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Abstract. Community detection and orthogonal group synchronization are both fundamental
problems with a variety of important applications in science and engineering. In this work, we
consider the joint problem of community detection and orthogonal group synchronization which
aims to recover the communities and perform synchronization simultaneously. To this end, we
propose a simple algorithm that consists of a spectral decomposition step followed by a blockwise
column pivoted QR factorization. The proposed algorithm is efficient and scales linearly with the
number of edges in the graph. We also leverage the recently developed “leave-one-out” technique to
establish a near-optimal guarantee for exact recovery of the cluster memberships and stable recovery
of the orthogonal transforms. Numerical experiments demonstrate the efficiency and efficacy of our
algorithm and confirm our theoretical characterization of it.
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1. Introduction. Community detection and Sync. are both fundamental prob-
lems in signal processing, machine learning, and computer vision. Recently, there is
an increasing interest in their joint problem [28, 8, 50]. That is, in the presence of
heterogeneous data where data points associated with random group elements (e.g.,
the orthogonal group O(d) of dimension d) fall into multiple underlying clusters, the
joint problem is to simultaneously recover the cluster structures, as well as the group
elements. A motivating example is the 2D class averaging process in cryo-electron mi-
croscopy single-particle reconstruction [32, 64, 77], whose goal is to align (with SO(2)
group Sync.) and average projection images of a single particle with similar viewing
angles to improve their signal-to-noise ratio. Another application in computer vi-
sion is simultaneous permutation group Sync. and clustering on heterogeneous object
collections consisting of 2D images or 3D shapes [8].

In this work, we study the joint problem based on the probabilistic model intro-
duced in [28] which extends the celebrated stochastic block model (SBM) [19, 21, 22,
31, 44, 47, 55, 56, 57, 58] for community detection (see Figure 1 for an illustration,
which is slightly modified based on [28, Figure 1]). In particular, we focus on the
orthogonal group O(d) that covers a wide range of applications mentioned above.
Formally, given a network of n nodes (data points) with K underlying disjoint com-
munities, each node ¢ is additionally associated with an unknown orthogonal group
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FiG. 1. We present a network with two communities shown in circles and squares, respectively.
FEach node is associated with an orthogonal group element. FEach pair of nodes within the same
cluster (resp., across clusters) is independently connected with probability p (resp., q) as shown in
solid (resp., dash) lines. Also, a pairwise alignment O;; is observed on each edge (i,7).

element O; € O(d). For each pair of nodes (i,7), their orthogonal group transfor-
mation O;; is independently observed with probability p (resp., ¢) when node i and
node j belong to the same cluster (resp., different clusters). In particular, the clean
measurement O;; = OiO;-r is obtained if ¢ and j are in the same cluster. Otherwise,
O;; is uniformly drawn from O(d), implying the measurement is completely noisy.
Notably, such a model of corruption is widely considered in Sync. (e.g., [64, 27, 29,
26, 52]).

Under this probabilistic setting, we want to simultaneously recover the clusters
and group elements by combining the ideas for community detection and Sync. A
naive two-stage approach is to first apply classical graph-clustering algorithms (e.g.,
[41, 33, 30, 2]), then perform Sync. within each identified cluster. However, as shown
in [28], a better optimization program that solves the two problems jointly can be
formulated, which maximizes not only the edge connections but also the consistency
of the observed group transformations within each cluster. Directly solving such op-
timization programs is usually NP-hard and computationally intractable, which gives
rise to the convex relaxation methods such as semidefinite relaxation studied in [28]
or the spectral method in [8] that yield approximate solutions with polynomial time
complexity. The algorithm proposed in this work is also based on a spectral method
that first computes the top eigenvectors of an n x n block matrix of observed data.
Then, different from [8], a blockwise column-pivoted QR factorization is performed
on the top eigenvectors to identify the cluster structure and orthogonal group ele-
ments, which scales linearly with the number of data points. As a result, our method
is able to achieve competitive performance with lower computational cost compared
to [8].

1.1. Related work and our contributions. Given the practical importance
to a variety of applications, both community detection and group synchronization
have been extensively studied over the past decades. Due to the vast volume of
literature, we are not able to present a complete review of all previous works but only
highlight the ones most related to this work. Community detection aims to find the
underlying communities within a network by using the network topology information.
It is commonly studied under the SBM [22, 31, 44], where obtaining the maximum
likelihood estimator for clustering is often NP-hard. Therefore, different approaches
such as semidefinite programming (SDP) [1, 41, 42, 61, 39, 4, 9], spectral method [2,
72, 74, 55, 48, 59], and belief propagation [19, 3] are considered for a practical solution.
In particular, semidefinite relaxation generally yields state-of-the-art performance as

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/23 to 130.126.143.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

JOINT CLUSTERING AND SYNC. VIA SPECTRAL METHOD 783

it is able to achieve the information-theoretic limits of SBM [1, 3, 61, 41, 42]. However,
solving large-scale SDPs is still computationally expensive. In contrast, algorithms
based on the spectral method are more efficient and also give competitive results (e.g.,
achieving the information-theoretic limits in the case of two equal-sized clusters [2,
74, 34]). This motivates the proposed method, which extends the spectral method in
[16] for clustering, to solve our joint problem.

On the other hand, group synchronization wants to recover the underlying group
elements {g;}7_, from a set of noisy pairwise measurements {g; 'g;}. A common
approach is using a least square estimator which is usually NP-hard. Instead, similar
to the development of community detection algorithms, convex relaxations such as
semidefinite relaxation [63, 46] and spectral methods [63, 6, 12, 60, 62, 36] have
shown to be powerful, along with many investigations of their theoretical properties
(63, 78, 52, 46, 53, 35, 76]. Again, spectral method—based algorithms are generally
more favorable and appealing than SDPs due to their computational efficiency.

Joint community detection and synchronization is a relatively new topic, moti-
vated by recent scientific applications such as cryo-electron microscopy as mentioned
before. In [8], the authors addressed simultaneous permutation group synchronization
and clustering via a spectral method for simultaneously mapping and clustering 3D
object volumes. In [50], as motivated by the cryo-electron microscopy single-particle
reconstruction problem, the authors proposed a harmonic analysis and SDP-based ap-
proach for solving the rotational alignment and classification of 2D projection images
simultaneously. The recent work [28] by the authors of this paper proposed several
SDPs and gave theoretical conditions for exact recovery for the probabilistic model
considered. In this work, we propose an alternative spectral method-based algorithm,
which greatly reduces the computational complexity of SDP and obtains competitive
performance compared to the existing methods.

Besides the algorithm itself, a significant contribution of this work is to provide a
near-optimal performance guarantee for exact recovery under the probabilistic model.
This requires analyzing the perturbation of the eigenvectors of a low-rank matrix
corrupted by random noise, which falls on a classic topic in matrix perturbation
theory [65, 67, 5], where a naive f5 or Frobenius norm error bound can be easily
obtained by the Davis—Kahan theorem [18]. However, such a result is not sufficient for
exact recovery since it measures the “average” error, and if the error is concentrated
on several entries (or blocks if each node is represented by a matrix instead of a
scalar), exact recovery is not guaranteed. Instead, an {,, norm-type error bound is
necessary for exact recovery since it bounds the error entrywisely (or blockwisely).
Fortunately, in the past years, we have seen a surge of developments on /., norm
bounds. Most of them (e.g., [2, 78, 20, 13, 24, 52]) are based on the leave-one-
out technique proposed in [2, 78|. In particular, our analysis greatly benefits from
[2], which provides an entrywise error bound of the leading eigenvector of low-rank
matrices, and also [52], which extends [2] to consider block matrices and gives a
blockwise bound on multiple eigenvectors. Results by other approaches exist such as
[23, 17]. Specifically, [17] introduces deterministic rowwise perturbation bounds for
orthonormal bases of invariant subspaces of symmetric matrices. Such bounds can be
applied to general forms of the perturbation matrix. Compared to [17], the leave-one-
out technique can exploit the independence of random variables involved and thus
achieves sharper bounds in our setting. Here, our contribution lies in handling the
additional cluster structures and analyzing the QR factorization.

We summarize our contributions in the following: (1) We introduce a novel algo-
rithm for joint community detection and orthogonal group synchronization, which
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consists of three simple steps: a spectral decomposition, followed by a blockwise
column-pivoted QR factorization (CPQR), and a step for cluster assignment and
group element recovery. (2) A variant of CPQR, called blockwise CPQR, is designed
to deal with the block matrix structure induced by the O(d), group transformation.
(3) Under the probabilistic model, a near-optimal performance guarantee is estab-
lished for the exact recovery of the cluster memberships and stable recovery of the
orthogonal transforms. (4) We demonstrate the efficacy of our method and verify the
theoretical characterization of the sharp phase transition for recovery via a series of
numerical experiments.

1.2. Organization. The rest of this paper is organized as follows: In section
3 we introduce the probabilistic model and formulate the optimization program for
the joint problem. Then in section 4 we present our algorithm. Section 5 is devoted
to theoretical analysis. Numerical experiments are given in section 6 for evaluating
the performance and verifying our theory. We conclude with discussions and future
directions in section 7. For clarity, most of the technical proofs are deferred to the
appendix.

1.3. Notations. Throughout this paper we use the following notations: The
transpose of a matrix X is denoted by X . An m x n matrix of all zeros is de-
noted by 0y, x, (or O for brevity). An identity matrix of size n x n is denoted by I,,.
Omax(X), omin(X), and 0;(X) stand for the maximum, the minimum, and the Ith
largest singular value of X, respectively. Similarly, A;(X) denotes the Ith largest ei-

genvalue of X. || X || = max =1 || Xv| and || X |r = Tr(X ' X) denote the operator
norm and the Frobenius norm of X, respectively.

For a block matrix X € R™?*"? without further specification, the (4, 7)th block
is denoted by X;; € R4 for 4 = 1,...,m and j = 1,...,n. In addition, the ith
block row (resp., jth block column) of X is referred to as the submatrix that contains
X, for all j =1,...,n (vesp., i = 1,...,m) and is denoted as X, € R (resp.,
X-j c Rmdxd)_

For two nonnegative functions f(n) and g(n), f(n) = O(g(n)) or f(n) < g(n)
means there exists an absolute positive constant C' such that f(n) < Cg(n) for all
sufficiently large n; f(n) = Q(g(n)) or f(n) 2 g(n) means there exists an absolute
positive constant C' such that f(n) > Cg(n) for all sufficiently large n; and f(n) =
o(g(n)) indicates that, for every positive constant C, the inequality f(n) < Cg(n)
holds for all sufficiently large n.

2. Preliminaries. We start with some important definitions for matrix factor-
ization and decomposition that will be used for algorithm development and analysis.

DEFINITION 2.1 (polar decomposition). Given a squared matriz X € R¥?, the
polar decomposition of X is given as

(2.1) X =P(X)W,

where P(X) € R4 is orthogonal and W € R?¥¥4 is positive semidefinite.

Notably, such a decomposition always exists. Also, when X has full rank, P(X)
is the closest orthogonal matrix to X such that P(X) = argminyco(q)[|X — Y|r
(see [25]), and W is guaranteed to be positive definite. In addition, by denoting
X =UXV " as its singular value decomposition, one can obtain P(X)=UV T and
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W = VXV, with computational cost O(k?). As a result, we also denote P(X) as
the polar factor of any matrix X.

DEFINITION 2.2 (QR factorization). Given any X € R™*™, the QR factorization
of X is given as

X =QR,
where Q € R™*™ s orthogonal and R € R™*™ is an upper-triangular matriz.

Again, such a factorization always exists. In terms of computing it, the Gram—
Schmidt process and Householder transformation are commonly used (see, e.g., [68]),
where the latter approach enjoys better numerical stability.

DEerFINITION 2.3 (CPQR). Given any X € R™*™ with m < n and rank m, the
CPQR of X is given as

XII, = Q[R1, R2] = QR,

where II,, € R"*™ is a permutation matriz, Q € R™*™ is orthogonal, Ry € R™*™ g
upper-triangular, and Ry € R™*(=m),

The column-pivoted QR differs from the vanilla QR by introducing a permutation
II,, that ideally makes R; as well-conditioned as possible given X. In practice, the
Golub—Businger algorithm [11], which is based on the Householder transformation,
chooses II,, using a greedy heuristic: at each step, the column with the largest re-
maining norm in X is picked as the pivot for computing the new orthogonal basis in
Q. As aresult, CPQR avoids selecting columns that are highly linearly dependent for
determining @, which improves the numerical stability especially when X is rank de-
ficient. Because of this, CPQR serves as the backbone of the so-called rank-revealing
QR factorization [38] which is used to determine the rank of a matrix.

In the following, we introduce an extension of CPQR which considers the case of
a block matrix and perform the decomposition blockwisely. This serves as the core of
our proposed algorithm in this paper.

DEFINITION 2.4 (blockwise CPQR). Given any m x n block matriz X € Rmdxnd
with block size d x d, m <n and rank md (full row rank), the blockwise CPQR of X
is given as XI,q = Q[Ry, Ry|, where I1,,q € R"™>"? js g permutation matriz with a
Kronecker product (denoted by &) structure such that

Hnd:Hn®Id

for some permutation matriz TI, € R™*™, where Q € R™dxmd

R™MAxmd s ypper-triangular, and Ry € RMdx(n—m)d,

is orthogonal, Ry €

Here, one can view the blockwise CPQR as a special form of the vanilla CPQR,
where the matrix X is decomposed blockwisely such that its block structure and the
relative orders of columns within each block are always preserved, and the pivot be-
comes a block column instead. The details for computing it are deferred to
section 4.

3. Problem setup. Given a network with n nodes and K underlying communi-
ties, we assume each node i has a clustering label (i) € {1,..., K} and is associated
with an orthogonal transform O; € O(d). We use my, and Cj, to denote the size of the
kth cluster and the set of nodes belonging to it, respectively, such that my = |Cy|.
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Formally, our probabilistic model generates a random graph G = (V,E) with
node set V and edge set E. Each pair of nodes (4,j) is independently connected
with probability p if k(j) = k(i) that belong to the same community; otherwise they
are connected with probability ¢ if x(j) # x(i). Also, an orthogonal transformation
O;; € O(d) is observed on each edge connection (i,7) € E, and when k(j) = k(i) we
obtain O;; = OiO;-r, which is equal to the true alignment from j to i; otherwise we
assume O;; ~ Unif(O(d)), which is a random orthogonal transformation uniformly
drawn from O(d) that carries no information but only noise.

Given the above, our observation from the model can be represented by an obser-
vation matriz A € R"™"4_which is an n x n symmetric block matrix whose (i,j)th
block A;; € R¥™4 for any i < j satisfies

OiO;-r with probability p and when k(j) = (i),
(3.1) A;j =< 0;; ~Unif(O(d)) with probability ¢ and when (j) # k(7),
0 otherwise.

Then A;; = AjTi7 and we set the diagonal blocks A;; = 0 for ¢ = 1,...,n. In this
way, unlike an adjacency matrix which only has {0, 1}-valued entries that indicate
the connectivity, A defined in (3.1) extends to include orthogonal transformation
connected nodes as well. In addition, we define the clean observation matriz AY*" €

Rndxnd’ whose (Z’j)th block Alc_Jl_ean satisfies

T . .
(3.2) pctean _ ) 0105, #lj) = K(1),
Y 0 otherwise.
As a result, A°®® is equivalent to A in the clean case when p=1 and ¢=0.
Given the observation A, we formulate the following optimization program for
recovery:

K
1 T
3.3 Aij, 5=0:0; ),
(3:3) ©110,€0(1).C: CKZ.Z< ek ]>

,,,,,

where C; denotes the set of nodes assigned to the kth cluster and ®; is the identified
orthogonal transform for node i. As a result, (3.3) simultaneously recovers the cluster
memberships and the orthogonal group elements by maximizing not only the edge
connectivity but also the consistency of transformations among nodes within each
cluster. Notably, compared to the formulation in a previous work [28, equation (5)],
the additional factor 1/|Cx| in (3.3) is introduced to make the contribution of each
cluster to the cost more balanced. Such an idea is in the same spirit as the “RatioCut”
[40, 71] studied in the graph partition problem.

To proceed, we perform a change of optimization variables in (3.3): for each
cluster Cg, let us define a block column vector V' *) = [ng)]le € R4 of length n
whose ith block ng) € R¥*4 satisfies

;g’i; eC )
(3.4) v { VCx] PETE

0 otherwise.

As aresult, Vl(»k) indicates the cluster membership of C;, and also includes the identified
orthogonal group elements of nodes in C. Then, (3.3) can be rewritten as
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Algorithm 1. Joint spectral clustering and synchronization

Input: The observation matrix A, the number of clusters K.

1. (Spectral decomposition) Compute the top Kd eigenvectors ® € R">*Kd of A
such that ®T® = Iyy.

2. (Blockwise CPQR) Compute the blockwise CPQR (detailed in Algorithm 2) of
® ", which yields

(4.1) ®'M,,=QR = &' =QRII,

Update R < RII] .
3. (Recovery of the cluster memberships and orthogonal group elements) For each
node ¢ = 1,...,n, assign its cluster as

(4.2) k(1) < argmax || Ry;||r-
k=1,...,K

Identifying the orthogonal group element from the polar factor (Definition 2.1) as
(4.3) O; «— P(Ry;)", where k= &(0).

4. (Optional) Perform the refinement step described in section 4.3.
Output: Cluster assignments {#(¢)}}_; and orthogonal group elements

{07};;1

(3.5)

VG%I"%)in <A, VVT>

K
st. VvI= ZV(]’C)(VUC))T for {V 1K satisfies the form in (3.4).
k=1

It is clear to see that (3.5) is nonlinear and nonconvex and is thus computationally
intractable to be exactly solved. In [28], the authors use semidefinite relaxations to
obtain an approximate solution with polynomial time complexity (on the program
without the factor 1/|Cx|). However, solving large-scale SDPs is still highly nontrivial
in general, especially when n is large. Therefore, here we propose a spectral method
detailed in section 4 to improve the efficiency while not sacrificing the accuracy.

4. Algorithms. Given the observation matrix A, we propose the following al-
gorithm for simultaneously finding the underlying clusters and synchronizing within
each cluster. Our algorithm, as summarized in Algorithm 1, is strikingly simple and
only consists of three steps. First, we get the matrix ® which contains the top Kd
eigenvectors of A via a spectral decomposition. Secondly, we get the matrix R through
a blockwise CPQR of &', We end up with cluster assignment and orthogonal group
element recovery based on the individual subblock of R, followed by an optional step
for refining the recovery result. In particular, we refer to section 4.2 for the details of
the blockwise CPQR given in Definition 2.4.

We highlight that Algorithm 1 is deterministic such that it has no dependency
on any sort of random initialization. In comparison, the performance of other
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classical algorithms such as k-means [7] largely depends on the initial guess of the
cluster centers. Also, in terms of the computational complexity, our algorithm scales
linearly with the number of data points n apart from the spectral decomposition
step (step 1), which is desirable especially when n is large (see section 4.4 for a
detailed discussion). In addition, from an implementation perspective, our algo-
rithm is very easy to implement since it only consists of common and efficient matrix
operations.

We point out that CPQR has been widely used in different scientific fields [75,
16, 14, 15], and our algorithm is mainly inspired by [16], which proposes using CPQR
for clustering after a spectral embedding of the graph. The algorithm in [16] achieves
a competitive and more robust performance against the classical Lloyd algorithm
[64] with k-means++ initialization [7] under the SBM model. For our problem, we
introduce the blockwise CPQR which naturally extends such a QR-based algorithm
to handle the extra group transformations and block structures.

4.1. Algorithm motivation. In this section, we provide motivations for Algo-
rithm 1. We start from the original problem (3.5). By noticing that {V(k)}kK:1 in
(3.4) forms an orthogonal basis, the spectral method relaxes (3.5) by replacing the
constraint in (3.5) with V'V =TIgy and yields the following relaxed program:

(4.4) &= argmax (A, VV') st. V'V =1Igg,
' V eRndx Kd

whose global optimizer turns out to be the top Kd eigenvectors of A denoted by
& c R"*Kd_ This leads to step 1 (spectral decomposition) in Algorithm 1.
To proceed, we split A into deterministic and random parts,

(4.5) A=E[A] + (A—E[A]) =E[A] + A,

where E[A] = pA®®™ with the clean observation matrix A defined in (3.2), and
the residual A is a random perturbation with E[A] = 0. Specifically, E[A] is a
low-rank matrix which satisfies the following decomposition:

- k) (- (F)\ T (k) —=0;, ieCy,
E[A]=p> mp®W(@M)T  with @M .= v .
st 0, otherwise,

where &%) = [\I'Ek)]?:l € R™*4 ig a block column vector of length n that is defined
in a similar manner to V®* in (3.4). Then each ¥® indicates the true cluster
memberships of Cj, and the exact orthogonal group element O; of node ¢ within Cj.
Therefore, the matrix ¥ = [\Il(l), v lI'(K)] satisfies @' W = I .

We first consider the clean case when p=1 and ¢ = 0; then we have A = A"
A =0, and ® = PO, where O € RE¥Kd j5 some orthogonal matrix. Then for
recovering the communities and group elements, it suffices to extract {®* 1K from
®. However, such extraction is nontrivial since O is unknown to us. To resolve
this, without loss of generality, we assume that the first m; nodes form the first
community C, the following ms nodes form Cs, and so on and then notice that &7
can be decomposed as
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"'=0" [ ... \Iz(k)]T
o1 T 1 T
mol \/nTlOm 0 0
—oT . .
0 0 T Onemct1 =0,
O] 0
0" | : ) :
(4.6) o .- OZ—mKH
=Q
1 1 T
L 7 0105, 0 0
x : : : - : : :
0 0 \/71171@ ﬁon—m;{+lor—:
=R
=QR.

The resulting decomposition ® ' = QR corresponds to step 2 (blockwise CPQR) in
Algorithm 1 up to some column permutation, and here we assume II,; = I,,4 such
that no column pivoting is performed. In this way, Q@ € RX¥* K4 ig an orthogonal
matrix that includes the unknown orthogonal matrix O, and R € RK¥"d is 3 K x n
block matrix that excludes O. More importantly, R incorporates all the information
needed for recovery, as shown in the following.

To recover the cluster memberships from R in (4.6), one can see that, for each
node 14, the ith block column of R (i.e., R.;) is sparse such that its kth block Ry; is
nonzero only if k = (), which indicates the cluster membership of node i. Also, the
orthogonal group element O; can be determined from the nonzero block (up to some
global orthogonal transformation). This leads to step 3 in Algorithm 1, where the
polar factor P(-) in (4.3) ensures the orthogonality of the estimation O;.

In practice, when Algorithm 1 is applied to the noisy observation A, the exact
recovery of the cluster assignments is still possible as long as the perturbation to E[A],
which is controlled by p and ¢, is less than a certain threshold such that ® is still
close to WO. Indeed, this will be verified by both theoretical analysis in section 5 and
numerical experiments in section 6.

4.2. Blockwise column-pivoted QR. An important step of CPQR. in Defini-
tion 2.3 is selecting the pivots, which amounts to finding a subset of columns that
are as linearly independent as possible and are used for determining the basis. In
our setting as we present in (4.6), we further require the QR factorization to always
preserve the block structure which our recovery relies on; in other words, each d x d
block should be treated as a single unit during the whole process. To handle this
requirement, we propose a simple variant of CPQR, called blockwise CPQR given in
Definition 2.4, which preserves the block structure and can be computed by selecting
a block column instead of a single column as the pivot. We present our blockwise
CPQR in Algorithm 2, where the Householder transformation [45] (see Algorithm 3)
is adopted to ensure its numerical stability. Basically, Algorithm 2 modifies the orig-
inal CPQR algorithm [68, 37] in the following three aspects:
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Algorithm 2. Blockwise column-pivoted QR

Input: A block matrix X € R¥4*"d with K < n and the block size d.
Initialize: I1,,q < I,q, Q < Ixq, R+ X
1 fort=1,2,...,K do
/* Pivot selection */
for j=t,t+1,...,ndo
Compute the residual p; < ||Ry., j||r, where Ry ; € R
the segment of the jth block column from the ¢th block to the end
end
Determine the pivot j* < argmax;_, , p;
For both R and II, 4, swap the tth block column with the pivot (j*th)
block column

(K—t4+1)dxd iq

/* Determine orthonormal basis from the pivot block column */

7 for j=1,2,...,ddo

Let I < (t—1)d + j, apply Householder transformation in Algorithm 3
onr = Riga € ]RKd_H‘l, and get the Householder matrix C~)l.

I, O
9 Update Q; < [ 0 Ql]
10 Update R + QR and Q + QQ,
11 end
12 end

Output: Q, R, and I1,,,.

Algorithm 3. Householder transformation

Input: A column vector x € R™
1 a ¢+ —sign(x)||x]]
2 u < = — ae;, where e; = [1,0,...,0]T
3 v < u/|ul
4 Q«1I,—2vv’"
Output: Householder matrix Q.

1. At each iteration, we select a block column instead of a column as a pivot.
2. We determine the pivot by finding the block column with the largest Frobenius
norm of its residual (see line 3 in Algorithm 2).
3. After each pivot selection, we compute d orthonormal basis (instead of only
one basis) from the pivot (see lines 7-11 in Algorithm 2) by using the House-
holder transformation (Algorithm 3).
As a result, the relative order of columns in each block is always preserved.

4.3. Refinements.

On cluster memberships. We propose the following step that further improves
the clustering result by Algorithm 1. In (4.2), maxy || Ryl can be interpreted a
“confidence score” that node ¢ belongs to its assigned cluster. Then our idea is
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to refine those cluster assignments with low confidence scores. Formally, given a
threshold € € (0,1), we define
|| Rl
(4.7) Se = { <e
: IR [le

as the set of ill-defined nodes, where R.; denotes the ith block column. Notably, €

is determined based on the distribution of {maxy | Rk:|/r/||R.i|lr}i, such that S,
includes a small fraction of nodes and |S:| < n. As a result, this strategy enables
us to control the “level of refinement” instead of setting e directly. We find that, in
practice, refining on a small portion of nodes (e.g., 10%) usually yields a satisfying
result with a mild computational complexity. Then, for each node i € S., we refine

its cluster to be
(4.8)

()—argmax— Z \IC H TRJHF—:Lrgmax Z (R 3 R HF7

JEC |]€Ck

where Cy, is the kth cluster identified by Algorithm 1. To understand (4.8), consider
the clean case as shown in (4.6): for each cluster, we have Cj = Cj, |Cx| = myg, and
(4.8) measures the averaged similarity between node ¢ and all nodes j € Cy as

LS B TR | =V G

j€Cn

Then (4.8) selects the cluster with the maximum similarity. Notably, the factor 4/ |C’k|
in (4.8) removes the dependency of (4.8) on cluster sizes.

On orthogonal transforms. We also have a step for refining orthogonal transforms
as follows: for each cluster Cj, identified by (4.2), we collect all the available pairwise
transforms O” for nodes in C’k and form an observation matrix A®) ¢ Rmkdxmkd
where my, = |Ck|. In other words, AP g a restricting of A on C.. Then we compute
the top-d eigenvectors of A*) denoted by @) € R™x@%d_ For ecach node i, we have

~ refine

(4.9) 0. =P

as the refined orthogonal transform. Notably, under the probabilistic model in section
3, where the pairwise transforms are noiseless within clusters, one can perfectly iden-
tify all the orthogonal transforms {O;}?_; by (4.9) as long as the cluster memberships
are exactly recovered.!

4.4. Complexity. We summarize the complexity of Algorithm 1 in Table 1.
Overall, the cost of Algorithm 1 is largely dominated by the spectral decomposition
step whose complexity depends on the sparsity of the network and is linear with
the number of edges observed in the graph. The remaining steps of Algorithm 1
all together are relatively efficient and scale linearly in n and quadratically in K.
As a result,? when the data network G is densely connected with m = O(n?) edges

IHere, we also assume the subgraph that corresponds to each cluster is connected (a spanning
tree exists). Otherwise, one can add an arbitrary global offset to a connected component without
violating the observations.

2Note that we only need to compute the top Kd eigenvectors, which is assumed to be done by
the Lanczos method [66].
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TABLE 1
The complexity of Algorithm 1 in each step. We consider two cases where the network (graph)
is densely or sparsely connected. For the case of a sparse network, m denotes the number of edges
observed in the graph.

Steps A dense network A sparse network
1 | Spectral decomposition? O(Kd3n?) O(Kd3>m)
2 | Blockwise CPQR O(K%d?n + K2d3n)
3 Clustering by (4.2) O(Kd?n)
Synchronization by (4.3) O(d?n)
Total complexity O(Kd3n? + K%d3n) | O(Kd*m + K?d*n)

observed, Algorithm 1 ends up with O(n?) complexity. While in practice, it is more
common (see, e.g., [51]) to obtain a sparse network G such as m = O(nlogn) or
m = O(n), then Algorithm 1 runs efficiently as the complexity reduces to O(nlogn)
or O(n), respectively.

We also remark that, in practice, the complexity of spectral decomposition can
be further reduced from being linear in K, i.e., from O(K) to O(log K), by using
the randomized algorithm described in, e.g., [43, 73]. But notice that the resulting
decomposition is an approximation and could lead to additional errors in the recovery
of the cluster memberships and the orthogonal transforms.

5. Analysis. In this section, we investigate the performance of Algorithm 1
under the probabilistic model described in section 3 by finding the condition that
guarantees that the clusters {Ck}gzl are exactly recovered and the orthogonal trans-
forms {O;}_, are estimated with bounded error. For simplicity, we focus on the case
of two underlying clusters with equal cluster sizes, namely, K = 2 and m; = mg =
m=n/2.

To begin with, recall (4.5) that A = E[A] + A, the Davis-Kahan theorem [18]
(see Theorem A.3), bounds the difference between the noisy eigenvectors ® of A and
the clean ones ¥ of E[A] in terms of the spectral norm as

lAw] _ Al

1 P -TO| <
(51) |® - wo| 5= =

with a global orthogonal transformation O = ’P(‘I’T@) and a certain spectral gap
(see Theorem A.3 in Appendix A.1 for the details). Then one may expect that exact
recovery can be achieved as long as the error in (5.1) is shown to be sufficiently small.
However, even a tight bound of |® — $O|| cannot guarantee exact recovery since if
a few blocks of ® have much larger error than others, then exact recovery of every
cluster membership could still be failed. Therefore, a more appealing way to show
exact recovery is to obtain a blockwise error bound between ® and ¥ as

(5.2) max ||®; — ¥,.0| <e

1<i<n

for some uniform e, where ®;., ¥;. € R¥X? denote the ith block row of ® and ¥,
respectively. As a result, the error on each node (block) is uniformly bounded, and
one can show that exact recovery is guaranteed as long as € is sufficiently small.
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5.1. Main theorems. Our first theoretical result provides a condition that
guarantees (5.2) is satisfied for a sufficiently small €, which further leads to the per-
formance guarantee that Algorithm 1 achieves exact recovery under such condition.

THEOREM 5.1 (blockwise error bound). Under the setting of two equal-sized
clusters with model parameters (n,p,q,d), for a sufficiently large n, suppose

V (p(1 —p) + q) log(nd)
pvn

for some small constant co > 0. Then with probability 1 — O(n=1),

(5.3) n:=

<o

n
P, — .0 < —
(5.4) 1I§nza§Xn” i INOJIBS ﬁa

where O =P(¥ ' ®).

THEOREM 5.2 (performance guarantee). Under the assumption of Theorem 5.1,
fori=1,...,n, with probability 1 — O(n_l),AAlgom'thm 1 ezactly recovers the cluster
memberships k(i) defined in section 3, and O; satisfies

(5.5) 10; — 00, <.

where Oﬂ(i) s orthogonal and only depends on the cluster that i belongs to.

As we can see, (5.3) is the condition that leads to exact recovery of the cluster
memberships, and (5.5) guarantees the estimation error of O; for each node 7 is
uniformly bounded. Also, by letting ¢ =0 and d = O(1), (5.3) reduces to

(5.6) P len

1—p n
As a result, (5.6) implies that (5.3) holds and exact recovery is possible if p >
logn/n. Notably, such a threshold lies in the same regime by using the SDPs
studied in [28], which indicates that the spectral method yields competitive results
against SDP.

In the following, we outline the key steps for proving Theorems 5.1 and 5.2. The
complete proof is deferred to Appendix A. Our proof follows from two important
ingredients. One is the leave-one-out technique presented in [2, 78] which enables
us to have a tight, entrywise analysis on the eigenvectors of low-rank matrices; the
second one is [52] which extends the entrywise analysis to a blockwise error bound
for studying group synchronization. Here, our main contribution lies in handling
the difficulty introduced by the combination of community structures and orthogonal
group elements, as well as the QR factorization for clustering.

5.2. The sketch of proof. Throughout the analysis, we assume the first m =
n/2 nodes belong to C7 and the remaining m nodes belong to Cy. Without loss of
generality, we assume O; = I4, i =1,...,n. For brevity, we use “w.h.p.” (with high
probability) to represent “with probability 1 —O(n=1)".

e Step 1: Bound ||®;. —®;.||. We first bound the distance ||®;. —®;.|| for any pair
of nodes within the same cluster. The key point lies in finding a suitable surrogate of
® such that the difference between ® and its surrogate can be tightly bounded. To
this end, let A € R??*24 be a diagonal matrix that contains the top 2d eigenvalues of
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A as diagonal entries; then we have ® = A®A ™. To proceed, inspired by [52, 2], let
us define the following function of ®:

(5.7) f(®):= ABA ™,

then @ is a fixed point of f(-) such that f(®) = ®. Since (5.1) indicates that ® is
close to WO with O =P (¥ ®), then we hope the following choice of surrogate

(5.8) f(¥O)= APOA™*

serves as a good estimation of ® blockwisely such that the block error | ®;. — f(LO);.||
is uniformly bounded for any 4. If this holds, we can further bound ||®;. — ®;.|| as

[®i — @[ = |®i. — f(LO);. — (5. — f(LO);.) + f(LO);. — f(¥O),.|
<@ — f(PO)i|| + | ®). — f(PO);.|| + [ f(LO)i. — f(PO); ||

To bound ||®;. — f(LO),.||, by definition it satisfies

(5.9)

1®i. — f(LO)i[| = |[® ~ APOA™];.| = | [A(® — TO)A™]; |
<[ATI[A(® — TO):|| = [IAT | [(E[A] + A) (@ ~ ®O)];.|
(5.10) <A ([[E[A]]:.(2 — ®O)| + || As.(2 — ®O)]).

Here, |[A™Y|| and ||[E[A]];.(® — $O)|| are tightly bounded by Weyl’s inequality (see
Theorem A.2) and the Davis-Kahan theorem (see Theorem A.3), respectively. For
|A;. (2 —PO)|, it is natural to consider applying concentration inequalities for get-
ting a tight bound since A; consists of independent noisy blocks. However, this is
impossible since A;. and ® — YO are not statistically independent, which only allows
the Cauchy—Schwarz inequality such that [|A; (@ — PO)| < ||A;.||||® — PO|| that is
bounded loosely. To resolve this, we resort to the leave-one-out technique introduced
in [78, 2, 52|; the idea is to define an auxiliary matrix A® that “leaves out” the ith
block row and column as

Akl 1fk7ézandl7éz,

5.11 AD =E[A]+ AD, AW .=
(511 4] MUlo ifk=dorl=i.

In other words, AW only differs from A on its ith block row and ith block column.
Because of this tiny difference, the noise perturbation A;. is not included in A‘(Z), and
thus A;. is independent of &) which denotes the top Kd eigenvectors of A This
enables us to tightly bound ||A;.(® — ®O)|| by replacing & with ¥ and applying
concentration inequalities. To this end, by defining

O .=p(®)T®), SO .=p@'e®),
then |A;.(® — PO)|| can be decomposed as

AL (®—TO)|=|A.(®—-2D0D +8D0D —wsDOW + ¥SWOW — wO)|

(5.12) <AL (2-2D0D)|+]|A (2D TS| +]|A,T(SDOD-0)|
=T =:T5 =:T3
=T +To+1T5.

Then, under the condition (5.3), we bound T4, 75, and T3 separately with details given
in Appendix A.2, where particularly 75 is bounded by matrix Bernstein inequality [69,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/23 to 130.126.143.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

JOINT CLUSTERING AND SYNC. VIA SPECTRAL METHOD 795

Theorem 1.6.2]. Here, we remark that the condition (5.3) is necessary for bounding
Ty,T5, and T3, as 7 should be sufficiently small (i.e., n < ¢y for some small ¢q) for
obtaining the intermediate result (see (B.4) in the proof of Lemma A.9 for details)

ma 87| < max |5

which implies that after leave-one-out, the norm of the block row of @ is universally
(at most) in the same order as the original ®. Then, (5.2) gives the bounds on {T;}?_;
and further leads to the following bound on |®;. — f(LO);.||.

LEMMA 5.3. Under the condition (5.3), for alli=1,...,n,
185 = f(RO)i.|| < nmax||®.|

with probability 1 — O(n~1).

Lemma 5.3 confirms our previous hypothesis that ®;. is well-approximated by its
surrogate f(¥O);. uniformly as long as 7 defined in (5.3) is sufficiently small. Back
to (5.9), ||f(®O);. — f(¥O),.|| can be bounded as

If (®O):.~ f(O);.[|=[|(As. —A;)FOAT| <[ (As.— A ) [[AT ][ <n max [ @;. |

with the details deferred to Appendix A.2. Combining the results above yields the
following.

LEMMA 5.4. Under the condition (5.3), for any pair of nodes (i,j) that belong to
the same cluster, it satisfies

n
P, — &, || <pmax|P;. || < —
I JHNI]_HJHN\/E
with probability 1 —O(n~1).
o Step 2: Bound ||®; — ¥, 0|. Now we use the results from Step 1 to prove
Theorem 5.1, which gives the blockwise error bound ||®;. — ¥,;.0||. The main idea

is to combine Lemma 5.4 with the bound on ||® — O|| given by the Davis—Kahan
theorem. To this end, let us define ® — O = [Ng1 , Ngz]—r7 where N ¢, is defined as

&, —T,.0 &, —U,.0 P, — D,
(5.13) Ng, = : = : + : =N, +Na,
&, — 0,0 $, —T,,0 P, — b,
=N, =Na;

for all ¢ € Cy, and N ¢, is defined similarly for block indices that belong to Cy. Then
we can derive a lower bound of |® — ¥O|| as

|- O = i NG, N&Je|| > max IN&yl=INc |l
>Nyl = [Nail = Vm||®:. - ¥,.0]| - O(n)
w.h.p. On the other hand, by the Davis—Kahan theorem we can obtain an upper
bound as ||® — ®O| <n/+/log(n) w.h.p. (see Lemma A.8 for the detail). Combining
the lower bound and the upper bound yields

Ul .
w0l < L
(|®; —¥,.0| < NG for i e Cy
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w.h.p. Similarly, we get the same bound for ¢ € C5. Then applying the union bound
for i=1,...,n completes the proof of Theorem 5.1.

e Step 3: Find the performance guarantee of Algorithm 1. We start by showing
the exact recovery of the cluster memberships by Algorithm 1. Recall the matrix R
output from the blockwise CPQR in (4.1), and without loss of generality, we assume
p1 € C1 is the first pivot block column selected. Then for any node j, the two blocks
le and jo satisfy

1R (17 = 1P(®p,) (@) T F 1R lE = 11(25) 7 — 1P (R, )(25) 7,

which correspond to the projection of (®;.)" onto the column space R((®,,.)") and
the complement of R((®,,.)"), respectively. According to Algorithm 1, node j would
be assigned to Cy if || Ryj||r > | R2;|lr, which is equivalent to

(514 P )@, o> L2, .

We first show that, for any j € C, (5.14) is satisfied w.h.p. To this end, we estimate
the LHS and the RHS of (5.14) by using ¥,.O as a surrogate of ®;. fori=1,...n, as
they have shown to be similar in Theorem 5.1. Then we obtain that w.h.p.

(5.15) ||p(q>p1_)(q>j‘)T||F:(\/5—0(7;)) \/g, §||<I>j.||pz(1+0(n))\/g-

This implies when the condition (5.3) is satisfied such that 7 is sufficiently small,
(5.14) holds, and j is correctly classified. A similar analysis applies to any j € Co,
and we leave the details in Appendix A.

For recovering the orthogonal transforms {O;}?_,, we follow the assumption that
p1 € C is the first pivot. In the case of two clusters, the orthogonal matrix @ in the
block CPQR. (4.1) satisfies Q = [@Q.1,Q.,], where Q.; € R?¥*? is the polar factor of
(®,,.)" up to some orthogonal transform, and Q. , € R?¢*? is orthogonal to @ 1, i.e.,

(5.16) Q.=P(®,,.)")0;, and (Q,)'Q.,=0,

where O EARdXd is some orthogonal matrix. As a result, for any node j € C1, our
estimation O; by (4.3) can be written as

O;=P(Ry;)=P((Q.) (®;.)").

To proceed, by applying Theorem 5.1 we can show the estimation error ||OJ ~0,;0,| <
7. A similar analysis applies to any j € Cs, and we leave the details in Appendix A.

6. Numerical experiments. This section is devoted to numerically investigat-
ing the performance of our algorithm. All experiments® are performed in MATLAB
on a machine with 60 Intel Xeon CPU cores, running at 2.3 GHz with 512 GB RAM in
total, and only one core is used for each experiment. In each experiment, we generate
the observation matrix A based on the probabilistic model in section 3 and estimate
the cluster memberships and the group elements by Algorithm 1. To evaluate the
result, for clustering, let Cj, = {i|#(i) = k} be the set of nodes identified to the kth
cluster by Algorithm 1; then we compute

(6.1)  success rate of exact recovery= the rate {Cy }1 | is identical to {Cy}K_;

3The code is available at https://github.com/frankfyf/joint_cluster_sync_spectral.
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that is, the rate that Algorithm 1 exactly recovers all the clusters memberships. After
that, in order to evaluate the quality of identified orthogonal transformations, we
define OF) = [0;]icc, € R™4%4 for each cluster Cj, as the matrix that concatenates

~ (k R
the ground truth O; for all i € C and similarly define O( - [O;)icc,,, the estimated
ortl?ogonal transformations. Then we remove the orthogonal ambiguity by aligning
O( ) with O®) within each cluster Cj as the following:

G = argmin ||O(k) ~0WG|p, k=1,...,K,
GeO(d)

whose analytical solution is G*) = P((O(k))—ré(k)). In this way, the error of syn-
chronization is defined as

1 .
ization = - e Well))
(6.2) Error of synchronization=log (\/Zl jnax  max |O0; — O;G ||F) ,

which is the maximum error of our estimation O; over all nodes. As a result, (6.2)
is small only if the estimation error of each O; is bounded. Both (6.1) and (6.2) are
averaged over 20 different realizations for each experiment.

We first test the performance of Algorithm 1. We consider the case of two clusters
with equal cluster sizes, where we fix n = 1000 and test under two settings with
d =2 or 3. In particular, since Theorem 5.2 implies that exact recovery is possible
at the regime p,q = O(logn/n), we measure the recovery performance on different
p=alogn/n and ¢ = Blogn/n with varying o and . In Figure 2 we plot the success
rate of exact recovery (6.1) and the error of synchronization (6.2). As a result, in
both Figure 2(a) and Figure 2(c) we observe sharp phase transitions on the success
rate of exact recovery. In Figure 2(b) and Figure 2(d) the error of synchronization
follows a similar pattern such that when exact recovery fails we observe a large error,
and the error dramatically decreases as exact recovery is achieved. Such observations
agree with our theory in Theorem 5.2.

To better visualize the scaling of the phase transition curve, in Figure 3 we plot
the success rate of exact recovery under different 7 defined in (5.3) with varying
p = alogn/n or ¢ = Blogn/n. Specifically, we set m; = mg = 200, and for a fixed
a (resp., B3), we adjust 7 from 0 to 2 by changing S (resp., ) accordingly. As we
can see, Figure 3 implies that exact recovery can be achieved with high possibility as
1 < 0.5, which agrees with the theoretical condition (5.3) in Theorem 5.2 that exact
recovery is possible as long as 17 < ¢ for some constant ¢y. Such observation indicates
the sharpness of our condition (5.3).

We further test our algorithm on a more general scenario with five clusters such
that (mq,ms, ms, my, ms) = (100,200, 200,200, 300) and d = 2. We report the result of
our algorithm in terms of the metrics (6.1) and (6.2) in Figure 4(a) and Figure 4(b).
As a result, we still observe a clear phase transition boundary, which verifies our
algorithm can handle arbitrary underlying cluster structures.

We also test the optional refinement step for cluster memberships described in
section 4.3, where the threshold e in (4.7) is specified in a way that 10% nodes are
included in the set Se. The result is then displayed in Figure 4(c) and Figure 4(d).
We also show another one in Figure 5 under the setting m; =my =200 and d = 2. As
a result, in both examples, we observe a clear improvement in the phase transition
boundary of exact recovery of the cluster memberships after the refinement step is
applied, which demonstrates the efficacy of refinement.
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(a) Success rate of exact recovery, d = 2
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(c) Success rate of exact recovery, d = 3 (d) Error of synchronization, d = 3

F1G. 2. Results on two clusters by Algorithm 1. We test under the setting mi1 = mga = 500,
d =2, ord=3. (a) and (c): the success rate of exact recovery by (6.1), under varying o in
p=alogn/n and B in ¢q=Blogn/n; (b) and (d): the synchronization error by (6.2).
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Succcss rate with varying n and o, d = 2 (b Success rate with varying n and o, d = 2
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(C) Success rate with varying n and 8,d = 3 (d) Success rate with varying n and 8, d = 3

F1G. 3. Results on two clusters by Algorithm 1. We test under the setting mi1 = mga = 200,
d=2, ord=3. (a) and (c): the success rate of exact recovery under varying n defined in (5.3)
and a in p = alogn/n; (b) and (d): the success rate of exact recovery under varying n and 8 in
q=Blogn/n. For a fized o (resp., B), we adjust n by changing B (resp., o).
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(a) Success rate, before refinement (b) Error of sync., before refinement
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(c) Success rate, after refinement (d) Error of sync., after refinement

F1¢. 4. Results on five clusters by Algorithm 1. We test under the setting mi1 = 100, ma =
mg = mg = 200, ms = 300, and d = 2. We plot the success rate of exact recovery by (6.1) and
the synchronization error by (6.2). (a) and (b): result by Algorithm 1; (c) and (d): result after the
refinement step (4.8) in section 4.3.
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@ @ a

(a) (Ours) Before refinement (b) (Ours) After refinement (c) Result by SMAC [8]

Fic. 5. We test under the setting m1 = mo = 200 and d = 2. We show the success rate of exact
recovery of the result by (a): Algorithm 1; (b): the refinement step in (4.8); (c): SMAC proposed
in [8].

In addition, we compare our algorithm with an existing method simultaneous
mapping and clustering (SMAC) proposed in [8], which is also based on spectral
decomposition. Although the original version of SMAC is designed for permutation
group synchronization, it can be easily extended to handle the orthogonal group. We
test under the setting of m; = mg = 200 and d = 2. In Figure 5 we present the
success rate of recovery by our algorithm and SMAC. As we can see, the result by
our algorithm after the refinement has a similar phase transition boundary as SMAC.
However, our method has much less computational complexity than SMAC, as we
shall see in the following.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/23 to 130.126.143.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

800 YIFENG FAN, YUEHAW KHOO, AND ZHIZHEN ZHAO

2 T T T T T 2 T T T T T
—o—Ours (a = 0.9891) LA —o—Ours (a = 1.086) A
0F . a..SMAC (a =1.937) A.““,.-..A‘ 1 OF .a..SMAC (a=1.934) A_“'_‘_‘..A‘
L .A-"'A“" J L ‘..‘-A"”
:-2 e :-2 e
B4l aees 1 F L s
Bl *"_./y/ax. | °f ’_././’.
-8 1 -8
5 5.5 6 6.5 7 75 8 5 5.5 6 6.5 7 75 8
log(n) log(n)
(a) Without spectral decomposition (b) With spectral decomposition

FI1G. 6. Runtime test. We plot the runtime (denoted by t) of different algorithms versus different
sizes of the adjacency matriz A (denoted by m) in log-scale. The slope of each runtime versus
problem size curve is noted by a. (a) and (b) represent the runtime that includes and excludes step
1 (spectral decomposition) in Algorithm 1, respectively. We set p=q=10logn/n, K =2, and d= 2.
The refinement step in Algorithm 1 is excluded.

To investigate the computational complexity, we further test the runtime of the
proposed Algorithm 1 (excluding the refinement step) and SMAC [8] in Figure 6
under the setting p = ¢ = 10logn/n, K =2, and d = 2, and we let n vary from 200
to 2000. All the experiments are performed using the same computational resource
mentioned at the beginning of section 6, and we obtain the average timing over 50
trials. Figure 6(a) and Figure 6(b) display the runtime results including and excluding
step 1 (spectral decomposition) in Algorithm 1, respectively. From the slopes of the
curves, we observe that our algorithm without refinement scales almost linearly with
the data size m, and the slope slightly increases as the spectral decomposition is
included (recall that the order is of O(nlogn) in theory due to the sparsity). In
contrast, SMAC scales quadratically in n since it performs pairwise synchronization.
Such observation agrees with our complexity analysis in Table 1 and demonstrates
the efficiency of Algorithm 1.

Besides, empirically we observe the phase transition boundary of exact recovery
changes as the dimension of the orthogonal group d increases, as shown in Figure 7(a)
and Figure 7(b), where we compare the result when d = 2 with d =10. One can see
that under the same setting of (p,q,n), exact recovery gets easier as d increases. To
investigate the reason behind this, we randomly pick a node i € C; and compute the
“signal-to-noise ratio” || Ry;||r/||R2illr, where | Ry;||r and ||Ra;||r can be seen as the
signal and the noise level, respectively. Clearly, a larger ratio indicates a lower error
probability of clustering. Then, we fix the parameters p = g = 0.5,m; = mg = 500,
and ratio min;ec, ||[R1il|r/||R2:|lr among all nodes ¢ € Cy under different d varying
from 2 to 30 in Figure 7(c). As we can see, the ratio increases and converges as
d increases, which indicates that clustering becomes easier on a larger dimension d.
Unfortunately, such a phenomenon is not characterized by our theory in section 5,
and we leave the theoretical investigation as a future study.

7. Discussion and conclusion. In this work, we study joint community detec-
tion and orthogonal synchronization by proposing a spectral method-based algorithm.
The proposed method is extremely convenient to use and only consists of a spectral
decomposition step followed by a blockwise CPQR. As a simple variant of CPQR,
blockwise CPQR is designed to ensure that the blockwise nature of the matrices in-
volved is captured and the blockwise structure is always preserved. Such a QR variant
is flexible and can be applied to other applications that require QR factorization on a
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Fic. 7. (a) and (b): We compare the success rate of exact recovery between d =2 and d = 10,
under m1 =mso =500. (c): We fix p=q=0.5 and plot the minimum ratio min;cc, ||Ri1llr/||Ri2ll¥
under different d from 2 to 30.

block matrix. In terms of time complexity, our algorithm scales linearly with the num-
ber of data points, which exhibits a great advantage over other existing methods that
at least requires O(n?) complexity. In addition, under the scenario of two equal-sized
clusters, we provide a near-optimal condition that guarantees the underlying cluster
memberships are exactly recovered, and the orthogonal transforms are stably recov-
ered. In particular, such condition is obtained by deriving a blockwise error bound
on each block of eigenvectors, using the leave-one-out technique [78, 2] rather than
the Davis—Kahan theorem [18]. Also, we point out that our theory can be extended
to the more general case when having an arbitrary number of clusters of different
sizes. To evaluate our algorithm, we perform a series of numerical experiments that
demonstrate the efficacy of our algorithm and confirm our theoretical characterization
of the sharp phase transition of recovery.

In addition, we have considered an extension of the current result to cover a
“noisy” version of the problem by considering an additive Gaussian noise model on
the pairwise group transformation. We perform some initial study on this noise model
which is given in Appendix C, where we (both theoretically and empirically) show
that our proposed Algorithm 1 is still able to robustly recover the cluster memberships
and the orthogonal transforms under mild additive noise levels.

There are several directions that can be further explored. First, it is natural
to expect that the proposed algorithm can be applied to other groups such as the
permutation group. Second, one should be able to extend the theoretical results to
more general scenarios with unbalanced cluster sizes and a larger number of clusters,?*
but several major changes are necessary: for example, in general, the spectral norm
of the residual ||A|| given in Lemma A.7 should depend on K, but the current proof
(see Appendix B.1) only considers two clusters; also, the analysis of exact recovery
by CPQR certainly becomes more challenging as more than one pivot is needed to be
considered when K > 2.

Appendix A. Proof of the main theorems. This section is devoted to the
proof of the main theorems given in section 5.

A.1. Important technical ingredients. We first introduce several important
technical ingredients that will be frequently used in our analysis.

4Here, we still assume the number of clusters scales as a constant, i.e., K = O(1), and each
cluster size scales in the same order as the total number of nodes, i.e., m; =0(n), n=1,..., K.
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Polar decomposition. Recall the polar decomposition and the polar factor P(-) in
Definition 2.1; then the following bound will be frequently used in our analysis.

LemMMA A.1 ([52, Lemma 5.2]). Let X,Y € R¥? be two invertible matrices;
then

IP(X) ~ P(Y)| < 2VZmin{ok (X), 02 (V)}X — Y],
where omin(-) denotes the smallest singular value of a matriz.
Lemma A.1 implies that ||[P(X) — P(Y)| is bounded as long as || X — Y| is
bounded and all the singular values of X and Y are bounded away from zero.
Matriz perturbation theory. We include the following classic results in matrix
perturbation theory, where Theorem A.2 and Theorem A.3 study the perturbation on
singular values and eigenvectors, respectively.

THEOREM A.2 (Weyl’s inequality [65]). Let X and Y be two matrices of the
same size; then

loi(X) —0y(Y)| < || X =Y forallq,
where 0;(+) denotes the ith largest singular value of a matriz.

TuroreM A.3 (Davis-Kahan theorem [18]). Let X and X =X + A be two
n X n symmetric matrices with eigenvalues {\;}7_; and {\;}1_,, respectively, with the
following eigen-decompositions:

X=[3, ] ﬁ)o 131] (@ &), X=[ & [1})0 ZSJ (B, @],

where Ay and Ay (resp., ./AXAO and Al) are diagonal matrices that contain the top r gi-
genvalues {\; }1_; (resp., {\;}_,) and the remaining eigenvalues, respectively. @y, Py,
for k=0,1 are the normalized eigenvectors. Then,

- AdP
||‘I’1T‘I’0|| < wa

where 0 := |Amin(A0) — Amax(A1)| denotes the spectral gap between Ao and A;.

Remark A.4. A common technique for analyzing § above is by obtaining the
following lower bound:

0= p‘min(AO) - Amax(Al)| = |)\’I"(X) - )\T+1(X)|
= A (X)) = A (X)) + M (X) = A1 (X))

M)~ Aa (X)) — ALK — A (X))

(b)
> |>\T‘('X) - >\r+1(X)| - ||A||7

where (a) comes from the triangular inequality and (b) applies Theorem A.2. Here, we
assume that [A(X) — Ar11(X)| > ||AJ such that the spectral gap is greater than the
norm of perturbation (otherwise the lower bound becomes trivial). Indeed, this is the
case in our analysis because || A[| = O(y/Iogn) under the condition that p = '%" and
q= ﬁlifr", and it is always of lower order compared to |\ (X) — A, 11(X)| =Q(logn).
Therefore we have § ~ |A.(X) — Ar41(X)|. For details of the analysis on ||Al], see
Lemma A.6 and its proof.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/18/23 to 130.126.143.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

JOINT CLUSTERING AND SYNC. VIA SPECTRAL METHOD 803

LEMMA A.5 ([52, Lemma 5.6]). Suppose X,Y € R"™™? are two tall orthogonal
matrices, i.e., X ' X =Y 'Y =1,. Then,

Y — X0 <2 H(In - XXT)Y‘

3

where O =P(X'Y).
As a result, plugging Lemma A.5 into Theorem A.3 yields

2| A®||

. T
(A1) [®0 — 20| <2[[®; Bl < 3

where O = P(®] ®,). (A.1) will be frequently used in our analysis.

Analysis of A. Recall the residual A = A —E[A] defined in (4.5). Then under
the setting of two equal-sized clusters and the assumption O; = I4,1=1,...,n, by
definition each block A;; € R4*? for j # 1 satisfies

1-p)I ith probabilit
when K,(j):,.g(i): A _{( p) 4 with probability p,

A —pI, with probability 1 — p,
(A.2)
O;; with probability g,

he ] (1) Az =
when r(j) # (i) ’ {O with probability 1 — g,

where O;; ~ Unif(O(d)). Also, from the setting A;; =0 we have A; =0,i=1,...,n.
Given the above, we obtain the following inequalities for A.

LEMMA A.6. Given A defined in (A.2), suppose the model parameters p, q satisfy
p=Q(logn/n),1 —p=Q~1ogn/n) and g=Q(logn/n); then

Al < Vp(1—p)n+/qn

with probability 1 —O(n~1'). Also, for the ith block row A;. and AY defined in (5.11),
we have || A.|| < ||A| and |AD| < | A fori=1,...,n.

LeEMMA A.7. Given any block matric M € R™>" with n block rows, suppose
p=Q(logn/n),1 —p=QIogn/n), and g=Q(ogn/n); then for each block row A,. it
satisfies

A M| </ (p(1—p)+q)nlog(nd) max|| M|

with probability 1 —O(n=1).
The proofs of both Lemma A.6 and Lemma A.7 are deferred to Appendix B.

A.2. Proof of Theorem 5.1. In this section, we prove Theorem 5.1 which
provides the blockwise error bound in (5.4). We first introduce a series of necessary
inequalities, followed by the proofs of Lemmas 5.3 and 5.4 that are presented in section
5.2. Then we end up with the proof of Theorem 5.1. All the lemmas introduced in
this section are proved in Appendix B.3.

To begin with, recall that ®, ¥, and &) are defined as the top Kd eigenvectors
of A, E[A], and the auxiliary matrix AW is defined in (5.11), respectively. We first
bound the difference between ® (or ) and ¥ in the following.
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LEMMA A.8. For a sufficiently large n, let T := —W; then the following
satisfies with probability 1 — O(n=1):
|®—-wO| 5T,
A Jo P
1 — i (BT ®) <7,
1— omin (¥ @9) <7,

where O = P(® " ®) and OV =P(® "W).

The following lemma bounds the difference between ® and &@ . One can expect
that such a difference is tiny since A only differs from A% on its ith block column
and ¢th block row.

LEMMA A.9. Under the condition (5.3), as n is sufficiently large, we have
|® -~ D00 | S ymax @, .
J

max 87| < max||%; |

with probability 1 — O(n=1), where OV = P((®)T ®).

The following lemma further bounds the blockwise difference between i3
and W.

LEMMA A.10. Under the condition (5.3), for a sufficiently large n, we have

max | @) — &, 80| < max | 2;.].

1
max||®;.[| > —=
J

NG
with probability 1 — O(n~1), where S — P(\IJT@@)_

LEMMA A.11. Under the condition (5.3), for a sufficiently large n, we have

IS0 — 0| Snm?xll‘l’j-n,

where O =P (¥ ®), OV =P((@")7®), and V) =P(w 1),

As we can see, most of the statistics in the previous lemmas involve max; ||®,.]|,
and from Lemma A.9 we have max; ||®;.|| > 1/y/n. Then in the following lemma we
further show that max; ||®,.|| = O(1/y/n). Therefore, this enables us to replace all
max; ||®;.|| in the previous bounds with 1/y/n.

LEMMA A.12. Under the condition (5.3), for a sufficiently large n, we have

max ||

1
P, < —,
J J H ~ \/ﬁ
with probability 1 —O(n~1).

Based on the results above, now we are able to prove Lemma 5.3 which bounds
the difference between ®,. and its surrogate f(¥O);..
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Proof of Lemma 5.3. We start from (5.10) in our proof sketch section 5.2, which
is given as

(A.3) 1@, — F(O);.|| < [|ATY| ([[E[A]]:.(® — ®O)| +[|As(® — ®O)]),

where the three terms |A™(], ||[E[A]];. (@ — ¥O)||, and ||A;.(® — ¥O)|| are bounded
separately. For ||A™'||, by definition |A™'|| = 0, (A), and by applying Weyl’s in-
equality (Theorem A.2) we have

02d(A) > 024(E[A]) — |A| = == — [[A[| = Q(pn)
w.h.p., where ||A|| is bounded by Lemma A.6. This leads to
(A.4) IATHES (o)~
w.h.p. For ||[E[A]]; (P — PO)||, it satisfies

I[EA]): (@ — ©O)| < |[E[A]]; ||® ~ $O| S pv/m- \/T\/_ﬂﬂ/'
Ve —p)+q _ pivn
<p\/_ o log(nd)

w.h.p., where [|® — WO/ is bounded by Lemma A.8 and (a) uses the fact v/z 4 /y <
2(z 4+ y) for any z,y > 0. From (5.12), it remains to bound ||A;.(® — ®O)| as
(A.5) o . ‘ o
1A:(2 - 2O)| < ||Ai(2-2V0Y)|+]|A: (27 -S|+ A ¥ (50 -0)]
::Tl ::T2 ::Tg
=T+ 1>+ 15,

w.h.p. Here, T1, T3, and T3 satisfy
Ty =] (- 3D0Y)| <A, [|® - 2P0

(a)
S (Vp(1 =p)n+/qn) - 7 max [®;.]] < v (p(1—p)+ q)nnmaXHq’j-ll,

Tz = HAl*(‘i'(i) TSD)|| < V/(p(1 - p) + q)nlog(nd) max||<P(l v, S0
(A.6) SV —p)+gq nlog(nd)maxH(I) II,
ngHA-\IJ(S Do _ )| <[|A.||SDOD — 0|
<V~ p) + gnlog(nd) max|| ;.|| - ymax @, |
SV (L—p)+4q) log(nd)nmaxH(I' II

For T, ||A.| and ||® — @Y 0| are bounded by Lemma A.6 and Lemma A.9,
respectively; for T, || A;. (@ — ®S@)|| is bounded by Lemma A.7 with M = &) —
©S® | and max; ||<I)( D ¥, S| is bounded by Lemma A.10; for T3, || A, ®| and
1SD0® — 0| are bounded by Lemma A.7 and Lemma A.11, respectively. As a
result, one can see that 75 is the dominant term among {7;}3_, and (A.5) becomes

18:(® ~ 2O)| S /(T — p) + gy lognd) masx | ;.| = nprmax | .|
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w.h.p. Putting the above together into (A.3) yields
[ — F(LO).[| S AT (I[E[A));.( — ®O)|| + [|A;. (2 — ®O)|))

1 [ pvn @
S ) (L o . ) £ x|

w.h.p., where (a) uses max; ||®,.|| > 1/y/n shown in the proof of Lemma A.10. O

Next, we prove Lemma 5.4 which bounds the difference between ®;. and ®;. for
k(i) = K(j)-
Proof of Lemma 5.4. We start from (5.9) such that

[@i — @] <[ @i = f(PO)i.|| + [[@5. — f(RO);. || + [ f(LO)i. — [(¥O);.l;

where ||®;. — f(¥O),.|| and ||®,. — f(¥O),.|| have been bounded by Lemma 5.3. For
|£(%O);. — f(®O), |, by defnition
IF (0. — f(RO);. | =I(Ai. — A;)POA™| < [[(As — A )T|A7
(A7) < (1An 2|+ A 2 DIAT SV (p(1 —p) +q) log(nd) - (pn)
(a)
= = < nmax|®; |

NG

w.h.p., where |A; ®|| and ||A; ¥| are bounded by Lemma A.7, ||A™"|| is bounded
in (A.4), and (a) uses max; ||[®,.|| > 1/\/n in Lemma A.10. Combining (A.7) with
Lemma 5.3 yields

(A.8) 195 — @;.[| S nmax|[®;|
w.h.p. This further leads to max; | ®;.|| = O(1/y/n) given in Lemma A.12. Plugging
this back into (A.8) completes the proof. 0

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. By defining N¢,, N;, and Na ; as in (5.13) such that

¢, -0, 0 e, —¥,.0 P, -,
®, -¥,.0 ¢, -9,0 ®,, — P,
=:N; :3NA,i
we have ||IV;|| = /m||®;. — ¥;.0|| since ¥;.=---=,,  and

(@) | & (b) n
INal < ; ;. ~ ;| S vim- L =0)
w.h.p., where (a) holds by definition of the operator norm and (b) comes from Lemma

5.4. Then the following satisfies:

(a) (b)
|® —®O|| = max [|[[N(,, N¢,Jz| > max [Nyl = | Ne,|
(A.9) lleli=1 llyll=1

(c)
> |Ns|| = [N all =vm|®;. —®,.0| —O(n)
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w.h.p., where both (a) and (b) hold by definition of the operator norm and (¢) comes
from the triangle inequality. On the other hand, from Lemma A.8 one can see that
|® — PO| <7 <n/log(nd) wh.p. Combining this with (A.9) yields

w.h.p. The bound ||®;. — ¥,.0|| for i € C7 is obtained in the same way as above. [

A.3. Proof of Theorem 5.2. In this section, we prove Theorem 5.2 which
provides the performance guarantee of Algorithm 1. Again, we start by listing several
important inequalities, where most of them directly come from Theorem 5.1. All the
proofs of the lemmas are deferred to Appendix B.

To begin with, recall that Theorem 5.1 bounds the difference between the noisy
eigenvector block ®;. and the clean one W, O; then the following lemma further
bounds the difference between other statistics such as the polar factors P(®;.) and
P(2,.0).

LeMMA A.13. Under the condition (5.3) and as n is sufficiently large, for any

i,7=1,...,n such that k(i) = k(j), the following satisfy:

(A.10) lo(®:) = V2/nl Su/vn, 1=1,....d,
(A.11) [P(®i.) —P(®:.0)[| S,

1@, P(2:.)" — ©,;.P(®:) | $n/Vn,
(A.12) IP(®,.P(®i) ") — P(¥;.P(L:) )| S0

with probability 1 — O(n="), where O =P (¥ ®).

Lemma A.13 is sufficient for showing the exact recovery of the cluster memberships
by Algorithm 1. For showing the stable recovery of the orthogonal group elements
{0;}"_,, we need the following result.

LemMA A.14. Under the condition (5.3) and the assumption that p; € Cy is the
first pivot selected by Algorithm 1, as n is sufficiently large, for Q. and Q. defined
in (5.16), the following satisfies for any j € Cs:

1Q. —P(¥;.0) 05 S,
19,.Q.0 — ;. P(®;.) " Osl| Sn/Vn,
(A.13) IP(2;.Q.5) — P(; P(;.) )02 S

with probability 1 — O(n~"), where O =P(¥ ' ®) and Oy = P(P($;0)Q.,).

Proof of Theorem 5.2. Exact recovery of the cluster memberships. According to
the blockwise CPQR in section 4.2, without loss of generality we assume p; € C is
the first pivot column selected by Algorithm 1. Then for any node j, the two blocks
R;; and Ry; satisfy

IRy 15 =P (@p, ) (®5) "I, [ RogllE = 1(25) TIIF — [P (R )(25) I,
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which correspond to the projection of (®;.)" onto the column space R((®,,.)") and
the complement of R((®,,.) "), respectively. According to Algorithm 1, node j would
be assigned to Ci if || Rqj||r > || R2;||r, which is equivalent to

(A14) P, ), e > L2, .

We first show that, for any j € C1, (A.14) is satisfied w.h.p. To this end, by using
W, 0 as a surrogate of ®;. for each node i, |P(®,,.)(®;.)" || can be bounded as

1P(®p,) (@) " [[r = || [P(¥,.0) + P(By,.) — P(2,,.0)] (@) ||
> |[P(®,,.0)(¥;.0 + ®;. — ¥;.0) " [|lp || [P(®p,.) — P(¥,,.0)](®;.) " [l¥
> |1P(2,,)(2;) e = | P(2p,)lle ]| @) — ©,.0] = [|P(Dy,.) = P, O)|[[| 8|1

::Tl ::TQ ::Tg

(A.15)
=T — T - T3,

where we use the fact | XY ||r < || X||||Y]|r for any X and Y. To proceed, T3, Ta,
and T3 can be bounded separately as

Ty = PRy, )(¥) e = Viml| ¥y, (¥;) " |p = v/2d/n,

Ty = ||P(®y,.)llp|®;. — ¥;.0( <Vd-O (n/vn) Snv/d/n,

Ty < V| @, ||P(®,.) ~ P(%,, O)| S V- (V2/n+0 (n/Vn)) -0 S 0v/d]n.
For Ty we use ¥, .(¥;.)" = I,/m; for Ty we bound | ®;. —¥,.O| by Theorem 5.1; for

T3, both ||®,.]| and |P(®,,.) — P(¥,,.0)| are bounded by Lemma A.13. Plugging
these into (A.15) yields

2d d
(A.16) 1P(®y,)(25) " r =1/~ —O<\/;77>
w.h.p. On the other hand, the RHS of (A.14) satisfies
V2 V2d \/_ d

—Hq’ HF<—II‘1" I <==%;0[ +[®; ‘I'j~0||)=(1+0(77))\/;

w.h.p. Therefore, as 7 is sufficiently small, (A.14) is satisfied, and j € C is correctly
assigned to C7. On the other hand, for any j € Co, similar to (A.15) we have

1P(®,,.)(2,.) " Ir = || [P(¥},.0) + P(®p,.) — P(¥,,.0)] (2,.) " ||
<|[[P(%,,.0)(¥;0+&;. - ¥,0) " [|p + | [P(®},.) — P(¥,,.0)] (®;.) " [|Ir
<[[P(®y, ) (25) e + | P(®p,.) 6]/ @) — ;.02 + | P(Ry,.) —P(¥,,.0)||2]| 8. |[¢

=0 =T =T3

A{-o() Eol )
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w.h.p., where 0;(®;.) is bounded by Lemma A.13. Therefore, as n is small, the
inequality in (A.14) does not hold, and node j is assigned to Cs. This leads to the
exact recovery of the cluster memberships.

o Stable recovery of orthogonal transformations. To bound the estimation error of
{O;}?_,, recall the orthogonal matrix @ from the blockwise CPQR in (4.1); then in
the case of two clusters, it can be written as Q = [@ .1, Q 5], where Q.;,Q., € R?¢*4,
We follow the previous assumption that p; € C} is the first pivot; then Q. ; € R24¥4 ig
the polar factor of (®,,.)" up to some orthogonal transformation, and Q ., € R?¥x4
is orthogonal to Q.;. As a result, for any node j € C; we have

(A.17) Ri;=(Q)) (®;)", Q, :P(‘I’;.)Ola

where O; € R*? is some orthogonal matrix. Then, according to (4.2), our estimation
O; is given as O; = P(Ry;) T = P(®,;.P(®,,.)")O,. Meanwhile, the ground truth O,
satlsﬁes O; P(\Il P(®,,.)") =1, by assumptlon then the estimation error of O
can be bounded as

(a)

<7

~

10, — 0,0, = 10,0, — O,|| = ||P(®,P(®,)T) — P(¥,; P(¥;)T)|

w.h.p., where (aA) comes from Lemma A.13. This completes the proof for j € Cj.
Next, we check O; for j € Cy; similar to (A.17) we have

(A.18) Ryi=(Q,) ()", (Q,)'Q,=0

Also the ground truth O; satisfies O; = P(¥;. P(¥ #)7) = I;. Then our esti-
mation OJ is given as O = P(Ry;)" = P(®,.Q,). Furthermore, by defining
0:=P(P($,0)Q.,), where O — P(T " ®), we have

N _ (a)
10; — 0;0:|| = |P(®;.Q.5) — P(¥;.P(¥;) )O:| <1

w.h.p., where (a) comes from (A.13) in Lemma A.14. This completes the proof. O
Appendix B. Proof of the Lemmas in Appendix A.

B.1. Proof of Lemma A.6. The proof relies on the following two theorems.

THEOREM B.1. Let A € R™*™ be a symmetric matriz whose entries a;; for 1 <
i <j<mn are independent and identically distributed (i.i.d.) and satisfy

g 17 p wpp
i =
/ —p, w.p. 1 —p

Then, for any c> 0, there exists constants c1,co >0 such that

|A| < c1y/p(1 —p)n+ czy/logn

c

with probability 1 —n~

Proof. We resort to the moment method which is commonly used in the random
matrix theory (see, e.g., [5, 67]). The idea is to bound E[||A||?*] for any k € N and
apply Markov inequality for getting a tail bound. We start by denoting
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ky 1/2k
"k-(Z(ZE a; )) =n'*\/np(1 - p),

=1

R 1/2k
= (ZZWinif) <n'/*.

i=1 j=1

Then by applying [49, Theorem 4.8], we obtain
E [||A[]**] Y2k <203 + CVkoi <20\ /np(1 — p) + CVkn'/*

for some universal constant C' > 0. By further setting k = [ylogn] for some constant
v >0, we have

E [||A]**] L2k <2eY?7\/np(1 — p) + C"\/logn
for some C’ > 0. To get a tail bound, by Markov inequality [10] we obtain
P{||A| >t} =P{||A|** > **} <t"*E[||A]**]

2[vlogn
- (2@1/27\/71])(1—p)—|—C’\/1ogn> [iosn]
- t

for any ¢ > 0. By setting v = § + 1, for any constant ¢ > 0, we can identify some
constants ¢1,c2 > 0 such that ¢ = ¢1/np(1 —p) + cav/logn and P{||A| >t} <n~¢,
which completes the proof. 0

THEOREM B.2. Let S € RmMaxn2d po qn ny x ny random block matriz where each
block S;; is i.i.d. and satisfies

O;,; p- q,
Sij_{oj W-p- 4
w.p. 1 —gq,

where O;; is uniformly drawn from O(d). Let n=n1+mng. Then, for any ¢ >0, there
exists c1,co >0 such that

1S < e1(v/ani + v/qnz) + c2/logn

—C

with probability 1 —n
Proof. The proof is similar to the one of [28, Theorem A.7], with the only differ-
ence on the orthogonal group O(d) rather than SO(d) considered in [28]. 0

Proof of Lemma A.6. By definition, A can be written into four blocks as

A, A A 0o A
A= ~1T1 ~12 = All "‘0 + | ~7T 12 ::Ain+Aout7
A, Ay 0 Ay A, O

where All,AQQ € Rmdxmd _correspond to the two clusters C,Cso, respectively. By
using the fact ||Agull = |A1z]| and the triangle inequality that [|Aj,l| < AL +
1Az and Al < [|Awn]| + Ao, we have Al < [|As1]| + [|[As|| + | Az For
|A11]], by definition in (A.2) we can denote A;; = 7;;14, where r;; is a random
variable such that P{r;; =1 —p} =p and P{r;; = —p} =1 — p. Then let E; € R™*™
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be a matrix tklat contains all r;; for 4,5 € Cy such that r;; =r;; and r;; =0, and one
can see that A1; = E1 ® I;, where ® denotes the Kronecker product, and further

Al =B @ Ia|| = || E1]l-

Then from Theorem B.1 we get | Aq]| < /p(1 — p)n w.h.p., where the residual term
c2y/logm is absorbed owing to the assumption p = Q(logn/n) and 1 —p=Q(logn/n).
Similarly ||[Ags| is bounded as [|Ag|l < /p(1—p)n w.h.p. For ||As|, applying
Theorem B.2 gives ||312|| < /g w.hop. Putting all together yields the bound on
JAl.

For the block row A;., let us consider another matrix A’ € R"¥*"? which is
all zero, but only the ith block row is equal to A; (i.e., A, = A;). Notice that
A’ is of the same size as A; then by the definition of the operator norm | X| =
max||y|,=1 || Xvl[2, one can see that |A, || =[|A"] < [|A].

For A® let us consider another matrix A" which is identical to A, but only
the 7th block column is all zero, i.e., A(l) L — 0. Then by definition of the operator
norm we have ||A®<!| < ||A]. Furthermore since A is identical to A(l ! but
only the ith block row is all zero, then by following the same idea as above we have
A9 <Al @ || which completes the proof. 0

B.2. Proof of Lemma A.7. The proof relies on the following inequality.

THEOREM B.3 (matrix Bernstein inequality [69]). Let Xi,..., X, € R%1>Xd2 pe
an independent matriz such that E[X;] = 0 and || X;|| < L for i =1,...,n. Let
Z=Y7",X; and v(Z):=max{|[E(ZZ")|, |[E(Z" Z)||}. Then for anyt>0,

42
(B.1) P{||Z|| >t} < (d1 + d2) exp <W+/Zt/3>

In other words, for any c> 0,

2¢cLlog(n(dy +ds))
3

(B.2) 1Z|| < v/2cv(Z)log(n(dy + da)) +

—C

with probability 1 —n
To obtain (B.2), by setting the RHS of (B.1) to be n™¢ for some ¢ >0 we get

L2y L2y
=+\/2v(Z 1 =cl 1 .
t v( )’y(\/ +18U(Z)+\/18v(Z)>’ v :=clogn + log(d; + ds)

Then when ¢ > 1 it satisfies ¥ < clog(n(di + d2)) and ¢ < /20(Z)7(1+ 2/ i) <
20(Z)y + 2[” , which leads to (B.2).

Proof of Lemma A.7. We directly apply Theorem B.3 by letting X ; = A;; M ;..
Clearly, E[X ;] = 0 and || X ;| < [|Ai]|||M;.|| < max,;||M;.|| for j =1,...,n, where
IA;;ll <1 by definition in (A.2). Then L =max; ||M;.||. For v(Z) in Theorem B.3,
where Z:= 37" | X ;, we have

E(ZZ7) ZR:IE[A MM A (%)ZH:E[AiinTj] Rz
= 7j=1

j=1

- (b)
ZE[ }maXHM 122 [2( (1= p) +q)max | M [I3| Lo,

J=1
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where (a) holds since MJM]T =< ||M;.||?I4 and (b) holds by (A.2). Similarly, one
can see that E(Z ' Z) = [2(p(1—p)+q)max; | M;.||3]14. Then, by definition, v(Z) =
2(p(1 —p) + g) max; | M.||>. In this way, Theorem B.3 gives us

2c
|8 M]| < /26(p(1 = p) + g)nlog(2nd) max [ M .| + 5 log(2nd) max | M.

S V(p(1 = p) + q)nlog(nd) max || M |

with probability 1 —n~¢ for ¢ > 0, where the last inequality holds because of the as-
sumption p(1—p)+q =Q(logn/n), and then the second term 2 log(2nd) max; || M. |
is grouped into the first one. This completes the proof. 0

B.3. Proof of the lemmas in Appendix A.2. Proof of Lemma A.8. For
||® — PO, applying Theorem A.3 with (A.1) yields

& oy < 1A% _IAll¥]
) )

where 0 = |024(E[A]) — 024+1(A)|. Here, 024(E[A]) = pn/2 by definition, and

02d+1(A) < 02441(E[A]) + ||A|| = ||A|| by Theorem A.2. Then applying Lemma

A6 gives 0 > 024(E[A]) — 024+1(A) = Q(pn) w.h.p. Also, by definition ||®| = 1.
Combining these gives ||® — ¥O| <7 w.h.p. For 1 — g, (¥ ' @), notice that

'd-—0O|=T"(®-TO)|<|¥||®-TPO|<T
[ S

w.h.p.; this leads to

(a)
Omin(0) = Omin(¥ @) =1 — 0,in (P @) < |T'® -0 <7
w.h.p., where (a) comes from Theorem A.2. The bounds on @@ — O || and
1-— Umin(\IlT@(l)) are derived in a similar manner; therefore, we do not repeat. 0
Proof of Lemma A.9. Applying Theorem A.3 on ||® — ®P 0O || yields

(A - A3

& - 200 < 5

where § = |024(A) — 52411 (AD)]. To bound 4, similar to the proof in Lemma A.8,
we have 024(A) > 72a(E[A]) - | All and 05441(AD) < o301 (E[A]) + |AD] = | AD|
w.h.p.; then applymg Lemma A.6 gives 0 > Uzd(E[A]) = 2||Al| = Q(pn) whp. To
bound [[(A — A®)®D||, notice that A — AW = A — A® which is only nonzero on
the ¢th block row and the ith block column; then

. ) . ~ (a) . .
(A= AD)BD| = (A - ANV < A 80 +[|Al 8|
< 118520 + [ A1,
where (a) holds by separating the ith block row and block column Wlth the trian-

gle inequality following. To proceed, since A,;. is independent of @, || A, &7 is
bounded by Lemma A.7 and yields

1429 < V(1 —p) + g)nlog(nd) max|| 25" |
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w.hup. Also, A || < (vp(I —p)n + /Ga) max; @4 w.h.p., where [|A.| is
bounded by Lemma A.6. Combining the result above gives

(B.3) e~ 20| SnmJaXH@Ef)II

w.h.p. Next we show that max; ||«1>§1)|| < max; |®;.]|. Let j' be the index such that
||‘I’§Zf? | = max; ||‘I’§Z)||7 then we have
(B.4)

i (@) ) i) 2 Nl i i
1250 = 1251l < @5~ 270V < |8~ DO| < ymax]| &5 | = ]| @5

w.h.p., where (a) comes from the triangle inequality, and () holds since ® . —'IDEQO(“
is the j'th block row of ® — ®© 0. This implies if the condition (5.3) that 7 < ¢
holds for a sufficiently small co, then max; |8 = |@%)]| < @] < max; |@;.|
w.h.p. Plugging this into (B.3) completes the proof. O

Proof of Lemma A.10. From the triangle inequality we obtain

max|| &7 — ;. S| < max(| @] + @, 7)) < max | @[] + max [, |
(a)
(B.5) < max |85 + (1/v/7)

w.h.p., where (@) holds since max; ||<I>§Z)|| <Smax; [|[@;.]] in Lemma A9, and || ¥,.|| =
1/y/m by definition. It remains to show max; ||®;.|| > 1/y/n, which comes from

=@ <

n
S 152 < Virmax ..
=1

Plugging max; ||®;.|| > 1//n back into (B.5) completes the proof. O
Proof of Lemma A.11. By definition,
15000 - 0= [P(ET2)00 - P(@T )| = [P BIO0) - P(@TB)|
(a) . N
(B.6) < 2v2min{o i (¥ @), 00 (T @)} E T (@D 0 — @),

where (a) comes from Lemma A.l1. To proceed, from Lemma A.8 we have 1 —
Umin(\I'T@(z)) <7and 1-— Umin(\IlT@) < 7 w.h.p. Moreover, under the condition
(5.3) that n < cg, it satisfies

__ VP -p) V7@ V200 -p) +a) _ V2
pvn - pvn ~ log(nd)

where (a) uses the fact /z + /y < \/2(z+y) for any 2,y > 0. This implies
Tonin (T D) = Q(1), onin (¥ T @) = Q(1) w.h.p. Plugging this back into (B.6) yields

=o(1),

Is?0 —o|<|eT (@0 - )| < |¥||2 - 20| < nmax||®;.|
J

w.h.p., where Lemma A.9 is applied to bound ||® — ®® 0. 0
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Proof of Lemma A.12. Let i € Cy and j' € Cs be two nodes such that

®, || = P, ®, = P,
[ | = max [, 20 = max @ |
Without loss of generality we assume ||®;/|| = max; |[|®;.|| which is the largest block

among all nodes. Then, we define a matrix ® € R"*?? which has the same size of
® and is formed by ®;.,®;. as

@' =[®) - @) q);' SRR I
m><<I>;_ qu);r,

As a result, ®’ is close to ® such that

n

(0) | & ®)
(B.7) 12— @'l < | D 18i — o2+ > (1B — P52 S V| @yl
i=1

j=m+1

w.h.p., where (a) holds by definition of the operator norm and (b) comes from (A.8)
in the proof of Lemma 5.4. This leads to

() ®
(B.8) | max () — UmaX(‘I)/) =[1- UrnaX((I)l)| <|® - ‘I)/H S \/ﬁn||<1>j'~||

w.h.p., where (a) uses opax(®) = 1 since @' ® = I,; by definition and (b) comes
from Weyl’s inequality. On the other hand, by definition of the operator norm,

n

(') = mavx || @'z = max Zn@z/ 224+ Y (@)

1 —
EE EE P

n

> max Z |®jr.x||2 = /m|®;.].

llell=1"\] . “
Jj=m+1

Combining this with (B.8) gives

V[ @0 || =1 < omax(®') — 1.5 V/n| @50 |

w.h.p. This implies as long as the condition (5.3) that 1 < ¢g holds for a sufficiently
small ¢o, it satisfies ||®;..|| = O(1//n), which completes the proof. O

B.4. Proof of the lemmas in Appendix A.3. Proof of Lemma A.13. By
definition, 0;(¥;.0) = +/2/n for [ =1,...,d. Then,
Jou(®:) — /37l € 1@~ w0 S, 1=1,.d,

w.h.p., where (a) holds by Weyl’s inequality in Theorem A.2 and (b) comes from
Theorem 5.1. |P(®;.) — P(¥,.0)| is bounded by Lemma A.1 as

IP(®;.) — P(¥:.0)|| < 2v2min{o i, (®:), 0, (¥:.0)}| @i — ©:.0)|
Smin{(v/2/n = O(n/v/m) ™, (v/2/n) ™} - O/ V) = O (n)
w.h.p. For | ®;P(®;.)" —¥; P(P¥,)T"|, by substituting ®,;. and P(P¥;.) with ¥; O+

i)
®, —¥,0=",0 and P(¥,.0) 73( i.)—P(¥;.0), respectively, we denote Agp, =
®; — ;0 and Aps,):=P(P;.) — P(\Ill-.O); then we get
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[®;.P(®:.) — T, P(T)T|

=(¥;.0 + Ag, )(P(¥;..0) + Aps,)) — T, P(¥,)"|

=|Ag, P(¥,0)" + T, 0A5 5, )+ As, Abs, |

<|As, ||||7> G+ 11 ||||A7><q> I+ 1As, [I[|Ap@, )

<— 1+ 17+\/_ \/—

w.h.p., where ||Aq, ;.|| is bounded by Theorem 5.1. It remains to bound the last term
|P(®,; P(®;.)") —P(L,; P(¥;.)")|; by Lemma A.1 we have

IP(2, <«I>i.>T>—7><\Ifj.7>< 2l
< min{on (B, P(@.)T), 0ol (0, P() )}, P(80)T — ¥, P(E,)|
Smin {(v2/n = O(n/vm) ™, (v/2/m) ™' } - O(n/v/n) = O ()

w.h.p., where opin (¥, P(¥,.) ") =+/2/n, and
Umin((I)j-P(q)i-)T) > Umin(‘I’j-,P(‘I’i-)T) - ”q)jp(q)i-)—r - ‘I’j-P(‘I'i-)TH
>v/2/n—0(n/Vn)
w.h.p., which is bounded by Theorem A.2. This completes the proof. 0
Proof of Lemma A.14. For ||Q.o — P(¥,;.0)" O,||, the following satisfies:

mm (

i, _ (@) _
Q.2 —P(¥;.0)0:| = Q% — P(2,.0) 02| < Q.1(Q.) P(¥;.0)" Os
=(Q.)TP(¥;.0)70s]| = O] P(®;)P(¥;.0)" Os] = | P(®:)P(¥,.0)7 |
=[P(®:)P(¥;.0)"|| < |[P(L:.0)P(¥;.0) || + [|(P(¥:) — P(:.0))P(¥;) " |

® T T
< [IP(2)P(®;) |+ [1P(®:) = P(L.O)[|P(®;.) | <7

w.h.p., where (a) comes from Lemma A.5 with X = Qﬁ, then I,y — XX =
Q.1(Q.1)", and (b) uses (A.11) in Lemma A.13. Next, for [|®;.Q., — ¥, P(¥;.)T O,

we have

[9;.Q.0 — ;. P(¥;.) O] <[|¥;.0Q.,— ¥, P(¥;.) O + [[(®;. — ¥,.0)Q.,||
<2 1Q.. — P(¥,.0)" Osf + [|®;. — ¥,.0(|Q.] Sn/vn

w.h.p. The bounds on [|P(®;.Q.,) —P(¥,;. P(¥,;.) O3)| can be obtained by applying
Lemma A.1 with Theorem A.2, which is bnmlar to (A.12) in Lemma A.13, and thus
we do not repeat. 0

Appendix C. A more involved noise model. In this section, we study a
more involved noise model that extends the one introduced in section 3. Recall that
the orthogonal transform A;; is measured exactly when nodes ¢ and j belong to the
same cluster. To extend from the measurement model in (3.1), we include additive
noise perturbation to (3.1), and the new noisy measurement A;; for any ¢ < j follows:

(C.1) A=Ay + Wy,
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where W;; denotes the additive noise that is independent for each pair of nodes (3, 7).
For now, there is no need to specify the statistics of W;; but only make sure that
W =0fori=1,...,n; E[W;;] =0 for any pair of nodes, and W; = W]TZ for the
sake of symmetry. Notably, such an additive noise model was also broadly considered
in orthogonal group synchronization problems, e.g., [52, 53].

In this case, our proposed Algorithm 1 still applies and is able to recover the
cluster memberships and the orthogonal transforms, as we show both theoretically
and empirically in the following.

C.1. Analysis. Our analysis for this noise model is still based on the setting of
two clusters with equal cluster sizes. First, let us denote W = [W;]i',_; € R*#*" ag
the whole symmetric matrix of additive noise; then we require the following assump-
tions on W.

Assumption C.1 (operator norm). It satisfies | W || < ¢y for some

co=0(Vp(1 —p)n +/an),

with probability at least 1 —O(n™1).

Assumption C.2 (block row sum concentration). Given any block matrix M €
R™*" with n block rows, for each block row W . it satisfies

W5 M]| S emax M, |

for some € > 0, with probability at least 1 — O(n™1).

Both Assumptions C.1 and C.2 are reasonable as Assumption C.1 states an overall
concentration on W,;, and Assumption C.2 further confines the variance of each block
row of W. In particular, such a block row concentration is necessary for getting a
blockwise analysis. Given the above, we are able to derive the following blockwise
error bound between the noisy eigenvectors ® and the clean ones W.

THEOREM C.1 (blockwise error bound). Under Assumptions C.1 and C.2 and
the setting of two equal-sized clusters with model parameters (n,p,q,d, €, €), for a
sufficiently large n, suppose

(C2) i.w Y —p) +ajnlog(nd) +c _

pn

for some small constant co > 0. Then with probability 1 — O(n=1),

(C.3) Jax |®;. — ¥, 0| <

o=

where O =P(¥ ' ®).

Proof. The proof structure essentially follows the one of Theorem 5.1, with the
only difference on the analysis of the perturbation A = A —E[A]. In this case,
A = A + W, where A represents the original perturbation defined in (A.2). As a
result, by applying the triangular inequality, the operator norm bound on ||AH given
in Lemma A.6 is now written as

IA| < A+ W] < /p(L=p)n + /qn + <.
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Similarly, the block row sum inequality in Lemma A.7 can be given as

1A; M| < [|A. M|+ W M| < /(p(1 = p) + g)nlog(nd) + .

Then, the remaining proof is almost identical to the one presented in Appendix A.2,
but only replacing the original bounds on ||A|| and ||A; M || with the updated ones,
and we leave the detailed proof to interested readers. 0

As a result, the performance guarantee of Algorithm 1 on the new noise model is
identical to Theorem 5.2, and we restate that here.

THEOREM C.2 (performance guarantee). Under the assumption of Theorem C.1,
fori=1,...,n, with probability 1 — O(n_l),AAlgorithm 1 exactly recovers the cluster
memberships k(i) defined in section 3, and O; satisfies

(C.4) 10; — 0,0,y || <7,

where Oﬁ(i) is orthogonal and only depends on the cluster that i belongs to.

Proof. The proof is identical to the one of Theorem 5.2, and therefore we do not
repeat. 0

Remark C.5. As an example, let us consider the case of i.i.d. Gaussian noise
such that all the entries in the off-diagonal blocks W;; are i.i.d. Gaussian random
variables with mean zero and variance 2. In other words, W;; ~ N (0,021 ) for any
pair of nodes (i, ) that i # j. Then, by using an existing result on the operator norm
(e.g., [70, Theorem 4.4.5]) we have

WIS ovnd

with high probability. For the bound on ||A; M]||, we have
N N (@) ®)
A M| < |A[|M] S oVnd-||M| < onvndmax || M;.|.,
J

where (a) holds since ||A;| < ov/nd and (b) comes from the fact that |[M|| <
nmax; || M,.||. As a result, we can set ¢g = cvnd and € = onv'nd; then the ex-
act recovery condition (C.2) becomes

V(p(1 = p) + q)log(nd) + onv'd -
pVn =

which indicates that exact recovery is available with high probability as long as o is
less than a certain threshold.

']7:

C.2. Experiments. In this part, we empirically test Algorithm 1 on the model
with additive white Gaussian noise discussed in Remark C.5. We follow the same
evaluation process as in section 6, and the result is shown in Figure 8. We test on the
case of my; = mo = 500, d = 2, and different noise levels o € {0,5,1,2}. In Figure 8
we still observe a sharp phase transition phenomenon on the exact recovery of cluster
memberships, and the error of synchronization is also bounded when the clusters are
perfectly identified. This agrees with our theoretical analysis and demonstrates the
efficacy of our proposed algorithm.
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(C) Success rate of exact recovery, o =1 (d) Error of synchronization, o =1
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(e) Success rate of exact recovery, o = 2 (f) Error of synchronization, o = 2

FI1G. 8. Results on the probabilistic model with additive white Gaussian noise. We test under
the setting m1 =mg = 500, d =2, the noise levels o € {0.5,1,2}. (a), (c), and (e): the success rate
of exact recovery by (6.1), under varying o in p = alogn/n and B in q = Blogn/n; (b), (d), and
(f): the synchronization error defined in (6.2) under varying o and 3.
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