing:89613095.

Raghunathan V (2019). Digital Twins vs simulation: Three

key differences. Entrepreneur. https://www.entrepreneu

r.com/article/333645.

Rai R, Kameshwaran S, Tiwari M (2002). Machine-tool se-

lection and operation allocation in FMS: Solving a fuzzy



350 Sivasubramanian et al.: DTFab: A Digital Twin based Approach for Optimal Reticle Management in Semiconductor Photolithography

goal-programming model using a genetic algorithm. In-
ternational Journal of Production Research 40: 641-665.

Randhawa S, Kuo C (1997). Evaluating scheduling heuris-

tics for non-identical parallel processors. International
Journal of Production Research 35: 969-981.

Randhawa S, Zeng Y (1996). Job shop scheduling: An ex-

perimental investigation of the performance of alterna-

tive scheduling rules. Production Planning & Control 7:

47-56.

Schoolov K (2022). ASML is the only company making the

$200 million machines needed to print every advanced

microchip. Here’s an inside look. CNBC. https://www

.cnbc.com/2022/03/23/inside-asml-the-company-adv

anced-chipmakers-use-for-euv-lithography.html.

Simens (2022). PlantSight. https://new.siemens.com/glo

bal/en/products/automation/ind-ustry-software/plan

tsight.html.

Sterling T (2022). Intel orders ASML system for well over

$340 mln in quest for chipmaking edge. Reuters. https:

//www.reuters.com/technology/intel-orders-asml-ma

chine-still-drawing-board-chipmakers-look-an-edge.

Sun L, Chen X, Tomizuka M (2014). Selective iterative

learning control to deal with iteration-dependent dis-

turbance. Proceedings Of ISCIE/ASME International Sym-
posium On Flexible Automation.

Systèmes D (2021). Factory of the future. Dassault Systemes.
https://www.3ds.com/factory-of-the-future.

Tang C, Denardo E (1998). Models arising from a flexible

manufacturing machine, part II: Minimization of the

number of switching instants. Operations Research 36:

778-784.

Turkcan A, Akturk M, Storer R (2003). Non-identical par-

allel CNC machine scheduling. International Journal Of
Production Research 41: 2143-2168.

Turkcan A, Akturk M, Storer R (2007). Due date and cost-

based FMS loading, scheduling and tool management.

International Journal of Production Research 45: 1183-1213.

TWI Global (2022). Simulation vs digital twin

(what is the difference between them?). https:

//www.twi-global.com/technical-knowledge/faqs/sim

ulation-vs-digital-twin.aspx.

Vitelli P (2021). The reticle allocation problem and

how to approach it [tech paper review]. Flexci-
ton.https://www.flexciton.com/single-post/the-reticle

-allocation-problem-technical-paper-review.

Waschneck B, Reichstaller A, Belzner L, Altenmüller T,

Bauernhansl T, Knapp A, Kyek A (2018). Deep reinforce-

ment learning for semiconductor production schedul-

ing. 2018 29th Annual SEMI Advanced Semiconductor
Manufacturing Conference (ASMC).

Wikichip.com (2023). Mask / Reticle. Wikichip. https://en.

wikichip.org/wiki/mask.

Zeballos L (2010). A constraint programming approach

to tool allocation and production scheduling in flex-

ible manufacturing systems. Robotics and Computer-
Integrated Manufacturing 26: 725-743.

Zhang W, Dietterich T (1995). A reinforcement learning

approach to job-shop scheduling. ĲCAI 95: 1114-1120.

Zhang Z, Zheng L, Weng M (2007). Dynamic parallel ma-

chine scheduling with mean weighted tardiness objec-

tive by Q-Learning. The International Journal of Advanced
Manufacturing Technology 34: 968-980.

Zhang Z, Zheng L, Li N, Wang W, Zhong S, Hu K (2012).

Minimizing mean weighted tardiness in unrelated par-

allel machine scheduling with reinforcement learning.

Computers & Operations Research 39: 1315-1324.

Chandrasekhar Komaralingam Sivasubramanian is cur-

rently a Corporate Quality Systems Professional at Mi-

crochip Technology, Chandler. He received a bachelor’s

degree in mechanical engineering from SRM Institute of

Science and Technology, and a master’s degree in indus-

trial engineering from Arizona State University in Tempe,

Arizona. He is an ASQ Certified Six Sigma Black Belt with

5+ years of manufacturing industry experience.

Robert Dodge is a graduate student currently enrolled in

the industrial engineering program at Arizona State Uni-

versity, where he works on topics related to digital twins

for smart manufacturing. His primary field of study is

in optimization, simulation modeling, and statistical anal-

ysis. He began pursing his Ph.D. in 2022 when he was

awarded ASU’s Dean’s Fellowship. Prior to that, Robert

graduated with a Bachelor of science in engineering in

industrial engineering in 2021, also from Arizona State

University.

Aditya Ramani is a mechanical engineering PhD student

at Arizona State University specializing in digital twin sim-

ulation of critical semiconductor manufacturing processes

in collaboration with Intel (where he is currently intern-

ing). A prior recipient of the Engineering Graduate Fel-

lowship at ASU, he has 3+ years of industrial experience

in the area of software validation and verification testing



Sivasubramanian et al.: DTFab: A Digital Twin based Approach for Optimal Reticle Management in Semiconductor Photolithography 351

in the Aerospace, Car, and Automated Test Systems indus-

tries. He has 2 publications focusing in the area of simula-

tion modeling as well as a Bachelors and Masters degrees

in Electrical and Aerospace Engineering respectively. He

plans to leverage his extensive software experience in per-

forming further research in the area of digital twins and

simulations.

David Bayba is a Principal Engineer in Intel’s Global Sup-

ply Chain Organization. David builds statistical/machine

learned, mathematical, and simulation models for supply

chain needs at Intel including in the areas of material qual-

ity, inventory planning, forecasting, and sourcing intelli-

gence. Prior to that, David supported packaging assembly

and test manufacturing at Intel by modeling and establish-

ing equipment and factory performance forecasts. David

has been at Intel for 27 years and holds bachelor’s and mas-

ter’s degrees in engineering from the University of Arizona

and Arizona State University, respectively.

Mani Janakiram is a data and analytics professional at

Intel Corporation. His 25+ years of experience includes

Semiconductor/Hitech, Automotive and Aerospace in-

dustries. He has 2 patents, published 50+ papers and a

book on AI. He is an adjunct professor at ASU. He is a PhD

in industrial engineering and an MBA. He is a Six Sigma

Master Black Belt, is one of the Top 50 Analytics Executive

as per CIO.com and an ASCM Fellow.

Eric Butcher is a software research engineer and scientist

at Intel Corporation. He is a results-oriented professional

with 25+ years of demonstrated experience and innovation

in lithography, micro-service architecture, deep litho plat-

form systems development, fault detection and classifica-

tion (FDC), advanced process control (APC), project man-

agement, and integrated production line management. He

is passionate about technical writing and mentoring soft-

ware developers. He serves as a change-agent, driving

large scale projects innovating quality and productivity so-

lutions including complex algorithms, leading edge APC,

conditional availability, and FDC. He has published multi-

ple papers, and has a Master Degree of science in electrical

and computer engineering from Georgia Institute of Tech-

nology.

Joseph Gonzales is a semiconductor wafer fabrication

professional at Intel Corporation with 15+ years of ex-

perience. Having achieved outstanding success in opti-

mization and the development of advanced manufactur-

ing techniques throughout his career, he’s most proud of

his recent accomplishments in improving lithography uti-

lization improvements. He holds a MS in industrial engi-

neering and a black belt certification in Lean Six Sigma.

Giulia Pedrielli (https://www.gpedriel.com/) is cur-

rently associate professor for the School of Computing

and Augmented Intelligence (SCAI) at Arizona State Uni-

versity. She graduated from the Department of Mechani-

cal Engineering of Politecnico di Milano. Giulia develops

her research in design and analysis of random algorithms

for global optimization, with focus on improving finite

time performance and scalability of these approaches. Her

work is motivated by design and control of next genera-

tion manufacturing systems in bio-pharma and aerospace

applications, as well as problems in the design and evalu-

ation of complex molecular structures in life-science. Ap-

plications of her work are in individualized cancer care,

bio-manufacturing, design and control of self-assembled

RNA structures, verification of cyberphysical systems. Her

research is funded by the NSF, DHS, DARPA, Intel, Lock-

heed Martin.


