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Abstract During the past decade, shrinkage priors have received much attention in Bayesian analysis of high-

dimensional data. This paper establishes the posterior consistency for high-dimensional linear regression with

a class of shrinkage priors, which has a heavy and flat tail and allocates a sufficiently large probability mass in

a very small neighborhood of zero. While enjoying its efficiency in posterior simulations, the shrinkage prior

can lead to a nearly optimal posterior contraction rate and the variable selection consistency as the spike-and-

slab prior. Our numerical results show that under the posterior consistency, Bayesian methods can yield much

better results in variable selection than the regularization methods such as LASSO and SCAD. This paper

also establishes a BvM-type result, which leads to a convenient way of uncertainty quantification for regression

coefficient estimates.
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1 Introduction

The dramatic improvement in data collection and acquisition technologies during the last two decades has

enabled scientists to collect a great amount of high-dimensional data. Due to their intrinsic nature, many

of the high-dimensional data, such as omics data and single nucleotide polymorphism (SNP) data, have

a much smaller sample size than their dimension (also known as small-n-large-p). Toward an appropriate

understanding of the system underlying the small-n-large-p data, variable selection plays a vital role. In

this paper, we consider the problem of variable selection for the high-dimensional linear regression

y = Xβ + σε, (1.1)

where y is an n-dimensional response vector, X is an n× p design matrix, β is the vector of regression

coefficients, σ is the standard deviation, and ε follows N(0, In). This problem has received much attention

in the recent literature. Methods have been developed from both frequentist and Bayesian perspectives.
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The frequentist methods are usually regularization-based, which enforce the model sparsity through

imposing a penalty on the negative log-likelihood function. For example, the least absolute shrinkage

and selection operator (LASSO) [59] employs an L1-penalty, elastic net [75] employs a combination of

L1- and L2-penalties, [20] employs a smoothly clipped absolute deviation (SCAD) penalty, [71] employs

a minimax concave penalty (MCP), and rLASSO [56] employs a reciprocal L1-penalty. In general, these

penalty functions encourage model sparsity, and tend to shrink the coefficients of false predictors to

exactly zero. Under appropriate conditions, consistency can be established for both variable selection

and parameter estimation.

The Bayesian methods encourage sparsity of the posteriori model through choosing appropriate prior

distributions. A classical choice is the spike-and-slab prior,

βj ∼ rh(βj) + (1− r)δ0(βj),

where δ0(·) is the degenerated “spike distribution” at zero, h(·) is an absolutely continuous “slab

distribution”, and r is the prior mixing proportion. Generally, it can be equivalently represented as

the following hierarchical prior:

ξ ∼ π(ξ), βξ ∼ hξ(βξ), βξc ≡ 0 (1.2)

for some multivariate density function hξ, where ξ denotes a subset model, and βξ and βξc denote

the coefficient vectors of the covariates included in and excluded from the model ξ, respectively. The

theoretical properties of the prior (1.2) have been thoroughly investigated [12,35,36,40,44,46,53,57,70].

Under proper choices of π and hξ, the spike-and-slab prior achieves a (nearly-) optimal contraction rate

and the model selection consistency.

Alternative to the hierarchical priors, some shrinkage priors have been proposed for (1.1) motivated

by the equivalence between the regularization estimator and the maximum a posteriori (MAP) estimator

(see, e.g., the discussion in [59]). Examples of such priors include the Laplace prior [32,48], the horseshoe

prior [11], the structuring shrinkage prior [30], the double Pareto shrinkage prior [2], the Dirichlet Laplace

prior [8], and the elliptical Laplace prior [22]. Compared with the hierarchical prior, the shrinkage prior

is conceptually much simpler. The former involves specification of priors for a large set of models,

while the latter avoids this issue as for which only a single model is considered. Consequently, for

the hierarchical prior, a trans-dimensional Markov chain Monte Carlo (MCMC) sampler is required for

simulating of the posterior in a huge space of submodels, and this has constituted the major obstacle

for the use of Bayesian methods in high-dimensional variable selection. For the shrinkage prior, there

is only a single model used in posterior simulations, and thus some gradient-based MCMC algorithms,

such as stochastic gradient Langevin dynamics (SGLD) [68], Hamiltonian Monte Carlo [18,47], Riemann

manifold Hamiltonian Monte Carlo [28], and stochastic gradient Hamiltonian Monte Carlo [15], can be

easily used in simulations. This is extremely attractive for the problems where both n and p are very

large, for which mini-batch data can be conveniently used to accelerate simulations.

Despite the popularity and potential advantages of shrinkage priors, few works have been done to

study their theoretical properties. There is a lack of general guarantee of posterior consistency for

Bayesian shrinkage priors, especially under the high-dimensional setting. Bayesian community already

realized that the Laplace distribution is not a good shrinkage prior for high-dimensional linear regression.

Bhattacharya et al. [8] and Castillo et al. [12] showed that the L2-contraction rate of Bayesian LASSO

is suboptimal, and one can also show that the posterior of Bayesian LASSO is inconsistent in the L1

sense under regularity conditions. To tackle this issue, many other types of shrinkage priors have been

proposed (see, e.g., [1, 3, 8, 11, 27, 29, 30]). In the literature, there have been rich theoretical results on

the Bayesian shrinkage prior for the case of slowly increasing p (i.e., p = o(n)) [3,9,24] and normal mean

models [8, 27, 62, 64]. For the high-dimensional case, i.e., p > n, the non-invertibility and eigen-structure

of the Gram matrix X�X complicate the analysis. Hence, the results derived from low-dimensional

models or normal mean models do not trivially apply to regression problems. It is worth noting that

most of the Bayesian works for the normal mean models [8,13,62] aim to achieve a minimax contraction
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rate of O(
√

s log(n/s)). A recent preprint [55] shows that for the normal mean problem, any monotone

estimator β̂ which asymptotically guarantees no false discovery has at best the L2-estimation error rate

‖β̂ − β∗‖2 = Op(
√
s log n). This frequentist assertion implies that the existing rate-minimax Bayesian

approaches cannot consistently recover the underlying sparsity structure for normal mean models (see

also [63, Theorem 3] and [8, Theorem 3.4]). For high-dimensional regression models, the variable selection

consistency remains an unresolved issue for Bayesian shrinkage priors.

In this paper, we lay down a general theoretical foundation for Bayesian high-dimensional linear

regression with shrinkage priors. Instead of focusing on certain types of shrinkage priors, we investigate

sufficient conditions of posterior consistency for general shrinkage priors. We show that if the prior

density has a dominating peak around zero and a heavy and flat tail, then its theoretical properties are

as good as the spike-and-slab prior: its contraction rate is nearly optimal, variable selection is consistent,

and posterior follows a BvM (Bernstein von Mises)-type phenomenon. Specifically, we consider two

types of shrinkage priors for high-dimensional linear regression, namely, polynomially decaying priors and

two-Gaussian mixture priors [23]. Empirical studies show that the Bayesian method with a consistent

shrinkage prior can lead to more accurate results in variable selection than the regularization methods.

The general theoretical framework and technical tools developed in this paper have inspired a series of

follow-up works (see, e.g., the R2-D2 shrinkage prior [74], the beta prime prior [4] and Bayesian additive

nonparametric regression [67]).

Finally, we note that there are some other Bayesian works which deal with high-dimensional problems

with shrinkage priors. For example, Pati et al. [49] employed a Dirichlet-Laplace (DL) prior in dealing

with high-dimensional factor models, but their results only allow the magnitude of true parameters to

increase very slowly with n; Bhadra et al. [7] studied the prediction risk, instead of the posterior properties

of β for high-dimensional regression with a horseshoe prior; Ročková and George [51] established for high-

dimensional linear regression the same posterior convergence rate as ours with a two-group Laplace prior,

but failed to establish consistency of variable selection.

The rest of this paper is organized as follows. In Section 2, we present the main theoretical results,

where we lay down the theory of posterior consistency for high-dimensional linear regression with

shrinkage priors. In Section 3, we study posterior consistency for several commonly used shrinkage

priors. In Section 4, we discuss some important practical issues on Bayesian computation, and illustrate

the performance of Bayesian variable selection using a toy example. In Section 5, we present some

simulation studies and a real data example. In Section 6, we conclude the paper with a brief discussion.

In Appendix A, we give the proofs of the main theorems.

2 Main theoretical results

Notation. In what follows, we rewrite the dimension p of the model (1.1) by pn to indicate that the

number of covariates can increase with the sample size n. We use superscript ∗ to indicate true parameter

values, e.g., β∗ and σ∗. For simplicity, we assume that the true standard deviation σ∗ is unknown but

fixed, and it does not change as n grows. For vectors, we let ‖ · ‖ or ‖ · ‖2 denote the L2-norm; let ‖ · ‖1
denote the L1-norm; let ‖ · ‖∞ denote the L∞-norm, i.e., the maximum absolute value among all the

entries of the vector; let ‖ · ‖0 denote the L0-norm, i.e., the number of nonzero entries. As in (1.2), we let

ξ ⊂ {1, 2, . . . , pn} denote a subset model, and let |ξ| denote the size of the model ξ. We let s denote the

size of the true model, i.e., s = ‖β∗‖0 = |ξ∗|. We let Xξ denote the sub-design matrix corresponding to

the model ξ, and let λmax(·) and λmin(·) denote the largest and smallest eigenvalues of a square matrix,

respectively. We let 1(·) denote the indicator function. For two positive sequences a and b, a ≺ b means

lim a/b = 0, a 	 b means

0 < lim inf a/b � lim sup a/b < ∞,

and a � b means a ≺ b or a 	 b. We use {εn} to denote the Bayesian contraction rate which satisfies

εn ≺ 1.
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2.1 Posterior consistency

The posterior distribution for the model (1.1) follows a general form

π(β, σ2 | Dn) ∝ f(β, σ2;Dn)π(β, σ
2),

where f(β, σ2;Dn) ∝ σ−n exp(−‖y −Xβ‖2/2σ2) is the likelihood function of the observed data Dn =

(X,y), and π(β, σ2) denotes the prior density of β and σ2. Consider a general shrinkage prior: σ2 is

subject to an inverse gamma prior σ2 ∼ IG(a0, b0), where a0 and b0 denote the prior-hyperparameters,

and conditioned on σ2, β has the independent prior for each entry, with an absolutely continuous density

function of the form

π(β | σ2) =
∏
j

[gλ(βj/σ)/σ], (2.1)

where λ is some tuning parameter(s). It is easy to derive that

log π(β, σ2 | Dn) = C +

pn∑
j=1

log gλ

(
βj

σ

)
− (n/2 + pn/2 + a0 + 1) log(σ2)− 2b0 + ‖y −Xβ‖2

2σ2 (2.2)

for some additive constant C.

The shape and scale of the density function gλ play a crucial role for posterior consistency. Intuitively,

we may decompose the parameter space Rpn into three subsets: the neighborhood set B1 = {‖β−β∗‖ �
εn}, the “overfitting” set B2 = {‖X(β − β∗) − ε‖ � σ∗√n}\B1 and the rest B3. Heuristically, the

likelihood f(β2) � f(β1) � f(β3) for any βi ∈ Bi, i = 1, 2, 3. Therefore, to drive the posterior mass

toward the set B1, it is sufficient to require that π(B1) 
 π(B2) and the ratio π(B1)/π(B3) is not too tiny.

In other words, the prior distribution should (1) assign at least a minimum probability mass around β∗,
and (2) assign a tiny probability mass on the overfitting set. However, under the high-dimensional setting,

the “overfitting” set is geometrically intractable (and it expands to infinity) due to the arbitrariness of

the eigen-structure of the design matrix. Therefore, analytically, it is difficult to directly study the prior

on the “overfitting” set. One possible way to control the prior on the “overfitting” set is to impose a

strong prior concentration for each βj such that the most of the prior mass is allocated on the “less-

complicated” models under a certain complexity measure. Under regular identifiability conditions, the

overfitting models are always complicated, so the prior probability mass on the “overfitting” models

should be small, but it is worth noting that the overfitting models are a subset of all the complicated

models and the strong prior concentration is only a sufficient condition. When the geometry of the

overfitting set is easier to handle, e.g., under pn = o(n) or in the normal mean models, the overfitting set

can be a neighboring set of β∗, potentially annulus-shaped. In this case, it is absolutely unnecessary to

require a strong prior concentration on the neighboring set of β∗, i.e., we only need to impose conditions

on the local shape of the prior around β∗ (see [14, 24, 63]). This is also the key difference between

high-dimensional models and slowly increasing models/normal mean models.

Before rigorously studying the properties of the posterior distribution, we first state some regularity

conditions on the eigen-structure of the design matrix X:

A1(1) All the covariates are uniformly bounded. For simplicity, we assume that xj ∈ [−1, 1]n for

j = 1, 2, . . . , pn, where xj denotes the j-th column of X.

A1(2) The dimensionality is high: pn � n.

A1(3) There exist some integer p̄ (depending on n and pn) and a fixed constant λ0 such that p̄ � s

and λmin(X
�
ξ Xξ) � nλ0 for any subset model |ξ| � p̄.

Remark 2.1. A1(1) implies that λmax(X
�X) = tr(X�X) � np. A1(3) has often been used in the

literature to overcome the non-identifiability issue of β (see, e.g., [46, 56, 71]). This condition is also

equivalent to the lower bounded compatibility number condition used in [12]. In general, p̄ should be

much smaller than n. For example, for an n × n design matrix with all the entries i.i.d. distributed,

the Marchenko-Pastur law states that the empirical distribution of the eigenvalues of the corresponding

sample covariance matrix converges to μ(x) ∝ √
(2− x)/x1 (x ∈ [0, 2]). The random matrix theory
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typically allows p̄ 	 n/ log pn with a high probability when the rows of X are independent isotropic

sub-Gaussian random vectors; please refer to [46, Lemma 6.1] and [66, Theorem 5.39].

The next set of assumptions concerns the sparsity of β∗ and the magnitude of nonzero entries of β∗.
A2(1) s log pn ≺ n, where s is the size of the true model.

A2(2) max{|β∗
j /σ

∗|} � γ3En for some fixed γ3 ∈ (0, 1), and En is nondecreasing with respect to n.

Remark 2.2. The condition A2(1) is regularly used in the literature of high-dimensional statistics,

which restricts the size of the true model to be of the order o(n/ log pn). The condition A2(2) constrains

the growth of the nonzero true regression coefficients such that max{|β∗
j |} � En. Together with the

second condition in (2.3), it ensures that the prior probability around the true model does not decay

too fast, which echoes the heuristics discussed in the previous paragraph that the shrinkage prior shall

assign at least a minimum probability mass around β∗. Note that such an upper bound condition is

fairly common in the literature of Bayesian asymptotics. For example, Ghosal et al. [25] established a

general posterior convergence rate, which requires that the prior mass over a small f -divergence ball

of the true density p0 is not too small. For linear regression models, Armagan et al. [3, Theorem 1],

Bhattacharya et al. [8, Theorem 3.1] and Yang et al. [70, Condition (7a)] imposed a similar upper bound

condition on β∗. A similar condition has also been used in [26, 35, 37]. We note that it is also possible

to establish posterior consistency without such an upper bound condition for certain types of shrinkage

priors. Noticeable examples include [51] which used a two-component mixture Laplace prior, [12, 22]

which used a Dirac-Laplace prior, and [44] which used a g-prior centered at the least-square estimator.

More discussions on this issue can be found after Corollary 3.2.

The next theorem provides sufficient conditions for posterior consistency. Hereafter, we let εn =

M
√

s log pn/n denote the contraction rate, where M is a fixed positive constant.

Theorem 2.3 (Posterior consistency). Consider the linear regression model (1.1), where the design

matrix X and the true β∗ satisfy the conditions A1 and A2, σ2 is subject to an inverse gamma prior

IG(a0, b0), and the prior of β is given by (2.1). If gλ satisfies the conditions

1−
∫ an

−an

gλ(x)dx � p−(1+u)
n ,

− log
(

inf
x∈[−En,En]

gλ(x)
)
= O(log pn),

(2.3)

where u > 0 is a constant, an 	 √
s log pn/n/pn, and the constant M is sufficiently large, then the

following posterior consistency holds:

P ∗(π(‖β − β∗‖ � c1σ
∗εn | Dn) � e−c2nε

2
n) � e−c3nε

2
n ,

P ∗(π(‖β − β∗‖1 � c1
√
sεnσ

∗ | Dn) � e−c2nε
2
n) � e−c3nε

2
n

(2.4)

for some positive constants c1, c2 and c3.

The proof of this theorem is given in Appendix A. The results in (2.4) imply that

lim
n→∞E(π(‖β − β∗‖ � c1σ

∗εn | Dn)) = 0

and

lim
n→∞E(π(‖β − β∗‖1 � c1σ

∗√sεn | Dn)) = 0,

i.e., the L2- and L1-contraction rates of the posterior distribution of β are O(
√

s log pn/n) and

O(s
√

log pn/n), respectively. These contraction rates are nearly optimal by recalling that the minimax

L2-contraction rate is O(
√

s log(pn/s)/n) [50], and they are not worse than the rates achieved with the

spike-and-slab prior [12]. In other words, there is no performance loss due to the use of shrinkage priors.

The conditions (2.3) in the above theorem are consistent with our heuristic arguments in previous

paragraphs. The first equation of (2.3) concerns the prior concentration, which requires that the prior

density of βj/σ has a dominating peak inside a tiny interval ±an. Such a steep prior peak plays the
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role of “spike” as in spike-and-slab prior modeling. In the literature, Castillo et al. [12] assigned on the

spike a prior probability π(ξj = 1) = O(p−u
n ) with u > 1, Narisetty and He [46] employed an SSVS

(stochastic search variable selection)-type prior [23] under which the prior probability π(ξj = 1) ∝ 1/pn,

and Yang et al. [70] assigned on the spike a prior probability π(ξj = 1) = O(p−u
n ) with u > 0. All

these prior specifications are comparable to our condition π(|βj/σ| > an) = O(p
−(1+u)
n ) with u > 0.

Note that [46] and [70] seem to require less prior concentration, and they both imposed additional prior

concentration conditions to bound the model size such that π(|ξ| > O(n/ log pn)) = 0. It is worth noting

that all our theorems require the prior distribution to have a tiny scale by imposing a very small bound

on an. The scale of the shrinkage prior affects the convergence rate of the posterior through its logarithm

only. In other words, no matter how small the scale of the prior distribution is, it does not affect much

the convergence rate of the posterior as long as log(1/an) is of order log(pn). One established example

is the horseshoe prior (see [62, Theorem 3.3] for the convergence theory of the posterior). The second

equation of (2.3), as discussed previously, essentially requires that the prior density around the true

nonzero regression coefficient β∗
j /σ

∗ is at least exp{−O(log pn)}, i.e., gλ(β∗
j /σ

∗) � exp{−c log pn} for

some positive constant c. Finally, we note that this prior concentration condition is only sufficient. In

practice, a moderate degree of concentration can often lead to satisfactory results.

Other than the regression coefficients, similar results to (2.4) can be derived for the fitting error

‖Xβ −Xβ∗‖.
Theorem 2.4. If the conditions of Theorem 2.3 hold, then

P ∗(π(‖Xβ −Xβ∗‖ � c1σ
∗√nεn | Dn) � e−c2nε

2
n) � e−c3nε

2
n (2.5)

for some positive constants c1, c2 and c3.

Remark 2.5. Theorem 2.4 actually holds without Condition A1(3). To intuitively understand the

redundancy of Condition A1(3), let us consider the fitted error under any selected subset model ξ ⊇ ξ∗,
i.e., Xξ(X

�
ξ Xξ)

−1X�
ξ ε. Without any assumption on the eigen-structure of X, this term can be bounded

in probability since the eigenvalues of Xξ(X
�
ξ Xξ)

−1X�
ξ are 0 or 1. However, to prove Theorem 2.3, we

need to bound the estimation error (X�
ξ Xξ)

−1X�
ξ ε, and hence an eigen-structure assumption such as

Condition A1(3) is necessary.

To conclude this subsection, we state that an appropriate shrinkage prior can lead to almost the same

posterior consistency result as the spike-and-slab prior.

2.2 Variable selection consistency

In this subsection, we perform a theoretical study on how to retrieve the sparse structure of β∗ with a

shrinkage prior. To achieve this goal, it is necessary to “sparsify” the continuous posterior distribution

induced by the continuous prior. In the literature, this is usually done by (1) hard (or adaptive)

thresholding on βj or on the shrinkage weight 1/(1 + λ2
j ) [11, 34, 38, 58], or (2) decoupling shrinkage

and selection methods [31, 69]. Note that the approaches in the latter class intend to incorporate the

dependency between covariates into the sparse posterior summary. All the aforementioned approaches

depend solely on the magnitude of the Bayesian estimates of βj ’s, without accounting for the degree of

the prior concentration.

We propose to use a prior-dependent hard thresholding method, which sets β̃j = βj1(|βj | > ηn) for

some threshold ηn. This induces a sparse pseudo posterior π(β̃ | Dn), which thereafter can be used to

assess the model uncertainty and conduct variable selection as if it is induced by a spike-and-slab prior.

The correlation structure of π(β̃ | Dn) will reflect the dependency knowledge in X.

First of all, Theorem 2.3 trivially implies that

Eπ(|βj − β∗
j |� c1σ

∗εn for all j = 1, . . . , pn | Dn) = op(1).

Therefore, if minj∈ξ∗ |β∗
j | > 2c1σ

∗εn and ηn = c1σ
∗εn, then

Eπ(1(β̃j = 0) �= 1(β∗
j = 0) for all j | Dn) = op(1)
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and π(β̃) can consistently select the true model. However, one potential issue of using c1σ
∗εn for

thresholding is that it greatly alters the theoretical characteristic of π(β | Dn) in the sense that the

L2-contraction rate of π(β̃ | Dn) can be as large as s
√
log pn/n but not

√
s log pn/n.

This motivates us to consider another choice of ηn. As discussed previously, (2.3) implies a “spike”

between [−an, an] for the prior of β/σ, which plays the same role as the Dirac measure in the spike-

and-slab prior. Hence, from the point of view of prior specification, an distinguishes between zero and

nonzero coefficients, and it is natural to consider β̃j = βj1(|βj/σ| > an). The posterior π(β̃, σ
2 | Dn) thus

implies the selection rule as ξ(β, σ2) = {j; |βj/σ| > an}. This hard-thresholding rule of Bayesian variable

selection can be viewed as a counterpart of the selection rule {j : |βj/σ| > 0} used in spike-and-slab

modeling. It is also closely related with the idea of “generalization dimension” [8, 51]. [8, Theorem 3.4]

defines suppδ(β) = {j : |βj/σ| � δ} as the set of variables selected based on a nonsparse posterior

sample β, where σ = 1 is known, pn = n (X = I), and δ satisfies the condition

π(|βj | � δ) � C log(n/s)/Γ(n−1−u) 	 log(n/s)/(n1+u)

for some u > 0. This choice of δ matches our threshold an, which is the quantile of the prior distribution

satisfying π(|βj/σ| � an) � p−1−u
n for some u > 0.

The following theorem establishes the variable selection consistency of the above hard-thresholding

rule, while Bhattacharya et al. [8] and Ročková and George [51] proved only that the selected model has

a bounded size.

Theorem 2.6 (Variable selection consistency). Suppose that the conditions of Theorem 2.3 hold under

an ≺ √
log pn/(

√
npn) and u > 1. Let ln be a measure of flatness of the function gλ(·), i.e.,

ln = max
j∈ξ∗

sup
x1,x2∈β∗

j /σ
∗±c0εn

|x1|,|x2|�an

gλ(x1)

gλ(x2)
,

where c0 is some large constant. If minj∈ξ∗ |β∗
j | > M1

√
log pn/n for some sufficiently large M1 and

s log ln ≺ log pn, then

P ∗{π[ξ(β, σ2) = ξ∗|Dn] > 1− o(1)} > 1− o(1). (2.6)

This theorem is a simple corollary of Theorem A.7 in Appendix A. It requires a smaller value of an
and a larger value of u, i.e., a narrower and more concentrated prior peak, compared with Theorem 2.3.

Besides the prior concentration and the tail thickness, the condition s log ln ≺ log pn also requires tail

flatness such that the prior density around the true value β∗/σ∗ is not rugged. This flatness facilitates an

analytic study for the posterior π(ξ(β, σ2) | Dn). Generally speaking, for smooth gλ, the flatness measure

approximately follows log ln 	 maxj∈ξ∗ εn[log gλ]
′(β∗

j /σ
∗) → 0, where [log gλ]

′ is the first derivative of

log gλ. In the extreme situation, we can utilize an exactly flat tail such that log ln ≡ 0. An example could

be gλ(x) ∝ exp{−pλ(x)}1x∈[−En,En], where pλ(x) has a shape like a non-concave penalty function such

as SCAD. If log ln is not exactly 0, then the condition s log ln ≺ log pn imposes an additional constraint

on the sparsity s other than s ≺ n/ log pn. More discussions on ln can be found in Section 3.

The result of this theorem also implies a stronger posterior contraction for the false covariates such

that |βj/σ| is bounded in posterior by an.

2.3 Shape approximation of the posterior distribution

Another important aspect of Bayesian asymptotics is the shape of the posterior distribution. The general

theory on the posterior shape is the BvM theorem. It claims that the posterior distribution of the

parameter θ in a regular finite-dimensional model is approximately a normal distribution as n → ∞, i.e.,

‖π(· | Dn)−N(·; θ̂MLE, (nÎ)
−1)‖TV → 0, (2.7)

regardless of the choice of the prior π(θ), where π(· | Dn) is the posterior distribution given data Dn,

N(·;μ,Σ) denotes a (multivariate) normal distribution, θ̂MLE stands for the maximum likelihood estimator
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of θ, I is Fisher’s information matrix, and ‖ · ‖TV denotes the total variation distance between two

measures. The BvM theorem provides an important link between the frequentist limiting distribution

and the posterior distribution, and it can be viewed as a frequentist justification for Bayesian credible

intervals. To be specific, the Bayesian credible intervals are asymptotically equivalent to the Wald

confidence intervals, and also have the long-run relative frequency interpretation.

The BvM theorem generally holds for fixed-dimensional problems. For linear regression with known σ∗,
the posterior normality always holds under an (improper) uniform prior, as

π(β | Dn) ∼ N((X�X)−1X�y, σ∗2(X�X)−1),

as long as p � n and the matrix X is of full rank.

Under the scenario pn 
 n, all the false coefficients are bounded in posterior by a threshold value by

Theorem 2.6. Combining this with the fact that f(βξ∗ ,β(ξ∗)c ;X,y) ≈ f(βξ∗ ,β(ξ∗)c = 0;Xξ∗ ,y) when

‖β(ξ∗)c‖∞ is sufficiently small, we have

π(β | Dn) ∝ L(βξ∗ ,β(ξ∗)c | X,y)π(βξ∗ ,β(ξ∗)c) ≈ L(βξ∗ ;Xξ∗ ,y)π(βξ∗)π(β(ξ∗)c).

If π(βξ∗) is sufficiently flat around β∗
ξ∗ and acts like a uniform prior, then the low-dimensional term

L(βξ∗ ;Xξ∗ ,y) π(βξ∗) follows a normal BvM approximation. More rigorously, we have the next theorem.

Theorem 2.7 (Shape approximation). Assume the conditions of Theorem 2.6 hold, lim s log ln = 0

and

an ≺ (1/pn)
√

1/(ns log pn).

Let θ = (βξ∗ , σ
2)�. Then with dominating probability, π(β, σ2 | Dn) converges in total variation to

φ(βξ∗ ; β̂ξ∗ , σ
2(X�

ξ∗Xξ∗)
−1)

∏
j /∈ξ∗

π(βj | σ2)ig

(
σ2,

n− s

2
,
σ̂2(n− s)

2

)
, (2.8)

where φ(·) is a multivariate normal density function, ig(·) is an inverse gamma density function,

π(βj | σ2) is the conditional prior distribution of βj, and β̂ξ∗ and σ̂2 are, respectively, the maximum

likelihood estimates (MLEs) of βξ∗ and σ2 given data (y,Xξ∗).

Refer to Theorem A.8 for the proof of this theorem. Its condition is slightly stronger than that of

Theorem 2.6. It requires that an is smaller and the prior log-density log gλ(·) is almost constant around

the true value of β∗
j /σ

∗. The following corollary can be easily derived from the above theorem.

Corollary 2.8. Under the condition of Theorem 2.7, for any j ∈ ξ∗, the marginal posterior

of βj converges to the normal distribution φ(βj , β̂j , σ
∗2σj), where β̂j is the j-th entry of β̂ξ∗ , σj =

[(X�
ξ∗Xξ∗)

−1]j,j. Furthermore, if s ≺ √
n, the posterior π(βξ∗c ,βξ∗ , σ

2 | Dn) converges in total variation

to ∏
j /∈ξ∗

π(βj | σ2)φ(θ; θ̂, (nÎ))

with probability approaching 1, where θ = (βξ∗ , σ
2)�, θ̂ = (β̂ξ∗ , σ̂

2)�, and (nÎ)−1 = diag(σ̂2(X�
ξ∗Xξ∗)

−1,

2σ̂4/n). In other words, the BvM theorem holds for the parameter component (βξ∗ , σ
2).

Theorem 2.7 is comparable to the result developed under the spike-and-slab prior [12]. Under the

spike-and-slab prior, the posterior density of β can be rewritten as a mixture,

π(β | Dn) =
∑

ξ⊂{1,...,p}
π(ξ | Dn)π(βξ | Xξ,y)1{βξc = 0}, (2.9)

where π(βξ | Xξ,y) ∝ hξ(βξ)f(βξ;Xξ,y), and h|ξ|(·) is defined in (1.2). If π(ξ∗ | Dn) → 1, π(β | Dn)

converges to π(βξ∗ | Xξ∗ ,y)1{βξ∗c = 0}. Furthermore, if π(βξ∗) is sufficiently flat and BvM holds for

the low-dimensional term π(βξ∗ | Xξ∗ ,y), then it leads to a posterior normal approximation as

π(β | Dm) ≈ N(βξ∗ ; β̂ξ∗ , (X
�
ξ∗Xξ∗)

−1)⊗ δ0(β(ξ∗)c), (2.10)
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where ⊗ denotes the multiplication of the measure.

Theorem 2.7 and Corollary 2.8 extend the BvM-type result from the spike-and-slab prior to the

shrinkage prior. They show that the marginal posterior distribution for the true covariates follows the

BvM theorem as if under the low-dimensional setting, the marginal posterior for the false covariates can

be approximated by its prior distribution. Since the prior distribution is already highly concentrated, the

posterior of the false covariates being almost the same as the prior does not contradict our contraction

results. Note that the Bayesian procedure can be viewed as a process of updating the probabilistic

knowledge of parameters. The concentrated prior distribution reflects our prior belief that almost all

the predictors are inactive, and (2.8) implies that the Bayesian procedure correctly identifies the true

model ξ∗ and updates the distribution of βξ∗ using the data, but it obtains no evidence to support βj �= 0

for any j /∈ ξ∗ and thus does not update their concentrated prior distributions.

Let CIi(α) denote the posterior quantile credible interval of the i-th covariate. If π(β | σ2) is a

symmetric distribution, then Corollary 2.8 implies that

limP ∗(β∗
i ∈ CIi(α)) = 1− α, if i ∈ ξ∗,

limP ∗(0 ∈ CIi(α)) = 1, if i /∈ ξ∗
(2.11)

for any 1 > α > 0. This result implies that for the false covariates, the Bayesian credible interval is super-

efficient: asymptotically, it can be very narrow (as the prior is highly concentrated), but has always 100%

probability coverage. This is much different from the confidence interval.

It is important to note that both Theorem 2.7 and its counterpart (2.10) rely on the selection

consistency (and the beta-min condition), which drives Bayesian post-selection inference. Therefore,

the frequentist coverage of the Bayesian credible interval (the first equation of (2.11)) does not hold

uniformly for all the nonzero βi values, but only holds for those bounded away from 0. If the beta-min

condition is violated, one can rewrite the posterior with the shrinkage prior as a mixture distribution

similar to (2.9). Hence, the corresponding posterior inference will be model-average-based.

The above asymptotic studies are completely different from the frequentist sampling distribution-based

inference tools such as de-biased LASSO [61, 73]. The de-biased LASSO method establishes asymptotic

normality as

√
n(β̂ − β∗) d→ N(0, σ∗2SX�XS�/n) (2.12)

for any β∗, even when it is arbitrarily close to zero, and S is some surrogate inverse matrix of the sample

covariance. Different from our posterior consistency result, the asymptotic distribution on the right-hand

side of (2.12) is a divergent distribution when pn 
 n.

In the literature, there is a different line of research about the validity of Bayesian credible intervals,

which do not require the selection consistency (see, e.g., [6, 63]). These works are usually based on the

first-order Bayesian convergence rate only. As a consequence, these credible intervals/balls involve an

unknown multiplicative constants (e.g., c1 and M) that appear in the posterior convergence rate (2.4)

and their coverage always converges to 1, rather than the nominal level 1− α.

We conjecture that if the consistent point estimation and the inference of credible intervals are made

simultaneously, the credible intervals will be super-efficient for the false covariates due to the sparsity

constraints (i.e., the prior distribution) imposed on the regression coefficients. These constraints ensure

posterior consistency and thus reduce the variability of the coefficients of the false covariates. Based on

this understanding, it seems that under the framework of consistent high-dimensional Bayesian analysis,

a separate post-selection inference procedure (without sparsity constraints) is necessary to induce the

correct second-order inference. For example, it can be done in a sequential manner (referring the idea

to [42] and [60]): attempting to add each of the unselected variables to the selected model, and calculating

the corresponding credible interval for the unselected variable.
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3 Consistent shrinkage priors

In the previous section, we establish general theory for shrinkage priors based on abstract conditions.

In this section, we apply the theory to several types of shrinkage priors, and study the corresponding

posterior asymptotics.

The condition (2.3) requires certain balance between the prior concentration and the tail thickness.

First of all, it is easy to see that the Laplace prior fails to satisfy the condition (2.3) unless the tuning

parameter

λn ∼ pn log pn

/√
s log pn

n

and the true coefficients are as tiny as |β∗
j | = O(

√
s log pn/n/pn) for all j ∈ ξ∗. Therefore, we first

consider the prior specification that has a heavier tail than the exponential distribution.

3.1 Polynomial-tailed distributions

We assume that the prior density of β has the form π(β | σ2) =
∏pn

i=1
1

λnσ
g(βi/λnσ), where λn is a scale

hyperparameter, and the density g(·) is symmetric and polynomial-tailed, i.e., g(x) 	 x−r as |x| → ∞
for some positive r > 1. Under the above prior specification, we adapt Theorem 2.3 as follows.

Theorem 3.1. Assume that the conditions A1 and A2 hold for the linear regression model, and a

polynomial-tailed prior is used. If log(En) = O(log pn), and the scale parameter λn satisfies λn �
anp

−(u+1)/(r−1)
n and − log λn = O(log pn) for some u > 0, then

• the posterior consistency (2.4) holds when an 	 √
s log pn/n/pn;

• the model selection consistency (2.6) holds when an ≺ √
log pn/

√
npn, minj∈ξ∗ |β∗

j | � M1

√
log pn/n

for sufficiently large M1, s log ln ≺ log pn and u > 1;

• the posterior approximation (2.8) holds if an ≺ √
1/(ns log pn)/pn, minj∈ξ∗ |β∗

j | � M1

√
log pn/n for

sufficiently large M1, s log ln ≺ 1 and u > 1.

Note that polynomially decaying distributions that we most commonly use satisfy g(x) = Cx−rL(x),

where limx L(x) = 1 with the rate

|L(x)− 1| = O(x−t) for some t � 0. (3.1)

It is not difficult to see that if minj∈ξ∗ |β∗
j | > M2εn for some large M2, and λn = O(εn), then s log ln 	

sεn/minj∈ξ∗ |β∗
j |. Therefore, Theorem 3.1 can be refined as follows.

Corollary 3.2. Consider the polynomial-tailed prior distributions satisfying (3.1). Assume that the

condition A1 holds, s log pn ≺ n, and log(maxj∈ξ∗ |β∗
j |) = O(log pn). Let the choice of λn satisfy

− log λn = O(log pn). Then

• if λn = O{√s log pn/n
/
p
(u+r)/(r−1)
n } with u > 0, then posterior consistency holds with a nearly

optimal contraction rate;

• if s
√

s log pn/n/minj∈ξ∗ |β∗
j | ≺ log pn, λn ≺ √

log pn/n
/
p(u+r)/(r−1) with u > 1, and minj∈ξ∗ |β∗

j |
� M1

√
s log pn/n for sufficiently large M1, then the variable selection consistency holds;

• if s
√
s log pn/n/minj∈ξ∗ |β∗

j | ≺ 1, λn ≺ √
1/n log pn/p

(u+r)/(r−1)
n with u > 1, and minj∈ξ∗ |β∗

j |
� M1

√
s log pn/n for sufficiently large M1, then the posterior shape approximation holds.

Theorem 3.1 and Corollary 3.2 show that a nearly optimal contraction rate can be achieved for high-

dimensional linear regression by adopting a polynomial-tailed prior with an appropriate value of λn. As

suggested by Corollary 3.2, it is sufficient to choose the scale parameter as log λn ∼ −c log pn for some

c � (u + r)/(r − 1), since n = O(pn) and s = o(pn). Compared with the choice λn = (s/p)
√

log(p/s)

under normal mean models [27,62], we note that a stronger prior concentration is required for regression

models. Our results allow the maximum magnitude of nonzero coefficients to increase up to a polynomial

of pn. In contrast, the DL prior allows |β∗
j | to increase with a logarithmic order of n only [8]. It is

worth noting that the boundedness condition on |β∗
j | is not necessary for a polynomially decaying prior

under normal mean models, i.e., when X = I [27, 54, 62]. However, under general regression settings,
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such a condition may be necessary due to the dependency among covariates. One should also notice that

the selection consistency or posterior normality requires the stronger beta-min condition (i.e., minimal

β∗ is greater than the order of
√
s log pn/n) and an additional condition on the true sparsity s (e.g.,

if minj∈ξ∗ |β∗
j | > C for some constant C, the selection consistency and the posterior normality require

s3 ≺ n log2 pn and s3 ≺ n/ log pn, respectively). The reason we need such unpleasant conditions is that

the polynomially decaying prior modeling utilizes only one scale hyperparameter. Although this simplifies

the modeling part, we lose control on the shape or tail flatness of the prior distribution. If we utilize

both scale and shape hyperparameters in prior modeling, the conditions can be improved, as seen in

Subsection 3.2.

For the convenience of posterior sampling, one way to construct a polynomially decaying prior is to

design a hierarchical scale mixture Gaussian distribution as

βj ∼ N(0, λ2
jσ

2), λ2
j ∼ πsn(λ

2
j ), independently for all j, (3.2)

where sn is the scale hyperparameter of the mixing distribution πsn(·), i.e., πsn(·) = π1(·/sn)/sn.
Equivalently,

√
sn is the scale parameter of the marginal prior of βj . The scale mixture Gaussian

distribution can also be viewed as a local-global shrinkage prior, where λ2
j ’s are local shrinkage parameters,

and sn is a deterministic global shrinkage parameter. As shown in the next lemma, the tail behavior of

the marginal distribution of βj is determined by the tail behavior of π1.

Lemma 3.3. If the mixing distribution πsn(·) is a polynomial-tailed distribution satisfying π1(λ
2)

= Cλ−2r̃L̃(λ2) and |L̃(λ2) − 1| = O((λ2)−t̃), then the marginal prior distribution of βj induced by (3.2)

is polynomial-tailed with order 2r̃ − 1 and satisfies |L(x)− 1| = O(x−2t̃), where L is defined in (3.1).

The proof of this lemma is trivial and hence omitted in this paper.

Combining the above lemma and Corollary 3.2, it is sufficient to assign λ2
j a polynomial-tailed

distribution and properly choose the scale parameter sn such that
√
sn is decreasing and satisfies the

conditions in Corollary 3.2. Ghosh and Chakrabarti [27] studied the posterior convergence of the normal

mean models with a scale mixture Gaussian prior (3.2) and achieved a minimax contraction rate. However,

their result is only applicable to the case where the polynomial order r̃ of π1(λ
2
j ) is between 1.5 and 2.

Our result is more general and valid for any r̃ > 1.

In what follows, we list some examples of polynomially decaying prior distributions which can be

represented as a scale mixture Gaussian distribution. All these priors satisfy the condition (3.1):

• the student’s t-distribution, for which the mixing distribution of λ2 is an inverse gamma distribution

IG(a1, sn) with a1 > 0;

• the normal-exponential-gamma (NEG) distribution [29], for which the mixing distribution is π(λ2)

= νs−1
n (1 + s−1

n λ2)−ν−1 with ν > 0;

• the generalized double Pareto distribution [3] with the density g(x) = (2λn)
−1 (1+|x|/(a1λn))

−(a1+1),

for which the mixing distribution can be represented as a gamma mixture of exponential distributions

with a1 > 0;

• the generalized beta mixture of Gaussian distributions [1], for which the mixing distribution is an

inverted beta distribution: λ2
j/sn ∼ inverted Beta(a1, b1) with a1 > 0. Note that the horseshoe prior is a

special case of generalized beta mixture Gaussian distributions with a1 = b1 = 1/2.

In addition, Theorem 3.1 implies a simple way to remedy the inconsistency of Bayesian LASSO by

imposing a heavy tail prior on the hyperparameter: β/σ ∼ DE(λj), λ
−1
j ∼ πsn , where DE(λ) denotes the

double exponential distribution λ exp{−λx}/2, and the mixing distribution πsn of λ−1
j has a polynomial

tail with the scale parameter sn.

In the above analysis, we choose the scale parameters λn or sn to decrease deterministically as n

increases. Hence, in practice, certain tuning procedures are recommended as described in Section 4.

Such hyperparameter tuning occurs in most Bayesian procedures under the spike-and-slab prior as well.

Note that such a tuning procedure usually requires multiple simulations under different levels of λn. In

the literature, an adaptive Bayesian way to choose λn is to assign a hyper-prior on λn. van der Pas

et al. [64] studied the horseshoe prior for the normal mean models, and they showed that the posterior
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consistency remains if λn is subject to a hyper-prior which is truncated on [1/n, 1]. However, the results

derived for normal mean models may not be trivially applicable to regression models. Note that there

is a
√
n difference between regression models and normal mean models, in terms of the L2-norm for the

columns in the design matrix. The result of [64] suggests to truncate the prior of λn on [n−3/2, n−1/2] for

regression models. A toy example shown in Figure 4 indicates that such truncation still leads to many

false discoveries. Another popular choice is to impose the global shrinkage parameter on a half Cauchy

prior λn ∼ C+(0, 1). The numerical results show that this hierarchical prior leads to insufficient prior

shrinkage and less accurate posterior concentration. Finally, our posterior shape approximation result

relies on the fact that βj ’s are a priori independent conditioned on σ2. If a hyper-prior on λn is used,

then the conditional a priori independence does not hold any more, and the BvM result (2.8) fails.

3.2 Two-component mixture Gaussian distributions

Another prior that has been widely used in the Bayesian linear regression analysis is the two-component

mixture Gaussian distribution (see, e.g., [23, 46])

βj/σ ∼ (1− ξj)N(0, σ2
0) + ξjN(0, σ2

1), ξj ∼ Bernoulli(m1). (3.3)

The component N(0, σ2
0) has a very small σ0 and can be viewed as an approximation to the point mass

at 0. In the literature, the interest in this prior has been focused only on the consistency of variable

selection, i.e.,

π({j : ξj = 1} = ξ∗ | Dn).

Here, we treat it as an absolutely continuous prior and study the posterior properties of β in the next

theorem.

Theorem 3.4. Suppose that the two-component mixture Gaussian prior (3.3) is used for the high-

dimensional linear regression model (1.1), and the following conditions hold: the conditions A1 and A2,

E2
n/σ

2
1 + log σ1 	 log pn, m1 = 1/p1+u

n and σ0 � an/
√
2(1 + u) log pn for some u > 0. Then

• the posterior consistency (2.4) holds when an 	 √
s log pn/n/pn;

• the model selection consistency (2.6) holds when an ≺ √
log pn/

√
npn, sEn

√
s log pn/n/σ

2
1 ≺ log pn,

minj∈ξ∗ |β∗
j | � M1

√
log pn/n for sufficiently large M1 and u > 1;

• the posterior approximation (2.8) holds when an ≺ √
1/(ns log pn)/pn, sEn

√
s log pn/n/σ

2
1 ≺ 1,

minj∈ξ∗ |β∗
j | � M1

√
log pn/n for sufficiently large M1 and u > 1.

The two-normal mixture distribution contains three hyperparameters m, σ2
0 and σ2

1 . Hence, we have

more control on the prior shape compared with the polynomially decaying priors, and the theoretic

properties are improved slightly compared with Corollary 3.2. Specifically, Theorem 3.4 allows us to

choose σ1 = En = pcn for some c > 1 and thus sEn

√
s log pn/n/σ

2
1 ≺ 1 always holds, i.e, there will be no

additional conditions on the upper bound of the model size s; Theorem 3.4 only requires that minj∈ξ∗ |β∗
j |

is larger than the order of
√

log p/n.

4 Bayesian computation and an illustrative example

In this section, we first discuss some important practical issues, including the posterior computation, the

model selection and the hyperparameter tuning, and then we use some toy examples to illustrate the

performance of the shrinkage priors. For convenience, we call the Bayesian method, whose consistency

is guaranteed by Theorem 2.3 with a shrinkage prior, a Bayesian consistent shrinkage (BCS) method in

what follows. In particular, we use the student-t prior, as an example of the shrinkage prior, and compare

it with the Laplace prior.

The scale mixture Gaussian priors (3.2), under a proper hierarchical representation, usually lead to

posterior conjugate Gibbs updates. For example, for the student-t prior, the posterior distribution can
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be updated in the following way:

σ2 | β, λ1, . . . , λpn ∼ IG

(
a0 +

n+ pn
2

, b0 +
‖y −Xβ‖2

2
+

∑
j

β2
j

2λ2
j

)
,

β | σ2, λ1, . . . , λpn ∼ N(K−1X�y/σ2,K−1),

f(λ2
j | β, σ2) ∝ 1

λj
exp

{
− β2

j

2λ2
jσ

2

}
π(λ2

j ), j = 1, . . . , pn,

(4.1)

where K = (X�X+Λ)/σ2, Λ = diag(1/λ2
j ), and π(λ2

j ) denotes the density function of an inverse gamma

distribution, i.e., λ2
j ∼ IG(a1, sn).

The step of updating β is computationally difficult due to the inverse of a pn×pn matrix. However, the

special structure of the covariance matrix K−1 allows for a blockwise update of β [34]. For example, if we

partition β into two blocks β(1) and β(2), and partition X = [X1,X2] and Λ = diag(Λ1,Λ2) accordingly,

then the conditional distribution of β(1) is given by

β(1) | β(2) ∼ N((X�
1 X1 + Λ1)

−1X�
1 (y −X2β

(2)), σ2(X�
1 X1 + Λ1)

−1), (4.2)

which requires only an inverse of a lower-dimensional matrix. The computational complexity of

updating β in (4.1) is O(p3n), while that in (4.2) is O((d3 + n(pn − d))pn/d), where d is the block size

and the term n(pn − d) comes from computing the product X2β
(2). The optimal order of d is O( 3

√
npn),

which yields a computational complexity of O(n2/3p
5/3
n ) for one update of the entire vector β. Further

improvement in computation is possible when we incorporate the idea of the skinny Gibbs sampler [45].

Posterior model selection based on BCS has been discussed in Sections 2 and 3 from the theoretical

aspect. However, in practice, the selection rule ξ(β) = {j : |βj/σ| > an} cannot be directly used since

an is not an explicit hyperparameter of the prior distribution. Recall that an represents the boundary of

the prior spike region, and it is implicitly defined through the condition (2.3) as π(|βj/σ| > an) = p−1−u
n .

Since u is unknown, we suggest to choose the threshold a in the rule π(|βj/σ| > a) = 1/pn, i.e., let

u = 0. This rule means that we set the expected a priori model size to be 1. Such a rule has often been

in the literature of Bayesian model selection (see, e.g., [46]). Obviously, an � a, and thus it leads to a

conservative selection. However, if a � minj∈ξ∗ |β∗
j |, it is not difficult to see that the Bayesian selection

consistency remains, when minj∈ξ∗ |β∗
j | satisfies the beta-min condition. In the simulation studies of

this paper, we choose the Bayesian estimator for the model as ξ̂ = {j : qj � π(|βj/σ| > a|Dn) > t},
where t = 0.5 and qj plays the role of the posterior inclusion probability. It is worth mentioning that

one may also use a data-driven method to determine the value of t, and make the variable selection rule

more robust across different sparsity regimes. For example, we can conduct a multiple hypothesis test

based on the marginal inclusion probabilities qj ’s for the hypotheses Hj0 : βj = 0 versus Hj1 : βj �= 0,

j = 1, . . . , pn based on posterior summaries. This can be done using an empirical Bayesian approach as

developed in [19, 41].

Another important practical issue is how to select hyperparameters. The theory developed in Sections 2

and 3 provides only sufficient conditions for the asymptotic order of hyperparameters. For example, by

Theorem 3.2, one can set the scale parameter λn = 1/[
√
n log pnp

γ
n] with any sufficiently large value

of γ for the student-t prior. Asymptotically, an excessively large value of γ does not affect the rate

of convergence, but affects only the multiplicative constants, such as M and c1, in the statement of

Theorem 2.3. However, in finite-sample applications, it is crucial to select a properly scaled parameter

such that the posterior is neither over- nor under-shrunk. In this work, we let λn = 1/[
√
n log pnp

γ̂
n] and

choose γ̂ to minimize the posterior mean of a “BIC-like score”:∫
bic(β, σ2)dπ(β, σ2 | Dn, γ),

where bic(β) = n log(‖Y − X�β̃‖2/n) + ‖β̃‖0 log n, β̃ = (β̃1, . . . , β̃pn), β̃j = βj1(|βj/σ| > a), and

π(β, σ2 | Dn, γ) is the posterior distribution of (β, σ2) given the hyperparameter γ. In practice, one can
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run multiple posterior simulations with different values of γ, and then choose the one that yields the

smallest posterior sample mean of the “BIC-like” score. Since the multiple runs can be made in parallel

on a high-performance computer, such a parameter tuning strategy does not add much on computational

time. Since investigating the theoretical properties of tuning parameter selection is beyond the scope of

this work, such study will be conducted elsewhere.

We illustrate the performance of BCS using a simulated example, where p = 200, n = 120, and the

nonzero coefficients are (β1, β2, β3, β4) = (1, 1, 1, 1). For the Laplace prior, we set the hyperparameter

λ =
√
n log(pn) at which the LASSO estimator is known to be consistent (see, e.g., [72]). For the

student-t prior, we set the degree of freedom to 3 with the scale parameter

sn = λ2
n = 1/[n log pnp

−2γ
n ],

where γ ranges from −0.25 to 1.1, and the best γ̂ is selected as described in the above. For both priors,

we let σ2 be subject to an inverse gamma distribution with a0 = b0 = 1.

The numerical results are summarized in Figure 1. The first plot shows the posterior sample mean of

the BIC-like score with different values of γ. It shows that when γ is larger than 0.8, the tuning parameter

λn is too small, the posterior begins to miss true covariates due to over-shrinkage, and thus the posterior

mean of the BIC-like score rapidly increases to a very large value. The second and third plots are the

posterior boxplots of π(βj | Dn) of Bayesian LASSO, and BCS under the optimal setting of γ̂. To make

the boxplots more visible, we only include the coefficients of the first 50 covariates, including four true

covariates. The comparison shows that BCS leads to a consistent inference of the model in the sense that

the coefficients of the false covariates are shrunk to zero, and the coefficients of the true covariates are

distributed around their true values. In contrast, Bayesian LASSO over-shrink the coefficients of true

covariates, and under-shrink the coefficients of false covariates. This is due to the fact that the Laplace

prior fails to achieve the balance between the prior concentration and the tail thickness. But it is worth

noting that the posterior Bayesian LASSO can still separate the true and false covariates, and thus it

can be used for the model selection.
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Figure 1 (Color online) (a) The posterior mean of the BIC-like score for different values of γ; (b) box-plots of the posterior

samples by Bayesian LASSO; (c) box-plots of the posterior samples by BCS
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Figure 2 (Color online) Shape of the posterior distribution by BCS: (a) shows the QQ plot for one true covariate, and

(b) shows the histogram of the posterior samples of βj/σ, j /∈ ξ∗ (i.e., false covariates), where the red curve represents the

density of the student-t prior

In addition, we draw in Figure 1 four red vertical segments which represent the 99% oracle confidence

intervals of the true coefficients by assuming that the true model is known. In Figure 2, we examine

the shape of posterior samples resulted from BCS. The plots are consistent with the established BvM

theorem, i.e., the equation (2.8).

Figure 1 shows that for this example a wide range of γ, from −0.1 to 0.6, yields similar posterior means

for the BIC-like score, which implies that the true model is correctly selected under γ within this range.

The BIC-like score posterior mean criterion tends to select a smaller value of γ within this range, since

a smaller γ reduces the shrinkage effect on the true covariates. But further experiments can show that

the performance of BCS is actually quite stable with any γ in this range. This also implies that BCS is

tolerant to stochastic tuning errors.

As discussed previously, the Bayesian interval estimates obtained by BCS will be super-efficient for

false covariates. Their coverages highly rely on the selection consistency, and have completely different

performance compared with frequentist confidence intervals. The frequentist de-biased LASSO estimator

is defined as

β̂ = β̂LASSO +
1

n
SX�(y −Xβ̂LASSO),

where S is the surrogate inverse matrix of the sample covariance. This de-bias step applies an OLS

(ordinary least squares)-type bias correction to the LASSO estimator. In the ideal case where pn � n

and 1
nS = (X�X)−1, the de-biased LASSO estimator reduces to the OLS estimator. Therefore, the

marginal confidence intervals of all the covariates, including both true and false, have the same length

scale.

5 Numerical studies

This section examines the performance of BCS in variable selection and uncertainty assessment for the

regression coefficient estimates. The method is tested on two simulation examples and a real data example.

In the simulation study, two design matrices are considered for the model (1.1): (n, p) = (80, 201) and

(n, p) = (100, 501), where the intercept term has been included. The true values of the parameters are

σ∗ = 1, β = (0, 1, 1.5, 2, 0, . . . , 0)�,

where the first 0 corresponds to the intercept term. The design matrices are generated from the

multivariate normal distribution N(0,Σ) with the covariance structure, (1) independent covariates:
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Σ = I, or (2) pairwisely dependent covariates: Σii = 1.0 for all i, Σi,j = 0.5 for i �= j. The methods

under comparison include BCS, Bayesian LASSO, LASSO and SCAD. For Bayesian LASSO, we set the

scale parameters to

λ =
√

n log pn.

For BCS, the tuning parameter sn is selected by the posterior mean of the BIC-like score as discussed

in Section 4. For the setting of the Gibbs sampler, we set the total iteration number to N = 40,000

in addition to 5,000 iterations for the burn-in process. The posterior samples are collected at every 40

iterations. The R-packages glmnet [21] and ncvreg [10] are used for implementing LASSO and SCAD,

where the tuning parameter λ is chosen to minimize the 10-fold cross-validation error. For LASSO, this

is to set λ = lambda.min in glmnet. Since LASSO is known to select many false variables, we have also

tried to set λ = lambda.1se, which is to choose the largest value of λ such that the cross-validation error

is within one standard deviation of the minimum cross-validation error. The R-package hdi [17] is used

for implementing de-biased LASSO. All the results reported below are based on 112 simulated replicates.

5.1 Simulation I: n = 80, p = 201

We evaluate accuracy of the estimates obtained from various methods in the L1-error, which is defined as∑
j∈ξ∗ |β∗

j − β̂j | for the true covariates and
∑

j /∈ξ∗ |β̂j | for the false ones. For the Bayesian methods, the

posterior mean is used as the point estimator, although which is not the optimal choice for minimizing

the L1-error. We evaluate the accuracy of variable selection using the average number of selected true

covariates |ξ̂ ∩ ξ∗| (where the perfect value is 3), and the average number of selected false covariates

|ξ̂ ∩ (ξ∗)c| (where the perfect value is 0). For each covariate, we also compare the marginal credible

intervals produced by the Bayesian methods and the confidence intervals produced by de-biased LASSO

under a nominal level of 95%. For simplicity, the credible intervals are constructed based on the empirical

quantiles from posterior samples instead of the highest density region.

The results are summarized in Tables 1 and 2 for the case of independent covariates and the case of

dependent covariates, respectively. First of all, we can see that BCS works extremely well in identifying

true models, whose performance is almost perfect. As seen in Section 4, Bayesian LASSO can also

distinguish between the true and false covariates from posterior samples when the coefficients of the

true covariates are sufficiently large. However, due to over-shrinkage, it does not work well when they

are small. Hence, Bayesian LASSO mis-identifies some true covariates for this example. Both LASSO

and SCAD tend to select dense models, although the true covariates can be selected. As mentioned

previously, this is due to an inherent drawback of the regularization methods. The regularization shrinks

the true regression coefficients toward zero. To compensate the shrinkage effect, some false covariates

have to be included. For LASSO, the comparison shows that the choice of λ = lambda.1se alleviates the

“overselection” issue, and leads to the less estimation error for zero βj ’s and larger estimation bias for

nonzero βj ’s. BCS also shrinks the true regression coefficients, but it can still perform well in variable

selection. This is due to the fact that BCS accounts for the uncertainty of coefficient estimates in variable

selection: BCS is sample-based, for which different false covariates might be selected to compensate the

shrinkage effect at different iterations, and thus the chance of selecting false covariates can be largely

eliminated by averaging over different iterations.

Regarding the parameter estimation, we note that SCAD yields somehow better results than BCS.

However, a direct comparison of these two methods is unfair, as the BCS tells us something more beyond

point estimation, e.g., credible interval. Also, BCS leads to much accurate variable selection as reported

above. Among the Bayesian methods, we can see that BCS performs much better than Bayesian LASSO,

which indicates the importance of posterior consistency. We note that it is unfair to directly compare

L1-estimation errors of β(ξ∗)c for shrinkage estimators (BCS or Bayesian LASSO) and sparse estimators

(LASSO or SCAD), since the shrinkage estimators never shrink any coefficients to exactly zero. For

example, in Table 1, the L1-error of BCS is 2.3, which is much larger than those by LASSO and SCAD.

However, it actually implies that β̂j ≈ 2.3/200 ≈ 0.011 for each zero βj , as BCS selects almost no false

predictors. Hence, it represents fairly successful shrinkage for the false predictors.
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Table 1 Comprehensive comparison of BCS, Bayesian LASSO (Bay-LASSO), LASSO with lambda.min (LASSO1), LASSO

with lambda.1se (LASSO2), SCAD and de-biased LASSO for the datasets with independent covariates, n = 80 and p = 201

Methods

BCS Bay-LASSO de-biased LASSO LASSO1 LASSO2 SCAD

L1-error of βξ∗ 0.3380 2.1115 0.3503 0.6678 1.0850 0.2811

Standard error 0.0149 0.0281 0.2537 0.0211 0.0275 0.0133

L1-error of β(ξ∗)c 2.3137 4.5533 23.3050 0.8402 0.1650 0.2180

Standard error 0.0758 0.0360 0.2537 0.0950 0.0319 0.0324

|ξ̂ ∩ ξ∗| 3.0000 2.3036 – 3.0000 3.0000 3.0000

Standard error – 0.0505 – – – –

|ξ̂ ∩ (ξ∗)c| 0 0 – 14.1610 3.1964 4.3304

Standard error – – – 1.2841 0.5041 0.5176

Coverage of ξ∗ 0.9067 0.0595 0.9613 – – –

Average length 0.4996 0.8471 0.5798 – – –

Coverage of (ξ∗)c 1.0000 1.0000 0.9492 – – –

Average length 0.1371 0.3322 0.5490 – – –

Table 2 Comprehensive comparison of BCS, Bayesian LASSO (Bay-LASSO), LASSO with lambda.min (LASSO1), LASSO

with lambda.1se (LASSO2), SCAD and de-biased LASSO for the datasets with dependent covariates, n = 80 and p = 201

Methods

BCS Bay-LASSO de-biased LASSO LASSO1 LASSO2 SCAD

L1-error of βξ∗ 0.5040 2.7798 0.4469 0.8735 0.9516 0.3593

Standard error 0.0342 0.0302 0.0192 0.0265 0.0242 0.0170

L1-error of β(ξ∗)c 0.3805 4.8558 24.7950 1.3638 0.4509 0.1587

Standard error 0.0782 0.0302 0.2448 0.1083 0.0274 0.0198

|ξ̂ ∩ ξ∗| 2.9000 1.7500 – 3.0000 3.0000 3.0000

Standard error 0.0300 0.0546 – – – –

|ξ̂ ∩ (ξ∗)c| 0.0100 0 – 16.1790 6.7232 2.3125

Standard error 0.0100 – – 0.9801 0.3418 0.2568

Coverage of ξ∗ 0.9000 0.0327 0.8988 – – –

Average length 0.6970 0.9279 0.6046 – – –

Coverage of (ξ∗)c 1.0000 1.0000 0.9543 – – –

Average length 0.0373 0.3804 0.5418 – – –

For the interval estimation, de-biased LASSO produces high quality confidence intervals. For both

true and false covariates, it produces about the same length confidence intervals, and the coverage rates

of these confidence intervals are about the same as the nominal level. This observation is consistent with

our previous discussion. For the true covariates, BCS yields almost 95% converge; in contrast, Bayesian

LASSO yields a very low coverage due to the effect of over-shrinkage. For the false covariates, both

BCS and Bayesian LASSO produce 100% coverage with very narrow credible intervals. Hence, they do

not have the correct long-run frequency coverage for false predictors. These discoveries agree with our

theoretical results. The de-biased LASSO yields wider intervals for the false covariates, as it cannot

incorporate the model sparsity information into the construction of confidence intervals.

The performance of BCS for the cases of independent and dependent covariates is quite consistent,

except that the proposed method tends to select a smaller value of γ for the independent case and, as

a consequence, the posterior L1-error of the false covariates tends to be larger than for the dependent

case. This is reasonable, as the high spurious correlation requires a higher penalty for the multiplicity

adjustment.

5.2 Simulation II: n = 100, p = 501

The results are summarized in Tables 3 and 4 for the independent and dependent covariates, respectively.
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As in the case of n = 80 and p = 201, BCS performs much better than the regularization methods in

variable selection, and performs much better than Bayesian LASSO in all the aspects of variable selection,

parameter estimation and interval estimation.

Before moving forward to the real application in the next section, we mention that we also conduct

simulations, under the same data generation scheme, for the two-Gaussian mixture prior specification.

While the two-Gaussian mixture prior also achieves near-perfect model selection performance, we find

that its shrinkage effect on β(ξ∗)c and its interval estimation coverage performance are inferior to those of t

shrinkage prior (although they are much better than Bayesian LASSO inference results). One potential

reason is that the hyperparameters m1, σ
2
1 and σ2

0 are not optimally tuned. Our empirical experience

shows that the value of m1 has a large effect on model selection performance, and the values of σ2
1

and σ2
0 affect the level of the posterior shrinkage and the posterior normality asymptotics. However,

tuning all three hyperparameters simultaneously is much more difficult in practice, than tuning only one

hyperparameter of the t-shrinkage methods, and hence is not recommended.

Table 3 Comprehensive comparison of BCS, Bayesian LASSO (Bay-LASSO), LASSO with lambda.min (LASSO1), LASSO

with lambda.1se (LASSO2), SCAD and de-biased LASSO for the datasets with independent covariates, n = 100 and p = 501

Methods

BCS Bay-LASSO de-biased LASSO LASSO1 LASSO2 SCAD

L1-error of βξ∗ 0.2789 2.3863 0.3177 0.7173 0.9645 0.2616

Standard error 0.0115 0.0310 0.0145 0.0229 0.0253 0.0107

L1-error of β(ξ∗)c 4.4011 8.7190 50.3010 0.9736 0.2158 0.3080

Standard error 0.0312 0.0602 0.4636 0.0900 0.0436 0.0402

|ξ̂ ∩ ξ∗| 3.0000 2.1964 – 3.0000 3.0000 3.0000

Standard error – 0.0436 – – – –

|ξ̂ ∩ (ξ∗)c| 0.0268 0 – 20.554 4.7411 7.0178

Standard error 0.0153 – – 1.6070 0.8629 0.8042

Coverage of ξ∗ 0.9285 0.0208 0.9494 – – –

Average length 0.4300 0.7412 0.4985 – – –

Coverage of (ξ∗)c 1.0000 1.0000 0.9517 – – –

Average length 0.1506 0.2841 0.6038 – – –

Table 4 Comprehensive comparison of BCS, Bayesian LASSO (Bay-LASSO), LASSO with lambda.min (LASSO1), LASSO

with lambda.1se (LASSO2), SCAD and de-biased LASSO for the datasets with dependent covariates, n = 100 and p = 501

Methods

BCS Bay-LASSO de-biased LASSO LASSO1 LASSO2 SCAD

L1-error of βξ∗ 0.3960 3.1087 0.3888 0.8742 1.0228 0.3338

Standard error 0.0260 0.0300 0.0155 0.0282 0.0223 0.0158

L1-error of β(ξ∗)c 0.4288 9.2585 54.2889 1.3656 0.5331 0.1424

Standard error 0.1076 0.0694 0.4754 0.1045 0.0342 0.0196

|ξ̂ ∩ ξ∗| 2.9464 1.4554 – 3.0000 3.0000 3.0000

Standard error 0.0213 0.0566 – – – –

|ξ̂ ∩ (ξ∗)c| 0.0089 0 – 21.4280 9.7324 6.4732

Standard error 0.0089 – – 1.3218 0.4742 0.8065

Coverage of ξ∗ 0.9107 0.0060 0.9077 – – –

Average length 0.5783 0.7498 0.5263 – – –

Coverage of (ξ∗)c 1.0000 1.0000 0.9316 – – –

Average length 0.0219 0.2870 0.6142 – – –
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5.3 A real data example

We analyze a reduced gene expression dataset on Bardet-Biedl syndrome from [52]. The reduced dataset

is available in the R-package flare [39], which contains 120 samples with 201 gene expression levels. The

scientific community has discovered that TRIM32 is the causal gene to Bardet-Biedl syndrome [16]. In

this example, we treat the expression level of gene TRIM32 as the response variable and the expression

levels of the other 200 genes as predictors. Therefore, the selected set of genes from this regression will

cover the regulators of gene TRIM32 by the consistency property of BCS.

We apply both de-biased LASSO and BCS to this regression problem. De-biased LASSO identifies gene

153 as the only significant covariate according to the Bonferroni-adjusted p-values, and produces a 95%

confidence interval of [0.024, 0.072] for this gene. For BCS, the optimal value γ̂ = 0.58 is selected, and

the posterior exceedance probability qj � π(|βj/σ| > a | Dn) is used to quantify the significance of each

covariate, where a is as defined in Section 4. BCS also identifies gene 153 as the most significant covariate

with q153 = 0.54. Figure 3 shows the posterior distribution of the regression coefficient of gene 153 under

the choice of γ̂ = 0.58 as well as the confidence intervals produced by the two methods. The 95% highest

posterior density (HPD) credible interval produced by BCS is [−0.018, 0.018]∪ [0.064, 0.131], which is the

union of two intervals representing the evidence against and for the true covariate, respectively. Note that

if the true model is exactly gene 153, its OLS estimator will be 0.109. The de-biased LASSO confidence

interval (represented by the dashed segment in Figure 3) seems a compromise between the two intervals,

and it does not contain the OLS value 0.109.

6 Conclusion

In this paper, we have studied the posterior asymptotics under absolutely continuous priors for high-

dimensional linear regression. We first prove that if the prior distribution is heavy-tailed and allocates

a sufficiently large probability mass in a very small neighborhood of zero, then the posterior consistency

holds with a nearly optimal contraction rate. More specifically, we find that any polynomial-tailed

distribution with a scale parameter, which decreases as pn increases, can be used as an appropriate prior

to derive valid Bayesian inference for high-dimensional regression models. Note that it is not necessary

for the continuous prior distribution to have an infinite density at zero as in the DL or horseshoe priors.
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Figure 3 Histogram of the posterior samples of the regression coefficient of gene 153, where the black line shows the

posterior HPD interval, and the dashed line shows the de-biased LASSO confidence interval
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Figure 4 Boxplots of {βj}j /∈ξ∗ simulated from a posterior distribution with a horseshoe prior for the same dataset used

in Figure 1, where the global shrinkage parameter is truncated into [n−3/2, n−1/2]

In the literature, the local-global shrinkage prior has been widely studied, especially for the normal

mean problem. Such a prior follows βj ∼ N(0, σ2λ2
jτ

2), where λ2
j controls the local shrinkage, and

τ2 controls the degree of global shrinkage. Our work verifies that a sufficient condition that ensures

consistency of the local-global shrinkage is to let the local shrinkage parameter λ2
j follow some polynomial-

tailed distribution, and let the global shrinkage parameter τ2 deterministically decrease in the order

− log(τ2) = O(log pn). In this work, we suggest a BIC-like score posterior mean criterion for tuning the

global shrinkage parameter. Although it works well for our examples, it is still of great interest to the

Bayesian community if an adaptive or full Bayesian approach can be developed for choosing, rather than

tuning, the global shrinkage parameter. Such analysis has been conducted by van der Pas et al. [64]

under normal mean models. However, there is a significant difference between normal mean models and

regression models. For the former, one can directly analyze the marginal posterior π(βj | Dn) as βj ’s

are (conditionally) independent. For the latter, one needs to take into account the dependency among

covariates. Empirically, the result of [64] seems not applicable to regression problems. Figure 4 shows

the boxplots of the regression coefficients drawn from a posterior π(βj |Dn) constructed with a horseshoe

prior for the same dataset used in the toy example of Section 4, where λj is subject to a half-Cauchy

prior, and τ is subject to a uniform prior truncated on [n−3/2, n−1/2]. The plot shows that the horseshoe

prior leads to many false discoveries for this example. Therefore, we would note that adaptively choosing

the global shrinkage parameter is nontrivial due to spurious multicollinearity caused by the curse of

dimensionality.

In this paper, we have also studied the selection consistency based on the sparsified posterior, as well

as the posterior shape approximation. We prove that if the tail of the prior distribution is sufficiently

flat, then selection is consistent and the BvM-type result holds. This further implies that for the true

covariates, the credible intervals are asymptotically equivalent to the oracle confidence intervals, and for

the false covariates, the credible intervals are super-efficient.

The theory established in this paper implies that a consistent shrinkage prior shares almost the same

posterior asymptotic behavior with the golden standard spike-and-slab prior (see, e.g., [12]). However,

the shrinkage prior is more efficient in computation. In this paper, we use a student-t prior in all the

numerical studies, and the Gibbs sampler is conveniently used in sampling from posterior distributions.

The computation shall be further improved if a stochastic gradient MCMC algorithm is employed for

simulations. However, for the spike-and-slab prior, a trans-dimensional MCMC sampler has to be used

for simulations.
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Appendix A Proof of the main theorem

First, we restate the result from [65, Lemma 2.2.11] for the sake of readability.

Lemma A.1 (Bernstein’s inequality). If Z1, . . . , Zn are independent random variables with mean zero

and satisfy that E|Zi|m � m!Mm−2vi/2 for every m > 1 and some constants M and vi, then

P

(∣∣∣∣∑Zi

∣∣∣∣ > z

)
� 2 exp{−z2/2(v +Mz)}

for v �
∑

vi.

As mentioned in [43], the conditions in Lemma A.1 are satisfied by the centered one-degree chi-square

distribution.

Lemma A.2. If X follows the χ2
1 distribution, there exists some constant C such that for any

m ∈ N, we have E|X − E(X)|m � Cm!2m. Therefore, given any constant scale λ,

E|λX − E(λX)|m � m!(2λ)m−2(4Cλ2).

The following lemma (see [76]) gives an upper bound for the tail probability of the binomial distribution.

Lemma A.3. For a binomial random variable X ∼ B(n, v), for any 1 < k < n− 1,

Pr(X � k + 1) � 1− Φ(sign(k − nv)
√
2nH(v, k/n)),

where Φ is the cumulative distribution function of the standard Gaussian distribution and

H(v, k/n) = (k/n) log(k/nv) + (1− k/n) log[(1− k/n)/(1− v)].

We also restate [5, Lemma 6].

Lemma A.4. Let Bn and Cn be two subsets of the parameter space Θ, and φn be the test function

satisfying φn(Dn) ∈ [0, 1] for any realization Dn of the data generation. If π(Bn) � bn, Eθ∗φn(Dn) � b′n
and supθ∈Cn

Eθ(1−φn(Dn)) � cn, where Eθ(·) denotes the expectation with respect to the data generation

with the true parameter value being θ. Furthermore, if

P ∗
{
m(Dn)

f∗(Dn)
� an

}
� 1− a′n,

where f∗ = fθ∗ is the true density function, and

m(Dn) =

∫
Θ

π(θ)fθ(Dn)dθ

is the margin probability of Dn, then

P ∗
(
π(Cn ∪Bn | Dn) �

bn + cn
anδn

)
� δn + b′n + a′n

for any δn.
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Theorem A.5. Consider a linear regression model (1.1) with the design matrix satisfying conditions A1

and A2. The prior of σ2 follows an inverse gamma distribution IG(a, b), and the prior density of β is

given by

π(β | σ2) =

pn∏
i=1

1

σ
gλ(βi/σ).

If there exists a positive constant u such that

1−
∫ an

−an

gλ(x)dx � p−(1+u)
n and − log

(
inf

x∈[−En,En]
gλ(x)

)
= O(log pn) (A.1)

hold for an 	 √
s log pn/n/pn, then the posterior consistency holds asymptotically, i.e.,

P ∗{π[An | Dn] > exp(−c1nε
2
n)} � exp(−c2nε

2
n),

where

An = {at least p̃ entries of |β/σ| are larger than an} ∪ {‖β − β∗‖ � (3 +
√
λ0)σ

∗εn}
∪ {σ2/σ∗2 > (1 + εn)/(1− εn) or σ2/σ∗2 < (1− εn)/(1 + εn)}

with p̃ 	 s and εn = M
√
s log pn/n for some large constant M .

Proof. We apply Lemma A.4 to prove this theorem. Define Cn = An\Bn, where

Bn = {at least p̃ entries of |β/σ| are larger than an},

p̃ � p̄− s, p̃ ≺ nε2n, and its specific choice will be given below. The proof consists of three parts.

Firstly, we show the existence of a testing function φn such that

E(β∗,σ∗2)(φn) � exp(−c3nε
2
n) and sup

(β,σ2)∈Cn

E(β,σ2)(1− φn) � exp(−c′3nε
2
n) (A.2)

for some positive constants c3 and c′3.
Secondly, we show that for some c4 > 0,

π(Bn) < e−c4nε
2
n . (A.3)

Thirdly, we show that

lim
n

P ∗
{
m(Dn)

f∗(Dn)
� exp(−c5nε

2
n)

}
> 1− exp{−c′5nε

2
n} (A.4)

for some positive 0 < c5 < min(c′3, c4). Therefore, the proof can be concluded by Lemma A.4.

Part I. We consider the testing function φn = max{φ′
n, φ̃n}, where

φ′
n = max

{ξ⊇ξ∗,|ξ|�p̃+s}
1{|y�(I −Hξ)y/(n− |ξ|)σ∗2 − 1| � εn},

φ̃n = max
{ξ⊇ξ∗,|ξ|�p̃+s}

1{‖(X�
ξ Xξ)

−1X�
ξ y − β∗

ξ )‖ � σ∗εn}

and Hξ = Xξ(X
�
ξ Xξ)

−1X�
ξ is the hat matrix corresponding to ξ.

For any ξ that satisfies ξ ⊇ ξ∗ and |ξ| � p̃+ s, we have

E(β∗,σ∗2)1{|y�(I −Hξ)y/(n− |ξ|)σ∗2 − 1| � εn}
= Pr(|χ2

n−|ξ| − (n− |ξ|)| � (n− |ξ|)εn) � exp(−ĉ3nε
2
n) (A.5)

for some small constant ĉ3, where χ2
p denotes a chi-square distribution with degree of freedom p, and the

last inequality follows from the Bernstein inequality (see Lemmas A.1 and A.2) and the facts that ε ≺ 1

and s+ p̃ ≺ n.
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Following the similar arguments to those in the proof of [3, Lemma 1], we have that for any ξ satisfying

ξ ⊇ ξ∗ and |ξ| � p̃+ s ≺ nε2n,

E(β∗,σ∗2)1{‖(X�
ξ Xξ)

−1X�
ξ y − β∗

ξ‖ � σ∗εn | β∗, σ∗2}
= E(β∗,σ∗2)1{‖(X�

ξ Xξ)
−1X�

ξ ε‖ � εn} � Pr(χ2
|ξ| � nλ0ε

2
n)

� exp(−c̃3nε
2
n) (A.6)

for some c̃3 > 0. Note that the last inequality holds due to the Bernstein inequality and the large value

of M .

Combining (A.5) and (A.6), we obtain that

E(β∗,σ∗2)φn � E(β∗,σ∗2)

∑
{ξ⊇ξ∗,|ξ|�p̃+s}

(1{|y�(I −Hξ)y/(n− |ξ|)σ∗2 − 1| � εn}

+ 1{‖(X�
ξ Xξ)

−1X�
ξ y − β∗

ξ )‖ � εn})

< (p̃+ s)

(
pn

p̃+ s

)
[exp(−c3nε

2
n) + exp(−c′3nε

2
n)]. (A.7)

We set p̃ = �min{ĉ3, c̃3}nε2n/(2 log pn)�. (Since p̄ log pn � nε2n, p̃ always exists.) Hence, we have

log(p̃+ s) + (p̃+ s) log pn < (2min{ĉ3, c̃3}nε2n)/3,

which leads to E(β∗,σ∗2)φn � exp(−c3nε
2
n) for some fixed c3.

Now we study sup(β,σ2)∈Cn
E(β,σ2)(1− φn). Let Cn ⊂ Ĉn ∪ C̃n, where

Ĉn = {σ2/σ∗2 > (1 + εn)/(1− εn) or σ
2/σ∗2 < (1− εn)/(1 + εn)}

∩ {at most p̃ entries of |β/σ| are larger than an},
C̃n = {‖β − β∗‖ > (3 +

√
λ0)σ

∗εn, σ2/σ∗2 � (1 + εn)/(1− εn)

and at most p̃ entries of |β/σ| are larger than an}.
Then we have

sup
(β,σ2)∈Cn

E(β,σ2)(1− φn) = sup
(β,σ2)∈Cn

E(β,σ2) min{1− φ′
n, 1− φ̃n}

� max
{

sup
(β,σ2)∈Ĉn

E(β,σ2)(1− φ′
n), sup

(β,σ2)∈C̃n

E(β,σ2)(1− φ̃n)
}
.

Let ξ̃ = ξ̃(β) = {k : |βk/σ| > an} ∪ ξ∗ and ξ̃c = {1, . . . , pn}\ξ̃. Hence, for any (β, σ2) ∈ C̃n ∪ Ĉn,

|ξ̃(β)| � p̃+ s � p̄, and ‖Xξ̃cβξ̃c‖ � √
np‖βξ̃c‖ � √

n
√
λ′
0σεn given a large value of M . It holds that

sup
(β,σ2)∈C′

n

Eβ(1− φ′
n)

= sup
(β,σ2)∈C′

n

E(β,σ2) min
ξ⊇ξ∗,|ξ|�p̃+s

1{|y�(I −Hξ)y/(n− |ξ̃|)σ∗2 − 1| � εn}

� sup
(β,σ2)∈C′

n

E(β,σ2)1{|y�(I −Hξ̃)y/(n− |ξ̃|)σ∗2 − 1| � εn}

= sup
(β,σ2)∈C′

n

Pr{|σ2(Xξ̃cβξ̃c/σ + ε)�(I −Hξ̃)(Xξ̃cβξ̃c/σ + ε)/[(n− |ξ̃|)σ∗2]− 1| � εn}

� sup
(β,σ2)∈C′

n

Pr{σ2(Xξ̃cβξ̃c/σ + ε)�(I −Hξ̃)(Xξ̃cβξ̃c/σ + ε)/[(n− |ξ̃|)σ∗2] ∈ [1− εn, 1 + εn]}

� sup
(β,σ2)∈C′

n

Pr{(Xξ̃cβξ̃c/σ + ε)�(I −Hξ̃)(Xξ̃cβξ̃c/σ + ε)/(n− |ξ̃|) /∈ [1− εn, 1 + εn]}

� sup
(β,σ2)∈C′

n

Pr{|χ2
n−|ξ̃|(k)− (n− |ξ̃|)| � (n− |ξ̃|)εn}

� exp(−ĉ′3nε
2
n)
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for some ĉ′3 > 0. Note that (Xξ̃cβξ̃c/σ+ ε)�(I −Hξ̃)(Xξ̃cβξ̃c/σ+ ε) follows a noncentral χ2 distribution

χn−|ξ̃|(k) with the noncentral parameter

k = β�
ξ̃c
X�

ξ̃c
(I −Hξ̃)Xξ̃cβξ̃c/σ

2 � (
√
n
√
λ′
0εn/4)

2.

Since the noncentral χ2 distribution is a sub-exponential, the last inequality follows from the Bernstein

inequality as well. Also, we have

sup
(β,σ2)∈C̃n

E(β,σ2)(1− φ̃n)

= sup
(β,σ2)∈C̃n

E(β,σ2) min
|ξ|�p̃+s

1{‖(X�
ξ Xξ)

−1X�
ξ y − β∗

ξ‖ � σ∗εn}

� sup
(β,σ2)∈C̃n

E(β,σ2)1{‖(X�
ξ̃
Xξ̃)

−1X�
ξ̃
y − β∗

ξ̃
‖ � σ∗εn}

= sup
(β,σ2)∈C̃n

Pr{‖(X�
ξ̃
Xξ̃)

−1X�
ξ̃
y − β∗

ξ̃
‖ � σ∗εn | β, σ2}

= sup
(β,σ2)∈C̃n

Pr{‖(X�
ξ̃
Xξ̃)

−1X�
ξ̃
σε+ βξ̃ + (X�

ξ̃
Xξ̃)

−1X�
ξ̃
Xξ̃cβξ̃c − β∗

ξ̃
‖ � σ∗εn}

� sup
(β,σ2)∈C̃n

Pr{‖(X�
ξ̃
Xξ̃)

−1X�
ξ̃
σε‖ � ‖βξ̃ − β∗

ξ̃
‖ − (X�

ξ̃
Xξ̃)

−1X�
ξ̃
Xξ̃cβξ̃c − σ∗εn}

= sup
(β,σ2)∈C̃n

Pr{‖(X�
ξ̃
Xξ̃)

−1X�
ξ̃
ε‖ � [‖βξ̃ − β∗

ξ̃
‖ − σ∗εn − (X�

ξ̃
Xξ̃)

−1X�
ξ̃
Xξ̃cβξ̃c ]/σ}

� sup
(β,σ2)∈C̃n

Pr{‖(X�
ξ̃
Xξ̃)

−1X�
ξ̃
ε‖ � εn} � exp(−c̃3nε

2
n),

where the above inequalities hold asymptotically because

‖βξ̃ − β∗
ξ̃
‖ � ‖β − β∗‖ − pn(

√
λ0εnσ/pn), σ∗/σ �

√
(1− εn)/(1 + εn)

and

‖(X�
ξ̃
Xξ̃)

−1X�
ξ̃
Xξ̃cβξ̃c/σ‖ �

√
λmax((X�

ξ̃
Xξ̃)

−1)‖Xξ̃cβξ̃c‖
�

√
1/nλ0

√
nλ′

0εnσ � εn.

Hence, (A.2) is proved.

Part II. Define N = |{i : |βi/σ| � an}|, and thus N ∼ Binomial(pn, vn), where

vn =

∫
|x|�an

gλ(x)dx

and gλ(x) is the prior density function of βi/σ. Thus π(Bn) = Pr(Binomial(pn, vn) � p̃). By Lemma A.3,

we have

π(Bn) � 1− Φ(
√
2pnH[vn, (p̃− 1)/pn]) �

exp{−pnH[vn, (p̃− 1)/pn]}√
2π

√
2pnH[vn, (p̃− 1)/pn]

,

pnH[vn, (p̃− 1)/pn] = (p̃− 1) log[(p̃− 1)/(pnvn)] + (pn − p̃+ 1) log[(pn − p̃+ 1)/(pn − pnvn)].

Therefore, to prove (A.3), it is sufficient to show that

pnH[vn, (p̃− 1)/pn] � O(nε2n).

Since 1/(pnvn) � O(pun), p̃ log p
u
n 	 nε2n (if M is sufficiently large), (p̃− 1) log[(p̃− 1)/(pnvn)] 	 nε2n and

(pn − p̃+ 1) log[(pn − p̃+ 1)/(pn − pnvn)] ≈ p̃− p̃2/pn ≺ nε2n.
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Hence, we have

pnH[vn, (p̃− 1)/pn] = O(nε2n).

Part III. Now we prove (A.4). Because

m(Dn)/f
∗(Dn) =

∫
(σ∗)n exp{−‖y −Xβ‖2/2σ2}
σn exp{−‖y −Xβ∗‖2/2σ∗2} π(β, σ2)dβdσ2,

it is sufficient to show that

P ∗(π({‖y −Xβ‖2/2σ2 + n log(σ/σ∗) < ‖y −Xβ∗‖2/2σ∗2 + c5nε
2
n/2}) � e−c5nε

2
n/2)

� 1− exp{−c′5nε
2
n}

for some sufficiently small positive c5.

Note that

P ∗(Ω = {‖ε‖2 � n(1 + ĉ5) and ‖ε�X‖∞ � ĉ5nεn}) � 1− exp{−c′5nε
2
n}

for some ĉ5, by the properties of the chi-square distribution and the normal distribution. On the event

of Ω, it is easy to see that {‖y−Xβ‖2/2σ2 + n log(σ/σ∗) < ‖y−Xβ∗‖2/2σ∗2 + c5nε
2
n/2} is a super-set

of {σ ∈ [σ∗, σ∗ + η1ε
2
n] and ‖(β∗ − β)/σ‖1 < 2η2εn} for some small constants η1 and η2.

In addition, we have

− log π({σ ∈ [σ∗, σ∗ + η1ε
2
n] and ‖(β∗ − β)/σ‖1 < 2η2εn})

= − log π({0 � σ2 − σ∗2 � η1ε
2
n})− log π({‖(β∗ − β)/σ‖1 < 2η2εn}). (A.8)

Given the fact that the inverse gamma density is always bounded away from zero around σ∗2, hence
the first term in (A.8) satisfies

− log π({0 � σ2 − σ∗2 � η1ε
2
n}) � − log(η1ε

2
n)− log

(
min

σ∈[σ∗,σ∗+η1ε2n]
π(σ2)

)
< constant + log(1/ε2n) � δ1nε

2
n,

where δ1 can be an arbitrary constant if we choose M to be sufficiently large.

For the second term in (A.8),

{‖(β∗ − β)/σ‖1 < 2η2εn} ⊃ {|βj/σ| � η2εn/pn for all j /∈ ξ∗}
∩ {βj/σ ∈ [β∗

j /σ − η2εn/s, β
∗
j /σ + η2εn/s] for all j ∈ ξ∗}

and

π({|βj/σ| � η2εn/pn for all j /∈ ξ∗})
� π({|βj/σ| � an for all j /∈ ξ∗}) � (1− p−1−u

n )pn → 1, (A.9)

given a large value of M . For those β∗
j �= 0 and

π({βj/σ ∈ [β∗
j /σ ± η2εn/s] for all j ∈ ξ∗}) �

[
2η2εn inf

x∈[−E,E]
gλ(x)/s

]s
, (A.10)

the inequality holds because |β∗
j /σ|+ ηεn/s � E which is implied by σ2 < σ∗2 + η′ε2n and |β∗

j /σ
∗| � γE.

By (A.9), (A.10) and the condition (A.1), (A.4) holds.

Theorem A.6. If all the conditions of Theorem A.5 except the condition A1(3) hold, then the posterior

prediction for the observed data is consistent, i.e.,

P ∗{π[‖Xβ −Xβ∗‖ � c0
√
nσ∗εn | Dn] < 1− exp(−c1nε

2
n)} � exp(−c2nε

2
n)

for some c0, c1 and c2.
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Proof. Define

An = {at least p̃ entries of |β/σ| are larger than an}
∪ {‖Xβ −Xβ∗‖ � c0

√
nσ∗εn} ∪ {σ2/σ∗2 > (1 + εn)/(1− εn) or σ

2/σ∗2 < (1− εn)/(1 + εn)},
Bn = {at least p̃ entries of |β/σ| are larger than an}

and

Cn = An\Bn,

where p̃ � p̄− s and p̃ ≺ nε2n.

We still follow the three-step proof as in Theorem A.5. Since the proof is quite similar, the details are

omitted here. The only difference is that we now consider a slightly different testing function as

φ′
n = max

{ξ⊇ξ∗,|ξ|�p̃+s}
1{|y�(I −Hξ)y/(n− |ξ|)σ∗2 − 1| � εn},

φ̃n = max
{ξ⊇ξ∗,|ξ|�p̃+s}

1{‖Xξ(X
�
ξ Xξ)

−1X�
ξ y −Xξβ

∗
ξ )‖ � c0σ

∗√nεn/3}.

Note that in the proof of Theorem A.5, we need to bound the singular value of (X�
ξ Xξ)

−1X�
ξ via the

condition A1(3). However, in the proof of Theorem A.6, only the matrix Xξ(X
�
ξ Xξ)

−1X�
ξ gets involved,

and its eigenvalues are always bounded by 1. Thus the condition A1(3) is redundant.

Theorem A.7. Assume the conditions of Theorem A.5 hold, and let ξ = {j : |βj/σ| > an} denote a

posterior subset model. If the following conditions also hold:

lim sup
√
nanpnσ

∗/
√
log pn < k,

min
j∈ξ∗

|β∗
j | � M1

√
log pn/n for some large M1,

u > 1 + c/2 + k2/2σ∗2 + 2
√
c′k,

ln = max
j∈ξ∗

sup
x1,x2∈β∗

j /σ
∗±c0εn

|x1|,|x2|�an

gλ(x1)

gλ(x2)
and s log ln ≺ log pn

for some constants c′ > 1, c and sufficiently large c0, then

P ∗{π(ξ = ξ∗ | X,y) > 1− o(1)} > 1− o(1).

Proof. For any βξ which is a subvector of β corresponding to ξ, we define

SSE(βξ) = min
βξc

‖Y −Xξβξ −Xξcβξc‖2

= (Y −Xξβξ)
�(I −Xξc(X

�
ξcXξc)

−1X�
ξc)(Y −Xξβξ).

By the consistency result in Theorem A.5, let A′
n be the set

{‖β − β∗‖ � c1εn} ∩ {|σ2 − σ∗2| � c2εn} ∩ {at most c3
√
nε2n/ log pn entries of β/σ are larger than an}

and Ωn be the event

{π(A′
n | Dn) > 1− exp{−c4nε

2
n}}.

Then we have

P ∗(Ωn) > 1− e−c5nε
2
n

for some c1 to c5. All the following analysis is conditioned on the event Ωn, and we can ignore the set

(A′
n)

c in all the following posterior probability calculation.

Let

E1 = {‖β1/σ − β∗
1/σ

∗‖∞ � c1εn, ‖β1/σ‖∞ � an, |σ2 − σ∗2| � c2εn},
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where ‖ · ‖min is the smallest absolute value of the entries of a vector. We define

π(β1 | σ2) = inf
(β1,σ2)∈E1

π(β1, σ
2)/π(σ2), π(β1 | σ2) = sup

(β1,σ2)∈E1

π(β1, σ
2)/π(σ2).

First, we study the posterior probability π(ξ = ξ∗ | X,y) up to the normalizing constant. For simplicity

of notation, we use the subscript “1” to denote the true model ξ∗, and the subscript “2” to denote the

rest (ξ∗)c. Then∫
1

σn
exp

{
− ‖y −X1β1 −X2β2‖2

2σ2

}
π(β, σ)I(‖β2/σ‖∞ � an, ‖β1/σ‖min � an)dσ

2dβ

� π(‖β2/σ‖∞ � an)

∫
E1

inf
‖β2/σ‖∞�an

1

σn
exp

{
− ‖y −X1β1 −X2β2‖2

2σ2

}
π(β1, σ

2)dσ2dβ1. (A.11)

The integral in the above inequality satisfies∫
E1

inf
‖β2/σ‖∞�an

1

σn
exp

{
− ‖y −X1β1 −X2β2‖2

2σ2

}
π(β1, σ

2)dσ2dβ1

� π(β1 | σ2)

∫
E1

inf
‖β2/σ‖∞�an

1

σn
exp

{
− ‖y −X1β1 −X2β2‖2

2σ2

}
π(σ2)dσ2dβ1

= π(β1 | σ2)

∫
E1

inf
‖β2/σ‖∞�an

1

σn
exp

{
− SSE(β2) + (β1 − β̂1)

�X�
1 X1(β1 − β̂1)

2σ2

}
π(σ2)dβ1dσ

2

≈ π(β1 | σ2)

∫
E1

inf
‖β2/σ‖∞�an

1

σn
exp

{
− SSE(β2)

2σ2

}
π(σ2)(2π)

s/2
√
|σ2(X�

1 X1)−1|)dσ2

≈ π(β1 | σ2)
√
|(X�

1 X1)−1|
√
2π

s
inf

‖β2‖∞�an(σ∗+c2εn)

Γ(a0 + (n− s)/2)

(SSE(β2)/2 + b0)a0+(n−s)/2
, (A.12)

where β̂1 = (X�
1 X1)

−1X�
1 (y−X2β2). The first approximation holds because most probability mass of

the normal density is in the region of {‖β1−β̂1‖ � C
√
s/n}, which is a subset of E1 in probability, if c1 is

large. Similarly, the second approximation holds since the distribution IG(a0+(n−s)/2, SSE(β2)/2+b0)

puts most of its probability mass inside the region {|σ2 − σ∗2| � c2εn}.
Next, we study the posterior probability π(ξ = ξ′ | X,y) for any ξ′ ⊃ ξ∗ up to the normalizing

constant. Similarly, we use the subscript “1” to denote the true model ξ∗, the subscript “2” to denote

(ξ′\ξ∗), and the subscript “3” to denote the rest (ξ′)c. It holds that∫
1

σn
exp

{
− ‖y −X1β1 −X2β2 −X3β3‖2

2σ2

}
π(β, σ)I(‖β2/σ‖min > an, ‖β3/σ‖∞ � an)dσ

2dβ

� π(‖β2/σ‖min > an, ‖β3/σ‖∞ � an)

× sup
‖β3/σ‖∞�an,β2

∫
E1

1

σn
exp

{
− ‖y −X1β1 −X2β2 −X3β3‖2

2σ2

}
π(β1, σ)dσ

2dβ1

� π(‖β2/σ‖min > an, ‖β3/σ‖∞ � an)

× sup
‖β3/σ‖∞�an,β2

∫
E1

1

σn
exp

{
− SSE((β2,β3)

�) + (β1 − β̃1)
�X�

1 X1(β1 − β̃1)

2σ2

}
π(β1, σ)dσ

2dβ1

� π(‖β2/σ‖min > an, ‖β3/σ‖∞ � an)π(β1 | σ2)
√

|(X�
1 X1)−1|(2π)s/2

× sup
‖β3‖∞�an(σ∗+c2εn)

Γ(a0 + (n− s)/2)

(SSE(β3)/2 + b0)a0+(n−s)/2
, (A.13)

where β̃1 = (X�
1 X1)

−1X�
1 (y −X2β2 −X3β3).

Therefore, combining the above results, we obtain that for any ξ′ ⊃ ξ∗,

π(ξ = ξ′ | X,y)

π(ξ = ξ∗ | X,y)
� π(β1 | σ2)

π(β1 | σ2)
[p−(1+u)

n /(1− p−(1+u)
n )]|ξ

′\ξ∗|



438 Song Q F et al. Sci China Math February 2023 Vol. 66 No. 2

×
sup‖β(ξ∗)c‖∞�an(σ∗+c2εn)(SSE(β(ξ∗)c)/2 + b0)

a0+(n−s)/2

inf‖β(ξ′)c‖∞�an(σ∗+c2εn)(SSE(β(ξ′)c)/2 + b0)a0+(n−s)/2
. (A.14)

It is easy to see that with probability larger than 1− 4pn · p−c′6
n ,

‖X�Aε‖∞ �
√

2c′6n log pn

for any idempotent matrix A and c′6 > 1, and thus,

SSE(β(ξ∗)c) = (y −X(ξ∗)cβ(ξ∗)c)
�(I − PXξ∗ )(y −X(ξ∗)cβ(ξ∗)c)

� σ∗2ε�(I − PXξ∗ )ε+ ‖X(ξ∗)cβ(ξ∗)c‖2 − 2σ∗ε�(I − PXξ∗ )X(ξ∗)cβ(ξ∗)c

� σ∗2ε�(I − PXξ∗ )ε+ ‖X(ξ∗)cβ(ξ∗)c‖2 + 2σ∗√2c′6n log pn‖β(ξ∗)c‖1,
SSE(β(ξ′)c) = (σ∗ε−X(ξ′)cβ(ξ′)c)

�(I − PXξ′ )(σ
∗ε−X(ξ′)cβ(ξ′)c)

� σ∗2ε�(I − PX
ξ
′ )ε− 2(σ∗ε)�(I − PXξ′ )X(ξ′)cβ(ξ′)c

� σ∗2ε�(I − PX
ξ
′ )ε− 2σ∗√2c′6n log pn‖β(ξ′ )c‖1.

(A.15)

Let p̃n � c3
√
nε2n/ log pn. By the properties of the quantiles of the chi-square distribution (see, e.g., [33])

and Lemma A.2, with probability larger than 1− p−c6
n for any constant c6,

ε�(I − PXξ∗ )ε− ε�(I − PX
ξ
′ )ε � σ∗2{c7|ξ′\ξ∗| log pn},

ε�(I − PXξ∗ )ε ∈ σ∗2(n− s)[1− c8, 1 + c8]
(A.16)

hold for all ξ′ with 1 < |ξ′\ξ∗| � p̃n, when n is sufficiently large, any c7 > c6 + 2 and c8 > 0.

Combining (A.15), (A.16) and the fact that
√
nanpnσ

∗ < k
√
log pn for large n, we have

sup‖β(ξ∗)c‖∞�an(σ∗+c2εn)(SSE(β(ξ∗)c)/2 + b0)
a0+(n−s)/2

inf‖β(ξ′)c‖∞�an(σ∗+c2εn)(SSE(β(ξ′)c)/2 + b0)a0+(n−s)/2
� exp{c9|ξ′\ξ∗| log pn}, (A.17)

where c9 is any constant satisfying

c9 > c7/2(1− c8) + (k2/2σ∗2 + 2
√
2c′6k)/(1− c8).

Furthermore, it is easy to see that

π(β1 | σ2)/π(β1 | σ2) � lsn.

Combining it with (A.14) and (A.17), we obtain

π(ξ = ξ′ | X,y)

π(ξ = ξ∗ | X,y)
� lsn[p

−(1+u)
n /(1− p−(1+u)

n )]|ξ
′\ξ∗| exp{c9|ξ′\ξ∗| log pn}. (A.18)

By the condition

1 + u > 2 + c6/2 + k2/2σ∗2 + 2
√
2c′6k,

we can choose proper values of c7, c8 and c9 such that 1 + u− c9 = u′ > 1 and

π(ξ = ξ′ | X,y)

π(ξ = ξ∗ | X,y)
� lsnp

−u′|ξ′\ξ∗|
n for any ξ′ ⊃ ξ∗.

Therefore, since u′ > 1, we have

∑
ξ′⊃ξ∗,1<|ξ′\ξ∗|�p̃n

π(ξ = ξ′ | X,y)

π(ξ = ξ∗ | X,y)
� lsn[(1 + p−u′

n )pn − 1] 	 lsnp
−(u′−1)
n . (A.19)

Finally, we study the posterior probability π(ξ = ξ′ | X,y) for any ξ′ such that |ξ′\ξ∗| � p̃n and ξ′

does not include ξ∗, up to the normalizing constant. Similarly, we use the subscript “4” to denote the
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model (ξ∗∩ξ′), the subscript “5” to denote (ξ∗\ξ′), the subscript “2” to denote (ξ′\ξ∗), and the subscript

“3” to denote the rest (ξ′ ∪ ξ∗)c. Define

E4 = {‖β4/σ − β∗
4/σ

∗‖∞ � c1εn, ‖β4/σ‖∞ � an, |σ2 − σ∗2| � c2εn}

and

π = inf
x∈[−En,En]

gλ(x).

Then

π(ξ = ξ′ | X,y)

π(ξ = ξ′ ∪ ξ∗ | X,y)

=

∫
|σ2−σ∗2|�c2εn

1
σn exp{−‖y−Xβ‖2

2σ2 }π(β, σ)I(‖(β2,β4)/σ‖min > an, ‖(β3,β5)/σ‖∞ � an)dσ
2dβ∫

|σ2−σ∗2|�c2εn
1
σn exp{−‖y−Xβ‖2

2σ2 }π(β, σ)I(‖(β2,β4,β5)/σ‖min > an, ‖β3/σ‖∞ � an)dσ2dβ

� max
{β2,β3,‖β4‖min�an,|σ2−σ∗2|�c2εn}

p
(1+u)|ξ∗\ξ′|
n√

2ππ
|ξ∗\ξ′|√|σ2(X�

5 X5)−1|

× max‖β5/σ‖∞�an
exp{−‖y−Xβ‖2

2σ2 }
max‖β5/σ‖min�an

exp{−‖y−Xβ‖2

2σ2 }
. (A.20)

It is not difficult to see that in probability, uniformly for all ξ′, β2,β3, ‖β4‖min � an and |σ2−σ∗2| � c2εn,

we have

max
‖β5/σ‖∞�an

‖y −Xβ‖2 − max
‖β5/σ‖min�an

‖y −Xβ‖2

� max
‖β5/σ‖∞�an

‖y −Xβ‖2 − ‖y −X5β
∗
5 −X2β2 −X3β3 −X4β4‖2 � M ′|ξ∗\ξ′| log pn

for some M ′ if M1 (which appeared in the beta-min condition) is sufficiently large, and the condition

A1(3) holds.

Given sufficiently large M ′, uniformly for all ξ′, (A.20) reduces to

π(ξ = ξ′ | X,y)

π(ξ = ξ′ ∪ ξ∗ | X,y)
� p−M ′′|ξ∗\ξ′|

n

for some M ′′ > 1. This further implies that

π(ξ does not includes ξ∗, |ξ\ξ∗| � p̃n | X,y)

π(ξ ⊃ ξ∗, |ξ\ξ∗| � p̃n | X,y)
� (1 + p−M ′′

n )s − 1 = o(1). (A.21)

Combining (A.19) and (A.21), we conclude that with probability 1 − o(1), π(ξ = ξ∗ | X,y)

> 1− o(1).

Theorem A.8 (BvM theorem). Under the conditions of Theorem A.7, an ≺ (1/pn)
√

1/(ns log pn)

and limn→∞ s log ln = 0, we have∥∥∥∥π(β, σ2 | X,y)− φ(βξ∗ ; β̂ξ∗ , σ
2(X�

ξ∗Xξ∗)
−1)

∏
j /∈ξ∗

π(βj | σ2)ig(σ2, (n− s)/2, σ̂2(n− s)/2)

∥∥∥∥
TV

→ 0

in probability, where φ denotes the density function of a multivariate normal distribution, ig denotes

the density function of an inverse gamma distribution, and β̂ξ∗ and σ̂2 are the MLEs of βξ∗ and σ2,

respectively, given data (y,Xξ∗).
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Proof. Let θ = (βξ∗ , σ
2)�, θ′ = β(ξ∗)c and let π0(θ) denote the normal-inverse gamma distribution

φ(βξ∗ ; β̂ξ∗ , σ
2(X�

ξ∗Xξ∗)
−1)ig(σ2, (n− s)/2, σ̂2(n− s)/2), and

π1(θ) = C
1

σn
exp

{
− ‖y −Xξ∗βξ∗‖2

2σ2

}
π(σ2),

π2(θ) =
∏
j∈ξ∗

π(βj | σ2)

π(β∗
j | σ∗2)

,

π3(θ,θ
′) = exp

{
− ‖y −Xβ‖2 − ‖y −Xξ∗βξ∗‖2

2σ2

} ∏
j /∈ξ∗

π(βj | σ2),

where C normalizes π1. Thus, we have the posterior π(β, σ2|X,y) ∝ π1π2π3.

It is trivial to see that π1 is exactly a normal-inverse gamma distribution, i.e.,

σ2 ∼ IG((n− s)/2 + a0, σ̂
2(n− s)/2 + b0),

and the conditional distribution of βξ∗ follows

βξ∗ |σ2 ∼ N(β̂ξ∗ , σ
2(X�

ξ∗Xξ∗)
−1),

where θ̂ = (β̂ξ∗ , σ̂
2). Furthermore, as long as n− s → ∞, it is not difficult to show that

‖IG((n− s)/2, σ̂2(n− s)/2)− IG((n− s)/2 + a0, σ̂
2(n− s)/2 + b0)‖TV → 0

with dominating probability, i.e., ‖π1(θ)− π0(θ)‖TV = op(1).

Let Ω1 = {‖βξ∗ − β∗
ξ∗‖ � σ∗εn and |σ2 − σ∗2| < c4εn}. By the conditions of the theorem, if θ ∈ Ω1,

then |π2 − 1| � |lsn − 1| → 0. Therefore,∫
Ω1

|π1(θ)π2(θ)− π0(θ)|dθ �
∫
Ω1

|π1π2 − π1|dθ +

∫
Ω1

|π1(θ)− π0(θ)|dθ

� max
Ω1

|π2(θ)− 1|+
∫
Ω1

|π1(θ)− π0(θ)|dθ = op(1).

Let ε(βξ∗) = y −Xξ∗βξ∗ and

Ω2 = {(θ,θ′) ∈ Ω1, ‖βj/σ‖ � an, ∀ j /∈ ξ∗}.
For any (θ,θ′)� ∈ Ω2,

‖ε(βξ∗)‖ ∈ [‖σ∗ε‖ ± σ∗√|ξ∗|√nεn]

and

|‖ε(β∗
ξ )‖2 − ‖ε(β∗

ξ )−Xξ∗cβξ∗c‖2| � ‖Xξ∗cβξ∗c‖2 + 2ε(β∗
ξ )

�Xξ∗cβξ∗c

� na2np
2
n + 2(ε+Xξ∗(β

∗
ξ∗ − βξ∗))

�Xξ∗cβξ∗c

� na2np
2
n +O(

√
n log pnanpn) +O(

√
nεn

√
nanpn)

in probability. Since nanpn ≺ 1/εn, we have

|‖ε(β∗
ξ )‖2 − ‖ε(β∗

ξ )−Xξ∗cβξ∗c‖2| = op(1).

Therefore, ∫
Ω2

[
π3(θ,θ

′)−
∏
j /∈ξ∗

π(βj | σ2)

]
dθ′

�
∫
Ω2

∣∣∣∣ exp
{
− ‖y −Xβ‖2 − ‖y −Xξ∗βξ∗‖2

2σ2

}
− 1

∣∣∣∣ ∏
j /∈ξ∗

π(βj | σ2)dθ′

� | exp[op(1)/(2σ∗2 − c4εn)]− 1|
∫
Ω3

∏
j /∈ξ∗

π(βj | σ)dθ′ = op(1).
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Combining the above inequalities, we have∫
Ω2

∣∣∣∣π1π2π3(θ,θ
′)− π0(θ)

∏
j /∈ξ∗

π(βj | σ2)

∣∣∣∣dθ′dθ

�
∫
Ω2

π1π2(θ)

∣∣∣∣π3(θ,θ
′)−

∏
j /∈ξ∗

π(βj | σ2)

∣∣∣∣dθ′dθ +

∫
Ω2

|π1π2(θ)− π0(θ)|
∏
j /∈ξ∗

π(βj | σ2)dθ′dθ

� op(1)

∫
Ω1

π1π2(θ)dθ +

∫
Ω1

|π1π2(θ)− π0(θ)|dθ = op(1).

By Theorems A.5 and A.7, with high probability,∫
Ωc

2

π(θ,θ′ | Dn) → 0.

Also it is not difficult to verify that∫
Ωc

2

π0(θ)
∏
j /∈ξ∗

π(βj | σ2)dθ′dθ = op(1).

Therefore, we conclude that∫ ∣∣∣∣π(θ,θ′ | Dn)− π0(θ)
∏
j /∈ξ∗

π(βj | σ2)

∣∣∣∣dθ′dθ = op(1).

This completes the proof.

Proof of Theorem 3.1. It is sufficient to show that g(βi/λn)/λn satisfies the condition (A.1). Assume

that cx−r < g(x) < c̄x−r for sufficiently large x. Then∫ ∞

an

g(x/λn)/λndx =

∫ ∞

an/λn

g(x)dx � c̄
1

r − 1
{an/λn}−(r−1).

Given λn � anp
−(u+1)/(r−1)
n for some u > 0,

c̄
1

r − 1
{an/λn}−(r−1) � c

1

r − 1
p−1−u
n ≺ 1

2
p−1−u′
n ,

where 0 < u′ < u. Hence,

1−
∫ an

−an

g(x/λn)/λndx � p−(1+u′)
n ,

i.e., the first inequality of (A.1) holds. It holds that

− log
(

inf
x∈[−En,En]

g(x/λn)/λn

)
= − log

(
inf

x∈[−En/λ,En/λn]
g(x)/λn

)
� − log(c(En/λn)

−r/λn) = − log c+ (r + 1) log(1/λn) + r log(En).

Given that log(En) 	 log pn and − log λn = O(log pn), the second inequality of (A.1) holds.

Proof of Theorem 3.4. We first verify the condition (A.1). Let gλ(x) = m0φ(x; 0, σ
2
0) +m1φ(x; 0, σ

2
1).

Then

1−
∫ an

−an

gλ(x)dx = 2[m0(1− Φ(an/σ0)) +m1(1− Φ(an/σ1))]

� m1 + 2m0(1− Φ(an/σ0)) � m1 +

√
2

an
√
π/σ0

exp{−a2n/2σ
2
0} � 1/p1+u′

n
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for some 0 < u′ � u. By the conditions, we also have

− log
(

inf
x∈[−En,En]

gλ(x)
)
� − log

(
m1 inf

x∈[−En,En]
φ(x/σ1)

)
= C + (1 + u) log pn + E2

n/(2σ
2
1) + log σ1 	 log pn.

Next, we study the flatness of ln. When E � x � an,

(1−m1)σ1 exp{−x2/2σ2
0}

m1σ0 exp{−x2/2σ2
1}

=
(1−m1)

m1
exp

{
− x2

2σ2
0

− log σ0 +
x2

2σ2
1

+ log σ1

}

� (1−m1)

m1
exp

{
− a2n

2σ2
0

− log σ0 +
E2

n

2σ2
1

+ log σ1

}
→ 0.

Note that the above convergence result holds since E2
n/σ

2
1 + log σ1 	 log pn and σ0 = O(an/ log pn).

Hence,
gλ(x)

m1φ(x; 0, σ2
1)

= 1 +
1−m1

m1

σ1 exp{−x2/2σ2
0}

σ0 exp{−x2/2σ2
1}

→ 1.

Therefore, we have

ln = max
j∈ξ∗

sup
x1,x2∈β∗

j /σ
∗±c0εn

|x1|,|x2|�an

gλ(x1)

gλ(x2)

	 max
j∈ξ∗

sup
x1,x2∈β∗

j /σ
∗±c0εn

|x1|,|x2|�an

φ(x1/σ1)/φ(x2/σ1)

� max
j∈ξ∗

sup
x1,x2∈β∗

j /σ
∗±c′εn

exp{(x2
1 − x2

2)/2σ
2
1}

= max
j∈ξ∗

exp{2(β∗
j + c′εn)c′εn/σ2

1},

which implies s log ln � O(sEnεn)/σ
2
1 . The proof can be concluded by applying Theorems A.5, A.7

and A.8.


