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Are fermented foods an overlooked reservoir of 
antimicrobial resistance?
Benjamin E Wolfe

Despite their many cultural, culinary, and health benefits, 
fermented foods may amplify and disseminate antimicrobial 
resistance in our food supply. This review summarizes our 
current understanding of the diversity, distribution, and 
potential risks of antimicrobial resistance in fermented foods 
and beverages. Most studies have focused on antibiotic 
resistance genes (ARGs) in lactic acid bacteria and coagulase- 
negative Staphylococcus species. Resistance to tetracyclines, 
penicillins, chloramphenicol, and macrolides is frequently 
reported. Several studies have demonstrated that ARGs have 
the potential to be transferred from fermentation microbes to 
pathogens. Most research has used culture-based or 
metagenomic surveys or ARGs at the point of production, and 
few studies have traced the fate of ARGs when ferments are 
consumed. Cases of humans being directly harmed by resistant 
microbes in ferments have not been reported, but these foods 
provide a farm-to-gut pipeline for current and future 
antimicrobial resistance in our food supply.
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Introduction
Fermented foods contain bacteria and fungi that 
transform raw materials into more flavorful foods with 
a longer shelf-life [1,2]. Unpasteurized and uncooked 
ferments have the potential to deliver viable microbes 
to the human microbiome [3,4]. There is growing 
evidence that these microbial cultures can have posi
tive impacts on nutritional qualities of fermented 
foods and may even have direct probiotic effects on 
human health [5].

In addition to their many potential benefits, fermented 
foods may also harbor microbes with undesirable traits 
that could pose long-term risks for human microbiomes. 
Microbes in the food supply that are resistant to anti
microbials have received increased scrutiny over the past 
several decades as human and animal pathogens have 
become resistant to clinically important antibiotics [6]. 
Food may be an important reservoir of both resistant 
pathogens as well as antibiotic resistance genes (ARGs) 
in nonpathogenic microbes that could eventually be 
transferred to pathogens. Most research on ARGs in food 
has focused on pathogenic microbes given the direct 
threat of these microbes to human health [7]. But recent 
studies have begun to catalog the resistome of non
pathogenic microbes in different parts of the global food 
system [8]. By understanding these reservoirs of re
sistance in nonpathogenic microbes, we may be able to 
better understand and manage the emergence of anti
biotic-resistant pathogens.

Fermented foods may pose unique antimicrobial re
sistance risks compared to other commonly consumed 
foods. Most resistant microbes in ferments are non
pathogenic, meaning that a direct threat to human health 
is unlikely. But even the presence of genetically labile 
ARGs in beneficial fermentation microbes could be 
problematic. Many fermented foods are consumed raw, 
and the microbial cells in ferments have opportunities to 
interact with various components of the human micro
biome [3–5]. The densities of microbial cells in many 
ferments is high per gram of food consumed [4], 
meaning that ARGs in fermented food microbiomes 
could be at a higher density compared to other foods that 
are consumed raw (vegetables, fruits, etc.).

When considering the types of antimicrobial resistance 
across fermented foods and the potential risks they pose, 
it is important to first consider how microbes can be 
resistant to antibiotics. One way is through intrinsic re
sistance, where an entire species or many species in a 
genus lack the target of an antibiotic or have other me
chanisms for being resistant. For example, many fer
mented food microbes have intrinsic resistance to key 
antibiotics, including the widely known resistance of 
some members of the Lactobacillaceae to vancomycin, 
some aminoglycosides, ciprofloxacin, and trimethoprim 
[9]. Because of this intrinsic resistance, most studies of 
fermented foods that look for antibiotic resistance will 
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find it. But that does not mean that these foods ne
cessarily pose a safety risk [10] as this form of resistance 
is rarely horizontally transferred. In contrast, acquired 
resistance can be due to chromosomal mutations in ex
isting genes in the genome or due to the acquisition of 
new genetic material through horizontal gene transfer 
(HGT) [11,12]. It is the latter type of mobile resistance 
that is the main concern in the production and con
sumption of fermented foods because it has the potential 
to move across species boundaries, from beneficial mi
crobes in ferments to human commensals or pathogens.

There have been hundreds of reports of ARGs in fer
mented foods over the past several decades [13]. This 
wealth of data would suggest that antimicrobial re
sistance in fermented foods is a widespread problem. 
But these individual reports from specific bacteria and 
specific foods do not put antimicrobial resistance in 
fermented foods into a broader food system context. 
Additionally, past reviews of antimicrobial resistance in 
fermented foods have often focused on specific organ
isms or specific foods [14–18], so patterns across dif
ferent types of foods, production systems, and 
geographies have not been identified. The goal of this 
overview is to highlight emerging views of the diversity, 
distribution, and risks of antimicrobial resistance across 
different types of ferments.

How is antimicrobial resistance disseminated 
across fermented food systems?
Because of the complexities and interdependencies of 
our modern food systems, it is challenging to carefully 
track the origin and dissemination of antimicrobial re
sistance for individual products or regions [19]. Even the 
spread of deadly and highly resistant pathogens is chal
lenging to trace from farm environments to consumers 
[20]. Most studies of ARGs in fermented foods have 
focused on isolation and characterization of resistant 
microbes in specific fermented foods at the point of 
production [13]. How upstream activities affect the 
abundance of ARGs in ferments has not been directly 
studied.

Studies of how ARGs spread within other food systems 
provide a framework for fermented foods (Figure 1) [6]. 
One of the largest microbial inputs in fermentation 
production is the use of starter cultures. These defined 
microbial strains are often added to ferments to help 
control the consistency of product flavor and aesthetics. 
Before they are widely disseminated from culture com
panies, it is expected that starter cultures are screened 
for safety parameters, including the presence of re
sistance genes, and some regulations exist in Europe 
regarding antibiotic resistance in food and feed cultures 
[21]. But many studies have demonstrated that starter 

cultures can contain ARGs for antibiotics that are still 
used in humans [16]. Continued scrutiny of potentially 
transferable resistance genes in starter cultures is ne
cessary to ensure that this easy-to-control source of mi
crobes in ferments is not a vector of resistance.

Another way that microbes with mobile ARGs are in
troduced into fermented food production systems is 
through the raw materials used for fermentation. In meat 
and dairy ferments such as cheeses and fermented 
meats, animal-associated microbes can ultimately be
come part of the fermented food microbiome [22,23]. 
These animals may have received antibiotics in the past 
to treat an infection or may have acquired ARGs from 
exposure to other animals [24]. Unlike animal produc
tion systems, plant production systems are not typically 
exposed to high concentrations of antibiotics. For ARGs 
to be abundant on the raw materials used in grain, ve
getable, or fruit fermentations, those materials would 
need to be exposed to microbial sources containing re
sistant microbes. Several ARG reservoirs in crop systems 
include soils, water, and manure [25,26].

The human and built environment microbes in fer
mented food production systems could also harbor ARGs 
that could be transferred to fermented foods. Many 
studies have documented the diverse resistome of 
human and built environment microbiomes [11,27,28]. 
But whether microbes can move from these sources into 
ferments has not been clearly demonstrated. Several 
studies have highlighted considerable overlap between 
the humans or buildings where ferments are made and 
the ferments produced in those facilities [29–32], but 
directionality of potential transfer between the products, 
people, and environment is not clear.

Once microbes with ARGs are present in ferments, there 
is potential for their ARGs to spread to other fermenta
tion microbes via HGT [33]. Studies in food model 
systems have demonstrated that mobile genetic ele
ments containing resistance genes can be transferred 
from one bacterial species to another [34]. In some cases, 
transfer in the ferment was higher than transfer using 
standard agar plating techniques [34]. Most of these 
studies have been done with artificially inoculated fer
ments in highly controlled conditions. Future studies 
using emerging techniques to study HGT of resistance 
[35] will reveal how often ARGs are transferred within 
ferments under more realistic conditions.

Has transfer of antimicrobial resistance from 
fermented food microbes to human- 
associated microbes been demonstrated?
For antimicrobial resistant microbes from fermented 
foods to pose a direct risk to human health, ARGs need 
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to be transferred from ferment-associated microbes to 
human-associated microbes. These can either be human 
commensals that serve as an ARG reservoir, or the 
transfer could happen directly from ferment microbes to 
pathogens. The transfer of ARGs from fermentation- 
associated microbes to human-associated microbes has 
been clearly demonstrated in vitro using direct contact of 
microbes on agar plates [36–38]. Data from in vivo stu
dies with murine models are much more limited, but 
also suggest a potential for ARG transfer from ferments 
to the human microbiome [39,40]. For example, a recent 
study assessed whether a Staphylococcus equorum isolate 
from a fermented seafood product could transfer re
sistance to an isolate of Staphylococcus saprophyticus 
[40–43], a cause of urinary tract infections. When the two 
strains were fed to germ-free mice, a plasmid conferring 
resistance to lincomycin was transferred from S. equorum 
to S. saprophyticus in the absence of lincomycin selection.

While these in vitro and in vivo experiments can cer
tainly demonstrate the potential for resistance transfer, 
they are done under highly artificial conditions that 
microbes do not experience in natural systems. Microbes 
are often grown in rich media prior to potential transfer 
events, even though nutrients are much more limiting in 
food, gut, and other environments. Donor (fermentation- 
associated) and recipient (human-associated) strains are 
also typically grown in a 1:1 ratio with no other microbes 
present. In more realistic conditions, the ratios would be 
highly variable, and hundreds or thousands of other 
species could be present. These studies are critical for 
demonstrating the potential for and mechanisms of re
sistance transfer, but are lacking in realism and do not 
allow for accurate risk assessment. More realistic studies 
that track the horizontal transfer of resistance from 

fermentation derived microbes to the human micro
biome are needed [44].

What types of antibiotic resistance genes 
have been detected in fermented foods?
Using both culture-based and metagenomic approaches, 
a range of ARGs have been identified in different bac
teria of widely consumed ferments (Table 1). Most 
studies have focused on ARGs in lactic acid bacteria 
(LAB) [17,18,45]. When only considering evidence for 
the presence of active and acquired ARGs in LAB, one 
common pattern across many papers is that resistance to 
tetracyclines, penicillins, chloramphenicol, and macro
lides such as erythromycin is very widespread (Table 1). 
Perhaps not surprisingly, these are some of the most 
commonly used antibiotics for growth promotion and 
infection control in livestock, and ARGs that resist these 
drugs are widespread in livestock microbiomes [46]. 
Most resistant LAB have been identified in some types 
of cheeses, fermented meats, and spontaneously fer
mented vegetables [14,17,47]. Considerable focus has 
been on LAB in the Lactobacillaceae as well as some 
Enterococcus species that can be opportunistic patho
gens [48].

Other widespread fermentation bacteria where ARGs 
have been frequently reported are the coagulase-nega
tive Staphylococcus (CNS) species. CNS species are 
abundant in fermented animal products, including some 
meats, cheeses, and fermented fish products [42]. Con
cern about ARGs in CNS comes from their potential to 
colonize humans (S. saprophyticus, S. xylosus) and because 
they may have the potential to transfer resistance to 
pathogenic Staphylococcus species. As with LAB, the most 
common types of ARGs reported in CNS confer 

Figure 1  

Current Opinion in Food Science

A conceptual overview of how microbes with ARGs may move from sources to fermented foods, and ultimately to the human gut microbiome. Green 
cells indicate microbes with ARGs. Dotted lines note connections across foods systems that have not been established, but may exist. Question 
marks highlight major unknowns in the diversity and dissemination of resistance in fermented foods.  
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resistance to tetracyclines, penicillins, chloramphenicol, 
and macrolides (Table 1).

Beyond LAB and CNS, considerably less attention has 
been paid to the resistance of other groups of microbes 
that are found in ferments. Gram-negative bacteria 
(GNB) are not found in many ferments because they are 
often eliminated by low pH, salt, ethanol, and other 
stressors that may be present in ferments. But some 
surface-ripened cheeses can have a high abundance of 
Gram-negative bacterial genera such as Serratia, 
Pseudomonas, Hafnia, and Proteus that are related to 
human pathogens [49–51]. A survey of antibiotic re
sistance in GNB from French cheeses found a range of 
resistance to common antibiotics [52]. A metagenomic 
study of cheeses also identified plasmids of putative 
GNB that were multidrug resistant [53].

Acetic acid bacteria (AAB) are widespread in many fer
mentations, including vinegar and kombucha. However, 
little attention has been paid to the antibiotic resistance 
of fermentation AAB. A metagenomic study of a broad 
range of ferments found few resistance genes in several 
kombucha samples, suggesting a limited potential for 
AAB to harbor ARGs [53]. However, a recent study using 
isolates of Acetobacter and Komagaetaeibacter species did 
identify potential resistance to chloramphenicol, cipro
floxacin, erythromycin, and trimethoprim in both vinegar 
and kombucha [54]. Whether AAB have intrinsic or ac
quired resistance to these antibiotics has not yet been 
determined.

Almost all research on antimicrobial resistance in fer
ments has focused on bacteria. But many fermented 
foods contain fungi that are consumed as living cells. 
Could antifungal resistance in fermented foods pose a 
risk to human health? In contrast to bacteria, resistance 
to antifungal drugs in fungi generally does not move via 
horizontal transfer [55], so concerns about resistance 
genes being passed from fermented food microbes to 
human pathogens and commensals are limited.

Despite the decreased risk of resistance transfer in fer
mentation fungi, some yeasts found in ferments may be 
potential opportunistic pathogens of humans and could 
be resistant to clinically relevant antifungals. A com
parative genomic study of the yeast Pichia kudriavzevii 
demonstrated that clinically relevant and fermented 
food isolates of Pichia kudriavzevii are genetically similar, 
suggesting that foods and other environmental sources 
may be a source of this opportunistic pathogen [56]. 
Several isolates from food were resistant to multiple 
antifungal drugs, suggesting that production or con
sumption of fermented foods could lead to exposure to 
resistant strains of this pathogen. A study of milk kefir 
yeasts also demonstrated fluconazole resistance in a 
yeast commonly found in ferments (Saccharomyces 

unisporus), but this fungus is not known to be an op
portunistic pathogen of humans [57].

Open questions and future research needs in 
fermented food antimicrobial resistance
The studies noted above are not intended to be ex
haustive, but clearly demonstrate that fermented foods 
are a potential reservoir of ARGs. When consumers ingest 
some types of fermented foods, there is a high likelihood 
they are consuming viable microbes that possess labile 
ARGs. There is a chance that these ARGs could be 
transferred to their human microbiome, but this has not 
been directly demonstrated. While fermented foods do 
not appear to harbor ARGs that confer resistance to most 
of the critical ‘last resort’ antibiotics, there is clear data 
demonstrating that fermented food production systems 
are potential vectors of a variety of different ARGs. We 
have a lot of work to do before we fully understand the 
basic biology, risk assessment, and management of ARGs 
in fermented foods. Below are a few research areas that 
could help begin to fill some of these gaps.

How do antibiotic resistance genes move from farms to 
ferments and ultimately to the gut? What are critical 
control points that might limit the dissemination of 
antibiotic resistance genes in fermentation production 
systems?
Because most previous research has only focused on a 
single point in a food production system, it is hard to 
understand how resistant microbes and their ARGs 
move from raw materials into fermentation systems and 
then how they may interact with the human gut. It is 
challenging and costly to study fermentation micro
biology with a systems-level perspective where all 
components of the system (farms, raw materials, pro
duction facilities, workers, aging environments, etc.) can 
be carefully monitored over time for ARGs.

Can abiotic and biotic conditions in ferments select for 
resistant microbes?
It is surprising to see such a high frequency of strains 
with acquired resistance genes in ferments when there is 
no apparent selection to maintain the resistance (no 
antibiotics). These microbes may have other traits that 
determine their success and allow their ARGs to persist 
without selection. But there may also be aspects of the 
abiotic or biotic environment of ferments that could se
lect for resistant microbes. For example, in some fer
mented meats and cheeses, there is a high abundance of 
filamentous fungi that can secrete penicillin or other 
antimicrobial compounds [62,63]. These fungi could 
select for resistant bacteria present in low amounts in the 
raw materials used for fermentation. Additionally, 
adaptation to abiotic environments can select for anti
biotic resistance in the absence of antibiotic exposure 
[64]. Future studies using experimental evolution of 
fermentation microbes will help better define how 
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fermentation environments may unintentionally drive 
the evolution of antimicrobial resistance.

Do antibiotic resistance genes in fermented foods pose 
a greater risk compared to other foods?
Many foods are consumed raw, including many fruits 
and vegetables. Consumers may also be exposed to 
ARGs in raw meats during preparation for cooking. Do 
fermented foods pose a greater risk for exposure com
pared to these other foods? Is there a unique diversity or 
frequency of ARGs in ferments compared to other 
foods? Unfortunately, few studies have systematically 
measured the distribution of ARGs in fermented versus 
other food categories, so we lack a clear answer to this 
question. A metagenomic survey suggested that the 
frequency of ARGs in cheese is not greater than the 
ARGs already present in the human microbiome [65]. A 
survey of foods in Switzerland suggested that the fre
quency of resistant microbes in cheese was lower than 
raw meat, but higher than fresh fruits and vegetables 
[66]. To really understand the risks of ARGs, more 
comprehensive and systematic surveys across many food 
systems are needed.

Does increased consumption of fermented foods lead to 
a higher incidence of antibiotic resistance genes in the 
human microbiome?
The connections between ferment and human micro
biomes are poorly characterized, making it hard to clearly 
pinpoint risks of consuming ferments in terms of ARG 
exposure. Several experimental and observational studies 
of humans who have consumed fermented foods have 
illustrated potential shifts in the human microbiome as
sociated with live microbes from fermented foods passing 
through the human digestive tract [3,5,67,68]. But none of 
these studies have directly measured how fermented food 
consumption impacts the diversity and frequency of 
ARGs in the human microbiome.

How does the frequency and abundance of fermented 
food antibiotic resistance genes vary in similar ferments 
made in different parts of the world or across farming 
practices?
Accessibility to antibiotics, regulations that control an
tibiotic use, and food system structures vary widely 
across geographic regions and between organic and 
conventional farming systems. To better tease apart how 
specific food production practices affect the abundance 
of ARGs in fermented foods, it would be useful to 
compare the types of ARGs in fermented foods across 
different geographic regions or across food production 
systems that use very different farming practices. It will 
also be important to study how the frequency of ARGs 
changes as new bans on antibiotic use go into effect.

Are there ways to manage the risk of antibiotic 
resistance genes in fermentation systems?
Even without a clear systems-level view of how ARGs 
move within fermentation production systems, there are 
several case studies that illustrate potential management 
strategies that can reduce consumer exposures to ARGs in 
fermentation systems [69]. These case studies are sparse 
and are often product-specific, but they may provide 
general insights that can be broadly applied to control 
antimicrobial resistance in ferments. For example, if it 
aligns with the fermentation process parameters, pas
teurization of raw food materials can help eliminate en
vironmental microbes harboring ARGs. Additionally, the 
use of starter cultures that are known to not harbor ARGs 
should be a widely implementable mitigation strategy. 
Many ferment producers already use these approaches, 
but they may need to be applied and fine-tuned in 
higher-risk ferments discussed above. More generally, 
reductions in the use of antibiotics across our global food 
systems should ultimately help reduce entry and spread 
of ARGs in fermented food production systems.
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