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Multi-Frequency Joint Community Detection
and Phase Synchronization

Lingda Wang

Abstract—This paper studies the joint community detection and
phase synchronization problem on the stochastic block model with
relative phase, where each node is associated with an unknown
phase angle. This problem, with a variety of real-world applica-
tions, aims to recover the cluster structure and associated phase
angles simultaneously. We show this problem exhibits a “multi-
Jfrequency” structure by closely examining its maximum likelihood
estimation (MLE) formulation, whereas existing methods are not
originated from this perspective. To this end, two simple yet efficient
algorithms that leverage the MLE formulation and benefit from
the information across multiple frequencies are proposed. The
former is a spectral method based on the novel multi-frequency
column-pivoted QR factorization. The factorization applied to the
top eigenvectors of the observation matrix provides key infor-
mation about the cluster structure and associated phase angles.
The second approach is an iterative multi-frequency generalized
power method, where each iteration updates the estimation in a
matrix-multiplication-then-projection manner. Numerical experi-
ments show that our proposed algorithms significantly improve the
ability of exactly recovering the cluster structure and the accuracy
of the estimated phase angles, compared to state-of-the-art algo-
rithms.

Index Terms—Community detection, phase synchronization,
spectral method, column-pivoted QR factorization, generalized
power method.

I. INTRODUCTION

OMMUNITY detection on stochastic block model

(SBM) [1], and phase synchronization [2], are both of
fundamental importance among multiple fields, such as machine
learning [3], [4], social science [5], [6], and signal processing [ 7],
[8], [9], to just name a few.

Community detection on SBM: Consider the symmetric SBM
with IV nodes that fall into M underlying clusters of equal size
s = % SBM generates a random graph G such that each pair
of nodes (4,j) are connected independently with probability
p if (i,7) belong to the same cluster, and with probability ¢
otherwise. The goal is to recover underlying cluster structure of
nodes, given the adjacency matrix Asgy € {0, 1}V of the
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observed graph G. During the past decade, significant progress
has been made on the information-theoretic threshold of the
exact recovery on SBM [1], [10], [11], in the regime where
p= alcj’\%N,q = BIC]’\%N,and\/(_y — /B > v/M. The maximum
likelihood estimation (MLE) formulation of community detec-
tion on SBM

-
%lgﬁ <ASBM7HH >7 (D
is capable of achieving the exact recovery in the above regime,
where H := {HE {0, 1}N><]M cH1y, =1y, HT].N = Sl]w}
is the feasible set. However, the MLE (1) is non-convex and NP-
hard in the worst case. Therefore, different approaches based on
MLE (1) or other formulations are proposed to tackle this prob-
lem, such as spectral method [12], [13], [14], [15], [16], [17],
[18], [19], semidefinite programming (SDP) [10], [20], [21],
[22], [23], [24], [25], [26], [27], and belief propagation [11],
[28].

Phase synchronization: The phase synchronization problem
concerns recovering phase angles 61, ...,0y in [0,27) from
a subset of possibly noisy phase transitions 8;; := (6; — 6,)
mod 27. The phase synchronization problem can be encoded
into an observation graph G, where each phase angle is associ-
ated with anode 7 and the phase transitions are observed between
6; and 60; if and only if there is an edge in G connecting the pair
of nodes (7, 7). Under the random corruption model [2], [29],
observations constitute a Hermitian matrix whose (i, j)th entry
for any 7 < j satisfies,

o et(0i=0;5) with probability r € [0, 1),
P9 Y gy ~ Unif(U(1)),  with probability 1 — 7,

where ¢ = y/—1 is the imaginary unit, and U (1) is unitary group
of dimension 1. The most common formulation of the phase
synchronization problem is through the following nonconvex
optimization program

max <Aph7 :I::BH> , 2)

~CN
xcCy

where C¥" is the Cartesian product of N copies of U(1). Again,
similar to SBM, solving (2) is non-convex and NP-hard [30].
Many algorithms have been proposed for practical and ap-
proximate solutions of (2), including spectral and SDP relax-
ations [2], [31], [32], [33], [34], and generalized power method
(GPM) [35], [36], [37]. Besides, [38], [39], [40] consider the
phase synchronization problem in multiple frequency channels,
which in general outperforms the formulation (2).
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Fig. 1. Tllustration of the joint estimation problem on a network with two
clusters of equal size. Each node is associated with a phase angle. Each pair of
nodes within the same cluster (resp. across clusters) are independently connected
with probability p (resp. q) as shown in solid (resp. dash) lines. Also, a phase
transition 6;; = 0; — 0; (resp. 0;; is noise) is observed on each edge (i, )
within each cluster (resp. across clusters). The goal is to recover the cluster
structure and the associated phase angles simultaneously.

Recently, an increasing interest [41], [42], [43] has been
seen in the joint community detection and phase (or group)
synchronization problem (joint estimation problem, for brevity).
As illustrated in Fig. 1, the joint estimation problem assumes
data points associated with phase angles (or group elements)
in a network fall into M underlying clusters, and aims to si-
multaneously recover the cluster structure and associated phase
angles (or group elements). The joint estimation problem is
motivated by the 2D class averaging procedure in cryo-electron
microscopy single particle reconstruction [7], [8], [44], which
aims to cluster 2D projection images taken from similar viewing
directions, align (U (1) or SO(2) synchronization due to the
in-plane rotation) and average projection images in each cluster
to improve their signal-to-noise ratio.

In this paper, we study the joint estimation problem based
on the probabilistic model, stochastic block model with relative
phase (SBM-Ph), which is similar to the probabilistic model
considered in [41], [42], [43]. Specifically, given N nodes in
a network assigned into M underlying clusters of equal size
s = %, we assume that each node ¢ is associated with an
unknown phase angle 07 € €2, where Q) is a discretization of
[0,27).! For each pair of nodes (i,7), if they belong to the
same cluster, their phase transition 6;; := (6; — 6;) mod 27
can be obtained with probability p; otherwise, we obtain noise
generated uniformly at random from ) with probability ¢q. The
goal of the joint estimation problem is to simultaneously recover
the cluster structure and associated phase angles. This problem
can be formulated as an optimization program maximizing not
only the edge connections inside each cluster, but also the
consistency among the observed phase transitions within each
cluster. Still, such kind of optimization programs, similar to
community detection on SBM (1) and phase synchronization (2),
is non-convex. In [41], an SDP based method is proposed
to achieve approximate solutions with a polynomial compu-
tational complexity. [42] proposes a spectral method based
on the block-wise column-pivoted QR (CPQR) factorization,
which scales linearly with the number of edges in the network.
The most recent work [43] develops an iterative GPM, where
each iteration follows a matrix-multiplication-then-projection

I'The joint estimation problem is also extended into [0, 27) in Section ITI-C.

manner. The iterative GPM requires an initialization, and the
computational complexity of each iteration also scales linearly
with the number of edges in the network.> However, existing
methods are not developed from the MLE perspective, which
limit their performance on the joint estimation problem.

A. Contributions

Unlike existing methods, this paper studies the joint esti-
mation problem by first closely examining its MLE formula-
tion, which exhibits a “multi-frequency” structure (detailed in
Section III). More specifically, the MLE formulation is max-
imizing the summation over multiple frequency components,
whose first frequency component is actually the objective func-
tion studied in [41], [42], [43]. Based on the new insight, a
spectral method based on the multi-frequency column-pivoted
OR (MF-CPQR) factorization and an iterative multi-frequency
generalized power method (MF-GPM) are proposed to tackle
the MLE formulation of the joint estimation problem, and both
significantly outperform state-of-the-art methods in numerical
experiments. The contributions of this paper can be summarized
as follows:

o We study the MLE formulation of the joint community
detection and phase synchronization problem with dis-
cretized phase angles, and show it contains a “multi-
frequency” structure. In a similar manner, we introduce
the truncated MLE for the joint estimation problem with
continuous phase angles in [0, 27).

o Inspired by [42] and the “multi-frequency” nature of the
MLE formulation, we propose a spectral method based
on the novel MF-CPQR factorization. The MF-CPQR
factorization is adjusted from the CPQR factorization to
cope with information across multiple frequencies. Sim-
ilarly, we also introduce an iterative MF-GPM by care-
fully designing steps of leveraging the “multi-frequency”
structure.

® We compare the performance of our proposed methods
to state-of-the-art methods [42], [43] on both discrete and
continuous phase angles in [0, 27) via a series of numerical
experiments. Our proposed methods significantly outper-
form them in exact recovery of the cluster structure and
error of phase synchronization.

B. Organization

The rest of this paper is organized as follows. The formal
definition of SBM-Ph, the MLE formulation of the joint es-
timation problem, and the extension to continuous phase an-
gles, are detailed in Section III. Section IV and V present the
spectral method based on the MF-CPQR factorization and the
iterative MF-GPM, respectively. Numerical experiments are in
Section VI. Finally, we conclude the paper in Section VII.

2The bottleneck of each iteration is the matrix multiplication, which is
O(# of edges) in general. To achieve O(N log? N) complexity claimed
in [43], one need to assume the graph is sparse.
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TABLE I
NOTATION TABLE

[n] Set of first n positive integers: 1,...,n.
I{-} Indicator function.

X, x, Matrix, vector, scalar.
X, xH Transpose, conjugate transpose.
T Complex conjugate.
(D) Inner product.
lr Frobenius norm of a matrix.
2 ¢> norm of a vector.
0, xn (or 0) All zero matrix of size m X n.
I, Identity matrix of size n X n.
X the (4, j)th entry of X.
x; the ¢th entry of .
X (X.5) the ith row (the jth column) of X.
Xij: (Xij) Segment of the ¢th row (the jth column) from the jth

entry (the ith entry) to the end of the row (the column).
x;. Segment of the vector & from the ith entry to the end.
Sub-matrix of X from the ¢th row

Xiz,j: and the jth column to the end.
[@] Big-O notation.
€] Big-Theta notation.

C. Notations

Throughout this paper, we use [n] to denote the set
{1,2,...,n}, and I{-} to denote the indicator function. The
uppercase and lowercase letters in boldface are used to rep-
resent matrices and vectors, while normal letters are reserved
for scalars. || X ||r and Tr(X) denote the Frobenius norm and
the trace of matrix X, and ||v||2 denotes the /5 norm of the
vector v. The transpose and conjugate transpose of a matrix X
(resp. a vector x) are denoted by X " and X" (resp. ' and
xM), respectively. An m x n matrix of all zeros is denoted by
0,xn (or 0, for brevity). An identity matrix of size n X n is
defined as I,,. The complex conjugate of z is denoted by . The
inner product (-, -) between two scalars, vectors, and matrices
are (z,y) = Ty, (x,y) = 2"y, and (X,Y) = Tr(XHY), re-
spectively. In terms of indexing, (7, j)th entry of X is denoted
by X ;;, and 7th entry of x is denoted by x;. X; . (resp. X ;) is
used to denote ith row (resp. jth column) of X. We use X; ;.
(resp. X ;. ;) to denote the segment of the ith row (resp. jth
column) from the jth entry (resp. ith entry) to the end, and x;.
to denote the segment from ith entry to the end. In addition, the
sub-matrix of X from the ith row and jth column to the end is
denoted by X;. ;.. Lastly, we use O and © to denote the usual
Big-O and Big-Theta notations. The notations are summarized in
Table I.

II. PRELIMINARIES

In this section, we introduce some important definitions that
will be used in our algorithms later.

Definition 1 (QR factorization): Given X € C™*™, a QR
factorization of X satisfies

X = QR,

where Q € C™*™ is a unitary matrix, and R € C™*" is an
upper triangular matrix.

Such factorization always exists for any X . The most common
methods for computing the QR factorization are Gram-Schmidt
process [45], and Householder transformation [46].

Definition 2 (Column-pivoted QR factorization): Let X €
C™*™ with m < n has rank m. The column-pivoted QR fac-
torization of X is the factorization

XHn = Q[R17 R2]7

as computed via the Golub-Businger algorithm [47] where IT,, €
{0,1}™*™ is a permutation matrix, @ is a unitary matrix, R; is
an upper triangular matrix, and Ry € C™* ("),

The ordinary QR factorization is proceeded on X from the
first column to the last column in order, whereas the order of
the CPQR factorization is indicated by IT,,. We refer to [47] for
more details on the CPQR factorization.

Definition 3 (Projection onto H in (1)): For an arbitrary
matrix X € R™*™ we define

Py (X) := argmin | H — X||p = argmax(H, X)
HeH HeH

as the projection of X onto H.

The projection aims to find the cluster structure that has the
largest overall score given by X. It is shown in [48] that projec-
tion onto ‘H is equivalent to a minimum-cost assignment problem
(MCAP), and can be efficiently solved by the “incremental algo-
rithm” for MCAP [49, Section 3] with O(n?m logm) compu-
tational complexity. The uniqueness condition of the projection
P2 (X)) can be found in the proof of [49, Theorem 2.1] and [50,
Theorem 2]. If the solution is not unique, the “incremental
algorithm” for MCAP [49, Section 3] will generates a feasible
projection randomly.

III. PROBLEM FORMULATION

In this section, we formally define the probabilistic model,
SBM-Ph, studied in this paper. We first consider discrete phase
angles and formulate the corresponding MLE problem, which
exhibits a multi-frequency structure. Then, we extend the prob-
lem to continuous phase angles and formulate a truncated MLE
problem.

A. Stochastic Block Model With Discrete Relative Phase
Angles

SBM-Ph is considered in a network with [NV nodes and M > 2
underlying clusters of equal size s = % We assume each
node ¢ € [N] falls into one of M underlying clusters with the
assignment M* (i) € [M], and is associated with an unknown
phase angle 6 € Q, where Q := {0,..., (2Knx +1)A} is a
discretization of [0,27) with A = m We use S;, to
denote the set of nodes belonging to the mth cluster for all
m € [M].

SBM-Ph generates a random graph G = ([N], &) with the
node set [N] and the edge set £ C [N] x [N]. Each pair of nodes
(i,7) are connected independently with probability p if ¢ and
j belong to the same cluster, or equivalently, M* (i) = M* ().
Otherwise, ¢ and j are connected independently with probability
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qif M*(i) # M*(j). Meanwhile, arelative phase angle f;; € Q
is observed on each edge (i,7) € £. When M*(i) = M*(j), we
obtain 0;; := (07 — 07) mod 2. Otherwise, we observe f;; :=
u;; ~ Unif(Q), Wthh is drawn uniformly at random from
Q.

Our observation model can be represented by the observation
matrix A € CN>*N  which is a Hermitian matrix whose (i, j)th
entry for any ¢ < j satisfies,

e"%i=%)  with prob p if M (i) = M*(j),
A= ettis with prob ¢ if M*(3) # M*(5), (3)
0, 0.W.,

where Aj; = A_ZJ We also set the diagonal entry A;; = 0,Vi €
[N]. Notice that a realization generated by the above observation
matrix (3) is a noisy version of the clean observation matrix
Aclean ¢ CN*N “whose (i, j)th entry satisfies,

1(05-0%)
Aqlgan _ € 77
i O,

Specially, A is equal to A** when p = 1 and ¢ = 0.

Remark 1: Unlike the observation matrix (or adjacency ma-
trix) Asgm in SBM [1], [10], [11], [21] with only {0,1}-
valued entries, A in (3) extends to incorporating the relative
phase angles §;; into edges. On the other hand, while entries
of the observation matrix Apy, in the phase synchronization
problem [2], [39], [40] encode the the pairwise transforma-
tion information, they do not have the underlying M -cluster
structure.

if M*(3) = M*(5),
otherwise.

“)

B. MLE With Multi-Frequency Nature

Based on the observation matrix A, we detail the MLE
formulation for recovering the cluster structure and phase angles
in this section. Given parameters, phase angles associated with
nodes {0; € Q}Y | and the cluster structure {S,, }_, of equal
size s, the probability model of observing A;; between node

pair (z j) is
Ay {0 € L {Sntm-1)

p, if Aij = EL(eiiej) and M(’L) =
l—p, 1fA”:Oand./\/l(z):/\/l(]),
%, if Aij = e and M(Z) §é M(]),
1—(], 1fA”=0and./\/l(z)7éM(j),

where M(+) is the assignment function corresponding to the
cluster structure {S,,}M_,, and K = 2K.x + 1. The likeli-
hood function given observations on the edge set £ is

P ({Asj}ijyee {0 € QL {SmIn—1)

— I{A;;=e" "%} 4

I # I % ©
M(i)=M(j) M) EM(5)

(i.g)e€ (i.5)€€

due to the independence among edges within &£. Notice that
maximizing the likelihood function (5) is equal to maximizing
the following log-likelihood function

IOgP ({AZJ} i,j)€E ’{9 € Q}’L 1 {Sm}r]gzl) =

T{A;; =0 0) 4
Z | {A;;=e tlogp+ Z | 1ogK
M(i)=M(j) M(i)#EM(3)
(i,5)€€ (i,5)€€
(6)
Given 0 < £ < p, maximizing (6) is equivalent to
025, > {6 =1[0; —0;) mod27]}. (]

By taking the FFT w.r.t. the support 2 of ((§; — 6;) mod 27)s
and inverse FFT (IFFT) back, (7) is equivalent to

Kmax M
>3 (At ) ®

k=—Kmnx m=114,j€Sp,

max
{6; EQ}
{Sm

m=1

where A(¥) is the kth entry-wise power of A with Al(-f) = etk
As indicated by (8), the MLE exhibits a multi-

frequency nature, where the kth frequency component is

MO | jesn (A 1) et(%=95)) in (8). Although the following
program using the ﬁrst frequency component
ma L(G —6;) 9
o 5% (AP o
{Sm }%:1 m 1,J€

is a reasonable formulation for the joint estimation problem as
suggested by [41],[42], [43], itis indeed not a MLE formulation.
One can show that (9) is equivalent to

o Y cos(i; — (6 — 6y)),
AT M@)=M(

which is not the MLE (7) of the joint estimation problem.

To proceed, we perform a change of optimization variables
for (8). By defining a unitary matrix V€ C¥*M whose (i, m)th
entry satisfies

L 10; . N
v, - {\/ge , ifi € Sy (or M(i) = m),

: (10)
0, otherwise,

the cluster structure {S,, }2/_; and the associated phase angles
{6, € Q}Y| are encoded into one simple unitary matrix V.
Then, the optimization program (8) can be reformulated as

KZ <A 0,V (V) >

max
veer :_Klmx
s.t. V satisfies the form (10), (11)

where each V' (*) is generated by V through the entry-wise
power that satisfies
Lkt if i e S, (or M(i) =m),
Vi =1 V* (O MO =M 1)
0, otherwise.
The optimization program (11) is non-convex, and is thus
computationally intractable to be solved exactly. Although one
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cantry SDP based approaches similar to [41], itis not guaranteed
to obtain exact solutions to the MLE, let alone the high compu-
tational complexity when N and K, are large. Therefore, we
propose a spectral method based on the MF-CPQR factoriza-
tion and an iterative MF-GPM in Section IV and Section V,
respectively.

C. Extension to Continuous Phase Angles: A Truncated MLE

We consider the joint estimation problem on a discretization
of [0, 27) in Section III-A, and then derive the MLE formulation
in Section III-B. Now, we turn to the joint estimation problem
with continuous phase angles in [0, 27) (8; € [0, 27), Vi € [N]).

Following the similar steps as (5), (6), (7), the MLE formula-
tion is

max ]I([(&Z — 9])

{6;€[0,27)} U M) =M()
= (i,9)€€

mod 27] = 6;;). (13)

The MLE formulation (13) is essentially equal to counting the
times that 6 ([(6; — 0;) mod 2] = 6;;) = oo, where §(-) is the
Dirac delta function. We can express the Dirac delta function
with its Fourier series expansion,

—+20
5([(6; — 0;) mod 2m] = 0;;) = > eF0i ) k0
k=—00
Kimax
~ Z 61,19(0,-799)671/?9 j (14)
k=K

The straightforward truncation in (14) corresponds to approxi-
mating the Dirac delta with the Dirichlet kernel. By this trunca-
tion, the problem in (13) is converted to

Krmx
k(0;—6;)
BETSRED 3 Dl S CUIRCCRA IS
{Sm}I i 1 k=—Knx m=114,56Sm

The optimization program (15) is a truncated MLE of the joint
estimation problem with continuous phase angles of (13).

As one can observe from (8) and (15), the only difference
is that 6; € Q is discrete in (8), and 6; € [0, 27) is continuous
in (15). Algorithms in Section IV and V can also be directly
applied to the joint estimation problem with continuous phase
angles after simple modification. Due to the similarity between
the joint estimation problem and its continuous extension, we
will only focus on the joint estimation problem on §2 (despite
numerical experiments) in remaining parts of this paper for
brevity.

IV. SPECTRAL METHOD BASED ON THE MF-CPQR
FACTORIZATION

In this section, we propose a spectral method based on the
novel MF-CPQR factorization for the joint estimation prob-
lem. We start with introducing main steps and motivations of
Algorithm 1 in Section IV-A. Section IV-B states the novel
algorithm, the MF-CPQR factorization, designed for our spectral

Algorithm 1: The spectral method based on the MF-CPQR
factorization.

Input: The observation matrix A, and the number of

clusters M.

1: (Eigendecomposition) For k = — Ky, - - -y Kmax»
compute the top M eigenvectors ®*) € CN*M of AK)
such that (@F)HH@*) = 1,,

2: (MF-CPQR factorization) Compute the multi-frequency
column-pivoted QR factorization (detailed in

Algorithm 2) of {(®*)) '} which yields
T T
(q,(k)) My=Q®RHM = (q)(k)) = QM RMII,
(16)
Update R%) < RWTIY,, Vk = —Kpax, - - - » Kiax

3: (Recovery of the cluster structure and the phase angles)
For each node i € [N], assign its cluster as

KIHHX
k0; pk)
‘'R >
{%?ékz (e m}

=—Kmax
a7
Then estimate the phase angle given the recovered cluster
assignment M (7)

M(i) < argmax
me[M]

Kmax
0; < argmax L0 R(k) (18)
s k:;( (e Bfit)

max

Output: Estimated cluster structure { M (i)} N
estimated phase angles {6;}Y

*, and

method, together with the difference between the MF-CPQR
factorization and the CPQR factorization. In Section IV-C, we
discuss the computational complexity of our proposed algorithm
in details.

Our spectral method based on the MF-CPQR factorization is
inspired by the CPQR-type algorithms [42], [51], together with
the multi-frequency nature of the MLE formulation (11). Similar
to the CPQR-type algorithms, Algorithm 1 is deterministic and
free of any initialization. Meanwhile, in terms of computational
complexity, Algorithm 1 scales linearly w.r.t. the number of
edges |£]| and near-linearly w.r.t. K.

A. Motivations

Algorithm 1 consists of three steps: i) Eigendecomposition
of A®), ii) MF-CPQR factorization, and iii) Recovery of the
cluster structure and phase angles. It first computes matrices

{@ ()} Fmax x,.. thatcontain the top M eigenvectors of each A

via eigendecomposition. Secondly, matrices {R(k) }kK;“"f ., are
obtained through the MF-CPQR factorization, which is detailed
in Algorithm 2. The last step is recovering the cluster structure
and associated phase angles based on {R k)}K‘“‘X K, Via (17)
and (18).

In terms of motivations for Algorithm 1, we start from the
MLE formulation (11). We first relax (11) by replacing the
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constraints in (10) with VHV = I,

K inax
® = argmax Z <A k) (k) (V(k)) >

NxM
veC k=—Kinax

st. VAV =1y, (19)

by noticing that V' in (10) forms an orthonormal basis. The
optimization problem in (19) is still non-convex and there is no
simple spectral method that can directly solve the problem. One
approach is to relax the dependency of V' (¥) among different
frequencies and split (19) into different frequencies, and that is,

for k = — Kax, - - -+ y Kimax, we have
&) —  argmax <A(k), vk (V(k))H>
V (k) cCNxM

s.t. (V(k))H v =1, (20)
The optimizer of (20) is the matrix that contains the top M
eigenvectors of A*) denoted by ®(*) € CN*M  This accounts
for step 1 (eigendecomposition) in Algorithm 1.

In fact, one can infer the cluster structure from
{® k)}K"‘“ To see this, for k= —Kna, .-, Knax
we split A(k 1nt0 deterministic and random parts:

AW —E [A(’“)] + (AW ) [A<’f>]) —E

(2D
where E[A®)] = pAT) with AL being the entry-wise kth
power of Ajean (4), and the residual A®) is a random perturba-
tion with E[A(*)] = 0. Obviously, each E[A(*)] is a low rank

matrix that satisfies the following eigendecomposition:

[Aw)] yNG)

M H
E[A®) =ps > 0 (v5))
m=1

1 ko e *
. & =Rl ifie S,
with lIIZ(WZ = Vs m
0, otherwise,

where ¥(¥) € CV*M ig 3 matrix defined in a similar manner
as V) in (12), and satisfies (lIl(k))H‘Il(k) = I;;. Then, for
k = —Knax, - - - , Kmax (except for k& = 0), the non-zero entry in
each row of W(¥) indicates the underlying cluster assignment
M (i) and the exact phase angle 67 of node 1.

Therefore, to recover the cluster structure and associ-
ated phase angles, it suffices to extract {\Il(k)}kK;“‘j K, from

{@(k)},ﬁ“‘j K, For the ease of illustration, we first con-
sider the case when p =1 and ¢ = 0. This indicates, for
k=Ko Koo A® = AP A®) =0, and ®*) =

THFOF), where OF) € CM*M s some unitary matrix. How-
ever, {O(’“)}K“mx are unknown and even not synchronized
among all frequenc1es To address this issue, the MF-CPQR
factorization is introduced. Here, we assume that the first s nodes
are from the cluster S, the following s nodes are from S5, and so
on. Applying the MF-CPQR factorization (step 2) in Algorithm 1

yields (assume Iy = I )

(8 = o) () = (o)

ekl ... etkOr L. 0 0

eLkei . 0

0 ellk9§\] s+1
1 tk(05-67) 0 0
x s
0 0 1 e RO =N o1 1)
— R(k)
=QWR® (22)
for k = —Kpmax, - - - » Kmax. Therefore, each Q(¥) € CM*M jg

unitary matrix that includes the unknown unitary matrix Q%)
and each R*) ¢ CM*N is a matrix excludes O*). More sig-
nificantly, {R(’“)}kKjﬁ K, contains all the information needed
to recover the cluster structure and associated phase angles.

To recover the cluster structure, the CPQR-type algo-
rithm [42] only uses R("). By noticing that for each node 1,
the ith column of R (e.g., R,(_rli)) is sparse (its mth entry

RSZ is nonzero if and only if m = M* (7)), one can determine
the cluster assignment of node ¢ by the position of the nonzero
entry. Meanwhile, the associated phase angle can also be de-
termined by obtaining the phase angle from the nonzero entry
(up to some global phase transition in the same cluster). When
the observation A is noisy, the CPQR-type algorithm recovers
the cluster structure and associated phase angle of node i by
the position of the entry with the largest amplitude. The follow-
ing Theorem 1 proves as long as the perturbation to E[A(k)] is
less than a certain threshold, ® (*) is still close to ¥(*)O*)  for
k = —Knax, - - -, Kmax (except for k = 0).

Theorem 1 (Row-wise error bound, adapted from [42]):
Given a network with NV nodes and M = 2 underlying clusters,
for a sufficiently large N, we suppose

V(1 —p) +g)logN _
VN -

for some small constant cy. Consequently, with probability at
least 1 — O(N 1),

ni=

max H<I>£k) - \Ilg’k,)O(k)H

i€[N]

where O%) = P((TF)HPK)),
Theorem 1 guarantees that i) amplitudes of other entries are
less than the entry indicating the true cluster structure with

<L
2~ VN
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R(Kmaz) RO RKmax)

\\ N
Il

(~Fmax) (max)
lRu - RY ]
(kma) ... plmax)
RGHmes) .. pllmax

Fig. 2. Illustration of step 3 in Algorithm 1. For each ¢ € [N], all the ith
columns in { R(*) }fi‘f‘ o A€ extracted to estimate the cluster assignment
and phase angle following (17) and (18).

high probability, ii) the phase angle information is preserved
with high fidelity. Theorem 1 can be proved by following the
same routines as [42] by replacing the orthogonal group element
O; with the U(1) group element (e.g., ¢*%). The reason why
Theorem 1 holds for k = — Ky, - - - , Kmax (despite & = 0) is
due to statistics of random perturbations {A*)}, in (21) do
not change among different frequencies. This is because the
noise models of A*) and A are the same. More specifically, the
noisy entry e**is : u;; ~ Unif(£2) in (3) has the same statistics as
e*uij in A% due to the fact that ku,;; still yields the distribution
Unif(£2).

Note that the CPQR-type algorithm in [42] is not developed
from the MLE formulation (11) of the joint estimation problem,
and thus does not capture the multi-frequency nature. In this
paper, we leverage {R(k)} ke g that contain information
about the cluster structure and associated phase angles across
multiple frequencies (step 3). Specifically, we first consider the
same case as that in (22) for intuition. As illustrated in Fig. 2,
the matrix concatenated by the ¢th (¢ < s) columns across all
frequencies is

RE;Klnax) R,Elf) .. Rgfmax)
. S 1
: : : - \/g
_Kmax) k) Kmax
o K (0;-07) otk (07-07) o Fmax (0;-07)
0 0 0
X
0 0 0

The cluster assignment of ¢ can be acquired by finding the
non-sparse row of the above matrix, and the phase angle can
be determined by evaluating the non-sparse row (e.g., FFT).
When the observation A is noisy, (17) and (18) are used to
estimate the cluster structure and associated phase angles, which
can be interpreted as checking the consistency or conducting
majority vote among all frequencies. The performance is ex-
pected to be at least as good as the CPQR-type algorithm.
This is because each ®(*) has the same theoretical guarantee
as the CPQR-type algorithm according to Theorem 1, and (17)
(18) are just checking the consistency across all frequencies.
In Section VI, we will show that our proposed spectral method
based on the MF-CPQR factorization is capable of significantly
outperforming the CPQR-type algorithm.

Algorithm 2: MF-CPQR factorization.

K nax

Input: The set of eigenvectors { (@(k)) }]\':_Klnax

mit: Q) « Iy, R® « (8®)) " Vi = — Kas, - -, Kmnas
and HN < IN
1 form=1,2,....M do
/* Pivot selection x/
for j=m,m+1,...,N do
| Compute the residual p; 2{2‘“_‘ Koy | E,lj) 2

end

Determine the pivot j* <— argmax;_,, N pj

For both {R(k)} ff:_ll and ITyr, swap the mth column with the
pivot (j*th) column

/* One step QR factorization for all

frequencies */
7 for k = _Kmax-, ceey Krmax do
Apply one step QR factorization in Algorithm 3 on

Rgrl;:),m:a and get Qgrli:),m: and R&r’f),m

S s W N

9 Update Q%) « [Im_l ~(;9)
0 m:,m:
10 Update RE,I::)’,,,,: — EE,IT),,, and Q(k’) — Q(k')ngf)
11 end
12 end

Output: {QW} o, (R} fowr

— Hmax

’ and HN

Besides, for the joint estimation problem with continuous
phase angles, (17) and (18) will be modified as

KI"HZIX
M(i) <— argmax max Z <€Lk6i,Rg§z> ,
melm]  (%i€l02m) T
th(lX
él_  argmax <€Lk0i , R(lf) ) > .
0;€[0,2m) k:;(max nor

Solving the max problem over [0,27) is infeasible in
general. Instead, one can apply the zero-padding and
FFT for an approximate solution with any desired pre-
cision. Specifically, in estimating the cluster assignment,

by padding zeros to [Rg;iKm), ey RS:Z yeees Rsnii‘““)] as

[o, 0, RCKm) k)

mio e

.,Rﬁ,ﬁimﬂx),o,...,o}, taking
the FFT, and finding the entry with largest real part,
(arg) maxg, c(o,2r) Zf;“_XKW <ebk6i : R£’§2>
proximately, where the precision is determined by the number
of padded zeros.

can be solved ap-

B. MF-CPQR Factorization

As stated in Definition 2, the difference between the ordinary
QR factorization and the CPQR factorization is selecting appro-
priate pivot ordering (encoded in I ). The CPQR factorization
attempts to find a subset of columns that are as most linearly
independent as possible and are used to determine the basis. In
this paper, the CPQR factorization across multiple frequencies
is developed to cope with the multi-frequency structure of the
MLE formulation.

Definition 4 (Multi-frequency column-pivoted QR factoriza-
tion): Let X®*) € C™*" with m < n has rank m for k =
—Khax, - - -, Kmax. The multi-frequency column-pivoted QR



WANG AND ZHAO: MULTI-FREQUENCY JOINT COMMUNITY DETECTION AND PHASE SYNCHRONIZATION 169

Algorithm 3: One step QR factorization using Householder
transformation.

Algorithm 4: Iterative multi-frequency generalized power
method.

end A matrix X € C™*"

/* Householder transformation*/
1:r + X.71
2: 0 < —e*“71||r||, where Zry is the phase angle of
3:u < 7 — e, where e = [1,0,...,0]"
T m
:Q «— I, — 2voM
X + QX
: Xl). — e_LéX“XL.
: Q~,l < GLZX“Q.J

Output: Q and R.

N

o0 3 O\ W\

TABLE II
THE COMPUTATIONAL COMPLEXITY OF ALGORITHM 1 IN EACH STEP

Steps Computational Complexity
1. Eigendecomposition O(Kmax|E])

2. MF-CPQR factorization O(KmaxN)

3. Clustering by (17) O(N Kmax log Knax)

4. Phase synchronization by (18) O(N)

Total complexity O(Kmax(|€] + N log Kmax))

factorization of X (¥) is the factorization
x®m, =Q® [RP, R,

as computed via Algorithm 2 where II, € {0,1}"*™ is a
permutation matrix fixed for all £ = — Ky, - - -, Kmaxo QM

is a unitary matrix, ng) is an upper triangular matrix, and
Rék) c me(nfm).

It requires to i) obtain the same subset of columns among all
frequencies that are as most linearly independent as possible, and
ii) use the same pivot ordering (or II ) among all frequencies.
The former promotes the cluster structure estimation perfor-
mance because each node 7 (other than the pivots) is assigned to a
cluster mainly according to the similarities between the column
1 and the columns of pivots, the latter ensures the validity of (17)
and (18).

The MF-CPQR factorization is detailed in Algorithm 2, where
the Householder transform [46] (Algorithm 3) is adopted for
a better numerical stability. Specifically, the novel MF-CPQR
factorization is different from the ordinary CPQR [45], [52]
in the pivot selection. The pivot is determined by finding the
column with the largest summation of /5 norm of residuals over
all frequencies (see line 3 in Algorithm 2).

C. Computational Complexity

In this section, the computational complexity of Algorithm 1
is summarized step by step in Table II. Here, we suppose
M = ©(1). First, it consists of O(K ) times of eigende-
composition for M eigenvectors, which is O(|€]) per time
if using Lanczos method [53]. For the MF-CPQR factoriza-
tion, it consists of M times of column pivoting (O(N Kpax)
per time) and M K, times of one step QR factorization

M 5
m—1 and

Input: The observation matrix A, the initialization {Sm}
{6; € Q} ZI\; ]I,(and the number of iterations 7'
1 Construct {V(k)’o}k:"‘“fKmﬂx using {Sm }M_ | and {6; € Q}fv:l

- m=1
according to (12)

2 fort=0,1,...,7—1do
/+ Matrix multiplication =/
3 For k = —Kpnax, - - . , Kmax, compute the matrix multiplication

VKLt o A(R)y(R)t
/+ Combine information across multiple
frequencies */

4 Compute Vmast+1 ¢ RNXM \whoge (4, m)th entry satisfies
Kimax (k)41
{rmax,t+1 tk60; v (k),
T SR R L
k=— Kmax

/* Recovery of the cluster structure and
associated phase angles */
5 For each node ¢ € [N], assign its cluster assignment as

M(i) + argmax ﬁf"’l where H!T1 « Py (Vmasttly
me[M] /‘

then estimate the associated phase angle given the estimated
cluster assignment M (%)

R I(ﬂ]i\x e k ¢ 1
0; < argmax E <e"k’9i, VL(M)(; >
0i€L = Ko

@4

6 Construct {‘7(’“)’“'1}f;‘“_"Kmux using {M(3)}Y, and

{éz}{\;l according to (12)

7 end
Output: Estimated cluster structure {M(z)}f\él and estimated phase
angles {0},

(O(N) per step). In terms of recovering the cluster structure,
we first compute M N times of FFT for length- Ky, vectors
(O(Kax log Kinax) per vector) and then compute the maxi-
mums (O(N Kyax) + O(N)). Since the FFT of { R(F)}<m

max

is already computed, it is only O(N) for synchronizing the
phase angles. Overall, the computational cost is linear with
the number of edges |£| and nearly linear in Kp,x. When
the network G is densely connected with |€] = O(N?), Algo-
rithm 1 ends up with O( K. N?) if log Kinax < N. However, if
|E] = o(N?), the complexity of Algorithm 1 will be reduced.
For instance, in the case when || = O(NlogN) or |€| =
O(N), which is very common as shown in [54], the complexity
of Algorithm 1 will be O(Kpax N max{log N,log Kmax}) or
O(Kmax N 1og Kmax }), respectively.

V. ITERATIVE MULTI-FREQUENCY GENERALIZED POWER
METHOD

In addition to the spectral method based on the MF-CPQR
factorization proposed in Section IV, we develop an iterative
multi-frequency generalized power method for the joint esti-
mation problem, which is inspired by the generalized power
method [43] and the “multi-frequency” nature of the MLE for-
mulation (11).



170 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 9, 2023

TABLE III
THE COMPUTATIONAL COMPLEXITY OF ALGORITHM 4 IN EACH STEP

Steps

1. Initialization

2. Matrix multiplication
3. Combine information
4. Estimation

Total complexity

Computational Complexity
O(ED
O R 1)
O(NKmax 10g Kmax)
O(Nlog N)
O(Kmax|E] + N(log N + Kmax log Kmax))

A. Detailed Steps and Motivations

Since the joint estimation problem is non-convex, the itera-
tive multi-frequency generalized power method requires a good
initialization of the cluster structure and associated phase angles
that are sufficiently close to the ground truth. Various spectral
algorithms (e.g., CPQR-type algorithm [42, Algorithm 1], [43,
Algorithm 3], and Algorithm 1) can be used for initialization.
It is observed experimentally that random initialization will
result in convergence to a sub-optimal solution. Each iteration of
Algorithm 4 consists of three main steps. The first step (line 3)

~ (k),
is the matrix multiplication between A(*) and V( M forall k =
~ (k) t+1

—Khax, - - -, Kmax (line 4). Then we leverage (line 4) V(
across all frequencies to aggregate and refine the information
needed for the joint estimation problem (23), which is inspired

by (17). The last step is estimating the cluster structure and
. . .. osmax, i+l
associated phase angles. As mentioned before, giving V'

and then finding the corresponding cluster assignment is equal
to solving the MCAP (see Definition 3). This is equivalent to

o5 max, t+1 . . .
projecting v " onto the feasible set 7 (line 5), after which

.oyt . ..
the matrix H  is obtained. The reason why the projection

P(-) is needed rather than directly using the index of the largest
~ max,t+1 | .
entry in each row of v " is because the solution of the

latter approach does not necessarily satisfy the constraint based
on the size of each cluster. The associated phase angles can
be recovered according to the recovered cluster structure (24).
Besides, the modification of the iterative MF-GPM for the joint
estimation problem with continuous phase angles is the same as
that of the spectral method based on the MF-CPQR factorization.

The iterative GPM in [36] is built upon the classical power
method, which is used to compute the leading eigenvectors of a
matrix. The method in [36] adds an important step: projection
onto the feasible set that is induced by the constraints on the
cluster structure and phase angles. The iterative MF-GPM in-
troduced here takes a step further by not only taking advantage
of the efficiency of the power method and the projection, but
also leveraging the information across multiple frequencies.
In Section VI, numerical experiments show that the iterative
MF-GPM largely outperforms GPM [43].

B. Computational Complexity

In this section, we compute the complexity of Algorithm 4
step by step in Table III. Again, here we assume M = ©(1). In
terms of initialization, the CPQR-type algorithm [42] is O(|€]).
The matrix multiplication step consists of O(K ) times of
matrix multiplication (O(|€|) per time). In order to combine

information across multiple frequencies, we need to compute
M N times of FFT of length- K.« vectors (O(K max 10g Kinax)

per vector). For estimating cluster structure and associated phase
. = max,t+1 . .
angles, we first need to project V' onto H, which is

O(N log N). Then complexity of estimating the cluster struc-

ture and associated phase angles using ﬁtﬂ is negligible. When
the network G is densely connected with |€] = O(N?), Algo-
rithm 4 ends up with O (K pax N2) if N > log K nax. However, if
|€] = o(N?), forexample O(N log N) and O(N), the complex-
ity will be reduced to O(Kmax N max{log N,log Kmax}) and
O(N max{log N, Kinax log Kmax }), respectively. As a result,
the computational complexity of Algorithm 4 is very similar
to Algorithm 1.

VI. NUMERICAL EXPERIMENTS

This section deals with numerical experiments of the spectral
method based on the MF-CPQR factorization (Algorithm 1)
and the iterative MF-GPM (Algorithm 4) to showcase their
performance against state-of-the-art benchmark algorithms.?
For comparison, the benchmark algorithms are chosen as 1)
the CPQR-type algorithm [42], ii) the GPM [43], where both
of them can be modified identically from the joint community
and group synchronization problem into the joint community
detection and phase synchronization problem. Specifically, algo-
rithms in [42], [43] are single frequency version of our proposed
algorithms, which can be realized by replacing the summation
over kin (17), (18), (23), and (24) with k = 1.

In each experiment, we generate the observation matrix A us-
ing the probabilistic model, SBM-Ph, as discussed in Section III
and estimate the cluster structure and associated phase angles by
the spectral algorithms based on the MF-CPQR factorization, the
iterative MF-GPM, and the benchmark algorithms. To evaluate
the numerical results, we defined two metrics, success rate
of exact recovery (SRER) and error of phase synchronization
(EPS), for recovering the cluster structure and associated phase
angles. In terms of SRER, it shows the rate of algorithms exactly
recover the cluster structure. Let S,,, = {i € [N]|M(i) = m}
be the set of nodes assigned into the mth cluster by algorithms,
and we have that

SRER = the rate {S,, }M_, is identical to {S,, }

m=1"

(25)

As for the EPS, it assesses the performance of recovering phase
angles. We define 0% (™) = [e!¥i],.s. € C* for each cluster that
concatenates the ground truth &7 for all < € S}, and similarly

é(m) = [ebéi]ieg;n € C® for the estimated phase angles. Then,

after removing the ambiguity with aligning 9(m) with 8%(™) in
each cluster as

/M = argmin (|6 e ™ — M),
gmeQ or [0,27)
Ym=1,..., M,

3Codes are available at https://github.com/LingdaWang/Joint_Community_
Detection_and_Phase_Synchronization
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2 4 6 8 10 12 14 00
a

(a) SRER, CPQR

(b) EPS, CPQR

4 6 8 10 12 14 oo

(c) SRER, MF-CPQR (d) EPS, MF-CPQR

Fig.3. Comparison between the CPQR-type algorithm [42] (in the first row)
and the spectral method based on the MF-CPQR factorization (in the second
row) in terms of the success rate of exact recovery (SPER) and the error of
phase synchronization (EPS), where a smaller black area in each figure indicates
a better performance. Experiments are conducted with the setting M = 2, N =

1000, and Knax = 16. (a) and (c): SRER (25) under varying «v in p = ozlo%
and Binq = /510%; (b) and (d): EPS (26) under varying « and S3.

the EPS is defined as
EPS =

in(|6; +~ — 7], 2 — |6; + 4" — 67))}.
ﬁ?ﬁ]ggyj{mmﬂ + il 2m — |0+ i}
(26)

The EPS is actually the maximum error of estimated phase
angles among all nodes. Besides, both the SRER and EPS are
computed over 20 independent and identical realizations for
each experiment in the following. In the rest of this section,
we first present the results of the joint estimation problem in
Section VI-A and followed by the extension to continuous phase
angles in Section VI-B.

A. Results of the Joint Estimation Problem

We first show the results of the spectral method based on
the MF-CPQR factorization (Algorithm 1) against the CPQR-
type algorithm [42] on the joint estimation problem, where the
case of M = 2, s = 500, and K ,x = 16 is considered. Similar
to [42], [43], we test the recovery performance in the regime
p,q= O(k’%),where differentp = alo% andq = ﬂlo% with
varying o and § are included. In Fig. 3, we show SRER (25)
and EPS (26). As one can observe from Fig. 3(a) and (c), our
proposed spectral method based on the MF-CPQR factorization
outperforms the CPQR-type algorithm [42] in SRER. EPS fol-
lows a similar pattern.

Next, we test the performance of the iterative MF-GPM
(Algorithm 4) against the GPM [43] under the same choice
of M, s, and K., as before. Since the GPM and the iterative
MF-GPM require initialization that is close enough to the ground

1 00 4 6 8 10 2 1 00
a

(b) EPS, GPM

(a) SRER, GPM

2 4 6 [ 10 12 1 00 4 6 8 10 12 1 00

(c) SRER, MF-GPM (d) EPS, MF-GPM

Fig. 4. Comparison between the GPM [43] (in the first row) and the iterative
MF-GPM (in the second row) in terms of the success rate of exact recovery
(SPER) and the error of phase synchronization (EPS), where a smaller black
area in each figure indicates a better performance. Experiments are conducted
with the same setting as Fig. 3. (a) and (c): SRER (25) under varying « in

p= alc’% and Binq = ﬁlc’%; (b) and (d): EPS (26) under varying o and 3.

truth, we can choose either [43, Algorithm 3] or the CPQR-type
algorithm [42]. We set the number of iterations to be 50 as
suggested by [43]. Again, as one can observe from Fig. 4, our
proposed iterative MF-GPM achieves higher accuracy in both
SRER and EPS. Surprisingly, one may also notice the region
where p is small and q is large (top left area in Fig. 4(c)), the
iterative MF-GPM is capable of recovering the cluster structure
with high probability, however, this is not the case in recovering
associated phase angles.

When compare the results shown in Figs. 3 and 4 together,
the spectral method based on the MF-CPQR factorization shows
very similar result as the iterative MF-GPM, which are both
significantly better than the GPM [43] and the CPQR-type
algorithm [42]. However, compared to the iterative MF-GPM,
the spectral method based on the MF-CPQR factorization is free
of initialization. One may also observe the performance of the
GPM [43] outperform the CPQR-type algorithm [42].

B. Results With Continuous Phase Angles

In this section, we show the results of our proposed algorithms
against benchmark algorithms on the joint estimation problem
with continuous phase angles. As mentioned in Section III-C, the
algorithms tested in Section VI-A can be directly applied after
simple modification (See Section IV-A for details), and thus we
choose the similar setting as Section VI-A. Besides, since (15) is
a truncated MLE formulation of the true one (13), experiments
of the spectral method based on the MF-CPQR factorization
and the iterative MF-GPM with different K, are conducted
to study the trend of the results as Kp,x grows. The results are
detailed in Fig. 5, with very similar performance as shown in
Figs. 3 and 4. In addition, as Ky,,x grows, the cluster structure
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Fig. 5.

Results for the joint estimation problem with continuous phase angles in [0, 27) using the CPQR-type algorithm [42], the GPM [43], the spectral method

based on the MF-CPQR factorization, and the iterative MF-GPM, where a smaller black area in each figure indicates better performance. The choice of M and N
are the same as Fig. 3. The first and third columns show the SRER, and the second and fourth columns shows EPS. (a), (b), (c), and (d): The results of the CPQR-type
algorithm [42] and the GPM [43]; (e), (f), (g), and (h): The results of the spectral method based on the MF-CPQR factorization and the iterative MF-GPM with
Kmax = 5; (1), (j), (k), and (1): The results of the spectral method based on the MF-CPQR factorization and the iterative MF-GPM with Kpnax = 10; (m), (n), (0),
and (p): The results of the spectral method based on the MF-CPQR factorization and the iterative MF-GPM with K, = 20.

recovery and phase synchronization become more accurate in
both MF-CPQR based method and iterative MF-GPM.

To choose a suitable Ky, for the continuous phase angles,
we need to consider the trade-off between the performance and
the computational complexity. We observe that the estimation
accuracy is improved as K,,x increases. On the other hand, the
computational complexity scales linearly with K, In addition,
the computational complexity also depends on the number of
nodes /N and the number of clusters M, which needs to be
taken into consideration for the trade-off between accuracy and
efficiency. Thus, it is difficult to state a simple optimal policy
for choosing K.« for the continuous phase angles. Despite this,

we have shown that our methods outperform the CPQR-type
algorithm and the GPM as long as Kp,,x > 1, and moreover
largely outperform other baseline algorithms when K, > 10.
Therefore, our choice of K.« is between 10 to 30 for most
cases.

VII. CONCLUSION

In this paper, we study the joint community detection and
phase synchronization problem from an MLE perspective, and
provide the new insight that its MLE formulation has a “multi-
frequency” nature. We then propose two methods, the spectral
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method based on the novel MF-CPQR factorization and the
iterative MF-GPM, to tackle the MLE formulation of the joint
estimation problem, where the latter one requires the initializa-
tion from spectral methods. Numerical experiments demonstrate
the advantage of our proposed algorithms against state-of-the-art
algorithms.

It remains open to establish the theoretical analysis that
can tightly characterize the noise robustness of our proposed
algorithms. Sub-optimal bounds can be easily derived follow-
ing the analysis in [42], [43] by considering the frequency-1
component. However, these results do not explore additional
frequency information. The key difficulties lie in i) analyzing
the properties and relationships of eigenvectors among different
frequency components with dependent noises, and ii) analyzing
the power method across multiple frequencies. We leave them
for future investigation.

In addition, there are several directions that can be further
explored. It is natural to expect that the proposed approach can
be extended to compact non-Abelian groups (e.g., rotational
groups, orthogonal groups, and symmetric groups) using the
corresponding irreducible representations.
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