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Training and projecting: A reduced basis method emulator for many-body physics
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We present the reduced basis method as a tool for developing emulators for equations with tunable parameters
within the context of the nuclear many-body problem. The method uses a basis expansion informed by a set
of solutions for a few values of the model parameters and then projects the equations over a well-chosen low-
dimensional subspace. We connect some of the results in the eigenvector continuation literature to the formalism
of reduced basis methods and show how these methods can be applied to a broad set of problems. As we illustrate,
the possible success of the formalism on such problems can be diagnosed beforehand by a principal component
analysis. We apply the reduced basis method to the one-dimensional Gross-Pitaevskii equation with a harmonic
trapping potential and to nuclear density functional theory for 48Ca, achieving speed-ups of more than ×150 and
×250, respectively, when compared to traditional solvers. The outstanding performance of the approach, together
with its straightforward implementation, show promise for its application to the emulation of computationally
demanding calculations, including uncertainty quantification.

DOI: 10.1103/PhysRevC.106.054322

I. INTRODUCTION

Most modern theoretical models describing many-body
nuclear dynamics share an ever-increasing computational
burden. This can turn into a challenge for tasks like uncer-
tainty quantification analysis [1,2], experimental design [3,4],
calibration of model parameters [5–7], and repeated evalua-
tion for different inputs [8,9]. Emulators—algorithms capable
of providing fast yet accurate approximations to expensive
computations—have been gaining increasing importance as a
way to circumvent these challenges [1,10].

In recent years, a technique called eigenvector con-
tinuation [11] was developed to emulate computationally
intensive calculations involving bound states of Hamiltonian
operators [12] and nuclear scattering [13–15]. Eigenvector
continuation has shown excellent performance in interpolation
and extrapolation by working with two elements: choosing its
ansatz functions from the linear span of exact solutions to the
problem at hand, and using a variational principle—for exam-
ple, the Rayleigh-Ritz method [11,16] or the Kohn variational
principle [13,17]—to obtain equations for the coefficients of
this linear combination.

In this article, we present an emulator constructed in the
formalism of reduced basis methods (RBMs) [18–20], a set
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of dimensionality-reduction techniques that fall under the
umbrella of reduced-order models [21–23]. These methods
have seen active development over the last two decades, prov-
ing to be useful in a variety of computationally intensive
problems involving partial differential equations [24–27]. As
we show in the discussion, the eigenvector continuation tech-
nique is naturally connected to RBMs when the former is
generalized through a Galerkin method formulation. The key
insight is that once a reasonable choice of ansatz functions
has been made (for example, the basis of exact solutions
used in eigenvector continuation), all that is needed is a
method to select a suitable candidate approximation from the
ansatz subspace. This could be achieved, for instance, by
using a variational principle, minimizing a cost functional,
or by finding the fixed point of an iterative scheme. Among
the alternatives, the Galerkin method—the option chosen in
RBMs—stands out for its simplicity: it attempts to find an
accurate approximate solution by projecting the problem to a
well-chosen very-low dimensional subspace. This simplicity
allows these methods to be applied to a wide variety of prob-
lems in a straightforward way, including nonlinear coupled
differential equations. Although common in the many-body
physics context, these nonlinear problems have not yet been
explored in the eigenvector continuation literature.

We structure the rest of the article as follows. In Sec. II, we
explain the formalism of RBMs, highlighting their connection
with established results on the literature of eigenvector con-
tinuation, as well as showing how the Galerkin formulation
extends their application to coupled equations and nonlinear
problems. Additionally, Sec. II illustrates the use of the princi-
pal component analysis as a diagnostic tool for the success of
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reduced basis emulators on specific problems. In Sec. III we
demonstrate the effectiveness of the method by constructing
emulators for two nonlinear problems, the ground state of
the Gross-Pitaevskii equation with a harmonic trapping poten-
tial, and the ground state of 48Ca using the Skyrme effective
interaction. We conclude our discussion by highlighting the
potential role that these emulation techniques could have in
the future of uncertainty quantification in nuclear physics.

II. THE REDUCED BASIS METHOD FRAMEWORK

RBMs are tailored to problems that feature an equation that
depends smoothly on a list of tunable control parameters
α [19]. The goal is to build an approximate solution for a suit-
able range of these parameters. Let us assume the equation is
written in the general form

Fα (φα ) = 0, (1)

where φα is a vector (or function) from a Hilbert spaceH, and
Fα mapsH onto itself. For example, in the case of bound sys-
tems with a Hamiltonian Hα that depends on the parameters
α, Fα can take the form of the eigenvalue equation Fα (φα ) =
Hαφα − λαφα , where λα is the eigenvalue. Another example
would be the case of single-channel scattering where Fα can
be the radial part of the scattering equation [28] Fα (φα ) =
(− d2

dr2 + �(�+1)
r2 +U (r, α) − p2)φα (r), where a system with

reduced mass μ interacts through a potential V (r, α) =
U (r, α)/2μ with parameters α, � is the angular momentum
quantum number, and p is the asymptotic linear momentum.
The RBM finds approximate solutions φ̂α to these—and more
general—problems by constructing a basis expansion with n
linearly independent “reduced basis” functions {φk}nk=1:

φ̂α = φ0 +
n∑

k=1

akφk, (2)

where the coefficients ak of the approximation will depend on
the specific values of α, but the basis functions φk will not. φ0

is an extra term that can be added to satisfy boundary condi-
tions imposed on Eq. (1). The reduced basis functions φk are
selected to create an affine space (the ansatz subspace) close to
the manifold formed by the solutions to Eq. (1) as a function
of the parameters α [19] by using the information from a
(possibly small) sample of exact solutions. In practice, the
“exact solutions” (or “snapshots”) of Eq. (1) are constructed
by highly accurate yet computationally expensive approxima-
tions such as finite element or spectral calculations [24].

One way to build the reduced basis for Eq. (2) is the
approach taken in many eigenvector continuation applica-
tions [11–15], also known as the Lagrange basis [24]. It
consists of calculating n “training functions” {φ̃k}nk=1 as so-
lutions to Eq. (1) for n values αk [Fαk (φ̃k ) = 0] and then
choosing the reduced basis as these n training functions
φk = φ̃k . One possible way to improve upon this choice is
the so-called proper orthogonal decomposition (POD) [19].
It consists of computing N � n solutions {φ̃l}Nl=1 and con-
structing the reduced basis with the first n components from
a principal component analysis (PCA) [29], or singular value
decomposition (SVD) [30], of the set of these N training func-

tions. Therefore, by using the information of N samples, the
POD basis is more robust than a Lagrange basis of dimension
n and faster than a Lagrange basis of N training points.

Once the n reduced basis functions are chosen, the coef-
ficients ak for the approximation are found by the Galerkin
method [31], that is, by projecting Eq. (1) over n linearly
independent “projecting functions” {ψ j}nj=1 in the Hilbert
space:

〈ψ j |Fα (φ̂α )〉 = 0, for all j. (3)

Fα (φ̂α ) is often called the residual [32], and it can be
used, for example, to inform the construction of the reduced
basis [33], or to estimate the emulation error [34]. We can
interpret Eqs. (3) as enforcing the orthogonality of Fα (φ̂α ) to
the subspace spanned by {ψ j}nj=1, i.e., by finding a φ̂α such

that Fα (φ̂α ) is “zero” up to the ability of the set {ψ j}nj=1. The
choice of projecting functions ψ j is arbitrary, but is usually
also informed by the solution manifold [19,20]. For the rest of
this work, we choose ψ j to enforce orthogonality with respect
to the ansatz subspace (2), which is the traditional way of
using the Galerkin method [32].

The reduced-basis emulators are most effective, in terms of
speed-ups, when the projections in Eqs. (3) lead, for every j,
to expressions of the form

Mj∑
m=1

f j,m(α)g j,m(a1, . . . , an) = 0, (4)

where f j,m(α) and g j,m(a1, . . . , an) are Mj functions that are
independent of the intrinsic coordinates of the original system.
If these functions can be computed only once and then stored
in memory, we can avoid performing costly integrals or finite
element calculations every time we have to solve Eqs. (3) for a
new set of parameters α. This property is exploited later when
we construct an emulator for the Gross-Pitaevskii equation in
Eq. (14).

A. Connections to the eigenvector continuation literature

To illustrate the application of the RBM and connect with
previous results in the eigenvector continuation literature, we
work with the bound system eigenvalue equation and the
radial scattering equation, the two formerly mentioned ex-
amples for Fα . As already mentioned, for the single-channel
scattering example, Eq. (1) takes the following form:

Fα (φ) =
(

− d2

dr2
+ �(� + 1)

r2
+U (r, α) − p2

)
φ(r) = 0.

(5)
Following Ref. [13], let us assume that the solution to this

equation is subject to the boundary conditions φ(r = 0) = 0,
and

φ(r) −→
r→∞

1

p
sin

(
pr − �

π

2

)
+ τ cos

(
pr − �

π

2

)
. (6)

Note that Eq. (6) imposes a normalization condition on φ: the
coefficient accompanying the sine function must equal 1/p.
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A straightforward application of the RBM with a Lagrange
basis of size n leads to the choice of an approximate function:

φ̂α =
n∑

k=1

akφk, with
n∑

k=1

ak = 1, (7)

where the φk are solutions to Fαk (φk ) = 0 with the correct
boundary conditions. We can eliminate the redundancy of the
coefficients ak created by the boundary conditions by explic-
itly writing one of the them in terms of the others. Without
loss of generality, we let a1 = 1 − ∑n

k=2 ak , obtaining

φ̂α = φ1 +
n∑

k=2

ak (φk − φ1). (8)

We can identify (φk − φ1) for k � 2 as the relevant ele-
ments in the basis expansion and select ψk = (φk − φ1) as
the associated projecting functions, leading to the following
equations:

n∑
k=1

ak〈φ j − φ1|Fα (φk )〉 = 0, for 2 � j � n. (9)

These equations—formulated from a geometric projection
argument—are equivalent to those obtained by the Kohn vari-
ational principle [35], as done in Refs. [13,15]. The proof is
elaborated in Appendix A.

In the bound system example, withψk = φk , Eqs. (3) might
not have a solution for the exact eigenvalue. Allowing λα to be
approximated by λ̂α helps ensure we can solve the projected
equations:

n∑
k=1

ak〈φ j |Hα|φk〉 = λ̂α

n∑
k=1

ak〈φ j |φk〉, for all j, (10)

where the set ak and the approximate eigenvalue λ̂k add up to
(n + 1) unknowns. We can complete the set of equations with
a normalization condition: 〈φ̂α|φ̂α〉 = 1. When choosing φk

as exact solutions for different α, Eq. (10) is equivalent to
the generalized eigensystem formulated with the Rayleigh-
Ritz variational method from the eigenvector continuation
approach [11].

Beyond these two examples, the generality of the Galerkin
formalism allows to apply RBMs to a wide variety of prob-
lems, including discrete, operator, integral, and differential
equations [32,36]. For instance, the projected equations (3)
can be directly applied to nonlinear problems like nonlinear
eigenvalue equations where Fα (φα ) = Gα (φα ) − λαφα , with
Gα being a general operator. As such, we can consider the
RBM a natural extension of the eigenvector continuation tech-
nique with a broader range of applicability.

Additionally, the RBM can be applied to the case of a set
ofm coupled equations—common in many-body physics—by
letting

F (i)
α

(
φ(1)

α , . . . , φ(m)
α

) = 0, for i = 1, . . . ,m, (11)

represent the set of equations and by approximating each
coupled function φ(i)

α as a linear combination of their

FIG. 1. Decay of the singular values σk for a set of solutions
of the infinite well (I.W. in magenta), the single channel two-body
scattering with a Minnesota potential [37] with fixed energy (S.M.
E0 = 50 MeV in red) and varying energy (S.M. E∗ ∈ [20, 80] MeV
in black) with the parameter’s range as used in Ref. [13], the Gross-
Pitaevskii equation (G.P. in blue), and the solutions for the 13 energy
levels in 48Ca (DFT in dashed green-blue lines). Appendix B contains
additional details on these calculations, including the ranges for the
values of α used.

corresponding solutions for different values of α:

φ̂(i)
α = φ

(i)
0 +

ni∑
k=1

a(i)k φ
(i)
k , for k = 1, . . . , ni; i = 1, . . . ,m.

(12)

We can then select ψ
(i)
j as the generators of the affine

spaces for each φ̂(i)
α , to obtain a total of nTot = ∑m

i=1 ni
Galerkin equations:〈

ψ
(i)
j

∣∣F (i)
α

(
φ(1)

α , . . . , φ(m)
α

)〉 = 0, (13)

for j = 1, . . . , ni, and i = 1, . . . ,m, which can be solved for
the nTot coefficients a

(i)
k .

In the case of coupled eigenvalue-eigenvector systems, we
can proceed as in the case of a single equation, by substi-
tuting the m eigenvalues λ(i)

α for approximate values λ̂(i)
α and

enforcing m normalization conditions, in accordance with the
requirements of the problem at hand.

B. Testing for low-dimensionality with principal component
analysis (PCA)

It is important to note that if the solution manifold φα for
the problem at hand cannot be sufficiently embedded in a lin-
ear subspace, then the RBM we described will not constitute
an effective emulator. In practice, to test whether a problem is
fit for emulation via RBMs, it is sufficient to observe the decay
of the singular values σk associated with the PCA of a group
of exact solutions φ̃α for various α [19]. An exponential decay
on the associated singular values σk from the PCA indicates
that the RBM can provide an accurate approximation for the
given problem [19,24,38]. As such, it is good practice to use
the PCA of a set of solutions as an a priori test for the success
of the RBM emulator.

This exact diagnosis is showcased in Fig. 1, which shows
the singular values σk for the problems discussed in our work.
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FIG. 2. Examples of 10 solutions (left column) and the first four
principal components out of more than 40 exact solutions (right
column) for the problems shown in Fig. 1. Panels (a) and (b) cor-
respond to the infinite well; panels (c) and (d) to the scattering with
the Minnesota potential at a fixed energy; panels (e) and (f) to the
scattering with theMinnesota potential with a variable energy; panels
(g) and (h) to the Gross-Pitaevskii equation; and panels (i) and (j) to
48Ca under DFT. For panels (i) and (j) we chose the 2S1/2 neutron
wave function as a showcase, out of the total of 13 distinct levels for
protons and neutrons.

We included a counterexample to illustrate a situation where
the RBM would fail to create a good surrogate model. A
sample of the corresponding exact solutions φ̃α and principal
vectors are shown in Fig. 2.

First, we analyze the scattering wave functions in the
1S0 channel at a fixed energy [Eq. (5) with � = 0] for the
Minnesota potential [37]: U (r,V0R,V0S ) = 2μ(V0Re−1.487r2 +
V0Se−0.465r2 ). For this example, α = {V0R,V0S}. The rapid ex-
ponential decay of the σk in Fig. 1 is consistent with the
excellent results obtained in Ref. [13]. A similar pattern is
obtained for wave functions across energies (black squares
in Fig. 1) by rescaling the scattering differential equation (5)

via the change of variable s = pr. This change makes all
exact solutions φ̃α (s) share the same asymptotic behavior.
The parameter list α = {V0R,V0S,E = p2/2μ} now includes
the varying energy. The exponential decay of σk implies that
it should be possible to build a scattering emulator across
energies, which could be a useful upgrade to the emulators
showcased in Refs. [13,15].

Next, we analyze the example constructed with the 1D
quantum Hamiltonian of a particle trapped in an infinite
well [39] by letting α control the location of the well:
V (x, α) = 0 for x ∈ [α, α + 1] and V (x, α) = ∞ otherwise.
As shown in Fig 1, a direct application of the RBM fails
to accurately emulate the ground-state wave function as α

changes. Figure 2(a) shows the ground-state wave functions
for a sample of well locations α, making it evident that a
linear combination of a few exact solutions will not be suf-
ficient to represent the ground-state variation as a function
of α. This intuition is reflected by the slow decay of σk in
Fig. 1. Extensions to the basic methodology can tackle these
issues by allowing further manipulation of the reduced basis
(see, for example, Ref. [38]). In this particular case, taking
advantage of the symmetry of the problem with a translation,
i.e., φα (x + α) = φα=0(x), would lead to all σk’s being zero
for k � 2.

The final two examples in Figs. 1 and 2 are the Gross-
Pitaevskii equation and the 13 energy levels of 48Ca under
density functional theory (DFT). The decay of their respective
σk’s also makes them excellent candidates for the application
of the RBM, as we explore next.

III. EMULATING NONLINEAR SYSTEMS

A. The Gross-Pitaevskii equation

The Gross-Pitaevskii equation [40,41] (see also Ref. [42]
for a RBM application) is a nonlinear Schrödinger equa-
tion that approximately describes the low-energy properties
of dilute Bose-Einstein condensates. Using a self-consistent
mean-field approximation, the many-body wave function is
reduced to a description in terms of a single complex-valued
wave function φ(	r). We work with the one-dimensional
Gross-Pitaevskii equation [43–46] with a harmonic trapping
potential by letting Fα be

Fq,κ (φ) = −φ′′ + κx2φ + q|φ|2φ − λq,κφ = 0, (14)

where κ , q, and λq,κ are proportional to the strength of the
harmonic trapping, the self-coupling of the wave function,
and the ground-state energy, respectively. φ(x) is a single
variable function that depends on x and it is normalized to
unity. Note that, since this equation depends linearly on κ

and q, the projection equations (3) that involve integrals in
x can be evaluated and stored for faster computation, leading
to expressions of the form shown in Eq. (4). For example, the
term associated with the harmonic trapping reads

〈ψ j |κx2|φ̂〉 =
n∑

k=1

akκ
∫

ψ j (x)x
2φk (x)dx. (15)

To test the RBM for extrapolation, we built a Lagrange
basis with four training functions φ̃i in the [q, κ] space as
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FIG. 3. Comparison between the exact solvers (solid lines) and the RBM (solid circles) calculations. Panel (a) shows the ground-state
energy λq,κ of the Gross-Pitaevskii equation as a function of q for the values of κ = 0.5, 2, 4, 10, and 30. Panel (b) shows the neutron skin
thickness of 48Ca as a function of L for the values of K = 160, 210, and 260 MeV. In both figures, the Lagrange basis with four points is shown
as cyan stars within the inset plots. Appendix B contains additional details on these calculations.

exact solutions [Fqi,κi (φ̃i ) = 0], with the projecting functions
as ψi = φi. Figure 3(a) shows the results of emulating λq,κ by
using this basis and applying Eqs. (3) plus the normalization
condition. The agreement between the exact and emulated
calculations is excellent, with an error of less than 2.5% in the
repulsive phase (q � 0) where the four training parameters are
located, and it deteriorates only in the attractive phase (q < 0)
well beyond the training region. In contrast with the original
implementations of eigenvector continuation [11], extrapola-
tion is not a feature usually exploited on the RBM literature.
Making full use of the techniques developed in the RBM
literature could nonetheless be key when calculations of exact
solutions in a specific phase of the system are numerically
unstable or impossible, but approximable by such methods.

In addition to extrapolating, we explored a situation
similar to how emulators are tested for uncertainty quantifica-
tion [12,15]. Using a Latin hypercube sampling (LHS) [47],
we drew 500 testing points in the range q ∈ [0, 30] and
κ ∈ [5, 30]. We constructed three types of reduced basis:
Lagrange, POD, and POD + Greedy, each with three sizes
n = 2, 4, and 8. The Lagrange basis consisted of n exact
solutions drawn with LHS. The POD and POD + Greedy
consisted of n principal components from a set of N = 20
exact solutions. For the POD theN exact solutions were drawn
using LHS, while for the POD + Greedy the first solution
was placed at a central location and the other N − 1 were
included one-by-one through a Greedy algorithm inspired on
Refs. [48–50]. Our Greedy approach finds the parameter set
[qm+1, κm+1] for the next exact solution φ̃m+1, by maximizing
the norm of the residual Fq,κ (φ̂q,κ ) over a LHS of parameters
[q, κ]. In each step, φ̂q,κ is constructed with a POD basis
informed by the previous m exact solutions.

Table I shows the relative root-mean-squared errors, which
converge exponentially as more bases are added, as expected
from the results shown in Fig. 1. Both POD bases were more
accurate and robust than the Lagrange basis, which produced
results that frequently changed by more than an order of
magnitude when resampling the exact solutions for the basis.
For n = 8 the accuracy of the POD + Greedy basis was more
than 600 times better than the Lagrange basis. In terms of
speed-up when calculating the 500 testing points, the three
reduced bases with n = 2 were almost 150 times faster than

the exact solver, while n = 4 and n = 8 obtained speed-ups of
40 and 5 times, respectively.

B. Skyrme density functional theory

We now proceed to use the RBM in realistic nuclear DFT
calculations. DFT is a widely applied microscopic formal-
ism [51] (see also Refs. [52–54] for other RBM applications
to DFT). In nuclear physics it is used to describe properties
of nuclei from the mean-field perspective; i.e., each nucleon
interacts with an average effective field made up of all the
particles in the system. This interaction is then constructed in
a self-consistent way: the wave function of each nucleon and
its eigenenergy are found at the same time as the effective field
they produce and interact with. As such, the Hamiltonian ĥ(i)

acting on the ith wave function φ(i) depends on allM of them:

ĥ(i)[�]φ(i) − λ(i)φ(i) = 0 for 1 � i � M, (16)

where � = {φ(i)}Mi=1, and the parameter list α has been omit-
ted for the sake of clarity. The dependence of the Hamiltonian
on the wave functions comes from, for example, the total
nuclear density ρ and the kinetic energy density τ . We derive
the single-particle Hamiltonian ĥ(i) from the Skyrme effective

TABLE I. Root-mean-squared errors for the Gross-Pitaevskii
and DFT problems described in the text. The errors are defined as

〈[(ARBM − Aexact )/Aexact]
2〉1/2, where A is the quantity being com-

puted and 〈〉 denotes average. Three cases of the reduced basis size
were explored with n = 2, 4, and 8. Five hundred testing points were
drawn in their respective parameter space, but for DFT 32 points
were excluded from the statistics since the exact solver reported
convergence problems. Appendix B contains additional details on
these calculations.

Gross-Pitaevskii 48Ca average
Basis ground-state energy particle energy

n Lagrange POD POD Greedy POD

2 1.0 × 10−1 1.2 × 10−2 1.5 × 10−2 5.9 × 10−3

4 3.0 × 10−3 5.6 × 10−4 2.1 × 10−4 6.1 × 10−4

8 1.3 × 10−5 1.2 × 10−6 2.0 × 10−8 1.7 × 10−4
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interaction [55–58], the nuclear part of which can be written
as a general energy density functional (EDF) of time-even
densities [59]:

Ht (r) = Cρ
t ρ2

t +Cρ
ρ
t ρt
ρt +Cτ

t ρtτt

+CJ
t J

↔2
t +Cρ∇J

t ρt∇ · Jt ,
(17)

where the subscript t = (0, 1) represents isoscalar and isovec-
tor densities, respectively. The parameters of this EDF, Cτ

t
for instance, model the coupling between the particles and
the nucleonic density in question (the kinetic energy density
τ in this case). As it is usually done in modern EDF opti-
mization [60,61], we can parametrize those couplings in terms
of nuclear-matter properties plus the remaining coupling con-
stants left unconstrained:{

ρc,E
NM/A,KNM, aNMsym,LNM

sym,M∗
s ,C

ρ
ρ
t ,Cρ∇J

t

}
. (18)

This representation is primarily rooted in physical
observables—like the nuclear saturation density ρc—and
simplifies the selection of a sensible range of values to
explore in model calibration for DFT and for constructing the
training bases for the RBM.

To test the RBM in extrapolation for DFT, we built a La-
grange basis of four points spanning LNM

sym = 30 and 60 MeV
and KNM = 200 and 220 MeV while the other parameters
remained at their optimized UNEDF1 values [62]. The wave
functions on each shell (seven for neutrons and six for pro-
tons) were calculated using both the exact solver and the RBM
emulator. Figure 3(b) shows the performance of the emulator
when calculating the neutron skin thickness of 48Ca [63],
a quantity particularly sensitive to the LNM

sym parameter. The
agreement between the emulated values and exact DFT results
is excellent, with an error of less than 0.8% for all extrapolated
values shown, even for LNM

sym and KNM well outside the training
zone.

To test the limits of the emulator, the range of all ten
available parameters in Eq. (18) were widened well beyond
what is reasonable for realistic nuclear matter. We used LHS
to draw 50 training points to build a POD basis with n = 2, 4,
and 8 and to independently draw 500 testing points within the
widened parameter ranges. As such, several parameter com-
binations yielded convergence issues for the DFT solver, but
not for the emulated calculations, highlighting the capability
of RBMs to extrapolate into regions where exact solvers can
experience numerical instabilities. Even though the emulated
results of nonconverging test points seemed reasonable, we
consider their validation to be beyond the scope of this work.

As Table I shows, for the stable parameter sets, the RBM
reproduces single nucleon energies well. This is particularly
striking for the reduced basis with only two elements, which
gives an error of about 0.6% despite all ten parameters being
varied in the test sample. In terms of speed-up when calcu-
lating the 500 testing points, the reduced basis with n = 2, 4,
and 8 were 6, 4, and 2 times faster than the exact solver, re-
spectively. We note that these speedups were obtained without
precomputing any of the terms involved in Eqs. (3). Greater
speed-ups can be achieved by precomputing as many of the
terms in Eqs. (3) as possible, in the traditional strategy of
an offline/online procedure often seen in RBM applications.

Indeed, by separating the Hamiltonian in Eqs. (16) into the
parts that can and cannot be precalculated (called affine and
nonaffine in the RBM literature [19]), we achieve speed-ups
of more than 250 times with respect to the exact solver for a
reduced basis of two elements.

The parts of the Hamiltonian (16) that are nonaffine in the
parameters can be made affine by using techniques such as
the empirical interpolation method [64,65]. The terms that
are nonlinear in the wave functions on the other hand, such
as powers of the density ρ, can present a problem due to
combinatorially increasing terms (Mk) in Eq. (4), a problem
we plan to study further in a future work.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have presented the reduced basis method
as a useful framework for constructing emulators for general
problems in nuclear physics, including nonlinear systems. We
showcased the two steps of the process by first training a basis
informed on high-fidelity solutions and then by obtaining the
equations for the coefficients through the Galerkin projection.
We discussed the connections of the eigenvector continuation
literature with the RBM and showed that the emulators built
through the former correspond to particular choices of the
latter. We explained how the principal component analysis
can be used to diagnose that a problem can be successfully
emulated through the RBM and showcased the analysis on
several examples. Finally, we applied the RBM to build an em-
ulator for the nonlinear Gross-Pitaevskii equation and for the
coupled nonlinear equations in Skyrme density functional the-
ory. The built emulators showed excellent performance both
for extrapolation and for speeding up computations, with a
minimal loss in accuracy. Accurate extrapolation is important
for systems with a large number of control parameters, and it
is, therefore, not possible to fully cover the parameter space
with training points. Extrapolation is also necessary for cases
where the underlying computational methods break down for
some range of the parameter space. Accurate emulators for
speeding up calculations are crucial for real time evaluations,
such as experimental design and control [66], and for multi-
query evaluations, such as those involved in systematic studies
and uncertainty quantification.

Within the DFT context, speed-up gains of more than 2
orders of magnitude will enable large-scale uncertainty quan-
tification studies for a wide range of EDFs [67], an endeavor
which, up to now, seemed inaccessible. Furthermore, the
RBM approach could also reduce the penalty of using higher-
dimensional solvers for systematic studies and uncertainty
quantification, calculations previously limited to spherical and
cylindrical symmetries. Finally, the trained emulators can be
deployed in a cloud computing environment [68], fostering
collaborative research, increasing the availability of cutting-
edge research software, and improving scientific accessibility.

We hope our results help spark the interest of the nuclear
theory community in RBMs. For this purpose, we created and
will continue to update an online resource [69] to illustrate
many of the concepts we discussed. The adoption of recent
developments on the choice of ansatz subspaces [38,70,71],
on error bounds and convergence properties [33,48,72], and
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on the computational efficiency for nonaffine and nonlinear
problems [64,65], to name a few, could become key in reach-
ing the full extent of what these methods can offer. Given
the simplicity and flexibility of the Galerkin projection and
the PCA diagnostic we showcase to test for low-dimensional
manifolds, we believe that RBMs have the potential to become
standard tools for the emulation of challenging problems in
many-body nuclear physics.
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APPENDIX A: EQUIVALENCE OF THE REDUCED BASIS
METHOD AND EIGENVECTOR CONTINUATION UNDER

THE KOHN VARIATIONAL PRINCIPLE

As shown in the discussion, a direct application of the
RBM to the scattering differential equation (5) leads to the
following equations for the approximation coefficients:

n∑
k=1

ak〈φ j − φ1|Fα (φk )〉 = 0, for j = 2, . . . , n, (A1)

and

a1 = 1 −
n∑

k=2

ak . (A2)

We proceed to show the equivalence with the variational
approach used in Refs. [13,15].

The (K-matrix) Kohn variational principle states that the
solution to Eq. (5), with the asymptotic behavior (6), is a
stationary point for the functional:

β[φ] = τ [φ] −
∫ ∞

0
drφ(r)Fα (φ(r)), (A3)

where τ [φ] extracts its value from the asymptotic behavior of
φ, that is, the cosine coefficient in Eq. (6).

The Kohn variational method is detailed in the Supple-
mental Material of Ref. [13]. It utilizes a trial function φ̂α

constructed exactly as in Eq. (7), and it finds a stationary
point of the functional (A3) in terms of the coefficients ak .
After using the method of Lagrange multipliers to enforce
the normalization condition, it is found that the following

TABLE II. Ranges for the 10 parameters used to generate the
DFT results in Table I.

Min Max Units

ρc 0.14 0.18 fm−3

ENM/A −16.5 −14.5 MeV
KNM 160 260 MeV
aNMsym 26 32 MeV
LNM
sym 20 180 MeV

M∗
s 0.7 1.4

Cρ
ρ

0 −55 −40 MeV fm5

Cρ
ρ

1 −165 −90 MeV fm5

Cρ∇J
0 −105 −55 MeV fm5

Cρ∇J
1 −50 −15 MeV fm5

equation set describes the stationary point:

τ j − λ −
n∑

k=1

(
Ujk + 
Uk j )ak = 0 for j = 1, . . . , n,

(A4)
where τ j is the cosine coefficient in Eq. (6) associated with
each φ j , and the matrix 
Ujk is a shorthand notation for the
inner products:


Ujk = 〈φ j |Fα (φk )〉 =
∫ ∞

0
drφ j (r)Fα (φk (r)). (A5)

These equations, together with the normalization condition∑n
k=1 ak = 1, can be used to find the n coefficients ak plus the

Lagrange multiplier λ.

Proof of equivalence between the methods

To compare Eq. (A4) to Eq. (A1), we need to rewrite
Eq. (A4) in terms of 
Ujk only, eliminating both τ j and the
Lagrange multiplier λ. We can relate the elements of 
Uk j to
their transposes 
Ujk by integration by parts. Note that

−
∫ ∞

0
φkφ

′′
j dr = −(φkφ

′
j − φ′

kφ j )

∣∣∣∣
∞

0

−
∫ ∞

0
φ′′
kφ jdr, (A6)

where the boundary term can be evaluated through the bound-
ary conditions (6) to be τ j − τk . Therefore, via integration by
parts, we can make Fα act on φ j in Eq. (A5) to obtain


Uk j = 
Ujk + (τ j − τk ). (A7)

Using this result we can eliminate 
Uk j from Eq. (A4) and
obtain

τ j − λ −
n∑

k=1

(2
Ujk )ak −
n∑

k=1

ak (τ j − τk ) = 0

−λ −
n∑

k=1

(2
Ujk )ak +
n∑

k=1

akτk = 0, (A8)

for j = 1, . . . , n, where we used the fact that the ak sum to
unity to cancel the τ j term.

Next, we can eliminate the Lagrange multiplier λ and the
sum of akτk by subtracting equations for different j. Without
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q

FIG. 4. Parameter values used for the results of the GP equa-
tion in Table I, all drawn by Latin hypercube sampling [47]. Points in
blue show the 500 testing samples. Points in red, orange, and green
show the parameters for the Lagrange RB built with two, four, and
eight exact calculations, respectively. Points in black show the 20
parameters used to build the three POD RBs with n = 2, 4, and 8.

loss of generality, we can subtract all equations to the equa-
tion corresponding to j = 1, resulting in

n∑
k=1

(
Ujk − 
U1k )ak = 0 for j = 2, . . . , n. (A9)

Finally, using the definition of 
Ujk = 〈φ j |Fα (φk )〉 shows the
equivalence with Eq. (A1), completing the proof.

It is important to note that despite the equivalence in the
approximation equations, variational techniques like Kohn’s
principle can have an improved accuracy on the calculations
of certain quantities, such as τ . Indeed, the second term in
Eq. (6) can be thought as a first-order correction to τ through
a factor proportional to the residual Fα (φ̂α ). Therefore, when
implementing a RBM emulator, even if we choose the basis φ

or the projecting functions ψ in a way that we do not recover
the same equations for the coefficients as a variational princi-
ple, it could be beneficial to include the associated correction
terms to help increase accuracy.

APPENDIX B: DETAILS ABOUT THE NUMERICAL
RESULTS

The codes used to generate all the results we presented can
be found in Ref. [73].

1. Decay of singular values

In this section, we give details on the construction of the
singular values σk from the singular value decomposition
(SVD) shown in Figs. 1 and 2 in Sec. II B. Four problems
were considered: the infinite well (IW), the single-channel
two-body scattering with a Minnesota potential at fixed en-
ergy (SME ) and varying energy (SME∗), the Gross-Pitaevskii
equation (GP), and 48Ca under density functional theory
(DFT).

q q

q q

FIG. 5. Construction of the POD + Greedy RB for the results in Table I. The black stars show the N exact calculations made at each stage
to build the POD + Greedy basis. The four panels show the stages for N = 1, 3, 6, and 20. The red points in each panel are the 100 LHS draws
on which the norm of the residual is maximized each time to add a new exact calculation to the POD + Greedy RB. This random sampling
is repeated on each step (no two panels share the same red points). Points in blue and green on each panel show the ten locations where the
residual is maximized or minimized, representing the regions where the emulator is performing poorly and adequately, respectively. The green
box shows the limits for the LHS: q ∈ [0, 30] and κ ∈ [5, 30].
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(a) φ(x) φ(x)

x

x

(b)

FIG. 6. Panel (a) shows the 20 exact solutions φq,κ (x) obtained by the Greedy algorithm in Fig. 5 and used to construct the POD + Greedy
basis for the results of Table I. Panel (b) shows the first four principal components of this set, which constitute the RB used for the POD +
Greedy results with n = 4 in Table I.

The infinite well problem consists of the 1D quantum
Hamiltonian of a particle trapped in an infinite well (IW) [39]
where α controls the location of the well:

V (x, α) =
{
0, α < x < α + 1,
∞, otherwise. (B1)

The ground-state solutions to this Hamiltonian are wave func-
tions of the form φα = √

2 sin [π (x − α)] for α < x < α + 1
and zero otherwise. The singular values σk for the IW showed
in Fig. 1 were obtained by sampling 40 values of α in the
range [−5, 5] using Latin hypercube sampling (LHS) and
performing SVD on the set of 40 solutions.

Both SME and SME∗ problems consist of the single-
channel 1S0 nucleon-nucleon scattering Hamiltonian [28]. The
Minnesota potential V (r, α) [37], with parameters α = V0R
and V0S , is used for the interaction, while the two nonlinear
parameters associated with the Gaussian’s widths remained
fixed. In both cases, we make the change of variables s = pr
and the scattering Hamiltonian takes the form(

− d2

ds2
+ �(� + 1)

s2
+ Ũ (s, α, p) − 1

)
φα (s) = 0, (B2)

where the potential Ũ (s, α, p) = V (s/p, α)2μ/p2 is now
momentum dependent. In both cases (SME and SME∗),
40 parameters where obtained by a LHS in the range
V0R = [100, 300] MeV and V0S = [−200, 0] MeV, following
Ref. [13]. The singular values showed in Fig. 1 were obtained
by performing SVD on the set of 40 solutions. In the case of
SME , all 40 solutions shared the same energy in the center
of mass E = 50 MeV, while for SME∗ the energies where
equispaced in the range E = [20, 80] MeV.

The GP and DFT cases are explained in detail in Sec. III.
The ranges for the parameters in both cases correspond to the
ones used in Table I. For GP, a set of 40 values of the pa-
rameters [q, κ] were obtained by LHS in the range q ∈ [0, 30]
and κ ∈ [5, 30]. For DFT, 50 values of the parameters were
obtained with a LHS across the parameter ranges shown in
Table II.

2. One-dimensional Gross-Pitaevskii equation with a harmonic
trapping potential

The four training points φk used in the La-
grange basis for the results in Fig. 3(a) are [q, κ] =

{[0, 1], [0, 5], [0.5, 1], [0.5, 5]}. Figure 4 shows the training
points for the Lagrange and POD RB, as well as the 500
testing points used for the results shown in Table I. Figure 5
shows the construction on the POD + Greedy basis also used
for the results shown in Table I. Figure 6 shows the 20 exact
solutions φq,κ (x) selected by the Greedy algorithm, as well as
the first four principal components of this set.

Description of the POD + Greedy scheme used for GP

The POD + Greedy scheme used for the results of Table I
consists of iteratively constructing a set of N exact solutions
(ES) with a (weak) Greedy algorithm [19] informed by the
residuals of a POD RB of dimension n2 derived from the set
of exact solutions at each step. To set up the algorithm, let
POD({φ̃l}Nl=1, n) be a function that returns a normalized basis
constructed with first n principal components of the set of
solutions {φ̃l}Nl=1 if N � n and that returns POD({φ̃l}Nl=1,N )
if N < n. This function can be used to construct a POD basis
of size up to n with a set of solutions. The Greedy strategy we
used is summarized in Algorithm 1. The desired POD bases
were constructed by running POD(RB, n) on the output of this
algorithm with α1 = [q1, κ1] = [15, 17.5], n2 = 10, N = 20,
and N2 = 100.

Algorithm 1: POD + Greedy scheme

Define starting parameters α1, n2, N , N2

Find φ̃1 s.t. Fα1 (φ̃1) = 0
ES ← {φ̃1}
For i = 2, . . . ,N do
RB ← POD(ES, n2)
Draw N2 parameters with LHS: A = {α̂1, . . . , α̂N2 }
Use the RBM with the RB to find φ̂α̂ for each element in A
αi ← argmaxα̂∈A||Fα̂ (φ̂α̂ )||2
Find φ̃i s.t. Fαi (φ̃i ) = 0
ES ← ES ∪ {φ̃i}
end
return ES
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TABLE III. Glossary of acronyms.

Acronym Name Brief description Detailed Ref.

EC Eigenvector
continuation

Numerical method for approximating the “trajectory” of an eigenvector associated
with a parametrized operator as the corresponding parameters change. As shown in
this article, it can be seen as a special case of the RBM.

[11,74]

RBM Reduced basis
method

Numerical method for solving parametrized differential equations efficiently by
using a handful of previously computed solutions.

Chap. 3 in [19,20]

SVD Singular value
decomposition

Matrix factorization algorithm key for many modern computational methods,
including PCA and POD.

Chap. 1 in [22],
Chap. 2 in [75]

POD Proper orthogonal
decomposition

SVD application to partial differential equations used to capture a low-dimensional
representation of the corresponding dynamical system. In the context of RBMs it is
used to construct small bases that capture a low-dimensional representation of a
larger set of “exact” solutions.

Sec. 3.3.1 in [20],
Chap. 6 in [19],
Sec. 11.1 in [22]

PCA Principal
component analysis

SVD application where the variability of high-dimensional data is decomposed into
its more statistically descriptive factors.

Chap. 1
in [22], [76–78]

LHS Latin hypercube
sampling

Sampling technique for efficiently distributing points in Rn. [47]

Greedy algorithm Algorithm that selects the locally optimal choice on each iteration. In the context of
RBMs, it sequentially selects “exact” solutions to train the emulator, usually by
maximizing an estimated error.

Sec. 3.2.2 in [20],
Chap. 7

in [19], [50]
Lagrange basis A reduced basis of size n for the RBM that is built as a linear combination of only

n “exact” solutions.
[24]

DFT Density functional
theory

Mean-field approach to many-body quantum systems. [51,79]

EDF Energy density
functional

The object that defines the interaction used in DFT. [51,79]

3. Nuclear density functional theory

The four training points, φk , used in Fig. 3(b) only varied
the KNM and LNM

sym parameters, with the rest taken to be the
standard UNEDF1 optimal parameters [62]. The four values
of KNM and LNM

sym, in MeV, are

KNM = 200, LNM
sym = 30; KNM = 200, LNM

sym = 60;

KNM = 220, LNM
sym = 30; KNM = 220, LNM

sym = 60.

Table II shows the parameter ranges used for the LHS for
the DFT results in Table I. Both the 500 testing points and
the N = 20 exact evaluations used to build the POD RB were
independently drawn by LHS on these ranges.
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