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Bayes goes fast: Uncertainty
quantification for a covariant
energy density functional
emulated by the reduced basis
method
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Physics, Stanford University, Stanford, CA, United States, “Rice University, Department of Statistics,
Houston, TX, United States, *Department of Physics, Florida State University, Tallahassee, FL,
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A covariant energy density functional is calibrated using a principled Bayesian
statistical framework informed by experimental binding energies and charge
radii of several magic and semi-magic nuclei. The Bayesian sampling required
for the calibration is enabled by the emulation of the high-fidelity model
through the implementation of a reduced basis method (RBM)—a set of
dimensionality reduction techniques that can speed up demanding
calculations involving partial differential equations by several orders of
magnitude. The RBM emulator we build—using only 100 evaluations of the
high-fidelity model—is able to accurately reproduce the model calculations in
tens of milliseconds on a personal computer, an increase in speed of nearly a
factor of 3,300 when compared to the original solver. Besides the analysis of the
posterior distribution of parameters, we present model calculations for masses
and radii with properly estimated uncertainties. We also analyze the model
correlation between the slope of the symmetry energy L and the neutron skin of
“8Ca and 2°®Pb. The straightforward implementation and outstanding
performance of the RBM makes it an ideal tool for assisting the nuclear
theory community in providing reliable estimates with properly quantified
uncertainties of physical observables. Such uncertainty quantification tools
will become essential given the expected abundance of data from the
recently inaugurated and future experimental and observational facilities.

KEYWORDS

bayesian, reduced basis method (RBM), relativistic mean field (RMF) theory, nuclear
physics, density functional theory

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1054524&domain=pdf&date_stamp=2023-01-06
mailto:giulia27@msu.edu
mailto:godbey@frib.msu.edu
mailto:edgard@stanford.edu
mailto:viens@msu.edu
mailto:jpiekarewicz@fsu.edu
https://doi.org/10.3389/fphy.2022.1054524
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1054524

Giuliani et al.

1 Introduction

Nuclear science is undergoing a transformational change
enabled by the commissioning of new experimental and
observational facilities as well as dramatic advances in high-
performance computing [1]. The newly operational Facility for
Rare Isotope Beams (FRIB), together with other state-of-the-art
facilities throughout the world, will produce short-lived isotopes
that provide vital information on the creation of the heavy
elements in the cosmos. In turn, earth and space-based
the
spectrum will constrain the nuclear dynamics in regimes

telescopes  operating across entire  electromagnetic
inaccessible in terrestrial laboratories. Finally, improved and
future gravitational-wave detectors will provide valuable
insights into the production sites of the heavy elements as
well as on the properties of ultra-dense matter at both low
and finite temperatures [2-9].

To fully capitalize on the upcoming discoveries, a strong
synergy will need to be further developed between theory,
experiment, and observation. First, theory is needed to
decode the wealth of information contained in the new
data.
measurements drive new theoretical advances which, in
that

theoretical

experimental and observational Second, new

turn, wuncover new questions motivate

the
sophisticated and highly-accurate ab initio methods have

new
experiments. From perspective,
been developed to solve the complicated many-body
problem. Besides the adoption of a many-body solver, one
needs to specify a nuclear interaction that is informed by two-
and three-nucleon data. A highly successful approach relies
on a nuclear interaction rooted in chiral effective field theory
(EFT). Chiral EFT—a theoretical framework inspired by the
underlying symmetries of QCD—provides a systematic and
improvable expansion in terms of a suitable small parameter,
defined as the ratio of the length scale of interest to the length
scale of the underlying dynamics [10-12]. During the last
has

understanding of the equation of state (EOS) of pure

decade, enormous progress been made in our
neutron matter by systematically improving the chiral
expansion [13-19]. However, the chiral expansion breaks
down once the relevant energy scale of the problem
becomes comparable to the hard scale associated with the
underlying dynamics. This fact alone precludes the use of
chiral perturbation theory in the study of high density matter.

A more phenomenological approach that could be
extended to higher densities is Density Functional Theory
(DFT). Developed in quantum chemistry [20] but now widely
used in nuclear physics, DFT is a powerful technique whose
greatest virtue is shifting the focus away from the complicated
many-body wave function that depends on the spatial
coordinates of all particles, to an energy density functional
(EDF) that depends only on the three spatial coordinates of

the ground state density. Moreover, DFT guarantees that both
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the exact ground-state density and energy of the complicated
many-body system may be obtained from minimizing a
suitable functional [21, 22]. In an effort to simplify the
solution of the problem, the Kohn-Sham formalism
reformulates the DFT problem in favor of one-particle
orbitals that may be obtained by solving self-consistently a
set of equations that closely resemble the structure of the
well-known Hartree equations [22]. It is important to note
that the theorems behind DFT offer no guidance on how to
construct the correct EDF. This fact is mitigated in nuclear
physics by incorporating as many physical insights as
possible into the construction of the functional, and then
calibrating the parameters of the model by using the available
experimental and observational data. However, unlike chiral
EFT, DFT is unable to quantify systematic errors associated
with missing terms in the functional that may become
important at higher densities. Nevertheless, given that
modern covariant EDFs are informed by the existence of
two-solar mass neutron stars, the parameters of the model
encode (at least partially) information on the high-density
component of the EOS.

The calibrated models are not static, however, and theory
must be nimble in its response to the exciting new data that will
emerge from future experiments and observations. In the
particular case of DFT, new data must be promptly
incorporated into the refinement of the EDF to explore the
full impact of the new information. This is particularly
relevant given that nuclear physics has the ability to predict
the structure and properties of matter in regions inaccessible to
either experiment or observation. For example, one may use
Bayesian inference to identify strong correlations between a
desired property, which cannot be measured, and a surrogate
observable that may be determined experimentally. However,
Bayesian methods often require multiple evaluations of the same
set of observables for many different realizations of the model
parameters. If the nuclear observables informing the EDF are
computationally expensive, then direct Bayesian inference is
highly This has
motivated many of the recent efforts by the nuclear theory

impractical. computational  challenge
community in the development and adoption of emulators to
accelerate computation speed with a minimal precision loss
[23-35]. In this work we explore the application of one such
class of emulators, the Reduced Basis Method (RBM) [36-38],
which falls under the umbrella of the general Reduced Order
Models (ROM) techniques [39, 40].

The Reduced Basis

dimensionality reduction approaches that generally aim at

Method encapsulates a set of

speeding up computations by approximating the solution to
differential with handful
components (the reduced basis). These methods have been

equations just a of active

shown to exhibit speed increases of several orders of
magnitude in various areas of science and engineering

[41-44], including specific applications for uncertainty
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quantification [45, 46], and have been recently demonstrated to
be viable for applications in nuclear physics DFT [29]. Solving
the full system of differential equations self-consistently in the
framework of covariant DFT is not a particularly demanding
computational task for modern computers, usually taking around
a minute for a heavy nucleus such as ***Pb. The computational
bottleneck appears when millions of such evaluations must be
carried out sequentially to perform Bayesian inference, and the
problem multiplies when several nuclei are involved or if one
wants to consider and compare different EDFs. A speed-up factor
of three orders of magnitude or more provided by techniques
such as the RBM could bridge the computational gap and enable
new scientific advancements that would otherwise be impossibly
or significantly more expensive. The adoption of these methods,
paired together with leadership-class computing infrastructure,
will enable the quick response that is needed to take full
of the wealth  of
observational data that will be coming in the next years.

advantage vast experimental and

The intent of this manuscript is to develop and showcase a
pipeline for the calibration and uncertainty quantification of a
nuclear model—a covariant energy density functional—enabled
by the RBM emulation. To that goal, in Sec. II we provide a brief
introduction to the relativistic mean field model we use,
culminating with the set of differential equations that need to
be solved in order to calculate nuclear observables. In Sec. III we
present the reduced basis methodology, alongside an explanation
on how it is used to construct an emulator that simplifies the
computations of the DFT model. In Sec. IV we explain the theory
and implementation of the Bayesian statistical analysis used to
the with  full

quantification. In Sec. V we present and discuss the results of

calibrate model parameters, uncertainty
the calibration, displaying the Bayesian posterior distribution of
the model parameters, together with the model predictions with
quantified uncertainties for binding energies and charge radii, as
well as the correlation between the slope of the symmetry energy
L and the neutron skin thickness of both ***Pb and **Ca. These
two observables have been the focus of recent experimental
campaigns [47-49], and its widespread implications are of
great interest to the nuclear physics and astrophysics
communities [50, 51]. Finally, in Sec. VI we present our
conclusions and outlooks, with a perspective on the role that
this class of emulators could play, in the near future, on the
nuclear theory-experiment cycle enhanced by statistics and

machine learning [31, 52, 53].

2 Relativistic mean field calculations

The cornerstone of covariant density functional theory is a
Lagrangian density that includes nucleons and mesons as the
effective degrees of freedom. Besides the photon that mediates
the long-range Coulomb interaction, the model includes the
isoscalar-scalar ¢ meson, the isoscalar-vector w meson, and
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the isovector-vector p meson [54, 55]. The interacting
Lagrangian density consists of a nucleon-nucleon interaction
mediated by the various mesons alongside non-linear meson
interactions [55-60]. That is,

Lin = 1/7[gs¢—(gvv,,+ %r : bF+§ (1+r3)A,,>yﬂ]w
A
—% (9:9)"- 5 (9:0)"+ %gi(VyV")z + A4 by B ) (GVV).
(1)

The first line in the above expression includes Yukawa
couplings g, g, and g, of the isoscalar-scalar (¢), isoscalar-
vector (V¥), and isovector-vector (b,) meson fields to the
appropriate bilinear combination of nucleon fields. In turn,
the second line includes non-linear meson interactions that
serve to simulate the complicated many-body dynamics and
that are required to improve the predictive power of the
model [56-58]. In particular, the two isoscalar parameters x
and A were designed to soften the equation of state of symmetric
nuclear matter at saturation density. In turn, the isoscalar
parameter ( also softens the EOS of symmetric nuclear matter
but at much higher densities. Finally, the mixed isoscalar-
isovector parameter A, was introduced to modify the density
dependence of the symmetry energy, particularly it slope at
saturation density. For a detailed account on the physics
underlying each terms in the Lagrangian see Refs. [60, 61].

2.1 Meson field equations

In the mean-field limit, both the meson-field operators and
their corresponding sources are replaced by their ground state
expectation values. For spherically symmetric systems, all meson
fields and the photon satisfy Klein-Gordon equations of the
following form [59]:

(;% + % % - m§>d>o (r) - gf(%@é (r) + %CDS (r)>
= =02y (1 + P, (), (20)
(;—:2 + % %— mi)wo (r - gi(%WS (r) + 2A,B§ ()W, (r))
==g2(py, (1) + Py (1), (2b)

(;7 W22 m,2,>Bo (1)~ 20,62W3 (1B, (1)
= -%‘2’ (Pop (1) = Pun (1), 20)
<;—r = %)A (r) = —ep,,, (1), (2d)

Where we have defined @ = g, W, = g,V,,, and B, = g;b,.
The various meson masses, which are inversely proportional to
the effective range of the corresponding meson-mediated
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interaction, are given by m, m,, and mp. The source terms for the
Klein-Gordon equations are ground-state densities with the
correct Lorentz and isospin structure. Finally, the above scalar
(s) and vector (v) densities are written in terms of the occupied
proton and neutron Dirac orbitals:

(” ) ) = Z(zj L 1)(913,,(, (1) F fr ().

Py (r) o 47rr?

3

Here t identifies the nucleon species (or isospin) and n denotes
the principal quantum number. We note that some of the semi-
magic nuclei that will be used to calibrate the energy density
functional may have open protons or neutron shells. In such case,
we continue to assume spherical symmetry, but introduce a
fractional occupancy for the valence shell. For example, in the
particular case of ''°Sn, only two neutrons occupy the valence ds,
orbital, so the filling fraction is set to 1/2.

2.2 Dirac equations

In turn, the nucleons satisfy a Dirac equation with scalar and
time-like vector potentials generated by the meson fields. The
eigenstates of the Dirac equation for the spherically symmetric
ground state assumed here may be classified according to a
generalized angular momentum «. The orbital angular momentum
I and total angular momentum j are obtained from « as follows:

K, if x> 0;

g — 1. p—
]_|K|_§’ l_{—(1+1<), if k<0, (4)

where « takes all integer values different from zero. For example,
x = — 1 corresponds to the sj;, orbital. The single-particle
solutions of the Dirac equation may then be written as

L{nm, (r) - 1( Gnxt (r)ymn (f) >,

7o (DY () )

where m is the magnetic quantum number and the spin-spherical
harmonics Y, are obtained by coupling the orbital angular [
momentum and the intrinsic nucleon spin to a total angular
momentum j. However, note that the orbital angular momentum
of the upper and lower components differ by one unit, indicating that
the orbital angular momentum is not a good quantum number. The
functions g, and f,, satisfy a set of first order, coupled differential
equations that must be solved to obtain the single particle spectrum:

d «
(54';)9,1(7’)
: [Ea M= 0y () = Wo (1) F 350 (1) —e{ 0 }Ao(r)]fa(”)

=0,
(6a)

Frontiers in Physics

04

10.3389/fphy.2022.1054524

d «
<E_;>fu (r)

+ [E - M 0y (1) = Wo (1) ¥ 2By (1) —e{ : }Ao (r)]gum
=0,

(6b)

Where the upper numbers correspond to protons and the
lower ones to neutrons, and we have used the shorthand notation
a = {nkt} to denote the relevant quantum numbers. The mass of
both nucleons is denoted by M, and it is fixed to the value
939 MeV. Finally, g,(r) and fu(r)
normalization condition:

satisfy the following

o

[@o+ 2enar-1.

0

%

Looking back at Eq. 3, we observe that the proton and
their
corresponding integrals yield the number of protons Z and

neutron vector densities are conserved, namely,
the number of neutrons N, respectively. In contrast, the scalar

density is not conserved.

2.3 Ground state properties

From the solution of both the Klein-Gordon equations for
the mesons Eq. 2 and the Dirac equation for the nucleons Eq. 6,
we can calculate all ground-state properties of a nucleus
composed of Z protons and N neutrons. The proton and
neutron mean square radii are determined directly in terms of
their respective vector densities:

an'(

R = - J r*p,, (rdr, (8a)
0
4 [ee]

R = ﬁ” j rip, . (r)dr. (8b)
0

Following [60] we approximate the charge radius of the
nucleus by folding the finite size of the proton 7, as:

RY =R, +17, )

where we have used for the radius of a single proton r, =
0.84 fm [62].

In turn, the total binding energy per nucleon E/A- M,
includes contributions from both the nucleon and meson
fields: E = E,uc + Emesonss The nucleon contribution is
calculated directly in terms of the single particle energies
obtained from the solution of the Dirac equation. That is,
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Enie = Y (2ja +1) E, (10)
where the sum is over all occupied single particle orbitals, E, is
the energy of the ath orbital, and (2j, + 1) is the maximum
occupancy of such orbital. For partially filled shells, one must
multiply the above expression by the corresponding filling
fraction, which in the case of ''°Sn, is equal to one for all
orbitals except for the valence ds/, neutron orbital where the
filling fraction is 1/2.

The contribution to the energy from the meson fields and the
photon may be written as

[e0)
Enmesons = 470 J(E,, +Ey+E,+E,+ E,,)r*dr,  (11)
0

where the above expression includes individual contributions
from the 0, w, and p mesons, the photon, and the mixed wp term.
In terms of the various meson fields and the ground-state
nucleon densities, the above contributions are given by.

1 s P
By = 300 (1)(pyy (1) + ., (D) = 500 (1) = 204 (1), (120)

E, = -%wo (1) (pyp (1) + Py (1)) + %wg (r), (12b)
1

Ey = =By (1)(pyy (1) = Py (1), (12¢)

E, = —%eAO (M)py,, (1) (12d)

E., = AW, (r)B} (r). (12e)

Following [60], in this work we calibrate the relativistic mean
field model by comparing the calculations of charge radii and
binding energies with the experimentally measured values for the
doubly magic and semi-magic nuclei: '°O, *’Ca, **Ca, **Ni', *Zr,

IOOSn 116Sn 13281,1 144Sm 208Pb
> > > > .

2.4 Bulk properties parametrization

The Lagrangian density of Eq. 1 is defined in terms of seven
coupling constants. These seven parameters plus the mass of the
o meson define the entire 8-dimensional parameter space (the
masses of the two vector mesons are fixed at their respective
experimental values of m, = 782.5MeV and m, = 763 MeV).
Although historically the masses of the two vector mesons have
been fixed at their experimental value to simplify the search over

1 The charge radius of °®Ni was recently measured [63] and we do not
include in the calibration to better compare with the previous results
[60]. The charge radius of 1°°Sn has not been measured yet. Therefore,
our calibration dataset consists of 18 points, 10 binding energies and 8
charge radii.
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a complicated parameter landscape, such a requirement is no
longer necessary. Bayesian inference supplemented by RBMs can
easily handle two additional model parameters. Given that the
aim of this contribution is to compare our results against those
obtained with the traditional fitting protocol, we fix the masses of
the two vector mesons to their experimental values, and defer the
most ambitious calibration to a future work.

Once the theoretical model and the set of physical
observables informing the calibration have been specified, one
proceeds to sample the space of model parameters: « = {m, g, gv»
& K A, Ay» (}. However, given that the connection between the
model parameters and our physical intuition is tenuous at best,
the sampling algorithm can end up wandering aimlessly through
the parameter space. The problem is further exacerbated in
covariant DFT by the fact that the coupling constants are
particularly large. Indeed, one of the hallmarks of the
the of
cancelling—scalar and vector potentials. So, if the scalar

covariant framework is presence strong—and
coupling g; is modified without a compensating modification
to the vector coupling g, it is likely that no bound states will be
found. To overcome this situation one should make correlated
changes in the model parameters. Such correlated changes can be
implemented by taking advantage of the fact that some of the
model parameters can be expressed in terms of a few bulk
properties of infinite nuclear matter [60, 64]. Thus, rather
than sampling the model parameters «, we sample the
equivalent bulk parameters 6 = {my, po, €o, M*, K, J, L, {}. In
this expression, po, €9, M*, and K are the saturation density, the
binding energy, effective nucleon mass, and incompressibility
coefficient of symmetric nuclear matter evaluated at saturation
density. In turn, J and L are the value and slope of the symmetry
energy also at saturation density. The quartic vector coupling { is
left as a “bulk” parameter as the properties of infinite nuclear
matter at saturation density are largely insensitive to the value of
{ [57]. The virtue of such a transformation is twofold: first, most
of the bulk parameters given in 6 are already known within a
fairly narrow range, making the incorporation of Bayesian priors
easier and natural, and second, a modification to the bulk
parameters involves a correlated change in several of the
model parameters, thereby facilitating the success of the
calibration procedure.

In the context of density functional theory, Eqs 2-6 represent
the effective Kohn-Sham equations for the nuclear many-body
problem. Once the Lagrangian parameters « have been calculated
from the chosen bulk parameters 6, these set of non-linear
coupled equations must be solved self-consistently. That is,
the single-particle orbitals satisfying the Dirac equation are
generated from the various meson fields which, in turn, satisfy
Klein-Gordon equations with the appropriate ground-state
densities as the source terms. This demands an iterative
procedure in which mean-field potentials of the Wood-Saxon
form are initially provided to solve the Dirac equation for the
occupied nucleon orbitals which are then combined to generate
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the appropriate densities for the meson field. The Klein-Gordon
equations are then solved with the resulting meson fields
providing a refinement to the initial mean-field potentials.
This procedure continues until self-consistency is achieved,
namely, the iterative process has converged.

In the next section we show how the reduced basis method
bypasses such a complex and time-consuming procedure by
constructing suitable reduced bases for the solution of both
the Klein-Gordon and Dirac equations.

3 The reduced basis method

A system of coupled differential equations in the one-
dimensional variable r, such as Eq. 2 and Eq. 6, can be
computationally solved by numerical methods such as finite
element or Runge-Kutta. We shall refer to the numerical
solutions obtained from those computations as high fidelity
solutions for the rest of the discussion. Those approaches
possess an intrinsic resolution Ar—such as the grid spacing in
the case of finite element or the step size in the case of Runge-
Kutta®. For a given interval L in which we are interested in solving
the equations, each of the functions involved will have roughly
N ~ L& elements. In the case of the finite element method for
example, for fixed particle densities and a given grid, the four
fields involved in Eq. 2 become arrays of unknown values:

r—ry, rs.o Tl

Dy (r) = [@g(r1), Do (r2)s---5 Do (ra)ls
Wo(r) = [Wo(r1), Wo(ra)s..., Wo(ra)l, (13)
By (r) — [Bo(r1), Bo(r2),..., Bo(ra)l,
Ay (r) = [Ao(r1), Ao(r2)s. .., Ag(ra)].

In turn, once the differential operators such as ;l—:z are
of finite the
themselves become matrix
13. The same
procedure follows for the Dirac equations Eq. 6 for fixed

transformed into matrices differences,
differential

equations for the unknown arrays Eq.

equations will

fields, with each upper and lower components g,.(r) and
fux(r) for protons and neutrons becoming arrays of unknown
values that must be solved for.

Both the traditional Runge-Kutta solver and the finite
element solver we developed to iteratively tackle Eqs 2 and
6 have L = 20 fm, Ar = 0.05 fm, and therefore A/ = 400. The
goal of the Reduced Basis (RB) approach is to build a
framework that, after a preparation period called the offline
stage, can obtain approximate solutions to the differential
equations with as few—or even better, none—calculations of
size N during the evaluation period called the online stage

2 Both the grid size and the step size could be adaptive instead of
constant across the spatial domain. We shall assume a constant Ar
for the rest of the discussion for the sake of simplicity.
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[37]. Any observable computed from such solutions, such as
binding energies and radii, should also involve as few
calculations of size N as possible to streamline the
uncertainty quantification procedure.

The RBM implementation we construct in this work consists
of two principal steps: “training and projecting” [29]. In the first
step we build the RB using information from high fidelity
solutions, while in the second step we create the necessary
equations for finding the approximate solution by projecting
over a well-chosen low-dimensional subspace. The following
subsections explain both steps in detail.

3.1 Training

We begin by proposing the corresponding RB expansion for
each function involved in Eqs 2 and 6:

0 (r) = By (r) = Zak O (r (14a)
Wo(r) = W (r) = gwar’ Wi (1), (14b)
By (r) = By (r) = Zak By (r (14c)
Ag(r) = Ag(r) = ;:af A (1), (14d)
g(r)=g(r) = Zak a(r (14¢)
fn=f= gai Fe (), (14f)

The subscripts n and x have been omitted from the g, and f,,,
components for the sake of clarity, but it is important to note that
the expansion will have unique coefficients a;, and possible
different number of basis n, and n, for each level. The
functions with sub-index k, Ay(r) for example, form the RB
used to build their respective approximations, A (r) in this case.
It is interesting to note that Eq.2d can be solved to explicitly
obtain Ay(r) as integrals of the proton density (see Eq. 7 in [59]).
Nevertheless, we found that expanding Ay(r) in its own RB
resulted in appreciably bigger speed up gains by the RBM
emulator with negligible loss in accuracy.

Once chosen, each RB is fixed and will not change when
finding approximated solutions to Eqs 2 and 6 for different
parameters «. The coefficients a,i') do depend on the
parameters « and are the ones responsible for adjusting the
approximate solution as the parameter space is explored. It is
important to note that, if there is a level crossing, the
occupancy configuration of the nucleus will change. The

RBM implementation we describe here—relying on smooth

frontiersin.org


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1054524

Giuliani et al.

A

c x> &) x=W, *=DB; =A
2 107" g(P) — f(P)
g 103 —Q(N) f(N)
=

> B

. 107

-

= -7

%0 10

n 2 4 6 8 10

Principal Component &

B

bH -V-CI)() -'-Wo -'-Bo -I-Ao
E 107! g(P) — f(P)
- —9(N) — f(N)
<

> -5

E 10

&

g 107

»n 2 4 6 8 10

Principal Component k

FIGURE 1

Normalized singular values g, /oy for the fields ®q(r), Wo(r),

Bo(r), and Ao(r), and the single particle wave functions of the upper
gnilr) and lower f,,,(r) components for “8Ca (A) and 2°®Pb (B). The
single particle proton levels are denoted as g(P) and f(P) for

the upper and lower components, respectively, while the single
particle neutron levels are denoted as g(N) and f(N) for the upper
and lower components, respectively. There are six proton levels
and seven neutron levels for “Ca (A), while for 2°°Pb there are
sixteen proton levels and twenty-two neutron levels.

variations of the functions involved as & changes—is unable to
correctly emulate the solution if suddenly an orbital looses or
gains nucleons. For the parameter ranges we studied we do not
expect that to happen for the closed shell magic nuclei we
employed given the gap in the single particle spectrum. We did
not observe level crossing either on the partially filled
neutrons and protons shells of ''*Sn and '**Sm.

For future applications going beyond the spherical
approximation it will be important to modify the approach
accordingly, both in expanding the number of basis states to
capture the richness of the solutions and in directly including
information on the occupation of the single particle orbitals. This
can be done at either the Hartree-Fock-Bogoliubov or the
Hartree-Fock + BCS level and will naturally address the issue
of level crossings and deformation at the expense of the slower
performance associated with larger bases and more coupled
equations to be solved. The trade-off is tempered by the fact
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that, because the RBM does not depend on the original
dimensionality of the problem, moving from a spherical
picture to full 3D will not be as heavily penalized as the high
fidelity solver.

There are several approaches for the construction of the reduced
basis [36, 37], most of which involve information obtained from high
fidelity solutions for a sample of the parameters «. For this work, we
choose the Proper Orthogonal Decomposition (POD) approach,
which consists of building the RB as the first n components
(singular vectors) of a Singular Value Decomposition (SVD)
[65]—see also Principal Component Analysis (PCA) [66]—
performed on a set of high fidelity solutions.

For each nucleus involved we compute high fidelity
the
multivariate Gaussian distributions obtained in the calibration
performed in [60]. We perform the SVD on each of the four fields
and each of the wave functions for the respective protons and

evaluations for 50 parameter sets sampled from

neutron levels for all ten nuclei considered in this study. For
example, for **Ca for protons and neutrons there are six and
seven f,(r) and g,(r), respectively. Figure 1 shows the normalized
singular values g;/0; for the field and nucleon wave functions for
**Ca and *"*Pb. Each singular value represents how much of the
total variance in the entire sample that particular component is
capable of explain [40]. A fast exponential decay of the singular
values can indicate that a RB with few components should be able
to approximate the full solution with good accuracy (see also the
discussion on the Kolmogorov N-width in Chapter V of [36]).

Figure 2 shows the first three principal components obtained
from the SVD of the 50 high fidelity evaluations for the @y(r) and
Ao(r) fields, the upper component g(r) of the first neutron level,
and the lower component f{r) for the last proton level for *Ca.
The figure also shows the corresponding 50 high fidelity
solutions, although the spread is barely noticeable for the two
wave function components, and is imperceptible outside of the
inset plot for the photon field A,(r). We observed a similar small
spread of the fields and wave functions for all the nuclei
considered for the 50 high fidelity evaluations. This is
consistent with the fact that the relativistic mean field model
has been calibrated to reproduce ground state experimental
observables such as masses and radii within a 0.5% error’
[60]. Appreciable variations of the solutions would deteriorate
such values.

Choosing how many reduced bases to include for each field
or wave function—the upper limits on the sums in Eq. 14 [ng,
Ny Mgy Mg, He nf] —is a non-trivial process. In general, the more
basis used the more precise the approximation will be, but that
comes at the trade-off of an increased calculation time. This choice
will not depend only on the relative importance of the singular
values shown in Figure 1, but rather on the quantities we are

3 With an error of around 1.4%, the charge radius of *°O can be treated as
an outlier in which the mean field approximation might break down.
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First three principal components in red, orange, and green respectively, for @q(r) (A), eAq(r) (B), the first g(r) for neutrons (C), and the sixth f(r) for
protons (D) in “Ca. The second and third components (in orange and green) have been re-scaled arbitrarily for plotting convenience. The
50 solutions used in the training set are shown in different shades of blue in each figure. The spread of such solutions is barely visible for @q(r) and f(r),
and almost undetectable for the other two cases. The spread is further enhanced in the inset plots within the magenta squares in each sub

figure.

interested in calculating after solving the coupled differential
equations. For example, for **Ca, the photon field Ay(r) has the
fastest decaying singular values shown in Figure 1, which could
indicate that we need a smaller basis to reproduce it to the same
level of accuracy than any of the other fields, such as B(r).
Nevertheless, if our primary objective is to obtain accurate
calculations for binding energies and charge radii, for example,
it might be the case that we need to reproduce Ay(r) to much better
precision than By(r), requiring n, > np. We elaborate this
discussion later when we describe our method for selecting the
number of basis for each function.

3.2 Projecting

For a fixed nucleus and a chosen RB configuration we have ng, +
ny + ng + ny free coefficients for the fields, 25};1 (ng’P ) 4 nj(f’P ))
coefficients for the single particle wave functions for protons, and
> (ng*N )+ n?’N)) for the single particle wave functions for
neutrons. In these expressions Ip and Iy denote the total levels of
protons and neutrons for the given nucleus, respectively.
Additionally, since Eq. 6 are eigenvalue equations, the respective
energies E;, and E; y for each of the protons and neutrons levels also
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count as unknown quantities that need to be determined. Let
us denote a list of such coefficients
a=1{a® af, ..., al,...Ey,, E,...}.

For example, consider we are working with **Ca which has

and energies as

six proton levels and seven neutron levels. If we set three RB
for every field and wave function expansion in Eq. 14, we will
have 12 coefficients associated with the fields, 36 coefficients
the
42 coefficients and seven energies associated with the

and six energies associated with protons, and

neutrons. This amounts for a total of 103 unknown
quantities that must be determined from 103 equations.
Each single particle level for protons and neutrons has an
associated normalization condition shown in Eq. 7. These
normalization equations go in par with the unknown energies.
The rest of the unknown coefficients—90 in this example—are
determined from the Galerkin projection equations that we
now describe. The Galerkin method [67] is the traditional
approach for obtaining such coefficients in the RBM [37, 39].

Let us denote the set of field functions and wave functions in the
compact notation E={®@y, Wy, By, Ao, & f} and their respective RB
approximation == {dDO, Wo, Bo, Ao, 9> f’ }. Let us denote the Klein-
Gordon and Dirac equations as operators acting on the set Z, re-
arrange them such that they are all equal to 0, and label them as:
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Eq.(2a) — F®[E] = 0,
Eq.(2b) — FW [E] =0,
Eq.(2¢) — FB [E] =0,
Eq.(2d) — FA [E] =0,
Eq.(6a) — Fg [E] =0,
Eq.(6b) — Ff [E] = 0.
For example, Fﬁ [E]=0 reads

drz +2 dy)A()(f') +ep,,(r) =0, and it only depends explicitly
on the photon field Ay(r) and on the protons components g(r)
and f(r) through the density p, ,(r). There is a different associated
operator for each proton and neutron level for the Dirac
equations, but we omit a tracking index to keep the notation
simpler.

Finding a solution E for given parameters & means finding a
collection of fields and wave functions such that all the operators
FU[E] acting on such list give back the function that is zero for
every r. Such solution must satisfy as well the normalization
condition Eq. 7. In general, these requirements cannot be
satisfied by any choice of the RB coefficients under the RB
approximation, i.e. F 45[) [E]+0 simultaneously for any choice
of a. We can relax these conditions by projecting each operator
F.[E] over a set of “judges” 1//1(?) (7) [29] and requiring that the
projections are zero:

WIIFL[E =0, 1<j<n,, (16a)
WYIFY[ED =0, 1<j<my, (16b)
WHFL[ED =0, 1<j<ny, (16¢)
WAFA[ED =0, 1<j<ny, (16d)
WIF[E]y =0, 1<j<n, (16e)
WIFL[E] =0, 1<jsny, (16f)

Where we have made the choice of projecting each
operator F{)[E] a total of n(, times, where n(, is the
number of RB expanding the associated function. Once
again, there will be a different set of projection equations
for every proton and neutron level for a given nucleus. The
projection operation, which we write using Dirac’s notation,
is used here to mean the usual inner product integral over the

radial variable, r € [0, 00):

YN = jw*(r)cp(r)dr (17)
0

Following our previous approach [29], we choose the
“judges” to be the same as the RB expansion, as it is common
practice with the Galerkin method [68]. For example, in the case
of **Ca with three basis for every field and wave function, since
the photon field RB expansion Ag = Yi_afAx has three
unknown coefficients, there will be three “judges” projecting

the operator FA[ ]. These “judges” are chosen as 1[/ (r)=A;(r)
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for 1 <j < 3. In total, for this **Ca example, we will have three
projection equations for each field, three equations for each g and
three for each f for each level of protons and neutrons, for a total
of 90 projection equations. Such system of equations, together
with the normalization conditions uniquely determines (if it has
a solution) the 103 RB coefficients and energies a for each new
value of the parameters a.

We also note that the dependence of Eqs 2 and 6 on the
parameters « is affine, which means that every operator can be
separated into a product of a function that only depends on a and
a function that only depends on r. For example, the non-linear
coupling between the isoscalar-vector meson w and the
Eq.2¢c
=2( gf,Av) [Wo(r)By(r)]. In practice, this means that every

isovector-vector meson P in reads:
integral in r in the projection equations Eq. 16 can be done,
once the RB has been fully specified, without explicitly assigning
numerical values to the parameters such as gf, or Ay. These
computations are usually done once during the offline stage and
then stored in memory to be used during the online stage [37].
The of this

equations—agnostic to the r variable—that do not involve any

result procedure is a set of projected
computation in the high fidelity space of size N/. These equations
will involve a small amount of linear combinations of products of
the model parameters « and the unknown coefficients a, usually
much more computationally tractable than the original coupled
equations of size V. The two observables we study in this work,
the charge radius and binding energy of each nucleus, are also
affine functions of the parameters a and the solution’s
coefficients a, see Eqs. 8 and Eqs 10-12. This means that
these

calculations of size A/ when the emulator is used for fast

observables can also be pre-computed, avoiding
evaluations®.

For a concrete example, consider **Ca now with only two
basis for all functions. Each of the two projection equations
associated with the proton’s gand fEq. 16e and Eq. 16f contains a
total of 22 terms. The equation for f for the first proton
level—with the choice of basis we describe in the next
section—with all numbers printed to two decimals precision
reads:

(gl (NIFL[E]) = 0.06a] - 0.09a] — E* (0.8a] + 1.66a])
+ M (1.66a] +0.8a3) — 2.89a’a — 1.45a3a]
+2.35a) af 0.03a%af
—001a2a1 +007a1 al 001a2u1 08a aj
-2.71a%ad + 0.64a)" aj +2.18a% aJ — 0.02a%a
+0.01a%ad + 0.03a%ad + 0.04a%ag = 0.

+1.17a) af -

(18)

4 If the dependence on the parameters a of the operators involved in the
system’s equations, or in the observable’s calculations is not affine,
techniques such as the Empirical Interpolation Method [37, 69, 70] can
be implemented to avoid computations of size A in the online stage.
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3.3 Accuracy vs. speed: Basis selection

As with many other computational methods, the RBM posses a
trade-off between accuracy and speed. If we use more bases for the
expansions Eq. 14 we expect that our approximation will be closer to
the high fidelity calculation, but that will come at the expense of
more coefficients to solve for in the projection equations Eq. 16. If we
use too few bases, the underlying physical model will be miss-
represented when compared with experimental data, but if we use
too many bases we might waste computational time to obtain an
unnecessary accuracy level. To find a satisfactory balance we study
the performance of the RBM, both in terms of accuracy and speed,
for different basis size configurations on a validation set containing
50 new high fidelity evaluations drawn from the same distribution as
the one we used for the training set [60].

As ametric of performance we define the emulator root mean
squared errors as:

1 &
ARay =\ 3 (R - RS’ (19)
V=1
For the charge radius, and as:
1 & )
ABE =\ > (BE™ - BE™)’, (20)

Voi=1

For the total binding energy. In both expressions N, is the
total number of samples in the validation set (50) and the
superscripts “mo” and “em” stand for the high fidelity model
and the RBM emulator, respectively.

A straightforward approach for exploring different basis
configurations consists of setting all basis numbers {rnq, 1y, np,
14, Mg, nf} to the same value #. There are two main disadvantages of
this approach. First, the basis increments can be too big, making it
harder to obtain a good trade-off. For example, in the case of **Pb
with n = 2 we have a total of 160 basis, while for n = 3 we jump
straight to 240. Second, the accuracy in the emulation of the
observables could be impacted differently by how well we
reproduce each function involved in Eq. 2 and Eq. 6. Having a
leverage that allows us to dedicate more resources (bases, that is) to
more crucial functions could be therefore beneficial, and the
simplistic approach with a common number # is unable to
optimize the computational resources in that sense.

On the other hand, exploring all possible basis size
configurations for a given maximum basis size is a
combinatorial problem that can quickly become intractable.
Therefore, we decided to follow a Greedy-type optimization
procedure in which we incrementally add new basis to the
current configuration, choosing the “best” local option at each
step. The basis are chosen from the principal components
obtained from the training set of 50 high fidelity runs. For all
the nuclei the starting configuration was seven basis for each
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Performance of the RBM emulator for “éCa (A) and 2°®Pb (B)

as the total number of basis is increased following the Greedy
algorithm described in the text. The dashed red and green lines in
both plot indicate an error of 0.1% in the charge radius and
total binding energy, respectively. The computation time per
sample is calculated solving the RBM equations in Mathematica,
which is substantially slower than the production emulator used in
the calibration and detailed in Sec. IlID.

one of the fields {®,, W, By, Ao} and two basis for each of the
wave functions g and f on all the nucleus’ levels. On each step,
we add one more basis to both g and fto the four levels across
both protons and neutrons which were reproduced most
poorly in the previous iteration on the validation set. The
“worst performers” are chosen alternating in terms of either
the single particle energies (serving as a proxy for the total
binding energy), and the L*> norm on the wavefunctions
themselves (serving as a proxy for the proton and neutron
radius). The fields basis numbers are all increased by one once
one of the wave functions basis number reaches their current
level (7 in this case).

For example, for **Ca we start with seven basis for the four
fields {ne, nw, np, nat = {7, 7, 7, 7}, and {ng, ng = {2, 2} for
every one of the six levels for protons and seven levels for
neutrons. On the first step we compare the RBM calculations
with the 50 high fidelity solutions from the validation set and
identify the first neutron level, and the first, third, and fifth
proton levels as the worse (on average) estimated single
particle energies. Consequently, their respective basis are
their
Figure 2): {ng, ng = {3, 3}. On the next step, we re-calculate

increased by third principal (see

components
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TABLE 1 Results from the basis selection procedure using the 50 samples from the validation set.

Nuc Basis Time A Ry,
Size [ms] [1073 fm]
°0 68 0.7 1.8
Ca 116 22 12
*Ca 120 24 0.4
SN 128 3.1 1.8
N7r 168 6.6 0.9
1008y 180 8.1 1.0
1168n 176 8.0 2.4
1326n 184 9.5 19
14Sm 216 14 1.8
205ph 236 20 0.9

0.1% R, A BE 0.1% BE
[1073 fm] [MeV] [MeV]
2.7 0.1 0.1

35 02 03

35 0.1 04

39 0.5 0.6

43 02 0.8

45 03 0.8

46 038 1.0

47 038 11

49 0.8 12

55 15 16

The second column shows the total basis size for the selected configuration for each nucleus for the RBM emulator we use in the rest of the manuscript. Column three shows the average time
to compute a single RB full solution for that nucleus using the optimized compiled emulator in Python, which we detail in the next section. Columns four and six show the root mean
squared error of the emulator (see Eqs 19 and 20) when compared to the high fidelity solutions for the charge radius and the total binding energy, respectively. Columns five and seven show

the target of 0.1% of the experimental value of the respective quantity used in the basis selection procedure. For the charge radius of**Ni and'*’Sn the central value of FSUGold2 [60] was

used instead for column five.

the RBM solutions with the new updated basis and identify the
fifth neutron level, and the second, third, and sixth proton
levels as the worst performances in terms of the overall wave
function sense (the L? norm). This procedure is repeated as the
overall basis number increases as is illustrated in Figure 3 for
*8Ca and *°*Pb. We observed similar behaviors for the other
eight nuclei involved in this study.

For the range of basis explored, the overall performance for
both the charge radius and total binding energy roughly
improves exponentially, although not monotonically®, with the
total basis number. The error in the radius and binding energy
reduces by more than a factor of 100 for **Ca and by a factor of
10 for *%Pb. The
exponentially, expanding almost an entire order of magnitude

computational time also increases

for both nuclei.

To select an optimal configuration of bases we used as a
targeta 0.1% error in both observables for all nuclei involved,
which is roughly three times smaller than the average
deviation between the originally calibrated RMF and the
available experimental values [60]. These targets are
shown as the red and green dashed lines in Figure 3.
Table 1 shows the basis size for the chosen basis and the

5 For some steps the emulator’s performance -in terms of A R¢, and A
BE-gets worse when adding the four new basis, which at first might
seem counter-intuitive. Itis important to note, however, that with each
new basis we add we are changing the entire system of equations both
by adding four new projections and by adding new elements to the
previous ones. Nothing prevents the solution a to the new system to
under perform in comparison to the previous one in the particular
metric we are using.

Frontiers in Physics
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results from this validation analysis. In the case where we
would like to have a faster emulator at the expense of
accuracy, we could choose a smaller basis size from the
configurations showed in Figure 3. In the case where we
need a more accurate emulator for particular calculations,
configurations with more basis functions could be chosen at
the expense of speed.

3.4 RBM code optimization

The offline stage consisting of the symbolic construction of
the Galerkin projection equations and the expressions for the
observables of interest is performed in Mathematica, resulting in
polynomial equations in the parameters and RB coefficients such
as Eq. 18. These equations are then parsed and converted into
both Python and Fortran functions which can then be compiled
into alibrary and evaluated in the calibration driver software. The
explicit Jacobian matrix is also constructed and parsed in the
same way, resulting in fewer evaluations of the polynomial
equations and thus faster convergence of the root finding
routine. This automated pipeline from symbolic representation
in Mathematica to compiled Python library vastly simplifies the
development process of the emulator and allows for various basis
sizes to be included at will while ensuring an efficient
implementation.

For the Python implementation Cython is used to first
convert the Python code into C which is subsequently
compiled into a Python compatible library. The Fortran
implementation is similarly compiled using the NumPy f2py
tool to produce a performant Fortran library with an appropriate
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Python interface. Regardless of the generating code, the resulting
interface of the modules are the same and can be used
interchangeably depending on the needs of the user. Each
evaluation of the emulator for a given set of parameters then
uses the MINPACK-derived root finding routine in SciPy [71]
to find the optimal basis coefficients which are used as input for
the observable calculations.

This procedure results in a time-to-solution on the order of
hundreds of microseconds to tens of milliseconds depending on
the nucleus being considered, as detailed in Table 1. The Runge-
Kutta high-fidelity solver (written in Fortran) does not exhibit
such a strong scaling across different nuclei, thus the relative
speed-ups vary from 25,000x for '°O, to 9,000x for **Ca and
1,500x for ***Pb. This level of performance brings the evaluation
of the surrogate model well within our time budget for the
calibration procedure and also represents the simplest method
in terms of developmental complexity. If the evaluation of the
emulator needs to be further accelerated, a pure Fortran
implementation of the root finding routine exhibits an
additional decrease in time-to-solution of order 3x in
comparison to the hybrid Python/compiled model detailed
above at the cost of a slightly less user-friendly interface for
the emulator.

Having constructed an emulator with the accuracy and
calculation speed level we require, we now proceed to build
the Bayesian statistical framework that will be used to perform
the model calibration. In this calibration, the emulator finite
accuracy will be included as part of our statistical model.

4 Framework for Bayesian
uncertainty quantification

To calibrate our nuclear model properly, we need to
account for the sources of error associated with each data
point. We will use the well-principled Bayesian framework for
this task [23, 72], which produces a full evaluation of
uncertainty for every model parameter, in the form of
posterior probability distributions given all the data. Its
ingredients are twofold: first, a probability model, known as
the likelihood model, for the statistical errors linking the
(or output to the
experimental data given physical model parameters; second,

physically modeled emulated)
another probability model for one’s a priori assumptions
about the physical model parameters. The output of the
takes the
distribution for all model parameters; this is known as the

Bayesian analysis form of a probability

parameters’ posterior distribution. In this work, given the
paucity of data, we choose to estimate the standard deviations
of the statistical models separately, ahead of the Bayesian
analysis, either using uncertainty levels reported in the
literature, or natural statistical

using a frequentist

estimator. This minor deviation from a fully Bayesian
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framework is computationally very advantageous, an
important consideration given this manuscript’s overall
objective.

The Bayesian framework can also be used as a predictive
tool, by integrating the high-fidelity or emulated physical
model against the posterior distribution of all model
parameters, for any hypothetical experimental conditions
which have not yet been the subject of an experimental
campaign. Such predictions are expected also to take into
account the uncertainty coming from the statistical errors in
the likelihood version of the physical model. Relatively early
examples of these uses of Bayesian features in nuclear physics
work can be found in [73, 74].

In this section, we provide the details of our likelihood and prior
models, and how they are built in a natural way, as they relate to
experimental values, their associated emulated values, and all physical
model parameters. We also explain in detail how the statistical model
variance parameters are estimated ahead of the Bayesian analysis. All
our modeling choices are justified using the physical context and the
simple principle of keeping statistical models as parsimonious as
possible.

4.1 Specification of the statistical errors
and the likelihood model
Let us denote by »* the ith experimental
observation—binding energies or charge radii in our case—of
the 10 nuclei considered. We have a total of 10 measured binding
energies and 8 charge radii (the charge radii of **Ni was not
included in the calibration, while '°°Sn does not have a measured
charge radii), therefore 1 < i < 18. Let us denote by y™° () the
high fidelity model calculation associated with y$* for a given
value of the model parameters a. Finally, let us denote y{™ («) the
RBM emulated calculation associated with the same observable.
We identify three main sources of errors® in the model
calibration, namely experimental, modeling, and emulation
errors—the latter being the difference between yM°(a) and
yi™ (o) — which we write into a statistical model as follows:
for every i,

¥ =y (a) + 6 (@) + €

= ¥ (@) + 1, (@) + & (@) + €. 21

These three sources of error are represented in Figure 4 as an
illustrative stylized example.

The experimental error, €;, is assumed to come from a normal
distribution with mean zero and standard deviation of*:

6 A fourth source of error could be, in principle, the computational error
in the high fidelity solver for the physical model. We expect this error to
be negligible in comparison to the other three at the level of resolution
Ar our high fidelity solvers have.
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Yi

FIGURE 4

Visual representation of the statistical model with the three
sources of uncertainty for an observable y;. For a particular value of
a, the model calculation, y/™ (red vertical line) deviates from the
center of the experimental distribution, P (yf*) (blue curve) by

the model error §(a). The size of the experimental error,
characterized by ¢f*, is exaggerated in the figure to facilitate
showing. The estimated value by the emulator, yf™ (vertical
magenta line) deviates from the model calculation, y[™°, by the
emulator error, yi(a). The model error scale, i"°, characterizes the
expected size of §ja) as the parameters a are varied within their
meaningful physical range. This parameter range is characterized
by the Bayesian posterior distribution P(y["°|Y) (orange curve),
-obtained only after the analysis is done-of the observable y; given
all the calibration data Y.

€ ~ N (0, (01?“")2). These errors are assumed to be uncorrelated
between measurements of different nuclei and different quantities.
The error scale for each measurement, ¢7*, is an estimate of the
aggregate of the many uncertainty sources—both systematic and
statistical—that can play a role during the experimental campaign.
In principle, since each measurement comes from a different
campaign i, it is important to allow ¢§* to change from i to i.
Since the experiments are not conducted in consort, it is legitimate to
assume these errors are uncorrelated. As shown in Figure 4, these
experimental errors €; should not be interpreted as the discrepancy
between the theoretical prediction and the experimental value.
Rather, they represent the estimated difference between the
observed experimental value during realistic conditions,
compared to its (unattainable) value in ideal settings free of
experimental noise. This noise is thus due for instance to the

known imprecision of measurement instruments.

The modeling error, or model discrepancy term, §(«), represents
the intrinsic failures of the physical model when reproducing reality,
for a given value of a. It is an aggregate of the many simplifications
made during the construction of the model, as well as any physical
effects, known or unknown, which are unaccounted for by the
physical model. In the limit where the experimental errors become
negligible, it is the term that explains the deviation between theory and
observation. Due to these model limitations, we expect that even the
best regions in the parameter space—values of « that make the
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discrepancies as small as possible—cannot make them all vanish
simultaneously (6,(e) = 0) for every observable i.

It is typically unrealistic to expect a very precise estimate of the
statistical properties of the set of §;(«) as « varies. Indeed, first, because
the usual dataset in low-energy physics studies consist only of a few
spherical magic or semi-magic nuclei, limiting the statistical analyses
that can be made. Second, since the origin of §{(«) has roots in
phenomena not completely understood, it becomes very hard to give
accurate estimates when the experimental observations are not
available. This motivates us to propose a parsimonious model, in
accordance with the statistical principle that parsimony promotes
robustness, an idea that traces back several decades (e.g. [75]). We
assume that, up to scaling at the level of observables, the modeling
error variances are shared within each of the two observable categories
(binding energies and charge radii), and do not depend on the
parameters « within their physical meaningful range that
reproduces the nuclear properties. This is represented by the scale
01 (to be defined precisely shortly) in Figure 4.

Finally, for a given fixed value of the parameters «, the emulator
error, #i(a), represents the difference between the model’s original
high fidelity calculation, and the approximate version computed by
the emulator. In Figure 4 it is represented as the difference between
the red and magenta vertical lines. This is the easiest error to obtain
exactly, given a fixed a, since it is entirely computable, given access to
the high fidelity and the emulator implementations. The challenge
lies in estimating 77;(ex) for new values of « without the use of the high
fidelity solver. In the RBM literature, there exist approaches to
estimate the emulator’s error in terms of the properties of the
underlying differential equation [37], [76] and [77], but to our
knowledge they have not been yet extended to the type of
coupled nonlinear equations that describe our physical model Eq.
2 and Eq. 6. Our proposal below is to model all emulator errors,
including the unobserved ones, using the same statistical model,
where the emulator error intensity does not depend on a, thereby
circumventing the issue of developing an analytical approach to
extrapolating these errors in a non-linear setting, and keeping with
the principle of parsimony.

Having identified and described these three sources of errors,
we proceed to propose and implement methods to estimate their
combined effect in order to calibrate our physical model properly
through the RBM emulator.

In the case of binding energies and charge radii, the
experimental determinations are precise enough that the
typical error scale of* can be ignored in comparison to the
typical model discrepancies’. Therefore, we decide to neglect
the experimental errors for the rest of our analysis.

7 For example, the binding energy of 2°®Pb is known to a precision better
than 107%% [78], while its charge radius to a precision of 0.02% [79]. In
contrast, the estimated model error we calculate in the following
discussion for the same quantities is 0.25% and 0.26%, respectively.
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We assume that the model discrepancies &;(«) scale
proportionally to the value of each individual experimental
datapoint. This is because each datapoint represents a
different physical reality, and while, say, two binding energies
for two similar nuclei may be subject to the same intensity of
modeling error, this may not be a good assumption for two nuclei
which are more distant in the nuclear landscape. Specifically, we
assume that each scaled model discrepancies 8 =8/ yi* comes
from a common normal distribution with mean zero and either
variance o3, for a binding energy datapoint or variance o3 for a
charge radius datapopint. Another assumption lies in our
treatment of these errors being independent of each other,
and thus uncorrelated. A more elaborate statistical framework
could be developed to account for this correlation between errors,
requiring additional information to provide structure to the
correlation matrix and avoid overfitting the statistical model.
In the absence of such information, our assumption of
independence is consistent with an agnostic view about these
errors’ correlation. We estimate these errors’ scales opp and oy
from the deviations between the originally calibrated RMF model
FSUGold2 [60] and the experimental observations, simply by
using a version of the classical unbiased variance estimator.
Explicitly, for the variance of the modeling errors on the
binding energy side, where the model is FSUGold2, with
Ngg = 10 for the ten binding energy datapoints, we let

s _ 1 Ne < yex — yZ{SUGold2>2’ @)
Vi

And similarly for 63 as the variance of the modeling error for
charge radii. These expressions are calculated for all the data with
available experimental values in Table 2 in [60]. These formulas
are the classical minimum-variance unbiased estimators
(MVUE) of variances for datapoints coming from a normal
distribution with known means and unknown common
variance. One can view each model-calculated datapoint as
the error-prone data, with the experimental value as its mean
value. This results in a mathematically identical unbiased
estimator as if all means were equal. In our case, since we
choose to normalize the modeled data by dividing it by the
experimental data, we are in fact handling a classical situation,
where the data’s mean value is known to equal 1. In that scenario,
the classical MVUE is the one given in formula (22). Note that its
leading factor is 1/Ngg rather than 1/(Ngg — 1); this is because the
mean is known. In other words, the model to which this MVUE

Eq. 22 responds is

FSUGold2
P L,

po (23)
Yi

where §; are assumed to be independent mean-zero normal
errors with unknown variance o%; for the binding-energy
data, and similarly for o%. Applying the estimation to the data
in [60] we obtain:
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TABLE 2 Prior central values and standard deviations for the eight
model parameters used in the calibration.

6; bo, 0o,
m, [MeV] 500 50
po [fm™] 0.15 0.04
€y [MeV] -16 1
M* [MeV] 0.6 0.1
K [MeV] 230 10
e 0.03 0.03
J [MeV] 34 4
L [MeV] 80 40
OBg = 0.25%, (24)
And
or = 0.26%. (25)

We express these two values as percentages since they are
dimensionless. We treat the charge radius of '°O as an outlier and
exclude it from this estimation, assigning it its own estimated
error scale of o 150 = 1.4%, so that Ny = 7. The corresponding
modeling error standard deviations o7 for specific observables y;
are obtained by multiplying the one based on scaled data by their
respective experimental values, which provides the correct
standard deviations for all §; in accordance with how we
defined 6. For example, for i = BE for *Ca,
0" = opg X (416 MeV) = 323 x (416 MeV) =~ 1 MeV.*

We follow a similar parsimonious approach and model the
emulator error #7;(«) as coming from a normal distribution with
mean zero and scale (standard deviation) of™ that does not
depend on «a. In Figure 4, o§™ would be the scale of a Gaussian
distribution (not shown to keep the figure easier to read) centered
at yi™ (). From our assumptions we would expect that such
distribution will contain within one standard deviation the true
model evaluation y"® around 68% of the time both computations
are made, independent of the exact value of « within the
physically meaningful range where the emulator was trained.

We estimate the scale of™ from the empirically observed
deviations between the RBM emulator and the high fidelity
solutions in the validation set used for the selection of the
basis in the previous section. We select, therefore, of™ as the
values reported in the fourth column (A R,) and sixth column (A
BE) in Table 1. Of potential concern is the degradation of the

Reduced Basis approximation for values of a outside of the

8 The experimental values of the charge radii for °®Ni was not known at
the time of the calibration in [60], while the charge radii of *°°Sn is still
not known. In these cases, we used the values reported for FSUGold2
as proxies to preserve these two nuclei in the analysis when creating
predictive posterior distributions with the calibrated model.
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training and validation regions. We note that such values would
be outside the accepted physically meaningful range and thus are
unlikely to be visited by the Monte Carlo sampling we use later
for the model calibration. Additionally, as shown in similar RBM
applications [24, 25, 29], the emulation error tends to change
smoothly outside of the training region. This gives us confidence
that even in the rare event that such parameter values are visited,
they will have negligible impact on the overall calibration
procedure. Finally, we assume that the emulator’s errors and
the model discrepancy errors are independent (and thus
uncorrelated) across different quantities, and within the same
observable as well.

Under the assumptions we have made about the three sources of
uncertainties, including the independence of all error terms which
implies that the variance of their sum is the sum of their variances, we
can finally specify the likelihood function for our statistical model. To
simplify the prior specification and the exploration of the parameter
space, we construct our statistical modeling using the bulk matter
parametrization 6, which is equivalent to the Lagrangian couplings
one with « (see Secion 2). Denoting N = Ngg + Ny = 18 and denoting
by Y the N-dimensional vector formed of the experimental datapoints
y$, our likelihood model is:

P(Y]0) e/, (26)
Where
2 2
(im0 -y2) W GO -ye
XZZZ(}/I y1)+z(yz yz). (27)
= G;ﬁlm 2 + 0-310 2 = U;:zm 2 + U{;‘O 2

Our modeling assumptions about the error structure, plus the
standardization in Y, imply indeed that y* is chi-squared
distributed with N degrees of freedom. Note that 07 has the
associated 0.26% value for all i, except for °O, for which it has
the value of 1.4%.

4.2 Prior

For the prior distribution we adopt an uncorrelated
multivariate normal in 6 as follows:

P(6) e—x?)/z, (28)

where:

(29)

The central values 6,; and standard deviations gy, are
specified for the eight components of 6 in Table 2. They were
chosen to roughly cover the expected parameter region with wide
ranges based on the previous calibration [60].
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4.3 Posterior

With our likelihood and priors fully set up, the posterior
densities p.(0]Y) for the parameters 0 are given classically by
Bayes” rule [72] as being proportional to the product of the
likelihood in Eq. 26 and the prior in Eq. 28, where the likelihood
is evaluated at the experimentally observed datapoints labeled
above as Y. From here, we are interested in using the Bayesian
analysis to compare the calculations of the fully calibrated model
with the experimental values of the observables, to verify that our
uncertainty quantification is accurate. If our uncertainty bands
on these predicted values are too narrow (too optimistic), too
high a proportion of our 18 observations will fall outside of the
bands. If our uncertainty bands are too wide (too conservative),
many or all of our 18 observations will be inside their
corresponding  uncertainty bands. Being slightly too
conservative is easily construed as a virtue to hedge against
the risk of being too optimistic. The latter should be
construed as an ill-reported uncertainty quantification. The
method we propose here, to gauge the accuracy our
uncertainty quantification, with results described in Section 5,
is a manual/visual implementation of the now classical notion of
Empirical Coverage Probability (ECP, see [73] for a nuclear
physics implementation), appropriate for our very small
dataset with 18 points. To compute the posterior density of
every predicted value corresponding to our experimental
observations, we view the likelihood model as a predictive
model, featuring the fact that it includes statistical noise
coming from the &'s and #'s (see Figure 4 and Eq. 21), not
just the posterior uncertainty in the parameters, and we simply

use Bayesian posterior prediction, namely

P(y1Y) = [ P(50)P (0IY) do, (30)
where p (0]Y) is the posterior density of all model parameters.
In this fashion, the posterior uncertainty on the parameters,
and the statistical uncertainty from the likelihood model, are
both taken into account in a principled way. Note that this
predictive calculation can be performed for all 20 observables
of though ECP-type with the
experimental datapoints happen only for the 18 points we

interest, comparisons
have, excluding charge radii for '°Sn and **Ni. The next

subsection explains how all Bayesian analyses are

implemented numerically.

4.4 Metropolis-Hastings and surmise

The difficulty with any Bayesian method is to know how to
understand the statistical properties of the posteriors. The
simplest way to answer this question is to sample repeatedly
(and efficiently) from those probability distributions. To sample
from the posterior densities of the model parameters 6, we use the
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standard Metropolis-Hastings algorithm implemented in the
surmise Python package [80]. For the results presented
here, eight independent chains of 725,000 samples were ran
using the direct Bayes calibrator within surmise. For the
step size used, the ratio of acceptance for proposed new steps
was about 30% across all chains. The first 100,000 samples of each
chain were taken as a burn-in, reducing the effective sample size
of the calibration to 5,000,000 evaluations. The eight chains were
run in parallel and thus the 5,800,000 total evaluations took about
a day on a personal computer with commodity hardware. For
comparison, it would have taken nearly 6 years of continuous
computation to produce the same results using the original code
for the high-fidelity model.

To evaluate posterior predictive distributions to compare
with the experimental data, we rely on the fact that
like Monte-Carlo
implementation, gives us access to all Metropolis-Hastings

surmise, any flexible Bayesian
samples. For each multivariate sample of the parameters in 6,
we draw independent samples from the normal distributions
in the likelihood model Eq. 21,

corresponding value of yf* in that model by plugging

and evaluate the

those sampled values into the right-hand side of that
specification. Note that the second line in Eq. 21 must be
used for this purpose, not the first line, in order to account
for the uncertainty due to emulation. This procedure
provides a sampling method for the distribution in Eq. 30
which has a level of accuracy consistent with the accuracy of
the Metropolis-Hastings method for sampling from the
parameters’ posterior densities.

5 Results and discussion

Having defined the covariant density functional model in
Secion 2, the reduced basis emulator in Secion 3, and the
statistical framework and the computational sampling tools
in Secion 4 we are in position to use the experimental data to
calibrate the model under a Bayesian approach. At the time
of the original calibration of the FSUGold2 functional [60],
this would have represented an exceptional computational
of the of the
computational speed up of three orders of magnitude

challenge, mainly because absence
provided by the RBM. Instead, in the original calibration,
one was limited to finding the minimum of the objective (or
x°) function and the matrix of second derivatives. In this

manner, it was possible to compute uncertainties and

correlations between observables, but only in the
Gaussian approximation. We compare and contrast our
results and procedure, highlighting that with the

exception of the information on the four giant monopole
resonances and the maximum neutron star mass, both
calibrations share the same dataset of binding energies
and charge radii.
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We begin by displaying in graphical form the results of our
Bayesian implementation in surmise as a corner plot in
Figure 5. The corner plot summarizes the posterior
the

dimensional correlations. For comparison, the Gaussian

distribution of bulk parameters alongside two-
distribution of parameters extracted from the original
FSUGold2 calibration is displayed by the vertically scaled
blue line. As expected, the width of the one-dimensional
has

significantly—relative to the Gaussian approximation that is

distributions increased—in some cases
limited to explore the parameter landscape in the vicinity of
the ¥* minimum. The inclusion of bigger estimated model
errors §; in Eq. 21 likely also share responsibility for the
increased overall uncertainty. Besides the increase in the
width of the distribution, we see a relatively significant
shift in the average value of the incompressibility
coefficient K. We attribute this fact to the lack of
information on the GMR, which is the observable that is
mostly sensitive to K.

Beyond the corner plot that displays the distribution of bulk
parameters and the correlations among them, we illustrate in
Figure 6 and Table 3 the performance of the model as compared
with the experimental data informing the calibration. Note that
in Figure 6 as well as in Table 3 we have defined the binding
energy as a positive quantity.

The blue histograms display the posterior predictive
distributions Eq. 30 of each of the 20 observables.
Included in our results is the prediction for the yet to be
measured charge radius of '°°Sn, as well as the charge radius
of **Ni not used in the calibration. The vertical red lines
indicate the values of the experimental datapoints specified
in [60] and [63]. These plots show excellent coverage of all
datapoints within our reported uncertainty. With 19
datapoints, one would expect about one of them to fall
outside of 95% credible intervals. The credible intervals
are printed in Table 3, showing that none of our
datapoints fall outside those intervals around the posterior
means. This implies that our uncertainty quantification leans
towards the conservative side, although the binding energy
for **Ca and the charge radii of °*Ni are very close to falling
the 95% band. Our method has produced
uncertainties which are very likely not to be overly

outside

wasteful by significantly over-reporting uncertainty, and
which are very likely not to under-report uncertainty.
This is exactly where a Bayesian predictive posterior
coverage analysis wants to be in a study with such a small
number of datapoints.

Being the lightest of all the nuclei included in the calibration,
%0 may be regarded as a questionable “mean-field” nucleus. As
such, comparing its experimental charge radius with our
posterior results is particularly interesting, since the model
standard deviation we used was more than 5 times larger than
for the other observables. Yet, our reported uncertainty sees the
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Corner plot [81] from the posterior distribution of the eight bulk matter parameters 6 obtained from the Metropolis-Hasting sampling with
surmise. A total of five million samples were used, distributed along eight independent chains. The saturation density po is expressed in fm~, the
mass of the e meson m, the binding energy at saturation ¢q, the incompressibility coefficient K, the symmetry energy J and its slope L at saturation are
allexpressed in MeV. For comparison, the original calibration done in [60] is shown as the blue curves along the diagonal, scaled vertically to fitin

the same plot as our posterior results in black.

experimental measurement fairly well reproduced. This is an
indication that it was important to use the higher model variance,
or our prediction could have reported too low of an uncertainty.
Using a smaller variance for the model error §; could have also
pushed the parameters too strongly towards the '*O charge
radius outlier, deteriorating the overall performance of the
calibration on the other nuclei. The final coverage of all
data points illustrates our method’s ability to handle
heteroskedasticity (uneven variances) well. Finally, in
Figure 6, because our comparison with predictive
distributions performs very well and is only mildly
conservative, we can be confident that our prediction for
the charge radii of '"Sn is robust. How narrow these
histograms are is a testament to the quality of the original
modeling, its emulation, and our uncertainty quantification.

Frontiers in Physics

Coming back to the corner plot in Figure 5, we note that
the strongest correlation between observables involves the
value of the symmetry energy (J) and its slope (L) at
saturation density. The symmetry energy quantifies the
energy cost in transforming symmetric nuclear
matter—with equal number of neutrons and protons—to
pure neutron matter. In the vicinity of nuclear matter
saturation density, one can expand the symmetry energy

in terms of a few bulk parameters [82]:
1 2

S(p):]+Lx+5Ksymx + (31)

where x = (p — po)/3po is a dimensionless parameter that

quantifies the deviations of the density from its value at
saturation. Given that the calibration is informed by the
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Posterior distributions for the binding energies (in MeV) and charge radii (in fm) of the ten nuclei involved in our study. A total of 100,000 samples
from the 5,000,000 visited parameter values were used to make these distributions. The vertical red line in each plot represents the associated
experimental values, all contained within the 95% credible interval of the model, including the charge radii of °®Ni which was not included in the
calibration of the model. On the other hand, °°Sn does not have a measured charge radius, making its associated posterior distribution a true
prediction from our calibration. The numerical values for the mean and credible intervals on all these quantities are displayed in Table 3.

TABLE 3 Mean values and 95% credible intervals of the Bayesian posteriors on charge radii (in fm) and binding energy (in MeV), showed in Figure 6.
Also displayed are the 19 available experimental values [60, 63]. The credible intervals are calculated as equal-tailed intervals—such that the
probabilities of falling above or below the interval are both equal to 2.5%.

Nucleus RE [2.5%-97.5%]
O 2.736 [2.660-2.812]
“Ca 3.467 [3.446-3.488]
“Ca 3.470 [3.451-3.490]
5N 3.864 [3.841-3.888]
07y 4262 [4.238-4.286]
10051 4.462 (4.433-4.490]
11ogn 4.606 (4.580-4.632]
15260 4705 (4.678-4.733]
15 m 4.941 (4.914-4.968]
205phy 5512 [5.478-5.544]

binding energy of neutron-rich nuclei, such as '**Sn and
25ph, the symmetry energy J=S(p)=26MeV is well
constrained at an average density of about two-thirds of
saturation density, or ;0.1 fm~ [83]. As a result, one obtains
the following relation:

Frontiers in Physics

ch
2.690
3.471
3.470
3.887
4.264
4.620
4.704
4.947
5.497

18

(BE™) [2.5%-97.5%] BE™®
127.90 [127.04-128.77] 127.62
341.83 [339.75-343.91] 342.05
414.05 [411.66-416.45] 416.00
590.99 [587.47-594.52] 590.41
782.34 [778.14-786.52] 783.90
827.69 [822.49-832.87] 825.30
985.21 [979.57-990.86] 988.68
1,104.3 [1,097.3-1,111.4] 1,102.84
1,196.3 [1,189.4-1,203.1] 1,195.73
1,640.7 [1,630.1-1,651.3] 1,636.43

Hence, accurately calibrated EDFs display a strong correlation
between J and L by the mere fact that the calibration included
information on the binding energy of neutron-rich nuclei. In the
original calibration of FSUGold2 [60], one obtained a correlation
coefficient between J and L of 0.97, while in this work we obtained a
correlation coefficient of 0.92. The slight non-linearity observed in
Figure 5 on the correlation between ] and L is due to Ky, which was
neglected in the simple argument made in Eq. 32.
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Correlation corner plot [81] between the posterior

distributions for the neutron skin of “éCa and 2°®Pb (both in fm), and
the slope of the symmetry energy L (in MeV). A total of

100,000 samples from the 5,000,000 visited parameter

values were used to make these distributions. Both neutron skins
RiE and R2% are strongly correlated, each with negative
skewness. The distribution for L, on the other hand, has a positive
skewness and, while it is strongly correlated with both neutron
skins, the correlation displays a non-linear behavior in both cases.

Although not directly an observable, L has been
determined to be strongly correlated to the thickness of the
neutron skin of heavy nuclei [83-85]; the neutron skin
thickness is defined as the difference in the mean square
radii between the neutron and proton vector densities (see
Eq. 8). In Figure 7 we show the correlation plot between L and
the neutron skin of **Ca and ***Pb calculated directly from
100,000 random samples from our posterior distributions. It is
important to note that we have not included the model error §;
through Eq. 30 in these histograms’, and as such we do not
expect the uncertainties to be accurate, as we discuss later in
Sec. VI.

The correlation between L and the thickness of the
neutron skin of heavy nuclei has a strong physical
underpinning. For example, in the case of *°*Pb, surface
tension favors the formation of a spherical liquid drop
containing all 208 nucleons. However, the symmetry energy
increases monotonically in the density region of relevance to
atomic nuclei. Hence, to minimize the symmetry energy, is
energetically favorable to move some of the excess neutrons to

9 Such procedure would require to first give an accurate estimation of
the model error on neutron radii -a non trivial task given the lack of
experimental data on neutron radii-, and second to take into account
the model correlation between R, and R,
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the surface. It is then the difference in the symmetry energy at
the core relative to its value at the surface that determines the
thickness of the neutron skin; such a difference is encoded in
the slope of the symmetry energy L. If such a difference is large
enough to overcome surface tension, then some of the excess
neutrons will be pushed to the surface, resulting in a thick
neutron skin [86]. That the correlation between the neutron
skin thickness of *°*Pb and L is strong has been validated using
a large set of EDFs [85]. Note that L is closely related to the
pressure of pure neutron matter at saturation density—a
quantity that has been extensively studied using chiral
effective field theory [13-19], and which is of great
relevance to our understanding of the structure of neutron
stars [87].

It is important to note that no information on neutron skins—or
any other observable that is strongly correlated to L—was included in
our calibration procedure, making it difficult to estimate the model
error associated with such quantities. This also indicates that in the
absence of any guidance, the class of covariant EDFs used in this work
tend to produce stiff symmetry energies, in contrast to Skyrme-type
EDFs and chiral effective field theories that tend to favor relatively soft
symmetry energies [13-19, 88]. Particularly interesting to note is that

208

whereas Ry

Jan and L are strongly correlated, the correlation deviates

significantly from the one obtained using a large set of both covariant
and Skyrme energy density functionals [85]. It is known, however,
that R3® displays a stronger correlation with the slope of the
symmetry energy at 0.1 fm~ than at py; see Ref [50] and
references contained therein. However, the correlation between
R?l?ji and R;*fjn we observe remains as strong as observed in Ref. [89].

Given the recently reported results from the PREX-II [48] and
CREX [49] experimental campaigns, our model’s average predicted
neutron skin for both **Pb (0.27 fm) and **Ca (0.23 fm) might
indicate that the physics encapsulated in the Lagrangian density
depicted in Eq. 1 both  skins
simultaneously. Granted, with only two isovector parameters the

is insufficient to describe

model may be too rigid to break the strong observed model

correlation between RZS

and R‘S*fm. However, whereas models
with a more refined isovector sector may be able to reconcile both
measurements at some level, a consensus is emerging that this can
only be done at the expense of introducing significant tension with
other calculated observables by the model.

To make a clear assessment, we will need to both include a
statistical treatment of the expected model error in these quantities, as
well as mitigate possible model dependencies by directly comparing
with experimental observations such as the parity violating asymmetry.
We are planing to do so as an immediate direction by calibrating
covariant EDFs with an extended and more elaborated isovector sector
that might help bridge both neutron skin results without
compromising the success of the model in reproducing other
nuclear observables, such as the ones displayed in Figure 6. As we
discuss in the next and final section, well quantified uncertainties
enabled by powerful emulators such as the RBM will be indispensable
to achieve those goals and make full use of the anticipated new
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laboratory experiments and astronomical observations that will be
coming in the next years.

6 Conclusion and outlook

In the last few decades nuclear theory has gone through
several transformational changes brought on by embracing
philosophies and techniques from the fields of statistics and
computational science. It is now expected that theoretical
predictions should always be accompanied by uncertainties
[93]. This is particularly true in theoretical nuclear physics
where predictions from QCD inspired models require the
calibration of several model parameters. This newly-adopted
philosophy has also prompted the exploration of uncertainty
quantification across the many sub-fields of nuclear theory [34,
94-97].
discoveries have become feasible only through the successful

Furthermore, several recent advancements and
integration of machine learning and other novel computational
approaches to the large body of theoretical models developed
over many decades [31, 74, 98-100]. This dedication is also
exemplified by the theory community’s proactive efforts to
organize topical conferences, summer schools, and workshops
in service of disseminating the technical know-how to every level
of the community.

Aligned with these developments and efforts, our present work
aimed at showcasing a pipeline for integrating a statistical framework
through one such innovative computational technique. We have
calibrated a covariant energy density functional within a Bayesian
approach using available experimental values of binding energies and
charge radii. The calibration of the model, as well as the quantification
of the uncertainties of its predictions, required millions of evaluations
for different values of its parameters. Such titanic computational
burden was made possible—straightforward even—thanks to the
emulation of the model through the reduced basis method, which
decreased the necessary calculation time from months or years to a
single day on a personal computer.

Our calibration’s main results, which consists of posterior
distributions for all the model’s parameters, were presented in
Figure 5. From these posteriors, and following the statistical
framework we developed in Sec.IV, the model output can be
estimated with well quantified uncertainties that can take into
account experimental, model, and emulator errors. We showed
such calculations with their respective estimated uncertainties in
Figure 6 and Table 3 for the binding energies and charge radii of
the 10 nuclei involved in the study. The fact that the experimental
values used in the calibration, depicted as red vertical lines in
Figure 6, fall within the 95% our calculated credible intervals
gives us confidence that our uncertainty procedure was not
biased towards being too optimistic for this dataset. This is
especially true for the case of the charge radii of '°O, which
was treated as an outlier based on prior expert knowledge on the
expectation of the limits of the mean field approach for smaller
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systems. Once the experimental value for the charge radii of '*Sn
becomes available, it will be interesting to contrast our model
prediction’s and gauge the success of the uncertainty level
estimated.

However, the picture changes when we focus on the calculations
for the neutron skin thickness of **Ca and ***Pb showed in Figure 7.
The recent experimental campaigns PREX [101], PREX-IT [102],
and CREX [49] on parity violating electron scattering have
published results which suggest that the neutron skins of **Ca
and *®Pb stand in opposite corners. While ***Pb is estimated to
have a relatively thick neutron skin of around 0.28 fm [102], **Ca
[49] is estimated to have a significantly smaller skin of around
0.12 fm. Albeit we have not included a model error term in the
calculations shown in Figure 7, it seems that our current model is
unable to satisfy both values simultaneously.

Moving forward, we envision two complementary research
directions that could help mitigate the problems identified above.
First, one could build a more robust statistical framework that, by
including strong isovector indicators, such as information on the
electric dipole response of neutron rich nuclei, will impose stringent
constraints on the isovector sector. Second, and as already
mentioned, we could increase the flexibility of the isovector
sector by adding additional interactions that modify the density
dependence of the symmetry energy. The use of dimensionality
reduction techniques such as the RBM to significantly speed up the
calculation time—especially if information on nuclear excitations is
incorporated into the calibration of the EDF—will become a
fundamental pillar of the fitting protocol.

We believe that the RBM we showcased here has the potential
to further impact many of the nuclear theory areas that have
already made use of similar emulators, as well as expanding the
frontiers of the physical models that can be successfully
emulated. Indeed, the RBM’s unique combination of few high-
fidelity evaluations needed to build an effective emulator, the
simplicity and flexibility of the Galerkin projection, and the
ability to precompute many observables and equations in the
offline stage could allow the community to deploy trained
emulators for use on different computer architectures and on
cloud infrastructure [103]. This could effectively lower the barrier
created by the need of running expensive computer models
locally. This could give access of cutting edge theoretical
models and simulations to an increased number of research
groups, opening new opportunities to expand the network of
collaborative research.

In short, the computational framework detailed in this work
attempts to provide an end-to-end solution for model calibration
and exploration with a focus on statistical rigor without sacrificing
computational efficiency. By leveraging this efficiency to nimbly
incorporate new experimental data, one can imagine the continuous
calibration of models that can be updated in a matter of hours
without requiring large-scale computing facilities. Finally, the heavy
focus on integrating these disparate parts into a user-friendly form to
generate physics-informed emulators is ultimately in service of our
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wider goal to increase data availability and software accessibility, and
is a necessity in the paradigmatic shift towards probability
distributions—rooted in Bayesian principles—defining physical
models rather than a single set of optimal parameters.
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