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A B S T R A C T   

The growing demand for intelligent wearable electronic devices has spurred the rapid developments of high- 
performance deformable power supplies such as triboelectric nanogenerators (TENGs) with high output per
formance. However, the intrinsically stretchable TENGs especially those prepared with low-cost manufacturing 
approaches still suffer from poor performance. To address the challenge, this paper presents a fully stretchable 
TENG consisting of an intrinsically stretchable MXene/silicone elastomer and silver nanowires (Ag NWs)- 
graphene foam nanocomposite. The intrinsically stretchable TENG exhibits high output performance (voltage, 
current, and power of 73.6 V, 7.75 μA, and 2.76 W m−2), long-term reliability, and stable electrical output under 
various extreme deformation conditions. In addition to the application on the human skin and clothing for 
human motion monitoring and detecting the strength training postures, the intrinsically stretchable TENG can 
also harvest the intermittent mechanical energy from human bodies to charge various energy storage units such 
as commercial capacitors for driving wearable electronic devices. The resulting systems have been demonstrated 
in applications from home anti-theft to water resources early warning systems, which provide the proof-of-the- 
concept demonstrations for the next-generation standalone device platforms.   

1. Introduction 

The rapid development of wearable electronics in the past few de
cades has created new demand for a consistent and reliable power 
supply. The commonly used rigid, bulky batteries that need to be 
recharged or replaced [1–5] often limit the applicability and service life 
of wearable electronics. As a promising alternative, triboelectric nano
generators (TENGs) have recently received much attention to harvest 
low-frequency mechanical energy into electric energy based on tribo
electrification and electrostatic induction, which can provide a flexible 
power supply and self-powered sensing systems. Compared to the flex
ible TENG operating in vertical contact-separation [6–9], lateral sliding 

[10–13], and freestanding triboelectric-layer modes [18–21], 
single-electrode TENGs [14–17] with suitable output performance and 
wearability are more promising in skin-mounted electronics due to their 
simple structure and portability [22,23]. Different from metal [24–27] 
and conductive polymer [28,29], graphene [30–33] exhibits 
outstanding electrical properties and high flexibility [34–36] for use as 
electrodes. However, the complicated synthesis and small flake size of 
graphene have largely limited the application of the graphene-based 
TENG. Owing to the low cost and high conductive nature, 
laser-induced graphene (LIG) foams have been explored as electrodes in 
TENG [37–41], but LIG electrodes are susceptible to cracking at less than 
5% strain due to their insufficient energy dissipation [42,43]. The 
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LIG-based TENG with good stretchability and high output performance 
is yet to be demonstrated for wearable, long-term applications. 

MXene with outstanding conductivity (>20,000 S cm−1) [44,45] 
contains abundant surficial –F groups, making it triboelectrically more 
negative than commonly used polytetrafluorethylene. Although MXene 
has been explored as the electrode material in TENG [65–67], it is 
associated with low conductivity, high cost, and compromised perfor
mance. Meanwhile, the direct use of MXene as a triboelectric material is 
often combined with non-stretchable electrode to result in 
non-stretchable TENG [27,68], although the output performance is 
relatively good. Herein, this work combines the stretchable Ag nano
wires (NWs)/LIG electrodes prepared by the pre-strain strategy with the 
porous MXene/polydimethylsiloxane (PDMS)-Ecoflex film to create an 

intrinsically stretchable TENG operating in the single-electrode mode. 
The pre-strained Ag NWs/LIG electrode (pre-strain level of 30%) ex
hibits excellent conductivity (~62.5 S/cm), simple manufacturing at 
low cost, large specific surface area (~340 m2/g) [46], and improved 
triboelectric performance in the output voltage, current density, and 
charge density. The use of PDMS-Ecoflex composite in both the tribo
electric and substrate layers also provides lower modulus, larger 
stretchability, and higher compliance, while allowing successful inte
gration of MXene and LIG. Moreover, the insolubility of MXene aqueous 
solution in the PDMS-Ecoflex elastomer facilitates the formation of a 
porous structure, which enhances the triboelectronegativity, the surface 
contact area, and surface charge density. The resulting TENG based on 
porous MXene-LIG foam exhibits an open circuit voltage of 73.6 V, a 

Fig. 1. Schematic diagrams showing the (a) preparation, (b) structure, and (c) application of the stretchable porous MXene/LIG foam-based TENG in human motion 
energy harvesting, biomechanical sensing, wind speed monitoring, and water droplet energy harvesting. 
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short circuit current of 7.75 μA, and durable performance under 30% 
stretching. Besides attachment onto various substrates (clothes, skin, 
and leaf surface) to detect human activities and wind speeds, the 
stretchable porous MXene-LIG-based TENG can also harvest mechanical 
energy to power low-power electronic devices. The proof-of-concept 
demonstrations on exercise posture detection, home anti-theft, and 
water resources early warning systems highlight the potential applica
tions and development prospects in soft robots, green energy, 
human-computer interaction, and wearable electronic products. 

2. Results and discussion 

2.1. Fabrication of the stretchable TENG based on MXene-LIG foams 

The preparation of the stretchable TENG based on the MXene/LIG 
foam (Fig. 1a) starts with the fabrication of 3D porous LIG foam elec
trodes (2 ×2 cm2) by direct laser heating of the 75 µm-thick PI film 
(Fig. S1a). Next, curing the mixed solution of the PDMS and Ecoflex with 
a mass ratio of 1:1 on the LIG/PI surface for 2 h is followed by peeling to 
transfer the LIG electrodes to the flexible silicon rubber substrate. 
Compared to PDMS, the PDMS-Ecoflex film exhibits improved flexibility 
and stretchability [47] with the strain at fracture increased by ca. 145% 
(Fig. S2). Although pure Ecoflex is more stretchable than PDMS-Ecoflex, 
it cannot completely transfer LIG from the PI film, leading to the choice 

of PDMS-Ecoflex. After applying pre-strain and spray coating the Ag 
NWs solution on pre-stretched LIG/PDMS-Ecoflex electrodes, the release 
of the pre-strain prepares the stretchable Ag NWs/LIG electrodes. The 
preparation of MXene/PDMS-Ecoflex composite film relies on spin 
coating and curing of the MXene in PDMS-Ecoflex solution on the glass 
substrate (Fig. S3), where the MXene (Ti3C2Tx) nanosheet solution is 
synthesized by selectively etching the aluminum layer from Ti3AlC2. The 
integration of the porous MXene/PDMS-Ecoflex film with the Ag 
NWs/LIG electrode yields a highly stretchable TENG (Figs. 1b and S1). 
The contact of the stretchable TENG based on porous MXene/graphene 
foam with the Nylon fabric provides application opportunities in energy 
harvesting, self-powered sensing, and standalone stretchable device 
platforms. The representative proof-of-the-concept demonstrations 
include exercise posture detection, home anti-theft, water resources 
early warning, water droplets energy harvesting, human motion, and 
wind speed monitoring systems (Fig. 1c). 

2.2. Material characterization of the stretchable porous MXene-based 
TENG 

The highly porous 3D graphene networks formed from the release of 
gaseous products facilitate the infiltration of the PDMS-Ecoflex prepol
ymer for successful transfer of the LIG (Figs. 2a and S5a). The Raman 
spectra of the LIG/PDMS-Ecoflex (Fig. S5b) exhibit distinct 

Fig. 2. Characterizations of the stretchable porous MXene/PDMS-Ecoflex TENG. SEM images of the transferred porous LIG (a) before and (b) after coating of the Ag 
NWs. (c) Energy Dispersive Spectroscopy (EDS) spectrum of Ag-coated LIG/PDMS-Ecoflex electrode. (d) XRD patterns of bulk MAX phase (Ti3AlC2) and MXene 
(Ti3C2Tx). (e) Elemental mapping analysis of MXene/PDMS-Ecoflex composite film for C, O, Si, and Ti. (f) Optical images of the MXene/PDMS-Ecoflex under bending, 
twisting, and stretching. 
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characteristic D (~1350 cm−1), G (~1572 cm−1), and 2D peaks 
(~2697 cm−1), with a reasonably large value of the I2D/IG ratio, to 
confirm the presence of few-layered porous graphene [50]. The uniform 
distribution of Ag NWs on the 3D porous LIG/PDMS-Ecoflex (Figs. 2bc 
and S5c) allows a sharp reduction of the sheet resistance from 48.6 to 
4.2 Ω/□ even without pre-stretching, as measured by a four-point probe 
instrument (Fig. S4). With a pre-strain of 30%, the sheet resistance of the 
Ag NWs/LIG electrode is further decreased to 3.2 Ω/□, due to higher Ag 
NWs loading from the pre-strained area [51]. 

The MXene (Ti3C2Tx) nanosheets with the accordion-like structure 
[48,49] (Fig. S6) are confirmed by the broadened (002) peak that is 
decreased from 9.5◦ to 6.6◦ in the X-ray diffraction (XRD) after etching 
Ti3AlC2 (MAX) (Fig. 2d). The MXene nanosheets in PDMS-Ecoflex also 
provide the composite film with randomly distributed mesoporous 
structures (Fig. S7ab). The MXene nanosheets are uniformed the 
distributed in the PDMS-Ecoflex around the pores, as evidenced by the 
characteristic elements Ti and Si of MXene and silicon rubber in the 
energy dispersive spectrometer mapping, respectively (Fig. 2e). The 
porous MXene/PDMS-Ecoflex composite is also highly flexible and 
stretchable to undergo various mechanical deformations such as 
bending, twisting, and stretching (Fig. 2f). 

2.3. Working mechanism and output performance of the stretchable 
TENG 

The operation of the stretchable MXene-based TENG relies on the 
coupled triboelectrification and electrostatic induction between the 
MXene/PDMS-Ecoflex (frictional negative layer) and a nylon fabric 
(movable frictional positive layer) as an electron donor (Fig. 3ab). With 
the stretchable TENG connected to the ground through wires in single- 
electrode mode, the initial full contact between the nylon fabric with 
the MXene/PDMS-Ecoflex induces the charge transfer from nylon to the 
composite on the contact surface due to contact electrification. The 
positively charged nylon fabric surface and the negatively charged 
MXene/PDMS-Ecoflex surface can maintain a static equilibrium state 

due to negligible dipole moments (Fig. 3ab-i). After the nylon fabric is 
moved away from the MXene/PDMS-Ecoflex, the separation of opposite 
charges forms strong dipole moments to generate a potential difference 
between the composite and the ground (Figure 3ab-ii). The unshielded 
negative charges on the MXene/PDMS-Ecoflex surface cause electro
static induction of the electrode to create transient charges flow from the 
electrode to the ground and generate voltage outputs. Electrostatic 
equilibrium is achieved when the distance between the oppositely 
charged MXene/PDMS-Ecoflex and nylon fabric reaches a maximum 
(Fig. 3ab-iii). When the nylon fabric approaches the MXene/PDMS- 
Ecoflex till full contact, the previous electrostatic equilibrium is 
disturbed and the potential difference decreases, causing the charge to 
flow back to the electrode from the ground for generating an opposite 
electrical signal (Fig. 3ab-iv). Therefore, the repeated contact-separation 
cycles generate alternating voltage and current to convert mechanical 
energy into electrical energy. Among 25 different commercial fabric 
samples with the voltage scatter diagram shown in Fig. S8, the stretch
able TENG with the nylon fabric exhibits the best output performance, as 
Nylon is from the top of the triboelectric series [52]. Compared with the 
five typical fabrics (Fig. 3c and S9ab), the stretchable TENG with the 
nylon fabric and triboelectronegative PDMS-Ecoflex gives an 
open-circuit voltage of 20 V, short-circuit current density of 5.3 mA/m2, 
and charger transfer density of 34.8 μC/m2 for an applied force of 15 N 
at a frequency of 5 Hz. Compared with the other triboelectronegative 
materials (e.g., pure PDMS or PDMS-Ecoflex), the stretchable TENG 
based on MXene/PDMS-Ecoflex produces the highest output perfor
mance with the open-circuit voltage of 40 V, short-circuit current den
sity of 10.6 mA/m2, and charger transfer density of 69.1 μC/m2 (Fig. 3d 
and S9cd). The significantly enhanced voltage and current result from 
the high electrical conductivity of MXene (for enhanced charge transfer) 
and increased electronegativity (due to the introduced –F and termi
nated oxygen-containing functional groups) from MXene nanosheets. In 
addition, the output performance of TENG depends on the MXene con
centration (Fig. S10). The output performance of TENG first increases 
with the increased concentration of MXene (1–5 mg/ml), which is due to 

Fig. 3. Working mechanism and output performance of the stretchable porous MXene-based TENG. (a) Schematic diagram and (b) finite element simulation results 
to show the charging distribution. Comparison of the output voltage of the TENG with various (c) types of fabrics and (d) triboelectric layers. Output voltage and 
current of the TENG as a function of (e) applied force and (f) contact-separation frequency. The dimension of the TENG is fixed as 2.0 × 2.0 cm2 in this set of 
measurements. 
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the enhanced electronegativity and electrical conductivity from a higher 
concentration of MXene. However, the further increase in the concen
tration from 5 to 7 mg/ml results in slightly decreased output perfor
mance, which is likely attributed to the aggregation of MXene [38]. 
Therefore, the added concentration of MXene is optimized to be 
5 mg/ml in the following experiments. Although the 
MXene/PDMS-Ecoflex film can be combined with a more conductive 
electrode such as Cu (Fig. S11), the output performance actually be
comes lower than that combined with the Ag NWs/LIG electrode 
(Fig. S12), indicating the synergistic effect between the two. In partic
ular, the MXene/PDMS-Ecoflex film with the Ag NWs/LIG electrode 
exhibits an increase of 74.5%, 61.9%, and 59.6% in the open-circuit 
voltage, short-circuit current density, and charge density compared to 
that with Cu, confirming the synergistic effect between the two. 
Compared with the TENG with Ag NWs electrode, the one with LIG 
exhibits higher output performance due to a large specific surface area, 
whereas further enhancement is observed in the one with the Ag 
NWs/LIG electrode (Fig. S13). In particular, the Ag NWs/LIG-based 

TENG demonstrates 307.4%, 181.3%, and 87.2% higher in 
open-circuit voltage, short-circuit current density, and charge density 
than that without LIG. At a fixed frequency of 5 Hz, both the open-circuit 
voltage and short-circuit current density gradually increase as the 
applied force increases from 1 to 15 N, but their values are almost 
saturated when the force reaches 17 N (Figs. 3e and S14ab). The changes 
may be attributed to the increase and saturation of the effective static 
frictional contact [41] between the inner and surface structure of the 
MXene/PDMS-Ecoflex as the applied force increases from 1 to 15 and 
then to 17 N. For a loading force of 15 N, the open-circuit voltage and 
short-circuit current of the TENG gradually increase to the maximum 
output voltage of 73.6 V and current density of 19.4 mA/m2 as the 
frequency increases from 1 to 10 Hz, due to the surface charge accu
mulation (Figs. 3f and S14cd). As the frequency increases, the rate of 
charge accumulation on the surface of TENG increases, facilitating the 
charge transfer to the corresponding external circuit. As a result, the 
short-circuit current as the derivative of charge to time also increases 
[41,55,61]. However, the further increase in the frequency from 10 to 

Fig. 4. Deformability and durability of the stretchable porous MXene-based TENG. (a) Output voltage, (b) current density, and (c) charge density of the stretchable 
TENG at various stretching levels (for a vertical driving force of 15 N at a frequency of 5 Hz). (d) The durability test of the TENG over 10,000 cycles, with partially 
enlarged views shown in the inset (for a vertical driving force of 10 N at a frequency of 10 Hz). (e) Comparison of the output voltage of the TENG before and after 
30% tensile strain for 1000 cycles. (f) Photograph of 57 LEDs lit by the TENG in initial, stretching, and twisting states. 
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15 Hz results in slightly decreased output performance, which is likely 
attributed to charge loss caused by air breakdown at high operating 
frequency [27,39,62]. As the increased voltage generated in the air gap 
from the increased charge density reaches the breakdown voltage [63, 
64], the dissipated electrostatic energy due to the air breakdown lowers 
the TENG output. Therefore, the optimal operation conditions with the 
applied force of 15 N at a frequency of 10 Hz are used in the following 
studies unless otherwise specified. 

2.4. Deformability and durability of the stretchable porous MXene-based 
TENG 

Deformability and durability of the stretchability TENG come from 
the stretchable Ag NWs/LIG electrode integrated with the MXene/ 
PDMS-Ecoflex. Compared with the LIG electrode that shows a resis
tance change of 840% upon the tensile strain of 30%, the Ag NWs/LIG 
electrode exhibits a much lower resistance of 30% (Fig. S15a). With the 
use of the pre-strain strategy on LIG before spraying Ag NWs solution, 
the stretchability of Ag NWs/LIG electrodes is further enhanced to give 

an even smaller resistance change (e.g., 23% upon 30% stretching for 
the electrode created from a pre-strain of 30%) (Figs. S15b and S16). The 
change in resistance of the Ag NWs/LIG electrode from a pre-strain of 
30% is only 2% for a cyclic loading/unloading strain of 10% over 1000 
cycles (Fig. S15c). The output performance of the stretchable porous 
MXene-based TENG reaches the maximum with the voltage of 40.4 V, 
current density of 12.4 mA/m2, and charge density of 150 μC/m2 at a 
tensile strain of 5% (Fig. 4a-c). However, the output performance 
gradually decreases as the tensile strain further increases from 5% to 
30%. This result is likely attributed to the initially increased and then 
decreased effective contact surface area of the Ag NWs/LIG electrode 
upon stretching [53]. In addition, the stability of the stretchable 
MXene-based TENG is measured by long-term cyclic testing, The 
stretchable TENG also exhibits stable output performance over 10,000 
cycles (for 10 N driving force at 10 Hz) (Fig. 4d) or cyclic stretching of 
33.3% over 1000 cycles (Fig. 4e). The stable and durable performance of 
the stretchable TENG allows it to drive 57 LEDs even upon stretching 
and twisting (Fig. 4f and Video S1). 

Supplementary material related to this article can be found online at 

Fig. 5. Mechanical energy harvesting performance of the stretchable MXene-based TENG. (a) Output voltage, current, and (b) power density of the stretchable TENG 
as a function of the external load resistance. (c) Circuit model of the self-charging TENG-based system. (d) Charging curves of the three commercial capacitors by the 
stretchable TENG. (e) Charging and discharging curves of the capacitor by the TENG with a power management unit. (f) Optical image to show the setup of the 
mechanical energy harvesting system, and its demonstrations to drive (g) 391 LEDs, a low-power electronic clock, and an electronic watch. 

L. Yang et al.                                                                                                                                                                                                                                    



Nano Energy 103 (2022) 107807

7

doi:10.1016/j.nanoen.2022.107807. 

2.5. Mechanical energy harvesting by the stretchable porous MXene-based 
TENG 

The mechanical energy harvesting performance of the stretchable 
porous MXene-based TENG is first evaluated as a function of the external 
load resistance ranging from 10 to 200 MΩ (Fig. 5ab). The output 
voltage (current) increases (decreases) with the increasing external load 
resistance (Fig. 5a), leading to an initially increased and then decreased 
power density with a maximum instantaneous power density of 
2.76 W m−2 at 10 MΩ (Fig. 5b)[54]. The stretchable TENG presented in 
this work with high output performance and excellent tensile properties 
compares favorably with the others previously reported in the literature 
(Tables S1 and S2). The harvested energy is often intermittent due to the 
nature of human motions, so exploiting the energy to charge energy 
storage devices such as batteries and (super) capacitors with power 
management circuits presents opportunities for practical applications 
[43,55,56]. As a proof-of-the-concept demonstration, bridge rectifiers 
help convert the generated alternating current from the stretchable 
TENG to direct current for charging the commercial capacitors before 
driving low-power wearable electronic devices (Fig. 5c). The charging 
voltage reaches 12, 6, and 0.67 V in 60 s for the capacitor of 4.7, 10, and 
100 μF for a vertical driving force of 15 N at 10 Hz (Fig. 5d). The energy 
harvesting from repeated hand tapping at ca. 3–4 Hz also charges the 4.7 
μF capacitor to 3 V in 40 s and powers an electronic watch (Fig. 5e, 
Fig. S17, and Video S2). The harvested energy from the exciter’s vi
bration (Fig. 5fg) or hand tapping of 3–4 Hz can readily drive 391 LEDs 
(Video S3), a digital alarm clock (Video S4), and an electronic watch 
(Video S5), demonstrating the potential for a sustainable self-powered 
system. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2022.107807. 

2.6. Human motion monitoring and posture detection by the stretchable 
MXene-based TENG 

Although the repetition of specific postures can stimulate target 
muscles (e.g., the biceps, latissimus dorsi, quadriceps femoris, and 
pectoralis major) in strength training such as weight lifting, it is difficult 
to quantify and accurately monitor human posture to prevent joint in
juries during exercise. To reduce the risk of severe permanent joint pain 
from the wrist, lower back, and knee injuries [57], the self-powered 
strain sensor based on the stretchable MXene-based TENG is attached 
to the human body to monitor posture during strength training (Fig. 6). 
After attaching the TENG to the skin surface (or clothes) while the joint 
is bent, the TENG outputs an alternating current (AC) signal due to 
coupled contact charging and electrostatic balance effect. Varying 
bending angles generate different voltage signals in the TENG due to 
changing effective contact areas between the MXene/PDMS-Ecoflex and 
skin. Two exercises (arm bending and single-arm dumbbell rowing). The 
device on the joint of the wrists (Fig. 6a) can effectively monitor the 
cyclic wrist bending as the output voltage value increases with the 
increasing bending angle due to the larger contact area between the 
device and the clothes (Fig. 6b). As a result, the high peak output voltage 
signal associated with a large bending angle at the wrist joint can signal 
the wrong posture during arm curl training (Fig. 6c). Similarly, the 
self-powered strain sensor attached to the lower back (Fig. 6d) can 
measure different back bending angles (Fig. 6e) to detect the wrong 
posture during one-arm dumbbell row training (Fig. 6 f). As human skin 
is also an excellent electron donor, the device attached to varying lo
cations of the human body with a medical adhesive tape (Fig. S18) also 

Fig. 6. Application of the stretchable MXene-based TENG for exercise posture detection. (a) Optical image of the self-power strain sensor attached to the human 
wrist. (b) Output from the self-power strain sensor at various wrist bending angles and (c) its demonstration to detect incorrect wrist posture in strength training. (d) 
Optical image of self-power strain sensor attached on human back. (e) Output from the self-power strain sensor at various back bending angles and (f) its 
demonstration to detect incorrect back posture. 
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accurately monitors the bending of the finger, elbow, and knee, 
breathing, and palm tapping (Fig. S19a-e), demonstrating the potential 
for self-powered detection of human motions. 

2.7. Home anti-theft system by the stretchable MXene-based TENG 

Different from a battery or AC-powered wind speed sensor, the 
stretchable TENG attached to the leaf surface (with primary components 
of cellulose and plant protein [58]) allows for self-powered wind speed 
monitoring as plant leaves oscillate with the wind (Fig. 7a). As the wind 
speed increases, the output current also increases (Figs. 7b and S20), 
which provides a working principle for home intrusion prevention 
(Figs. 7c and S21). The plants normally used for decoration and air 
purification can be integrated with the self-powered device and set to 
standby mode after the owner leaves. As a thief passes the plant, the 
current output from the TENG increases (Fig. 7d) and the alarm is 
triggered immediately, with the warning light turned on and the buzzer 
rang (Fig. 7e and Video S6). The sensitivity of the self-powered home 

anti-theft system is reasonably high, which can even be triggered by a 
leaf gently placed on (Video S7) or human body repeatedly passing 
through (Fig. S22 and Video S8). 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2022.107807. 

2.8. Early warning system by the stretchable MXene-based TENG to 
protect water resources 

As water plays a vital role in human survival and development, it is 
important to optimize and save water resources. A water resources early 
warning system is triggered by the falling of water droplets (Fig. S23) 
and can convert the potential energy of water droplets into electric en
ergy for charging the capacitor (Video S9). When the capacitor voltage 
reaches the preset warning value, the sound and warning light can also 
be turned on to alert for faucet leakage. As the voltage decreases with the 
increasing frequency (Fig. 8c), the much larger frequency from water 
flow would give a vanishing voltage value, so the water resources early 

Fig. 7. Home anti-theft system based on the stretchable MXene-based TENG. (a) The working mechanism of the TENG for monitoring the wind speed and (b) its 
output voltage under various wind speeds. (c) Schematic diagram of the home anti-theft system and (d) its output current changes without and with a thief passing 
by, along with (e) the LED turning on during the simulated scene of burglar intrusion. 
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warning system does not alarm during hand washing (Video S10). 
Different from the previously reported water-driven devices [59,60], the 
surface of TENG does not need to be superhydrophobic as our device is 
driven by the potential energy of water droplets (Fig. 8a). The nylon 
fabric on the 100 µm-thick polyethylene terephthalate (PET) film serves 
as a movable frictional positive layer, which is driven by water droplets 
to produce continuous AC output. As the water droplets fall and slide 
down the PET surface, the PET film first bends and then recovers to 

result in contact and separation between nylon and 
MXene/PDMS-Ecoflex, which generates alternating currents in the 
TENG from repeated droplets motion. As the driving force comes from 
the potential energy, the output current increases with the increasing 
drop height to reach a maximum mean square root of 6.5 nA at 30 cm in 
the range (Fig. 8b-i), which charges the capacitor of 100 nF to 1 V in 
14.7 s (Fig. 8c-i). As the inclined angle increases, the output current first 
increases and then decreases to a mean square root current of 7.5 nA at 

Fig. 8. Early warning system based on the stretchable MXene-based TENG for protecting water resources. (a) Operation principle of the stretchable TENG to detect 
falling of water droplets with (b) output current and (c) charging voltage of a capacitor of 100 nF as a function of (i) falling height, (ii) inclined angle, and (iii) 
dripping frequency. 
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24◦ (Fig. 8b-ii), which charges the capacitor to 1 V within 15 s 
(Fig. 8c-ii). The effect of the inclined angle on the current likely comes 
from the changes in the effective bending of the PET film and the slip
ping conditions of water droplets on PET. The output current also 
gradually decreases with the increasing frequency of water dripping 
from 0.17 to 2.22 Hz (Fig. 8b-iii) with the capacitor charging time (to 
1 V) extended from 14.7 to 29 s (Fig. 8c-iii), as the nylon and 
MXene/PDMS-Ecoflex cannot be effectively separated at a high fre
quency of water dripping. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2022.107807. 

3. Conclusions 

In summary, this work reports an intrinsically stretchable TENG 
based on Ag NWs/LIG electrode integrated with triboelectric MXene/ 
PDMS-Ecoflex composite for efficient mechanical energy harvesting 
and self-powered biomechanical sensing. The optimized stretchable 
TENG (2 ×2 cm2) operated in single-electrode mode can generate an 
open-circuit voltage of 73.6 V, short-circuit current of 7.75 μA, and 
power density of 2.76 W m−2. The stretchable TENG with high and 
stable output performance under 30% tensile outperforms most of the 
previously reported works. The harvested energy from the stretchable 
TENG can efficiently charge energy storage devices such as (super)ca
pacitors to power a variety of low-power electronic devices. Compared 
with many other TENGs previously reported in the literature, our 
intrinsically stretchable TENG with low modulus and high output per
formance allows it to conform to the 3D, dynamically changing surfaces 
such as human skin and growing leaves. As a proof-of-concept demon
stration, the self-powered strain sensor with a modulus close to that of 
the human skin can conform to the skin to monitor human body 
movements for strength training posture detection, with minimal 
discomfort. Meanwhile, our intrinsically stretchable TENG on the leaf 
surface could grow with the plant leaves over months or even years for 
the anti-theft application, which is challenging for the rigid or flexible 
TENG. Therefore, the demonstrated applications of the stretchable 
TENG as a self-powered biomechanical sensor, home anti-theft system, 
and water resources early warning system open opportunities in the 
next-generation standalone stretchable device systems. 

4. Experimental section 

4.1. Materials 

The polyimide (PI) film (PI, 75 µm thickness), blue LED lamps (rated 
working voltage of 3 V), and the fabric samples were purchased from the 
e-shop. The Ecoflex (EcoflexTM 00–50) and the polydimethylsiloxane 
(PDMS, Sylgard 184) were obtained from Smooth-on, Inc. and Dow 
Corning, respectively. Silver nanowires (5 mg/ml) were purchased from 
XFNANO Material Technology Co., Ltd. (Nanjing, China). 

4.2. Synthesis of MXene (Ti3C2Tx) 

MXene solution was prepared by selectively etching the Al layer from 
Ti3AlC2 via MILD etching [48,49]. In brief, 0.8 g LiF was first dissolved 
in 10 ml of 9 M hydrochloric acid (HCl, 35%) solution for 5 min with 
continuous stirring. Next, 0.5 g of Ti3AlC2 powder was slowly added to 
the solution and stirred at 1000 rpm at 35 ◦C for 24 h. The mixture was 
centrifuged (3500 rpm for 5 min each cycle) and washed with deionized 
(DI) water until the pH reached ca. 7. Separating the black slurry from 
the gray solid (non-etched Ti3AlC2) via vacuum filtration on a porous 
PTFE membrane obtained Ti3C2Tx powder. Adding 0.5 g of the obtained 
powder to 100 ml of the DI water was followed by sonicating at 200 W 
for several min and centrifuging at 3000 rpm for 20 min (for removing 
suspended aggregates) to yield a 5 mg/ml MXene dispersion. 

4.3. Preparation of PDMS-Ecoflex solution 

The PDMS and Ecoflex solutions were first prepared at 10:1 (ratio of 
polymeric base to curing agent) and 1:1 (ratio of A to B solution) by 
magnetically stirring them at a speed of 2000 r/min for 2 min. Next, the 
PDMS solution was mixed with Ecoflex solution at a volume ratio of 1:1 
with the same stirring conditions. 

4.4. Preparation of stretchable Ag NWs/LIG electrode 

The Ag NWs electrode was obtained by repeatedly spraying Ag NWs 
solution on a PDMS-Ecoflex film (2 ×2 cm2) 5–8 times, with each 
spraying followed by drying at 60 ◦C for 2 min. The LIG was obtained by 
laser scribing of the PI film using a computer-controlled commercial CO2 
laser (Universal Laser, 10.6 µm, maximum power of 30 W). First, the PI 
film was fixed on the glass substrate using hydrosol for reduced defor
mation from the laser processing. Next, the CO2 laser (power of 23%, 
scanning speed of 28%, image density of 500 PPI) was utilized to create 
the LIG on PI in one step, followed by applying the mixed silicon rubber 
solution to the top surface. Placing the sample in a vacuum drying oven 
for 30 min allowed the solution to penetrate into the porous structure of 
the LIG and removed excess air, which was then dried at 80 ◦C for 2 h for 
curing. Immersing the sample in clean water for 24 h removed the glass 
substrate. Carefully peeled off the PI film successfully transferred the 
LIG to the stretchable silicon rubber substrate. After pre-stretching the 
silicon rubber film with LIG to a given tensile strain (εpre = 0%, 10%, 
20%, 30%), spraying Ag NWs solution with a spray gun and releasing the 
pre-strain, followed by baking at 60 ◦C for 5 min, generated the stretchy 
Ag NWs/LIG electrode on the PDMS-Ecoflex film. 

4.5. Fabrication of MXene/PDMS-Ecoflex composite film 

2 g of the PDMS solution at 10:1 w/w ratio was spin-coated on a 
10 × 10 cm2 glass plate at 250 rpm for 60 s. Next, 2 g of the mixed 
PDMS-Ecoflex solution prepared as described above was spin-coated at 
250 rpm for 60 s. After adding 0.5 ml MXene solution (5 mg/ml) to 
another 2 g of the mixed PDMS-Ecoflex solution with magnetical stirring 
at 1300 rpm for 30 min, the obtained solution was then spin coated at 
250 rpm for 60 s. Baking the sample at 90 ◦C for 1 h obtained the 
composite film. 

4.6. Treatment of fabric samples 

The fabric samples cut to a given size were first placed in a bottle 
containing anhydrous ethanol solution with ultrasonic treatment for 
15 min. Removing the fabric samples from the bottle and placing them 
in a 60 ◦C oven for 20 min removed excessive ethanol. After drying, the 
samples were attached to PET with double-sided adhesive tape. 

4.7. Characterization and Measurements 

Tensile loading on the stretchable LIG-TENG was applied by a gen
eral material testing machine (JSV-H1000 in Japan). Scanning electron 
microscope (SEM) images were collected by a field emission scanning 
electron microscope (JEOL, JSM 7100 F). The Raman spectra of the LIG/ 
PDMS-Ecoflex were obtained by LabRAM HR Evolution. XRD patterns of 
MXene and MAX were obtained by a D8 Discover X-ray diffractometer. 
With an exciter system (Donghua Testing Technology Co., Ltd., China) 
to simulate vibration, the electrical performance (i.e., open-circuit 
voltage, short circuit current, and transferred charge) of the LIG-TENG 
was measured using an oscilloscope (MDO 5104B, Tektronix, USA) 
with a probe of 10 MΩ, an electrochemical workstation (Vertex.C.EIS, 
Ivium Technologies BV, Netherlands), and an electrometer (Keithley 
6514, USA). Electrometer 6514 was also used in the application dem
onstrations, including human behavior sensing, wind speed monitoring, 
home anti-theft, water droplet energy harvesting, and early warning of 
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water leakage. 
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