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Abstract—Vertex reordering for efficient memory access in
extreme-scale graph-based data analysis shows considerable
improvement to the cache efficiency and runtimes of widely
used graph analysis algorithms. Despite this, modern efficient
ordering methods are often heuristic-based and do not directly
optimize some given metrics. Thus, this paper conducts an
experimental study into explicit metric-based vertex ordering op-
timization. We introduce a universal graph partitioning-inspired
approach focusing on CPU shared-memory parallelism to the
vertex ordering problem through the explicit refinement of low-
degree vertices using the Linear Gap Arrangement and Log Gap
Arrangement problems as comprehensive metrics for ordering
improvement. This degree-based refinement method is evaluated
upon a number of initial orderings with timing and cache
efficiency results relative to three shared-memory graph analytic
algorithms: PageRank, Louvain and the Multistep algorithm.
Applying refinement, we observe runtime improvements of up to
15x on the ClueWeb09 graph and up to 4x improvements to cache
efficiency on a variety of network types and initial orderings,
demonstrating the feasibility of an optimization approach to the
vertex ordering problem at a large scale.

Index Terms—graph ordering, cache efficiency, linear gap
arrangement, log gap arrangement, graph analysis

I. INTRODUCTION

Graph analysis at a large scale has become increasingly
applicable given modern advancements in high-performance
computing methods and the sheer size of real-world net-
works [1, 2]. Despite this, inefficient memory access patterns
often limit the performance and feasibility of such analytic
algorithms, especially as edge totals surpass the trillions. This
problem is generalized to a vertex locality issue, prompting
concerns regarding the frequency of vertex access and the
order at which this occurs. These concerns are shown to limit
the scalability of graph analytic algorithms in parallel [3].

To improve upon vertex locality, ordering methods have
been explored to generate hierarchical relationships in large-
scale graphs through the consideration of vertex labels relative
to cache memory access patterns among certain classes of
networks. Layered Label Propagation (LLP) [4], the Shingle
ordering heuristic [5] and the Rabbit ordering algorithm [6],
among others, all show results towards this goal. In an appli-
cation setting, these methods demonstrate greater efficiencies
within common analysis algorithms such as PageRank and
community detection while prompting usage in graph com-

pression and the development of compression-friendly order-
ings [7, 8]. While showing promising results, such reordering
algorithms are often complex and focus on heuristics or greedy
methods for approximation.

In this work, we seek to conduct an experimental study
on the application of optimization to the vertex ordering
problem for the improvement of CPU shared-memory parallel
graph analysis methods. Specifically, we take inspiration from
graph partitioning methods and propose a novel optimization
method focusing on the explicit refinement of low-degree ver-
tices within a graph. While known ordering methods achieve
efficient cache access patterns and analysis runtimes using
heuristics, we note that our optimization approach is easily
applied to these generated orderings and shows promising
results for optimization as a solution to the vertex ordering
problem.

A. Contributions

Our degree-based refinement method builds upon any input
initial ordering and improves ordering quality relative to our
locality metrics in the Linear Gap Arrangement (LinGap)
and Log Gap Arrangement (LogGap) problem towards im-
proved analysis runtimes and cache efficiencies. We focus on
three CPU shared-memory parallel graph analysis algorithms:
PageRank, Multistep connectivity [9] and Louvain [10]. We
apply and compare our refinement method to three heuristic
ordering methods in the LLP, Shingle ordering and Rabbit
ordering algorithms. Using an AMD system, we demonstrate
runtime improvements of up to 15x on PageRank and over
2x on Multistep relative to the ClueWeb09 graph’s natural
ordering and 10-15x speedups on a number of graphs for
the Louvain algorithm. On algorithm-generated orderings, we
observe speedups between 1.1-3x and up to 2x improvement
to cache efficiency. From this data, we state the main obser-
vations of our experimental study as follows:

• The LinGap and LogGap metrics show a strong positive
correlation with PageRank analysis measures and slight
correlations for the Multistep and Louvain measures.

• Spikes in the improvement of analysis measures occur at
singular points within refinement progression, dependent
on the graph structure.



• Refinement upon an initial Rabbit ordering shows the
most overall improvement of analysis measures within
our test data.

• The application of optimization methods to the vertex
ordering problem shows promising improvements upon
heuristic methods.

II. RELATED WORKS AND BACKGROUND

A. Related Works

A number of existing vertex ordering algorithms take
intuitive approaches to reordering vertices towards efficient
graph analysis in main memory. Presented in [5], the Shingle
ordering heuristic focuses on ordering vertices relative to the
measured commonality between two vertices’ neighborhoods.
This ordering scheme shows high compression rates relative
to the natural ordering for social networks in particular. The
Layered Label Propagation ordering method in [4] applies typ-
ical label propagation methods for compression optimization
while considering global label states. This algorithm shows
noticeable improvements to the compression rates of web
graphs compared to the Apostolico and Drovandi algorithm
in [11].

Alternatively, the Rabbit Order algorithm proposed in [6]
focuses on runtime efficiency by optimizing towards cache ef-
ficiency directly rather than compression rates. This algorithm
focuses on developing a hierarchy within real-world graphs
and connecting it to cache hierarchies for an intuitive sense of
cache locality. Communities are then developed and extracted
from this hierarchy and a new vertex ordering is generated.
This method shows notable speedup in parallel relative to
compression-based ordering schemes while improving the run-
times of sparse matrix-vector multiplication (SpMV) analytic
algorithms, such as PageRank and Label Propagation [12].
This focus on SpMV extends generally into matrix ordering
contexts. Specifically, we see applications to the similar fill-
reducing ordering problem, where methods attempt to apply
heuristics in the fill-reduction of matrices for graph structures,
partitioning and general matrix orderings [13, 14].

B. Graph Ordering Problem

Defining the ordering problem as in [5], we consider an
undirected graph G = (V [0, n), E ⊆ V × V ) and seek a
permutation π : V → N such that the chosen metric is
minimized. To set our optimization goal, we reference some
accepted metrics in graph ordering that, while not robust,
provide a means of judging ordering quality based on a notion
of vertex label locality.

C. Metrics

Considering the focus on vertex-centric models later jus-
tified in Section IV-A, we use this approach in our choice
of metrics for refinement: the Linear Gap Arrangement and
Log Gap Arrangement problems. We choose these metrics
due to their demonstrated correlation with the runtimes and
cache efficiencies of our parallel graph analytic algorithms.
We discuss this in detail in Section V-A.

First, we reference the Minimum Linear Arrangement
(MinLA) problem in [5], which considers the sum of the
vertex label differences across G. This is defined formally as
LA(G, π) =

∑︁
u,v∈E |π(u)− π(v)|. We use the extension of

this, the Linear Gap Arrangement (LinGap) problem, which
considers the sum of the differences of each vertex’s sorted
neighborhood, excluding itself. Given a vertex u and its sorted
neighborhood sN(u) = {v1, v2, ..., vd}, this is defined as
LinGap(G, π) =

∑︁
u∈N

∑︁
vi∈sN(u) |vi − vi+1|.

Similarly, we reference the Minimum Log Arrangement
(MinLogA) problem in [5], which considers the log of the
sum of the vertex label differences across G, formally defined
as LA(G, π) =

∑︁
u,v∈E log(|π(u) − π(v)|). We again ref-

erence the Log Gap Arrangement (LogGap) problem, which
considers the log of the sum of the differences of each
vertex’s sorted neighborhood, excluding itself. Under the same
conditions as LinGap, LogGap is defined as LogGap(G, π) =∑︁

u∈N

∑︁
vi∈sN(u) log(|vi − vi+1|).

Shown in [15] and furthered in [5], both MinLA and
MinLogA are determined to be NP-hard over most types of
graphs, warranting the usage of either heuristics or greedy
approaches [5, 16] to the problems in application. This is
extended to the LinGap and LogGap problems. Graph com-
pression schemes have also been studied for the approximation
of ordering quality [17]. Approximation methods have also
been explored for the MinLA problem and related metrics,
such as the Minimum Containing Interval Graph and the
Minimum Storage-Time Product in [18].

III. METHODS

As our primary method to evaluate explicit order refinement,
we propose a degree-based refinement method for the explicit
optimization of the vertex labels of low-degree vertices across
a graph, given some initial vertex ordering. We consider our
approach as a proof-of-concept that helps motivate, via our
experimental study, further study into explicit order refinement
algorithms. A more in-depth development of highly scalable
and efficient methods for optimization is reserved for future
work.

A. Degree-based Refinement

Based on our optimization approach, we employ a degree-
based refinement method in parallel to improve an initial
ordering towards one of the chosen metrics. Note that the
initial ordering can simply be the natural ordering or any
algorithm-generated ordering.

1) Metric Computation: For the explicit refinement of a
chosen metric, we utilize a global and local calculation of
metrics.

In the global case, we proceed in parallel through G’s
vertex set V with each vertex calculating its gap metric among
its sorted adjacency list. Note that the gap metric and the
sorting of the adjacency list proceeds relative to the input label
map, determined as the initial ordering. Since we perform this
calculation among vertices in parallel, each vertex reduces its
local metric value into a global metric value for the ordering.



Local metric calculations focus on the two-hop neighborhood
of two input vertices for performance improvements.

Algorithm 1 Log Gap Arrangement Refinement by Degree
1: function LOGGAP DEGREE REFINE(G,p)
2: S = sort(V ) ascending by degree
3: for each vertex u in the first p percent of S in parallel

do
4: for each vertex v in u’s adjacency list do
5: bs = evalLogGapArrLocal(G, u, v)
6: as = evalLogGapArrLocalSwap(G, u, v)
7: if as < bs and as < desiredSwapV alu then
8: desiredSwapu = v
9: desiredSwapV alu = as

10: end if
11: end for
12: end for
13: for each vertex u in the first p percent of S do
14: bs = evalLogGapArr(G)
15: swap(G, u, desiredSwapu)
16: as = evalLogGapArr(G)
17: if bs < as then
18: swap(G, u, desiredSwapu)
19: end if
20: end for
21: end function

Considering the Log Gap Arrangement Refinement algo-
rithm in Algorithm 1, the algorithm proceeds in parallel as
follows: given an undirected graph G defined as previously,
we first sort V in ascending order based on each vertices’
degree. We then focus on two major operations: the Desired
Swap (DS) step and the Swap Completion (SC) step. Note that
the translation to a LinGap-based implementation for each step
is trivial.

2) Desired Swaps: In the DS step, we have each vertex
within an input fraction of G compute its most preferred
label swap along each edge among its neighbors, decided by
calculated improvement upon the LogGap metric. Thus, each
vertex, in parallel, simulates a swap with each of its neighbors
and compares the metric value before and after the simulated
swap. Each vertex then saves its desired swap and continues
onto the SC step.

3) Swap Completion: In the SC step, we sequentially iterate
through the list of desired swaps and perform the swap if
the metric improvement still holds. We are required to check
this condition due to the possible infringement of previous
confirmed swaps on future desired swaps. Note that the we
perform the metric test locally. This continues up to the set
fraction of low-degree vertices in G.

IV. EXPERIMENTAL SETUP

With the goal of comparing our refinement algorithm’s
performance relative to metric improvement, analysis runtimes
and cache efficiency, we measure cache efficiency utilizing

TABLE I
BASIC GRAPH PROPERTIES

Graph Class #Vertices #Edges Cite
com-Friendster Social 66 M 1.8 B [19]
twitter-2010 Social 41.7 M 1.5 B [20]
LiveJournal Social 4.8 M 69 M [21]
web-ClueWeb09 Web Graph 1.7 B 7.9 B [22]
enwiki-2013 Web Graph 4.2 M 101.3 M [4]
web-BerkStan Web Graph 685 K 7.6 M [23]
it-2004 Web Graph 41.3M 1.2 B [24]
ant1km Mesh 13.5 M 53.8 M [25]
trianglemesh1 Mesh 1.9 M 1.9 M [26]
USA-road-d Road 24 M 58.3 M [27]

the Linux perf tool on runs of three shared-memory paral-
lel graph analytic algorithms: PageRank, Louvain [10] and
the Multistep1 connectivity algorithm [28]. We define cache-
efficiency relative to cache miss percentages of L1 and L3
cache in relation to overall cache accesses for each. Towards
the calculation of these measures, we proceed to describe our
experimental setup.

A. Memory Access

In terms of memory access patterns in graph analysis, we
consider general patterns alongside our employed algorithms:
PageRank, Multistep connectivity and Louvain. One of the
more general approaches considers the “think like a vertex”
(TLAV) framework for patterns of vertex-centric access. Such
a method, by nature, improves vertex locality while allowing
for scalable means of processing. A comprehensive survey of
TLAV frameworks and methods is included in [29]. For our
analysis algorithms, we note the SpMV basis of the PageRank
algorithm yields cache misses due to poor locality within the
compressed sparse row (CSR) format of adjacency storage.
Further definition of CSR locality within SpMV is mentioned
in [6]. For the Multistep connectivity algorithm, focus lies in
the initial traversal-based approach with a secondary propa-
gation phase, utilizing BFS-based patterns of memory access
among label propagation schemes. The Louvain algorithm
accesses the neighbor information for all vertices in a graph
and focuses on graph coarsening, which is relative to vertex
locality and ordering dependent.

Within our experimental study, we note that all of our graph
analysis algorithms function under a vertex-centric approach
with CPU-based shared-memory parallelism. We make this
distinction to denote the focus of our study on such parallel
models of graph analysis methods despite algorithmic differ-
ences.

B. Data

We present results using a variety of network topologies,
specifically social networks, web graphs, meshes and a road
network. The properties of each network are included in Table
I. Our graphs are collected from well known data sources such
as SNAP, DIMACS and WebGraph.

1https://github.com/HPCGraphAnalysis/Connectivity



C. Architecture

We use an AMD system for the collection of cache miss and
runtime results. The AMD system has 2TB of DDR4 RAM
and dual-socket NUMA AMD EPYC 7742 64-core processors
and 2 threads per core with a clock speed of 1500MHz. Each
core has a 4MiB L1 instruction cache, 4MiB L1 data cache, a
64MiB L2 cache and 256MiB of shared L3 cache per socket.
The AMD system operates on Ubuntu version 20.04.4 LTS.

TABLE II
RELATIVE METRIC CORRELATION COEFFICIENTS FOR ALGORITHM

ANALYSIS METRICS

Metric LinGap LogGap
PageRank Cache 0.2568 0.3196
PageRank Timing 0.7041 0.8796
Multistep Cache -0.0005 -0.0006
Multistep Timing 0.0088 0.0090
Louvain Cache -0.0093 -0.0007
Louvain Timing 0.0387 0.0477

D. Experimentation

Our degree-based refinement method, alternative ordering
algorithms (Layered Label Propagation, Shingle and Rabbit2)
and our parallel graph analytic algorithms (PageRank, Mul-
tistep connectivity1 and Louvain) are implemented in C++
and compiled using GCC version 9.4.0 and OpenMP version
4.5 for shared-memory parallelism. The Linux perf tool is
used for collecting L1 cache and overall cache miss rates
with all reported results being the arithmetic average of ten
runs per graph analytic algorithm. The perf tool events used
are cache-references, cache-misses, L1-dcache-load and L1-
dcache-load-miss. We run PageRank on each graph for twenty
iterations and we set the max iterations for our Louvain runs
at five. Mesh generation for the trianglemesh1 graph occurs
on Python3 version 3.8.10 and Pygalmesh version 0.10.6.

V. RESULTS

In this section, we present and evaluate experimental results.
Our contributions here are two-fold: (1) an experimental study
into LinGap and LogGap as metrics for cache efficiency and
analysis times; (2) a comparative evaluation of our presented
degree-based refinement method to improve ordering quality
relative to these metrics. We first discuss results pertaining
to the relationship between the amount of degree-based re-
finement and graph analytic efficiencies. We then perform a
comprehensive suite of tests using our refinement method and
the ordering algorithms discussed in Section II-A and discuss
the results.

A. A Motivating Case for LinGap and LogGap

We begin evaluation by considering the LinGap and LogGap
problems as our metrics for refinement. The choice is intuitive
considering their quantified notion of vertex locality through
the measured label gaps within a neighborhood. Similarly,

2https://github.com/araij/rabbit order

each problem provides an explicit refinement focus for opti-
mization and serves as a general measure for how “different”
our refined ordering is from an input initial ordering. Thus,
we consider the correlation between the quality of an ordering
relative to the measures we are interested in: cache efficiency
and analytic runtime. We take the relative measure of ordering
quality relative to that graph’s worst metric while relative time
and cache efficiency follow. Results are collected on the AMD
system and are taken across all graphs and orderings. The
results for LinGap and LogGap correlation are shown in Table
II. The PageRank results, alongside the intuitive notion of
the LinGap and LogGap metrics as a vertex locality measure,
show promise in the exploration and application, even if the
Multistep and Louvain algorithm results suggest a potentially
complex relationship.

TABLE III
IMPROVEMENT AND SPEEDUP RESULTS FOR EACH ORDERING METHOD

TAKEN AS THE GEOMETRIC AVERAGE ACROSS ALL GRAPHS AND ACROSS
ALL ANALYTIC ALGORITHMS USING THE AMD SYSTEM.

Ordering Cache L1 Cache Time
LLP 0.991 1.002 1.637
LLPLinRefine 1.053 1.005 1.623
LLPLogRefine 1.056 1.007 1.593
Rabbit 1.002 0.999 1.933
RabbitLinRefine 1.144 1.017 2.025
RabbitLogRefine 1.137 1.031 1.973
Shingle 1.017 1.018 1.317
ShingleLinRefine 1.043 0.986 1.336
ShingleLogRefine 1.050 1.026 1.340
LinRefine 1.054 1.007 1.479
LogRefine 1.058 0.992 1.458

B. Degree-based Approach

Building on the correlation in Section V-A, we collect
results using each degree-based refinement method to observe
metric growth progression within refinement. Specifically, we
conduct degree-based refinement for each metric using the
LiveJournal graph on intervals between 0.1% and 5.0% of
the low-degree vertices and analyze the metric improvement
for each interval. A similar trend in these results exists for
both metrics in improvement with significant improvement
starting around the 1% marker, or approximately 48,000 low-
degree vertices refined. We use this marker to collect our
comprehensive results. From this, we draw one main obser-
vation: the largest improvement in analytic measures tend to
occur directly at a single threshold percentage, with minimal
improvement otherwise. We attribute this to the existence
of key vertex-label pairings within an ordering, where the
refinement of such pairings yields high analysis metric im-
provements, suggesting potential in the identification of such
pairings before refinement.

C. Analytic Performance

First, we describe our refinement process for experimenta-
tion. We perform degree-based refinement on each graph in
Table I using between 10% and 0.001% of the graph’s low-
degree vertices, determined based on the threshold marker
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Fig. 1. Cache miss improvement and algorithm speedup relative to the natural ordering for the PageRank algorithm. Improvement and speedup is taken as a
fraction of the performance of the natural ordering over each ordering method’s performance as recorded using the AMD system.

referenced in Section V-B. This method is applied to each
graph once per initial ordering and once per metric. We
collect improvement and speedup results relative to the natural
ordering of each ordering method for each of the graph
analytic algorithms. The results using the AMD system for
the PageRank, Multistep connectivity and Louvain algorithms
are presented in Figures 1 and 2. For conciseness, we provide
results of improvement taken as the geometric mean across
all of our analytic algorithms in Table III. We also omit
comprehensive results in Figures 1 and 2 for conciseness and
instead display the most notable results.

Examining the results for the PageRank algorithm in Figure
1, we notice cache miss improvements remaining relatively
consistent with that of the natural ordering for all graphs ex-
cept for ClueWeb09, where a near 2x improvement is reached
using LogGap refinement on a Rabbit ordering. Similarly,
PageRank timing shows up to a 15x speedup. We note that
ClueWeb09 is the largest graph in our study and attribute such
an improvement to the limitations of graph access in main
memory, resulting in the large impact of improvement upon
ordering quality. Similarly, the application of the hierarchical
method of a Rabbit ordering alongside LogGap refinement

showing significant results for the PageRank algorithm is
likely due to the optimization of outliers within the hierarchical
communities towards the centralized adjacency matrix under a
SpMV-focused analysis. The Multistep connectivity algorithm
results in Figure 2 shows similar trends, but with timing and
cache improvements closer to 2x. An interesting distinction
from the PageRank results occurs in the maximum improve-
ment through the LinGap refined Rabbit ordering instead of
the LogGap refinement. This is likely due to the traversal-
based nature of the Multistep connectivity algorithm, which
focuses on the gaps among neighboring vertices rather than a
scaled measure. In terms of refinement efficacy, we again see
a fair distribution of maximized cases that include an applied
refinement across the analytic metrics.

The Louvain algorithm’s results in Figure 2 show distinct
trends compared to those of the previous analytic algorithms,
yielding higher levels of cache miss improvement - up to
3x-4x. L1 cache misses show significantly higher miss rates
for the graphs that demonstrate high overall cache miss im-
provement. Speedup values achieve around 15x for our Twitter
graph while including 10x speedups for a mesh and the road
network. We can observe that the focus on refining low-degree
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Fig. 2. Cache miss improvement and algorithm speedup relative to the natural ordering for the Louvain (L) and Multistep (R) algorithms. Improvement and
speedup is taken as a fraction of the performance of the natural ordering over each ordering method’s performance as recorded using the AMD system.

vertices under a coarsening model shows high levels of cache
miss improvement for graphs of moderate density and can
result in analytic speedups.

To obtain a general measure for overall performance per
analytic metric, we take the geometric mean of improvement
values across all graphs and graph analytic algorithms for each
ordering method. The results from runs on the AMD system
are compiled in Table III. Highlighted are the highest improve-
ment totals across each of analysis metrics. We observe that
applying refinement achieves the highest overall improvement
for all cases across the three analytic measures, especially
under a Rabbit ordering. Since our analysis algorithms all
consider a vertex-centric approach through SpMV, traversal
and coarsening, it holds that a community-based approach with
explicit refinement within communities would show locality
improvements.

VI. CONCLUSION

This paper has explored a new area within vertex ordering
that considers the explicit optimization of the Linear Gap
Arrangement and Log Gap Arrangement problem metrics. We
analyze this optimization relative to the analytic metrics of

cache efficiency and analysis runtime for the CPU shared-
memory parallel PageRank, Multistep connectivity and Lou-
vain graph analysis algorithms. Specifically, we demonstrated
our two-fold results: (1) the evaluation of the LinGap and
LogGap metrics to cache efficiency and analysis timings; (2)
the presentation and performance of a comparative analysis
of our degree-based explicit refinement method for optimizing
ordering quality. Our focus on the LinGap and LogGap metrics
is driven by a positive correlation among PageRank cache and
timing results while observing slight correlations for the Multi-
step connectivity and Louvain algorithms. We follow this with
a degree-based refinement method that explicitly refines low-
degree vertices. This approach shows promising improvements
to cache efficiency and analysis timings compared to ordering
heuristics and methods such as Layered Label Propagation,
Shingle ordering and Rabbit ordering. These improvements
demonstrate the viability of an explicit optimization-based
approach under the heuristic-focused vertex ordering problem.

VII. FUTURE WORKS

Developed as introductory work towards an optimization-
based approach to vertex ordering for efficient graph analysis,



a number of directions for progression exist. The degree-based
refinement method can be further evaluated through testing
on graphs on a similar scale to that of ClueWeb09 or graph
sets with diverse class distribution. Similarly, a wider variety
of graph analytic algorithms could see improvements from
explicit refinement methods, especially under parallel models
differing from that of shared-memory. We plan on evaluating
the degree-based refinement method using GPU-implemented
analytic algorithms and performing a comparison to current
results.

Furthermore, we plan to develop alternate explicit refine-
ment methods with similarities drawn from common graph
partitioning methods for improved parallel speedup. This nat-
urally leads to the consideration of explicit subgraph optimiza-
tion in vertex ordering. Such a method would consider optimal
edge cuts in partitioning for explicit ordering refinement and
the preservation of global ordering schemes within subgraphs.
Spectral partitioning methods and multi-level methods similar
to that of graph coarsening could also show improvement in
application within explicit refinement methods.

Methods within the field of optimization can be applied
to a graph-focused model under an explicit mapping of vertex
labels. Similar attempts were made using linear and non-linear
programming models relative to each metric, but were ulti-
mately runtime infeasible in our specific application. Further
work towards this would allow for the efficient application
of solver models to subgraphs specifically partitioned for
ordering optimization, providing a relative optimal ordering.
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