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Abstract During the past decade, shrinkage priors have received much attention in Bayesian analysis of high-
dimensional data. This paper establishes the posterior consistency for high-dimensional linear regression with
a class of shrinkage priors, which has a heavy and flat tail and allocates a sufficiently large probability mass in
a very small neighborhood of zero. While enjoying its efficiency in posterior simulations, the shrinkage prior
can lead to a nearly optimal posterior contraction rate and the variable selection consistency as the spike-and-
slab prior. Our numerical results show that under the posterior consistency, Bayesian methods can yield much
better results in variable selection than the regularization methods such as LASSO and SCAD. This paper
also establishes a BvM-type result, which leads to a convenient way of uncertainty quantification for regression

coefficient estimates.
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1 Introduction

The dramatic improvement in data collection and acquisition technologies during the last two decades has
enabled scientists to collect a great amount of high-dimensional data. Due to their intrinsic nature, many
of the high-dimensional data, such as omics data and single nucleotide polymorphism (SNP) data, have
a much smaller sample size than their dimension (also known as small-n-large-p). Toward an appropriate
understanding of the system underlying the small-n-large-p data, variable selection plays a vital role. In
this paper, we consider the problem of variable selection for the high-dimensional linear regression

y=Xp+oe, (1.1)

where y is an n-dimensional response vector, X is an n X p design matrix, 3 is the vector of regression
coefficients, o is the standard deviation, and € follows N (0, I,,). This problem has received much attention
in the recent literature. Methods have been developed from both frequentist and Bayesian perspectives.
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The frequentist methods are usually regularization-based, which enforce the model sparsity through
imposing a penalty on the negative log-likelihood function. For example, the least absolute shrinkage
and selection operator (LASSO) [59] employs an Lj-penalty, elastic net [75] employs a combination of
L;- and Ly-penalties, [20] employs a smoothly clipped absolute deviation (SCAD) penalty, [71] employs
a minimax concave penalty (MCP), and rLASSO [56] employs a reciprocal Li-penalty. In general, these
penalty functions encourage model sparsity, and tend to shrink the coefficients of false predictors to
exactly zero. Under appropriate conditions, consistency can be established for both variable selection
and parameter estimation.

The Bayesian methods encourage sparsity of the posteriori model through choosing appropriate prior
distributions. A classical choice is the spike-and-slab prior,

Bj ~ rh(B;) + (1 —1)do(B;),

where Jg(-) is the degenerated “spike distribution” at zero, h(-) is an absolutely continuous “slab
distribution”, and 7 is the prior mixing proportion. Generally, it can be equivalently represented as
the following hierarchical prior:

E~m(&), Be~he(Be), PBee=0 (1.2)

for some multivariate density function h¢, where £ denotes a subset model, and B¢ and B¢ denote
the coefficient vectors of the covariates included in and excluded from the model &, respectively. The
theoretical properties of the prior (1.2) have been thoroughly investigated [12,35,36,40,44,46,53,57,70].
Under proper choices of m and he, the spike-and-slab prior achieves a (nearly-) optimal contraction rate
and the model selection consistency.

Alternative to the hierarchical priors, some shrinkage priors have been proposed for (1.1) motivated
by the equivalence between the regularization estimator and the maximum a posteriori (MAP) estimator
(see, e.g., the discussion in [59]). Examples of such priors include the Laplace prior [32,48], the horseshoe
prior [11], the structuring shrinkage prior [30], the double Pareto shrinkage prior [2], the Dirichlet Laplace
prior [8], and the elliptical Laplace prior [22]. Compared with the hierarchical prior, the shrinkage prior
is conceptually much simpler. The former involves specification of priors for a large set of models,
while the latter avoids this issue as for which only a single model is considered. Consequently, for
the hierarchical prior, a trans-dimensional Markov chain Monte Carlo (MCMC) sampler is required for
simulating of the posterior in a huge space of submodels, and this has constituted the major obstacle
for the use of Bayesian methods in high-dimensional variable selection. For the shrinkage prior, there
is only a single model used in posterior simulations, and thus some gradient-based MCMC algorithms,
such as stochastic gradient Langevin dynamics (SGLD) [68], Hamiltonian Monte Carlo [18,47], Riemann
manifold Hamiltonian Monte Carlo [28], and stochastic gradient Hamiltonian Monte Carlo [15], can be
easily used in simulations. This is extremely attractive for the problems where both n and p are very
large, for which mini-batch data can be conveniently used to accelerate simulations.

Despite the popularity and potential advantages of shrinkage priors, few works have been done to
study their theoretical properties. There is a lack of general guarantee of posterior consistency for
Bayesian shrinkage priors, especially under the high-dimensional setting. Bayesian community already
realized that the Laplace distribution is not a good shrinkage prior for high-dimensional linear regression.
Bhattacharya et al. [8] and Castillo et al. [12] showed that the La-contraction rate of Bayesian LASSO
is suboptimal, and one can also show that the posterior of Bayesian LASSO is inconsistent in the L,
sense under regularity conditions. To tackle this issue, many other types of shrinkage priors have been
proposed (see, e.g., [1,3,8,11,27,29,30]). In the literature, there have been rich theoretical results on
the Bayesian shrinkage prior for the case of slowly increasing p (i.e., p = o(n)) [3,9,24] and normal mean
models [8,27,62,64]. For the high-dimensional case, i.e., p > n, the non-invertibility and eigen-structure
of the Gram matrix X " X complicate the analysis. Hence, the results derived from low-dimensional
models or normal mean models do not trivially apply to regression problems. It is worth noting that
most of the Bayesian works for the normal mean models [8,13,62] aim to achieve a minimax contraction
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rate of O(y/slog(n/s)). A recent preprint [55] shows that for the normal mean problem, any monotone
estimator ,@ which asymptotically guarantees no false discovery has at best the Lo-estimation error rate
1B — B*|2 = O,(v/slogn). This frequentist assertion implies that the existing rate-minimax Bayesian
approaches cannot consistently recover the underlying sparsity structure for normal mean models (see
also [63, Theorem 3] and [8, Theorem 3.4]). For high-dimensional regression models, the variable selection
consistency remains an unresolved issue for Bayesian shrinkage priors.

In this paper, we lay down a general theoretical foundation for Bayesian high-dimensional linear
regression with shrinkage priors. Instead of focusing on certain types of shrinkage priors, we investigate
sufficient conditions of posterior consistency for general shrinkage priors. We show that if the prior
density has a dominating peak around zero and a heavy and flat tail, then its theoretical properties are
as good as the spike-and-slab prior: its contraction rate is nearly optimal, variable selection is consistent,
and posterior follows a BvM (Bernstein von Mises)-type phenomenon. Specifically, we consider two
types of shrinkage priors for high-dimensional linear regression, namely, polynomially decaying priors and
two-Gaussian mixture priors [23]. Empirical studies show that the Bayesian method with a consistent
shrinkage prior can lead to more accurate results in variable selection than the regularization methods.
The general theoretical framework and technical tools developed in this paper have inspired a series of
follow-up works (see, e.g., the R2-D2 shrinkage prior [74], the beta prime prior [4] and Bayesian additive
nonparametric regression [67]).

Finally, we note that there are some other Bayesian works which deal with high-dimensional problems
with shrinkage priors. For example, Pati et al. [49] employed a Dirichlet-Laplace (DL) prior in dealing
with high-dimensional factor models, but their results only allow the magnitude of true parameters to
increase very slowly with n; Bhadra et al. [7] studied the prediction risk, instead of the posterior properties
of B3 for high-dimensional regression with a horseshoe prior; Rockovéd and George [51] established for high-
dimensional linear regression the same posterior convergence rate as ours with a two-group Laplace prior,
but failed to establish consistency of variable selection.

The rest of this paper is organized as follows. In Section 2, we present the main theoretical results,
where we lay down the theory of posterior consistency for high-dimensional linear regression with
shrinkage priors. In Section 3, we study posterior consistency for several commonly used shrinkage
priors. In Section 4, we discuss some important practical issues on Bayesian computation, and illustrate
the performance of Bayesian variable selection using a toy example. In Section 5, we present some
simulation studies and a real data example. In Section 6, we conclude the paper with a brief discussion.
In Appendix A, we give the proofs of the main theorems.

2 Main theoretical results

Notation. In what follows, we rewrite the dimension p of the model (1.1) by p,, to indicate that the
number of covariates can increase with the sample size n. We use superscript * to indicate true parameter
values, e.g., 8" and o*. For simplicity, we assume that the true standard deviation ¢* is unknown but
fixed, and it does not change as n grows. For vectors, we let || - || or || - |2 denote the Lo-norm; let || - |1
denote the Li-norm; let || - ||oo denote the Lo,-norm, i.e., the maximum absolute value among all the
entries of the vector; let || - ||o denote the Lo-norm, i.e., the number of nonzero entries. Asin (1.2), we let
& C{1,2,...,p,} denote a subset model, and let |¢| denote the size of the model £&. We let s denote the
size of the true model, i.e., s = [|3*||o = [£*]. We let X denote the sub-design matrix corresponding to
the model &, and let Apax(+) and Apin(-) denote the largest and smallest eigenvalues of a square matrix,
respectively. We let 1(-) denote the indicator function. For two positive sequences a and b, a < b means
lima/b =0, a < b means

0 < liminfa/b < limsupa/b < oo,

and @ < b means a < b or a < b. We use {¢,} to denote the Bayesian contraction rate which satisfies
€n < 1.
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2.1 Posterior consistency

The posterior distribution for the model (1.1) follows a general form

m(8,0° | Dn) o< f(B,0% Dy)m(B,0°),

where f(83,0%;D,,) o< o~ "exp(—|ly — X3|?/20?) is the likelihood function of the observed data D,, =
(X,y), and 7(B,0?) denotes the prior density of B and 2. Consider a general shrinkage prior: o2 is
subject to an inverse gamma prior o ~ IG(ag, by), where ag and by denote the prior-hyperparameters,
and conditioned on o2, B has the independent prior for each entry, with an absolutely continuous density

function of the form

w(B10°) = [Ilor(8/0) /o], (2.1)

J

where A is some tuning parameter(s). It is easy to derive that

Pn 2
; 2b - X
(5.0 D) = €+ 3 og s (2) = (nf2 g2+ g+ ) 10gto?) - P XBE
j=1

for some additive constant C.

The shape and scale of the density function gy play a crucial role for posterior consistency. Intuitively,
we may decompose the parameter space RP» into three subsets: the neighborhood set By = {||8 — 8*|| <
€n}, the “overfitting” set By = {||X (B — 8*) — ¢|| < o*/n}\B; and the rest Bs. Heuristically, the
likelihood f(B2) 2 f(B1) = f(Bs3) for any B; € By, i = 1,2,3. Therefore, to drive the posterior mass
toward the set By, it is sufficient to require that m(B;) > 7(B2) and the ratio 7(By)/7(B3) is not too tiny.
In other words, the prior distribution should (1) assign at least a minimum probability mass around 3%,
and (2) assign a tiny probability mass on the overfitting set. However, under the high-dimensional setting,
the “overfitting” set is geometrically intractable (and it expands to infinity) due to the arbitrariness of
the eigen-structure of the design matrix. Therefore, analytically, it is difficult to directly study the prior
on the “overfitting” set. One possible way to control the prior on the “overfitting” set is to impose a
strong prior concentration for each 8; such that the most of the prior mass is allocated on the “less-
complicated” models under a certain complexity measure. Under regular identifiability conditions, the
overfitting models are always complicated, so the prior probability mass on the “overfitting” models
should be small, but it is worth noting that the overfitting models are a subset of all the complicated
models and the strong prior concentration is only a sufficient condition. When the geometry of the
overfitting set is easier to handle, e.g., under p,, = o(n) or in the normal mean models, the overfitting set
can be a neighboring set of 3%, potentially annulus-shaped. In this case, it is absolutely unnecessary to
require a strong prior concentration on the neighboring set of 3*, i.e., we only need to impose conditions
on the local shape of the prior around B* (see [14,24,63]). This is also the key difference between
high-dimensional models and slowly increasing models/normal mean models.

Before rigorously studying the properties of the posterior distribution, we first state some regularity
conditions on the eigen-structure of the design matrix X:

A;(1) All the covariates are uniformly bounded. For simplicity, we assume that x; € [—1,1]" for
Jj=1,2,...,p,, where x; denotes the j-th column of X.

A;(2) The dimensionality is high: p,, = n.

A1(3) There exist some integer p (depending on n and p,) and a fixed constant Ag such that p > s
and )\min(XETXg) > n)g for any subset model |¢] < p.

Remark 2.1. A;(1) implies that A\pax (X T X) = tr(X T X) < np. A1(3) has often been used in the
literature to overcome the non-identifiability issue of 3 (see, e.g., [46,56,71]). This condition is also
equivalent to the lower bounded compatibility number condition used in [12]. In general, p should be
much smaller than n. For example, for an n X n design matrix with all the entries i.i.d. distributed,
the Marchenko-Pastur law states that the empirical distribution of the eigenvalues of the corresponding
sample covariance matrix converges to p(z) o« /(2 —z)/x1 (z € [0,2]). The random matrix theory



Song Q F et al. Sci China Math  February 2023 Vol. 66 No.2 413

typically allows p =< n/logp, with a high probability when the rows of X are independent isotropic
sub-Gaussian random vectors; please refer to [46, Lemma 6.1] and [66, Theorem 5.39].

The next set of assumptions concerns the sparsity of 8* and the magnitude of nonzero entries of 3*.
As(1) slogp, < n, where s is the size of the true model.
Ag(2) max{|B;/0*|} < v3E), for some fixed 73 € (0, 1), and E,, is nondecreasing with respect to n.

Remark 2.2. The condition As(1) is regularly used in the literature of high-dimensional statistics,
which restricts the size of the true model to be of the order o(n/logp,). The condition A5(2) constrains
the growth of the nonzero true regression coefficients such that max{|8;|} < E,. Together with the
second condition in (2.3), it ensures that the prior probability around the true model does not decay
too fast, which echoes the heuristics discussed in the previous paragraph that the shrinkage prior shall
assign at least a minimum probability mass around B*. Note that such an upper bound condition is
fairly common in the literature of Bayesian asymptotics. For example, Ghosal et al. [25] established a
general posterior convergence rate, which requires that the prior mass over a small f-divergence ball
of the true density po is not too small. For linear regression models, Armagan et al. [3, Theorem 1],
Bhattacharya et al. [8, Theorem 3.1] and Yang et al. [70, Condition (7a)] imposed a similar upper bound
condition on B3*. A similar condition has also been used in [26,35,37]. We note that it is also possible
to establish posterior consistency without such an upper bound condition for certain types of shrinkage
priors. Noticeable examples include [51] which used a two-component mixture Laplace prior, [12,22]
which used a Dirac-Laplace prior, and [44] which used a g-prior centered at the least-square estimator.
More discussions on this issue can be found after Corollary 3.2.

The next theorem provides sufficient conditions for posterior consistency. Hereafter, we let €, =
M/slog p,/n denote the contraction rate, where M is a fixed positive constant.

Theorem 2.3 (Posterior consistency).  Consider the linear regression model (1.1), where the design
matriz X and the true B* satisfy the conditions A1 and Ao, 02 is subject to an inverse gamma prior
1G(ap,bo), and the prior of B is given by (2.1). If g\ satisfies the conditions

1- / gr(@)dw < p;, ),
—an (2.3)
log (_inf  gy(x)) = Oflogpy)

where u > 0 is a constant, a, < +/slogp,/n/p,, and the constant M is sufficiently large, then the
following posterior consistency holds:

P*(W(HIB - ﬁ*” =107y, | Dn) P eicgnei) < 675371531,

* * * —c n€2 —c neg (24)
P*(n([|B -8B = Clx/geno | D)) > e %) L e @

for some positive constants ¢y, co and c3.

The proof of this theorem is given in Appendix A. The results in (2.4) imply that
lim B(w(|8 - 8] > c10™, | Da)) =0

and
Jim B(x(|8 ~ 8" > e10" Ve | Do) =0,

ie., the Ly- and Lj-contraction rates of the posterior distribution of B are O(y/slogp,/n) and
O(sy/logp,/n), respectively. These contraction rates are nearly optimal by recalling that the minimax
Lo-contraction rate is O(y/slog(pn/s)/n) [50], and they are not worse than the rates achieved with the
spike-and-slab prior [12]. In other words, there is no performance loss due to the use of shrinkage priors.

The conditions (2.3) in the above theorem are consistent with our heuristic arguments in previous
paragraphs. The first equation of (2.3) concerns the prior concentration, which requires that the prior
density of 5;/0 has a dominating peak inside a tiny interval a,. Such a steep prior peak plays the
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role of “spike” as in spike-and-slab prior modeling. In the literature, Castillo et al. [12] assigned on the
spike a prior probability 7(§; = 1) = O(p,,*) with v > 1, Narisetty and He [46] employed an SSVS
(stochastic search variable selection)-type prior [23] under which the prior probability m(§; = 1) < 1/py,
and Yang et al. [70] assigned on the spike a prior probability 7(§; = 1) = O(p,,*) with w > 0. All
these prior specifications are comparable to our condition =(|5;/0| > an) = O(p;(Hu)) with u > 0.
Note that [46] and [70] seem to require less prior concentration, and they both imposed additional prior
concentration conditions to bound the model size such that 7 (|¢| > O(n/logp,)) = 0. It is worth noting
that all our theorems require the prior distribution to have a tiny scale by imposing a very small bound
on a,. The scale of the shrinkage prior affects the convergence rate of the posterior through its logarithm
only. In other words, no matter how small the scale of the prior distribution is, it does not affect much
the convergence rate of the posterior as long as log(1/ay,) is of order log(p,). One established example
is the horseshoe prior (see [62, Theorem 3.3] for the convergence theory of the posterior). The second
equation of (2.3), as discussed previously, essentially requires that the prior density around the true
nonzero regression coefficient 37 /0" is at least exp{—O(logpn)}, i.e., gr(Bj/0*) > exp{—clogp,} for
some positive constant c¢. Finally, we note that this prior concentration condition is only sufficient. In
practice, a moderate degree of concentration can often lead to satisfactory results.

Other than the regression coefficients, similar results to (2.4) can be derived for the fitting error
1X8 - X5

Theorem 2.4.  If the conditions of Theorem 2.3 hold, then
P*(n(|XB — XB*| > c10" Ve, | D) > e 2m) < e~caneh (2.5)

for some positive constants ¢y, ca and cs.

Remark 2.5. Theorem 2.4 actually holds without Condition A;(3). To intuitively understand the
redundancy of Condition A;(3), let us consider the fitted error under any selected subset model & D &*,
ie., XE(X;Xg)_lXETs. Without any assumption on the eigen-structure of X, this term can be bounded
in probability since the eigenvalues of X (X ET X)X g are 0 or 1. However, to prove Theorem 2.3, we
need to bound the estimation error (X ST X)X 5T €, and hence an eigen-structure assumption such as
Condition A;(3) is necessary.

To conclude this subsection, we state that an appropriate shrinkage prior can lead to almost the same
posterior consistency result as the spike-and-slab prior.

2.2 Variable selection consistency

In this subsection, we perform a theoretical study on how to retrieve the sparse structure of 8* with a
shrinkage prior. To achieve this goal, it is necessary to “sparsify” the continuous posterior distribution
induced by the continuous prior. In the literature, this is usually done by (1) hard (or adaptive)
thresholding on §; or on the shrinkage weight 1/(1 + /\i) [11, 34, 38, 58], or (2) decoupling shrinkage
and selection methods [31,69]. Note that the approaches in the latter class intend to incorporate the
dependency between covariates into the sparse posterior summary. All the aforementioned approaches
depend solely on the magnitude of the Bayesian estimates of 3;’s, without accounting for the degree of
the prior concentration.

We propose to use a prior-dependent hard thresholding method, which sets Bj = B;1(|8;] > nn) for
some threshold 7,,. This induces a sparse pseudo posterior W(B | Dy,), which thereafter can be used to
assess the model uncertainty and conduct variable selection as if it is induced by a spike-and-slab prior.
The correlation structure of W(B | D,,) will reflect the dependency knowledge in X.

First of all, Theorem 2.3 trivially implies that

En(|8; — ﬁj* |> cio¥ey for all j=1,...,p, | D) = 0,(1).

Therefore, if minjeg- B]*| > 2c10%€, and 0, = c10%€,, then

En(1(B8; = 0) # 1(8; = 0) for all j | Dy,) = 0,(1)
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and ﬂ(,@) can consistently select the true model. However, one potential issue of using cjo*e, for
thresholding is that it greatly alters the theoretical characteristic of 7(8 | D,) in the sense that the
Lo-contraction rate of w(8 | D,,) can be as large as s1/log p,/n but not \/slog p,,/n.

This motivates us to consider another choice of 7,. As discussed previously, (2.3) implies a “spike”
between [—ay, a,] for the prior of 8/o, which plays the same role as the Dirac measure in the spike-
and-slab prior. Hence, from the point of view of prior specification, a,, distinguishes between zero and
nonzero coefficients, and it is natural to consider 8; = 3;1(|8;/0| > a,). The posterior 7(8, 2 | D,,) thus
implies the selection rule as (3, 02) = {j;|8;/0| > an}. This hard-thresholding rule of Bayesian variable
selection can be viewed as a counterpart of the selection rule {j : |8;/c] > 0} used in spike-and-slab
modeling. It is also closely related with the idea of “generalization dimension” [8,51]. [8, Theorem 3.4]
defines supp;(B) = {j : |B;/c| = 6} as the set of variables selected based on a nonsparse posterior
sample 3, where o = 1 is known, p, =n (X =I), and ¢ satisfies the condition

m(18j] = 6) < Clog(n/s)/T'(n™'7") < log(n/s)/(n' ™)

for some u > 0. This choice of § matches our threshold a,,, which is the quantile of the prior distribution
satisfying 7 (|3;/o| = an) < p, ™" for some u > 0.

The following theorem establishes the variable selection consistency of the above hard-thresholding
rule, while Bhattacharya et al. [8] and Rockovd and George [51] proved only that the selected model has
a bounded size.

Theorem 2.6 (Variable selection consistency).  Suppose that the conditions of Theorem 2.3 hold under
an < V1ogp,/(v/npn) and u > 1. Let 1, be a measure of flatness of the function gx(-), i.e.,

gx(71)

[, = max sup ,

Jjegr zl,xzeﬁ;/a*icoen g/\(xQ)
lz1],|z2]>an

where cy is some large constant. If minjee- |85 > Miy/logp,/n for some sufficiently large My and
slogl, < logpn,, then

P*{r[¢(B,0%) = £*|D,] > 1 —o0(1)} > 1 —o(1). (2.6)

This theorem is a simple corollary of Theorem A.7 in Appendix A. It requires a smaller value of a,,
and a larger value of u, i.e., a narrower and more concentrated prior peak, compared with Theorem 2.3.
Besides the prior concentration and the tail thickness, the condition slogl, < logp, also requires tail
flatness such that the prior density around the true value */o* is not rugged. This flatness facilitates an
analytic study for the posterior 7(£(3,02) | D,,). Generally speaking, for smooth gy, the flatness measure
approximately follows logl, < max;ee- €xflog gA]'(85/0*) — 0, where [log g\]" is the first derivative of
log gx. In the extreme situation, we can utilize an exactly flat tail such that logi,, = 0. An example could
be gx(z) oc exp{—pa(z)}12¢|-E,,5,), Where px(x) has a shape like a non-concave penalty function such
as SCAD. If logl, is not exactly 0, then the condition slogl,, < logp, imposes an additional constraint
on the sparsity s other than s < n/logp,. More discussions on l,, can be found in Section 3.

The result of this theorem also implies a stronger posterior contraction for the false covariates such
that |B; /0] is bounded in posterior by a,.

2.3 Shape approximation of the posterior distribution

Another important aspect of Bayesian asymptotics is the shape of the posterior distribution. The general
theory on the posterior shape is the BvM theorem. It claims that the posterior distribution of the
parameter 6 in a regular finite-dimensional model is approximately a normal distribution as n — oo, i.e.,

|7(- | Dn) = N (- 0pre, (n) ™) |lrv — 0, (2.7)

regardless of the choice of the prior (), where (- | D,,) is the posterior distribution given data D,,,
N(; i, ¥) denotes a (multivariate) normal distribution, Oy g stands for the maximum likelihood estimator
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of 0, I is Fisher’s information matrix, and || - ||rv denotes the total variation distance between two
measures. The BvM theorem provides an important link between the frequentist limiting distribution
and the posterior distribution, and it can be viewed as a frequentist justification for Bayesian credible
intervals. To be specific, the Bayesian credible intervals are asymptotically equivalent to the Wald
confidence intervals, and also have the long-run relative frequency interpretation.

The BvM theorem generally holds for fixed-dimensional problems. For linear regression with known o™,
the posterior normality always holds under an (improper) uniform prior, as

T(B | Dn) ~ N(XTX) ' X Ty, 0"(X X)),

as long as p < n and the matrix X is of full rank.

Under the scenario p,, > n, all the false coefficients are bounded in posterior by a threshold value by
Theorem 2.6. Combining this with the fact that f(Be«, B(ex)e; X, y) = f(Bex, Ber)e = 0; X¢-,y) when
[|B(e+)e|loo is sufficiently small, we have

(B | Dpn) o< L(Be+, Biewye | X, y)m(Be+, Bewye) = L(Be+; Xe=, y)m(Be )m(Beye)-

If w(Be¢+) is sufficiently flat around B¢« and acts like a uniform prior, then the low-dimensional term
L(Be+; X¢-,y) m(B¢-) follows a normal BvM approximation. More rigorously, we have the next theorem.

Theorem 2.7 (Shape approximation).  Assume the conditions of Theorem 2.6 hold, lim slogl, = 0

an < (1/pn)V/1/(nslogpn).

Let 0 = (B¢-,0°)". Then with dominating probability, 7(3, 0% | Dy,) converges in total variation to

n—s 62(n—s)>7

2 2

and

BB (XX Xer ™) [T 70551 oo, (28)

J¢er
where ¢(-) is a multivariate normal density function, ig(-) is an inverse gamma density function,
7(B; | 02) is the conditional prior distribution of B, and B¢ and 62 are, respectively, the mazimum

likelihood estimates (MLEs) of B¢« and o? given data (y, Xe-).

Refer to Theorem A.8 for the proof of this theorem. Its condition is slightly stronger than that of
Theorem 2.6. It requires that a,, is smaller and the prior log-density log gx(-) is almost constant around
the true value of 57 /o*. The following corollary can be easily derived from the above theorem.
Corollary 2.8. Under the condition of Theorem 2.7, for any j € £, the marginal posterior
of B; converges to the normal distribution gb(ﬂj,ﬂj,a*zoj), where 3; is the j-th entry of Be-, 0j =
[(Xg— X)) ;. Furthermore, if s < \/n, the posterior w(B¢c, Be, 02 | Dy,) converges in total variation
to

LT =(8; 1 6*)9(6;6, (n]))

j¢er
with probability approaching 1, where @ = (B¢, )", 0= ([35 , 6T and (71f)_1 = diag(&2(X£—EX5*)_1,
26*/n). In other words, the BuM theorem holds for the parameter component (B¢, 0?).

Theorem 2.7 is comparable to the result developed under the spike-and-slab prior [12]. Under the
spike-and-slab prior, the posterior density of 3 can be rewritten as a mixture,

7B Dn)= Y (& Du)m(Be | Xe,y)1{Bee =0}, (2.9)
£c{1,...,np}

where 7(8¢ | Xe,y) o< he(Be) f(Be; Xe,y), and hig(-) is defined in (1.2). If 7(§* | Dy) — 1, (B | D)
converges to m(B¢+ | Xex,y)1{Be+c = 0}. Furthermore, if m(B¢-) is sufficiently flat and BvM holds for
the low-dimensional term 7(3¢- | X¢+,y), then it leads to a posterior normal approximation as

(B | D) = N(Be-; Be-, (X¢- Xer) 1) © 60(Bien)e), (2.10)
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where ® denotes the multiplication of the measure.

Theorem 2.7 and Corollary 2.8 extend the BvM-type result from the spike-and-slab prior to the
shrinkage prior. They show that the marginal posterior distribution for the true covariates follows the
BvM theorem as if under the low-dimensional setting, the marginal posterior for the false covariates can
be approximated by its prior distribution. Since the prior distribution is already highly concentrated, the
posterior of the false covariates being almost the same as the prior does not contradict our contraction
results. Note that the Bayesian procedure can be viewed as a process of updating the probabilistic
knowledge of parameters. The concentrated prior distribution reflects our prior belief that almost all
the predictors are inactive, and (2.8) implies that the Bayesian procedure correctly identifies the true
model £* and updates the distribution of B¢+ using the data, but it obtains no evidence to support 3; # 0
for any j ¢ &* and thus does not update their concentrated prior distributions.

Let CI;(a) denote the posterior quantile credible interval of the i-th covariate. If 7(8 | o2) is a
symmetric distribution, then Corollary 2.8 implies that

lim P*(B8} € CLi(a)) =1 — o, ifie€&”, (2.11)
lim P*(0 € CLi(a)) =1, ifi¢ & '
for any 1 > a > 0. This result implies that for the false covariates, the Bayesian credible interval is super-

efficient: asymptotically, it can be very narrow (as the prior is highly concentrated), but has always 100%
probability coverage. This is much different from the confidence interval.

It is important to note that both Theorem 2.7 and its counterpart (2.10) rely on the selection
consistency (and the beta-min condition), which drives Bayesian post-selection inference. Therefore,
the frequentist coverage of the Bayesian credible interval (the first equation of (2.11)) does not hold
uniformly for all the nonzero f3; values, but only holds for those bounded away from 0. If the beta-min
condition is violated, one can rewrite the posterior with the shrinkage prior as a mixture distribution
similar to (2.9). Hence, the corresponding posterior inference will be model-average-based.

The above asymptotic studies are completely different from the frequentist sampling distribution-based
inference tools such as de-biased LASSO [61,73]. The de-biased LASSO method establishes asymptotic
normality as

V(B =B S N©0,0"25XTXST /n) (2.12)

for any B*, even when it is arbitrarily close to zero, and S is some surrogate inverse matrix of the sample
covariance. Different from our posterior consistency result, the asymptotic distribution on the right-hand
side of (2.12) is a divergent distribution when p,, > n.

In the literature, there is a different line of research about the validity of Bayesian credible intervals,
which do not require the selection consistency (see, e.g., [6,63]). These works are usually based on the
first-order Bayesian convergence rate only. As a consequence, these credible intervals/balls involve an
unknown multiplicative constants (e.g., ¢; and M) that appear in the posterior convergence rate (2.4)
and their coverage always converges to 1, rather than the nominal level 1 — .

We conjecture that if the consistent point estimation and the inference of credible intervals are made
simultaneously, the credible intervals will be super-efficient for the false covariates due to the sparsity
constraints (i.e., the prior distribution) imposed on the regression coefficients. These constraints ensure
posterior consistency and thus reduce the variability of the coefficients of the false covariates. Based on
this understanding, it seems that under the framework of consistent high-dimensional Bayesian analysis,
a separate post-selection inference procedure (without sparsity constraints) is necessary to induce the
correct second-order inference. For example, it can be done in a sequential manner (referring the idea
to [42] and [60]): attempting to add each of the unselected variables to the selected model, and calculating
the corresponding credible interval for the unselected variable.
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3 Consistent shrinkage priors

In the previous section, we establish general theory for shrinkage priors based on abstract conditions.
In this section, we apply the theory to several types of shrinkage priors, and study the corresponding
posterior asymptotics.

The condition (2.3) requires certain balance between the prior concentration and the tail thickness.
First of all, it is easy to see that the Laplace prior fails to satisfy the condition (2.3) unless the tuning

parameter
| slog pn
)\n ~ Pn IOg pn/ Tﬂ

and the true coefficients are as tiny as |37 = O(y/slogpn/n/p,) for all j € £*. Therefore, we first
consider the prior specification that has a heavier tail than the exponential distribution.

3.1 Polynomial-tailed distributions

We assume that the prior density of 8 has the form (8 | 0%) = [I{", x159(8i/An0), where A, is a scale
hyperparameter, and the density g(-) is symmetric and polynomial-tailed, i.e., g(z) =< x~
for some positive r > 1. Under the above prior specification, we adapt Theorem 2.3 as follows.

T as x| = oo

Theorem 3.1.  Assume that the conditions Ay and As hold for the linear regression model, and a
polynomial-tailed prior is used. If log(E,) = O(logp,), and the scale parameter X, satisfies A\, <
anp;(uﬂ)/(rfl) and —log A, = O(log p,,) for some u > 0, then

e the posterior consistency (2.4) holds when a, < \/slogpn/n/pn;

e the model selection consistency (2.6) holds when an < \/10g pn/v/Npn, minjee- |85 > Miy/logpn/n
for sufficiently large My, slogl, < logp, and u > 1;

e the posterior approzimation (2.8) holds if a,, < \/1/(nslogpn)/pn, minjee« [B5] = Miy/logp,/n for
sufficiently large My, slogl, <1 and u > 1.

Note that polynomially decaying distributions that we most commonly use satisfy g(z) = Cz~"L(x),
where lim,, L(z) = 1 with the rate

|L(z) — 1| = O(x™") for some ¢ > 0. (3.1)

It is not difficult to see that if min;ee- ﬁ;\ > Mse, for some large My, and A\, = O(e,,), then slogl,, =
B; |. Therefore, Theorem 3.1 can be refined as follows.

S€p/ Minjee
Corollary 3.2.  Consider the polynomial-tailed prior distributions satisfying (3.1). Assume that the
condition Ay holds, slogp, < n, and log(maxjee- |37]) = O(logpn). Let the choice of A, satisfy
—log A, = O(logp,). Then

o if A\, = O{\/slogpn/n/pgluﬂ)/(rfl)} with u > 0, then posterior consistency holds with a nearly
optimal contraction rate;

e if s\/slogp,/n/minjee- [B5] < logpn, An < \/logpn/n/p(“”)/(’"’l) with uw > 1, and min;ee- 57|
> Mi+/slogp,/n for sufficiently large My, then the variable selection consistency holds;
e if s\/slogpn/n/minjee- B < 1, Ay < v/ 1/n10gpn/29£tu+r)/(r_l) with w > 1, and minjee- |55 |

> My+/slogpn/n for sufficiently large My, then the posterior shape approximation holds.

Theorem 3.1 and Corollary 3.2 show that a nearly optimal contraction rate can be achieved for high-
dimensional linear regression by adopting a polynomial-tailed prior with an appropriate value of \,,. As
suggested by Corollary 3.2, it is sufficient to choose the scale parameter as log A,, ~ —clogp,, for some
¢ < (u+r)/(r—1), since n = O(py) and s = o(py). Compared with the choice A\, = (s/p)/log(p/s)
under normal mean models [27,62], we note that a stronger prior concentration is required for regression
models. Our results allow the maximum magnitude of nonzero coefficients to increase up to a polynomial
of pn. In contrast, the DL prior allows |37| to increase with a logarithmic order of n only [8]. It is
worth noting that the boundedness condition on | BJ*| is not necessary for a polynomially decaying prior
under normal mean models, i.e., when X = I [27,54,62]. However, under general regression settings,
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such a condition may be necessary due to the dependency among covariates. One should also notice that
the selection consistency or posterior normality requires the stronger beta-min condition (i.e., minimal
pB* is greater than the order of \/slogp,/n) and an additional condition on the true sparsity s (e.g.,
B | > C for some constant C, the selection consistency and the posterior normality require

if minjce-
53 =< nlog2 pn and 53 < n/logp,, respectively). The reason we need such unpleasant conditions is that
the polynomially decaying prior modeling utilizes only one scale hyperparameter. Although this simplifies
the modeling part, we lose control on the shape or tail flatness of the prior distribution. If we utilize
both scale and shape hyperparameters in prior modeling, the conditions can be improved, as seen in
Subsection 3.2.

For the convenience of posterior sampling, one way to construct a polynomially decaying prior is to
design a hierarchical scale mixture Gaussian distribution as

B ~ N(0, /\?Uz)7 A? ~ T, ()\?)7 independently for all j, (3.2)

where s, is the scale hyperparameter of the mixing distribution m, (-), i.e., ms () = 7m1(-/Sn)/5n.
Equivalently, /s, is the scale parameter of the marginal prior of 8;. The scale mixture Gaussian
distribution can also be viewed as a local-global shrinkage prior, where )\?’S are local shrinkage parameters,
and s, is a deterministic global shrinkage parameter. As shown in the next lemma, the tail behavior of
the marginal distribution of 3; is determined by the tail behavior of ;.

Lemma 3.3. If the mixing distribution s, (-) is a polynomial-tailed distribution satisfying m1(\?)
= CA"2"L(A\2) and |L(A\2) — 1] = O((\2)~1), then the marginal prior distribution of B; induced by (3.2)
is polynomial-tailed with order 27 — 1 and satisfies |L(z) — 1| = O(x=2%), where L is defined in (3.1).

The proof of this lemma is trivial and hence omitted in this paper.

Combining the above lemma and Corollary 3.2, it is sufficient to assign )\? a polynomial-tailed
distribution and properly choose the scale parameter s, such that ,/s, is decreasing and satisfies the
conditions in Corollary 3.2. Ghosh and Chakrabarti [27] studied the posterior convergence of the normal
mean models with a scale mixture Gaussian prior (3.2) and achieved a minimax contraction rate. However,
their result is only applicable to the case where the polynomial order 7 of 7r1()\?) is between 1.5 and 2.
Our result is more general and valid for any 7 > 1.

In what follows, we list some examples of polynomially decaying prior distributions which can be
represented as a scale mixture Gaussian distribution. All these priors satisfy the condition (3.1):

e the student’s ¢-distribution, for which the mixing distribution of A? is an inverse gamma distribution
1G(a1, sn) with a; > 0;

e the normal-exponential-gamma (NEG) distribution [29], for which the mixing distribution is 7(\?)
=ws; Y1+ s, 12377~ with v > 0;

e the generalized double Pareto distribution [3] with the density g(z) = (2\,) ™! (1+|z|/(a1\,)) (@D,
for which the mixing distribution can be represented as a gamma mixture of exponential distributions
with a; > 0;

o the generalized beta mixture of Gaussian distributions [1], for which the mixing distribution is an
inverted beta distribution: )\? /Sn ~ inverted Beta(ay,b;) with a; > 0. Note that the horseshoe prior is a
special case of generalized beta mixture Gaussian distributions with a; = by = 1/2.

In addition, Theorem 3.1 implies a simple way to remedy the inconsistency of Bayesian LASSO by
imposing a heavy tail prior on the hyperparameter: 5/0 ~ DE();), )\j_l ~ 7, , where DE()\) denotes the
double exponential distribution Aexp{—Az}/2, and the mixing distribution 7, of )\;1 has a polynomial
tail with the scale parameter s,,.

In the above analysis, we choose the scale parameters A, or s, to decrease deterministically as n
increases. Hence, in practice, certain tuning procedures are recommended as described in Section 4.
Such hyperparameter tuning occurs in most Bayesian procedures under the spike-and-slab prior as well.
Note that such a tuning procedure usually requires multiple simulations under different levels of \,,. In
the literature, an adaptive Bayesian way to choose )\, is to assign a hyper-prior on A,. van der Pas
et al. [64] studied the horseshoe prior for the normal mean models, and they showed that the posterior
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consistency remains if A, is subject to a hyper-prior which is truncated on [1/n, 1]. However, the results
derived for normal mean models may not be trivially applicable to regression models. Note that there
is a y/n difference between regression models and normal mean models, in terms of the Ls-norm for the
columns in the design matrix. The result of [64] suggests to truncate the prior of \,, on [n=3/2, n=1/2] for
regression models. A toy example shown in Figure 4 indicates that such truncation still leads to many
false discoveries. Another popular choice is to impose the global shrinkage parameter on a half Cauchy
prior A, ~ C7(0,1). The numerical results show that this hierarchical prior leads to insufficient prior
shrinkage and less accurate posterior concentration. Finally, our posterior shape approximation result
relies on the fact that 3;’s are a priori independent conditioned on ¢2. If a hyper-prior on A, is used,
then the conditional a priori independence does not hold any more, and the BvM result (2.8) fails.

3.2 Two-component mixture Gaussian distributions

Another prior that has been widely used in the Bayesian linear regression analysis is the two-component
mixture Gaussian distribution (see, e.g., [23,46])

Bijo ~ (1 —&)N(0,08) +&;N(0,07), & ~ Bernoulli(m,). (3.3)

The component N(0,032) has a very small oy and can be viewed as an approximation to the point mass
at 0. In the literature, the interest in this prior has been focused only on the consistency of variable
selection, i.e.,

({5 & =1 =& | D).

Here, we treat it as an absolutely continuous prior and study the posterior properties of 3 in the next
theorem.

Theorem 3.4.  Suppose that the two-component mizture Gaussian prior (3.3) is used for the high-
dimensional linear regression model (1.1), and the following conditions hold: the conditions Ay and Asg,
E2/0? +logoy < logp,, mi = 1/ptt and o9 < a,/+/2(1 + u)logp,, for some u > 0. Then

e the posterior consistency (2.4) holds when a,, =< \/slogpn/n/pn;

e the model selection consistency (2.6) holds when a, < \/10g Dy /\/NPn, sEny/slogpn/n/o? < logp,,
minjee- B;‘\ > Mi\/logp,/n for sufficiently large My and u > 1;

e the posterior approvimation (2.8) holds when a, < +/1/(nslogp,)/pn, $En+/slogp,/n/o? < 1,
minjee- |85 = Miy/logp,/n for sufficiently large My and u > 1.

The two-normal mixture distribution contains three hyperparameters m, o3 and 7. Hence, we have
more control on the prior shape compared with the polynomially decaying priors, and the theoretic

properties are improved slightly compared with Corollary 3.2. Specifically, Theorem 3.4 allows us to
choose o1 = E,, = p¢ for some ¢ > 1 and thus sFE,/slogp,/n/o? < 1 always holds, i.e, there will be no
additional conditions on the upper bound of the model size s; Theorem 3.4 only requires that min;ce- ﬂ; |

is larger than the order of y/logp/n.

4 Bayesian computation and an illustrative example

In this section, we first discuss some important practical issues, including the posterior computation, the
model selection and the hyperparameter tuning, and then we use some toy examples to illustrate the
performance of the shrinkage priors. For convenience, we call the Bayesian method, whose consistency
is guaranteed by Theorem 2.3 with a shrinkage prior, a Bayesian consistent shrinkage (BCS) method in
what follows. In particular, we use the student-¢ prior, as an example of the shrinkage prior, and compare
it with the Laplace prior.

The scale mixture Gaussian priors (3.2), under a proper hierarchical representation, usually lead to
posterior conjugate Gibbs updates. For example, for the student-¢ prior, the posterior distribution can
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be updated in the following way:

+Pn — X|? B3
02|,6',>\1,...,)\pn~IG(a0+nQp,bo+yﬂ'+Z J),

2 - 222
BloXAL,..., A, ~N(K ' X Ty/o? K1), (4.1)
1 e .
102100 x e { = o n0d, 5= 1
J

where K = (X T X +A)/o? A = diag(1/A?), and 7(A?) denotes the density function of an inverse gamma
distribution, i.e., )\? ~ 1G(ay, sp).

The step of updating 3 is computationally difficult due to the inverse of a p,, x p,, matrix. However, the
special structure of the covariance matrix K ~* allows for a blockwise update of 3 [34]. For example, if we
partition 3 into two blocks (1) and 3, and partition X = [X, X] and A = diag(Ay, Ay) accordingly,
then the conditional distribution of 3! is given by

BY B ~ N(X] X1 + A1) X (y — XoBP), 0*(X] X1 + A7), (4.2)

which requires only an inverse of a lower-dimensional matrix. The computational complexity of
updating B in (4.1) is O(p3), while that in (4.2) is O((d® + n(p, — d))pn/d), where d is the block size
and the term n(p,, — d) comes from computing the product X,3). The optimal order of d is O(/npn),
which yields a computational complexity of O(n?/ 3p,51/ 3) for one update of the entire vector 3. Further
improvement in computation is possible when we incorporate the idea of the skinny Gibbs sampler [45].

Posterior model selection based on BCS has been discussed in Sections 2 and 3 from the theoretical
aspect. However, in practice, the selection rule £(8) = {j : |8;/0| > a,} cannot be directly used since
an, is not an explicit hyperparameter of the prior distribution. Recall that a,, represents the boundary of
the prior spike region, and it is implicitly defined through the condition (2.3) as 7 (|3;/0| > a,) = p, '™
Since w is unknown, we suggest to choose the threshold a in the rule n(|8;/0] > a) = 1/py, ie., let
u = 0. This rule means that we set the expected a priori model size to be 1. Such a rule has often been
in the literature of Bayesian model selection (see, e.g., [46]). Obviously, a, < a, and thus it leads to a
conservative selection. However, if ¢ < minje¢- | B;‘|, it is not difficult to see that the Bayesian selection
consistency remains, when min;eg-

;| satisfies the beta-min condition. In the simulation studies of
this paper, we choose the Bayesian estimator for the model as € = {j : ¢; 2 n(|8,/0| > a|D,) > t},
where ¢t = 0.5 and g; plays the role of the posterior inclusion probability. It is worth mentioning that
one may also use a data-driven method to determine the value of ¢, and make the variable selection rule
more robust across different sparsity regimes. For example, we can conduct a multiple hypothesis test
based on the marginal inclusion probabilities ¢;’s for the hypotheses Hjo : 3; = 0 versus Hj; : 3; # 0,
7 =1,...,p, based on posterior summaries. This can be done using an empirical Bayesian approach as
developed in [19,41].

Another important practical issue is how to select hyperparameters. The theory developed in Sections 2
and 3 provides only sufficient conditions for the asymptotic order of hyperparameters. For example, by
Theorem 3.2, one can set the scale parameter \, = 1/[v/nlogp,p)] with any sufficiently large value
of ~ for the student-t prior. Asymptotically, an excessively large value of v does not affect the rate
of convergence, but affects only the multiplicative constants, such as M and c;, in the statement of
Theorem 2.3. However, in finite-sample applications, it is crucial to select a properly scaled parameter
such that the posterior is neither over- nor under-shrunk. In this work, we let \,, = 1/[v/nlog p,p}] and
choose 4 to minimize the posterior mean of a “BIC-like score”:

/bic(ﬁ,dz)dﬂ'(ﬂ,UQ | Dn77)7

where bic(8) = nlog(||Y — X 8[%/n) + [Bllologn, B = (Bis---,Bp.), B; = B;1(|Bj/o| > a), and
7(B,0% | D,,7) is the posterior distribution of (3, 0?) given the hyperparameter v. In practice, one can
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run multiple posterior simulations with different values of =, and then choose the one that yields the
smallest posterior sample mean of the “BIC-like” score. Since the multiple runs can be made in parallel
on a high-performance computer, such a parameter tuning strategy does not add much on computational
time. Since investigating the theoretical properties of tuning parameter selection is beyond the scope of
this work, such study will be conducted elsewhere.

We illustrate the performance of BCS using a simulated example, where p = 200, n = 120, and the
nonzero coefficients are (81, B2, 83,54) = (1,1,1,1). For the Laplace prior, we set the hyperparameter
A = /nlog(p,) at which the LASSO estimator is known to be consistent (see, e.g., [72]). For the
student-¢ prior, we set the degree of freedom to 3 with the scale parameter

Sp = /\SL = 1/[” logpnp;}y]v

where ~ ranges from —0.25 to 1.1, and the best 4 is selected as described in the above. For both priors,
we let 02 be subject to an inverse gamma distribution with ag = by = 1.

The numerical results are summarized in Figure 1. The first plot shows the posterior sample mean of
the BIC-like score with different values of . It shows that when ~ is larger than 0.8, the tuning parameter
Ap is too small, the posterior begins to miss true covariates due to over-shrinkage, and thus the posterior
mean of the BIC-like score rapidly increases to a very large value. The second and third plots are the
posterior boxplots of 7(5; | D) of Bayesian LASSO, and BCS under the optimal setting of 4. To make
the boxplots more visible, we only include the coefficients of the first 50 covariates, including four true
covariates. The comparison shows that BCS leads to a consistent inference of the model in the sense that
the coefficients of the false covariates are shrunk to zero, and the coefficients of the true covariates are
distributed around their true values. In contrast, Bayesian LASSO over-shrink the coefficients of true
covariates, and under-shrink the coefficients of false covariates. This is due to the fact that the Laplace
prior fails to achieve the balance between the prior concentration and the tail thickness. But it is worth
noting that the posterior Bayesian LASSO can still separate the true and false covariates, and thus it
can be used for the model selection.
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Figure 1 (Color online) (a) The posterior mean of the BIC-like score for different values of 7; (b) box-plots of the posterior
samples by Bayesian LASSO; (c) box-plots of the posterior samples by BCS
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Figure 2 (Color online) Shape of the posterior distribution by BCS: (a) shows the QQ plot for one true covariate, and
(b) shows the histogram of the posterior samples of 8; /0, j ¢ &* (i.e., false covariates), where the red curve represents the
density of the student-t prior

In addition, we draw in Figure 1 four red vertical segments which represent the 99% oracle confidence
intervals of the true coeflficients by assuming that the true model is known. In Figure 2, we examine
the shape of posterior samples resulted from BCS. The plots are consistent with the established BvM
theorem, i.e., the equation (2.8).

Figure 1 shows that for this example a wide range of v, from —0.1 to 0.6, yields similar posterior means
for the BIC-like score, which implies that the true model is correctly selected under v within this range.
The BIC-like score posterior mean criterion tends to select a smaller value of 4 within this range, since
a smaller v reduces the shrinkage effect on the true covariates. But further experiments can show that
the performance of BCS is actually quite stable with any v in this range. This also implies that BCS is
tolerant to stochastic tuning errors.

As discussed previously, the Bayesian interval estimates obtained by BCS will be super-efficient for
false covariates. Their coverages highly rely on the selection consistency, and have completely different
performance compared with frequentist confidence intervals. The frequentist de-biased LASSO estimator
is defined as

L 1 .
B = Brasso + gSXT(y — X Brasso),

where S is the surrogate inverse matrix of the sample covariance. This de-bias step applies an OLS
(ordinary least squares)-type bias correction to the LASSO estimator. In the ideal case where p, < n
and %S = (XTX)™!, the de-biased LASSO estimator reduces to the OLS estimator. Therefore, the
marginal confidence intervals of all the covariates, including both true and false, have the same length
scale.

5 Numerical studies

This section examines the performance of BCS in variable selection and uncertainty assessment for the

regression coefficient estimates. The method is tested on two simulation examples and a real data example.
In the simulation study, two design matrices are considered for the model (1.1): (n,p) = (80,201) and

(n,p) = (100,501), where the intercept term has been included. The true values of the parameters are

c*=1, B=1(0,1,15,2,0,...,0)",

where the first 0 corresponds to the intercept term. The design matrices are generated from the
multivariate normal distribution N(0,%) with the covariance structure, (1) independent covariates:
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Y =1, or (2) pairwisely dependent covariates: ¥;; = 1.0 for all ¢, ¥; ; = 0.5 for ¢ # j. The methods
under comparison include BCS, Bayesian LASSO, LASSO and SCAD. For Bayesian LASSO, we set the

scale parameters to
A= +/nlogp,.

For BCS, the tuning parameter s, is selected by the posterior mean of the BIC-like score as discussed
in Section 4. For the setting of the Gibbs sampler, we set the total iteration number to N = 40,000
in addition to 5,000 iterations for the burn-in process. The posterior samples are collected at every 40
iterations. The R-packages glmnet [21] and ncvreg [10] are used for implementing LASSO and SCAD,
where the tuning parameter A\ is chosen to minimize the 10-fold cross-validation error. For LASSO, this
is to set A = lambda.min in glmnet. Since LASSO is known to select many false variables, we have also
tried to set A = lambda. 1se, which is to choose the largest value of A such that the cross-validation error
is within one standard deviation of the minimum cross-validation error. The R-package hdi [17] is used
for implementing de-biased LASSO. All the results reported below are based on 112 simulated replicates.

5.1 Simulation I: n = 80, p = 201

We evaluate accuracy of the estimates obtained from various methods in the Lj-error, which is defined as
Zjef* B — B]| for the true covariates and ngg* BJ| for the false ones. For the Bayesian methods, the
posterior mean is used as the point estimator, although which is not the optimal choice for minimizing
the Li-error. We evaluate the accuracy of variable selection using the average number of selected true
covariates |é N &*| (where the perfect value is 3), and the average number of selected false covariates

|€ N (€%)¢| (where the perfect value is 0). For each covariate, we also compare the marginal credible
intervals produced by the Bayesian methods and the confidence intervals produced by de-biased LASSO
under a nominal level of 95%. For simplicity, the credible intervals are constructed based on the empirical
quantiles from posterior samples instead of the highest density region.

The results are summarized in Tables 1 and 2 for the case of independent covariates and the case of
dependent covariates, respectively. First of all, we can see that BCS works extremely well in identifying
true models, whose performance is almost perfect. As seen in Section 4, Bayesian LASSO can also
distinguish between the true and false covariates from posterior samples when the coefficients of the
true covariates are sufficiently large. However, due to over-shrinkage, it does not work well when they
are small. Hence, Bayesian LASSO mis-identifies some true covariates for this example. Both LASSO
and SCAD tend to select dense models, although the true covariates can be selected. As mentioned
previously, this is due to an inherent drawback of the regularization methods. The regularization shrinks
the true regression coefficients toward zero. To compensate the shrinkage effect, some false covariates
have to be included. For LASSO, the comparison shows that the choice of A = lambda. 1se alleviates the
“overselection” issue, and leads to the less estimation error for zero 3;’s and larger estimation bias for
nonzero ;’s. BCS also shrinks the true regression coefficients, but it can still perform well in variable
selection. This is due to the fact that BCS accounts for the uncertainty of coefficient estimates in variable
selection: BCS is sample-based, for which different false covariates might be selected to compensate the
shrinkage effect at different iterations, and thus the chance of selecting false covariates can be largely
eliminated by averaging over different iterations.

Regarding the parameter estimation, we note that SCAD yields somehow better results than BCS.
However, a direct comparison of these two methods is unfair, as the BCS tells us something more beyond
point estimation, e.g., credible interval. Also, BCS leads to much accurate variable selection as reported
above. Among the Bayesian methods, we can see that BCS performs much better than Bayesian LASSO,
which indicates the importance of posterior consistency. We note that it is unfair to directly compare
Ly-estimation errors of B(¢-)e for shrinkage estimators (BCS or Bayesian LASSO) and sparse estimators
(LASSO or SCAD), since the shrinkage estimators never shrink any coefficients to exactly zero. For
example, in Table 1, the Li-error of BCS is 2.3, which is much larger than those by LASSO and SCAD.
However, it actually implies that Bj ~ 2.3/200 ~ 0.011 for each zero f3;, as BCS selects almost no false
predictors. Hence, it represents fairly successful shrinkage for the false predictors.
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Table 1 Comprehensive comparison of BCS, Bayesian LASSO (Bay-LASSO), LASSO with lambda.min (LASSO;), LASSO
with lambda.1se (LASSO2), SCAD and de-biased LASSO for the datasets with independent covariates, n = 80 and p = 201

Methods
BCS Bay-LASSO de-biased LASSO LASSO, LASSO2 SCAD
Li-error of Bgx 0.3380 2.1115 0.3503 0.6678 1.0850 0.2811
Standard error 0.0149 0.0281 0.2537 0.0211 0.0275 0.0133
Li-error of ﬁ(é*)c 2.3137 4.5533 23.3050 0.8402 0.1650 0.2180
Standard error 0.0758 0.0360 0.2537 0.0950 0.0319 0.0324
|é ne*| 3.0000 2.3036 - 3.0000 3.0000 3.0000
Standard error - 0.0505 - - - -
1€ (e9)e| 0 0 - 14.1610 3.1964 4.3304
Standard error - - - 1.2841 0.5041 0.5176
Coverage of £* 0.9067 0.0595 0.9613 - - -
Average length 0.4996 0.8471 0.5798 - - -
Coverage of (£*)¢ 1.0000 1.0000 0.9492 - - -
Average length 0.1371 0.3322 0.5490 - - -

Table 2 Comprehensive comparison of BCS, Bayesian LASSO (Bay-LASSO), LASSO with lambda.min (LASSO;), LASSO
with lambda.1se (LASSO32), SCAD and de-biased LASSO for the datasets with dependent covariates, n = 80 and p = 201

Methods

BCS Bay-LASSO de-biased LASSO LASSO; LASSO2 SCAD
Li-error of Be¢x 0.5040 2.7798 0.4469 0.8735 0.9516 0.3593
Standard error 0.0342 0.0302 0.0192 0.0265 0.0242 0.0170
Ly-error of Bgxye 0.3805 4.8558 24.7950 1.3638 0.4509 0.1587
Standard error 0.0782 0.0302 0.2448 0.1083 0.0274 0.0198
|é ne*| 2.9000 1.7500 - 3.0000 3.0000 3.0000

Standard error 0.0300 0.0546 — - - -

\f N (&*)e| 0.0100 0 - 16.1790 6.7232 2.3125
Standard error 0.0100 - - 0.9801 0.3418 0.2568
Coverage of £* 0.9000 0.0327 0.8988 - - -
Average length 0.6970 0.9279 0.6046 - - -

Coverage of (£*)¢ 1.0000 1.0000 0.9543 - - -
Average length 0.0373 0.3804 0.5418 - - -

For the interval estimation, de-biased LASSO produces high quality confidence intervals. For both
true and false covariates, it produces about the same length confidence intervals, and the coverage rates
of these confidence intervals are about the same as the nominal level. This observation is consistent with
our previous discussion. For the true covariates, BCS yields almost 95% converge; in contrast, Bayesian
LASSO yields a very low coverage due to the effect of over-shrinkage. For the false covariates, both
BCS and Bayesian LASSO produce 100% coverage with very narrow credible intervals. Hence, they do
not have the correct long-run frequency coverage for false predictors. These discoveries agree with our
theoretical results. The de-biased LASSO yields wider intervals for the false covariates, as it cannot
incorporate the model sparsity information into the construction of confidence intervals.

The performance of BCS for the cases of independent and dependent covariates is quite consistent,
except that the proposed method tends to select a smaller value of 7 for the independent case and, as
a consequence, the posterior Li-error of the false covariates tends to be larger than for the dependent
case. This is reasonable, as the high spurious correlation requires a higher penalty for the multiplicity
adjustment.

5.2 Simulation II: n = 100, p = 501

The results are summarized in Tables 3 and 4 for the independent and dependent covariates, respectively.
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As in the case of n = 80 and p = 201, BCS performs much better than the regularization methods in
variable selection, and performs much better than Bayesian LASSO in all the aspects of variable selection,
parameter estimation and interval estimation.

Before moving forward to the real application in the next section, we mention that we also conduct
simulations, under the same data generation scheme, for the two-Gaussian mixture prior specification.
While the two-Gaussian mixture prior also achieves near-perfect model selection performance, we find
that its shrinkage effect on B¢+ and its interval estimation coverage performance are inferior to those of ¢
shrinkage prior (although they are much better than Bayesian LASSO inference results). One potential
reason is that the hyperparameters my, o7 and o7 are not optimally tuned. Our empirical experience
shows that the value of m; has a large effect on model selection performance, and the values of o3
and o3 affect the level of the posterior shrinkage and the posterior normality asymptotics. However,
tuning all three hyperparameters simultaneously is much more difficult in practice, than tuning only one
hyperparameter of the ¢-shrinkage methods, and hence is not recommended.

Table 3 Comprehensive comparison of BCS, Bayesian LASSO (Bay-LASSO), LASSO with lambda.min (LASSO1), LASSO
with lambda. 1se (LASSO2), SCAD and de-biased LASSO for the datasets with independent covariates, n = 100 and p = 501

Methods

BCS Bay-LASSO de-biased LASSO LASSO; LASSOq SCAD
Li-error of Bg¢x 0.2789 2.3863 0.3177 0.7173 0.9645 0.2616
Standard error 0.0115 0.0310 0.0145 0.0229 0.0253 0.0107
Lq-error of Bexye 4.4011 8.7190 50.3010 0.9736 0.2158 0.3080
Standard error 0.0312 0.0602 0.4636 0.0900 0.0436 0.0402
\é nex 3.0000 2.1964 - 3.0000 3.0000 3.0000

Standard error - 0.0436 - - - -

\f N (&*)e| 0.0268 0 - 20.554 4.7411 7.0178
Standard error 0.0153 - - 1.6070 0.8629 0.8042
Coverage of £* 0.9285 0.0208 0.9494 - - -
Average length 0.4300 0.7412 0.4985 - - -

Coverage of (£*)¢ 1.0000 1.0000 0.9517 - - -
Average length 0.1506 0.2841 0.6038 - - -

Table 4 Comprehensive comparison of BCS, Bayesian LASSO (Bay-LASSO), LASSO with lambda.min (LASSO;), LASSO
with lambda.1se (LASSO2), SCAD and de-biased LASSO for the datasets with dependent covariates, n = 100 and p = 501

Methods

BCS Bay-LASSO de-biased LASSO LASSO;, LASSO2 SCAD
Li-error of Be¢x 0.3960 3.1087 0.3888 0.8742 1.0228 0.3338
Standard error 0.0260 0.0300 0.0155 0.0282 0.0223 0.0158
Li-error of Bexye 0.4288 9.2585 54.2889 1.3656 0.5331 0.1424
Standard error 0.1076 0.0694 0.4754 0.1045 0.0342 0.0196
|£ NneE*| 2.9464 1.4554 - 3.0000 3.0000 3.0000

Standard error 0.0213 0.0566 - - - -

\é N (&*)e| 0.0089 0 - 21.4280 9.7324 6.4732
Standard error 0.0089 - - 1.3218 0.4742 0.8065
Coverage of £* 0.9107 0.0060 0.9077 - - -
Average length 0.5783 0.7498 0.5263 - - -

Coverage of (£*)¢ 1.0000 1.0000 0.9316 - - -

Average length 0.0219 0.2870 0.6142 - - -
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5.3 A real data example

We analyze a reduced gene expression dataset on Bardet-Biedl syndrome from [52]. The reduced dataset
is available in the R-package flare [39], which contains 120 samples with 201 gene expression levels. The
scientific community has discovered that TRIM32 is the causal gene to Bardet-Biedl syndrome [16]. In
this example, we treat the expression level of gene TRIM32 as the response variable and the expression
levels of the other 200 genes as predictors. Therefore, the selected set of genes from this regression will
cover the regulators of gene TRIM32 by the consistency property of BCS.

We apply both de-biased LASSO and BCS to this regression problem. De-biased LASSO identifies gene
153 as the only significant covariate according to the Bonferroni-adjusted p-values, and produces a 95%
confidence interval of [0.024,0.072] for this gene. For BCS, the optimal value 4 = 0.58 is selected, and
the posterior exceedance probability ¢; = 7(|8;/c| > a | Dy,) is used to quantify the significance of each
covariate, where a is as defined in Section 4. BCS also identifies gene 153 as the most significant covariate
with g153 = 0.54. Figure 3 shows the posterior distribution of the regression coefficient of gene 153 under
the choice of 4 = 0.58 as well as the confidence intervals produced by the two methods. The 95% highest
posterior density (HPD) credible interval produced by BCS is [—0.018, 0.018] U [0.064, 0.131], which is the
union of two intervals representing the evidence against and for the true covariate, respectively. Note that
if the true model is exactly gene 153, its OLS estimator will be 0.109. The de-biased LASSO confidence
interval (represented by the dashed segment in Figure 3) seems a compromise between the two intervals,
and it does not contain the OLS value 0.109.

6 Conclusion

In this paper, we have studied the posterior asymptotics under absolutely continuous priors for high-
dimensional linear regression. We first prove that if the prior distribution is heavy-tailed and allocates
a sufficiently large probability mass in a very small neighborhood of zero, then the posterior consistency
holds with a nearly optimal contraction rate. More specifically, we find that any polynomial-tailed
distribution with a scale parameter, which decreases as p,, increases, can be used as an appropriate prior
to derive valid Bayesian inference for high-dimensional regression models. Note that it is not necessary
for the continuous prior distribution to have an infinite density at zero as in the DL or horseshoe priors.

20

104

Density

Figure 3 Histogram of the posterior samples of the regression coefficient of gene 153, where the black line shows the
posterior HPD interval, and the dashed line shows the de-biased LASSO confidence interval
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Covariates index

Figure 4 Boxplots of {8;}; ¢¢+ simulated from a posterior distribution with a horseshoe prior for the same dataset used
in Figure 1, where the global shrinkage parameter is truncated into [n_3/2,n_1/2]

In the literature, the local-global shrinkage prior has been widely studied, especially for the normal
mean problem. Such a prior follows 3; ~ N (O,cr2)\?7'2)7 where )\f controls the local shrinkage, and
72 controls the degree of global shrinkage. Our work verifies that a sufficient condition that ensures
consistency of the local-global shrinkage is to let the local shrinkage parameter )\? follow some polynomial-
tailed distribution, and let the global shrinkage parameter 72 deterministically decrease in the order
—log(7?) = O(log p,). In this work, we suggest a BIC-like score posterior mean criterion for tuning the
global shrinkage parameter. Although it works well for our examples, it is still of great interest to the
Bayesian community if an adaptive or full Bayesian approach can be developed for choosing, rather than
tuning, the global shrinkage parameter. Such analysis has been conducted by van der Pas et al. [64]
under normal mean models. However, there is a significant difference between normal mean models and
regression models. For the former, one can directly analyze the marginal posterior w(5; | D)) as ;s
are (conditionally) independent. For the latter, one needs to take into account the dependency among
covariates. Empirically, the result of [64] seems not applicable to regression problems. Figure 4 shows
the boxplots of the regression coefficients drawn from a posterior 7(53;|D,,) constructed with a horseshoe
prior for the same dataset used in the toy example of Section 4, where A; is subject to a half-Cauchy
prior, and 7 is subject to a uniform prior truncated on [n’S/ 2 p-t/ 2]. The plot shows that the horseshoe
prior leads to many false discoveries for this example. Therefore, we would note that adaptively choosing
the global shrinkage parameter is nontrivial due to spurious multicollinearity caused by the curse of
dimensionality.

In this paper, we have also studied the selection consistency based on the sparsified posterior, as well
as the posterior shape approximation. We prove that if the tail of the prior distribution is sufficiently
flat, then selection is consistent and the BvM-type result holds. This further implies that for the true
covariates, the credible intervals are asymptotically equivalent to the oracle confidence intervals, and for
the false covariates, the credible intervals are super-efficient.

The theory established in this paper implies that a consistent shrinkage prior shares almost the same
posterior asymptotic behavior with the golden standard spike-and-slab prior (see, e.g., [12]). However,
the shrinkage prior is more efficient in computation. In this paper, we use a student-t prior in all the
numerical studies, and the Gibbs sampler is conveniently used in sampling from posterior distributions.
The computation shall be further improved if a stochastic gradient MCMC algorithm is employed for
simulations. However, for the spike-and-slab prior, a trans-dimensional MCMC sampler has to be used
for simulations.
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Appendix A Proof of the main theorem
First, we restate the result from [65, Lemma 2.2.11] for the sake of readability.

Lemma A.1 (Bernstein’s inequality).  If Z1,..., Z, are independent random variables with mean zero
and satisfy that E|Z;|™ < m!M™2v;/2 for every m > 1 and some constants M and v;, then

(s

> z> < 2exp{—2%/2(v + M2)}

forv=> v,
As mentioned in [43], the conditions in Lemma A.1 are satisfied by the centered one-degree chi-square
distribution.

Lemma A.2. If X follows the x3 distribution, there exists some constant C such that for any
m € N, we have E|X — E(X)|™ < Cm!2™. Therefore, given any constant scale X,
EIAX — EQX)|™ < m!(2\)™2(4C\?).
The following lemma (see [76]) gives an upper bound for the tail probability of the binomial distribution.

Lemma A.3. For a binomial random variable X ~ B(n,v), for any 1 <k <n —1,

Pr(X > k+1) < 1— &(sign(k — nv)\/2nH (v, k/n)),
where ® is the cumulative distribution function of the standard Gaussian distribution and
H(v,k/n) = (k/n)log(k/nv) 4+ (1 — k/n)log[(1 — k/n)/(1 —v)].
We also restate [5, Lemma 6].

Lemma A.4. Let B, and C, be two subsets of the parameter space ©, and ¢, be the test function
satisfying ¢n(Dy,) € [0,1] for any realization D,, of the data generation. If m(By) < by, Eg«dn(Dy) < b,
and supgec, Eo(1—¢n(Dy)) < cn, where Eg(-) denotes the expectation with respect to the data generation
with the true parameter value being 0. Furthermore, if

1o

where [* = fo« is the true density function, and
m(Dn)z/w(G)fg(Dn)dH
o)

is the margin probability of D,,, then

by, + cn

p* n U DBy | Dy) =
<7T(C U | ) "

)<%+%+%

for any 9,,.
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Theorem A.5.  Consider a linear regression model (1.1) with the design matriz satisfying conditions Ay
and Ay. The prior of o? follows an inverse gamma distribution 1G(a,b), and the prior density of B is
given by

/6|0' H g)xlgz/o'

If there exists a positive constant u such that
- [ gn@ide <500 and —log (it ga(@) = Ollog,) (A1)
—an 2€[~Ep,En

hold for a, = +/slogp,/n/pn, then the posterior consistency holds asymptotically, i.e.,
P*{r[A, | D] > exp(—cine2)} < exp(—cane?),
where

A, = {at least p entries of |B/c| are larger than a,} U{||8 — B8] = (3 + v/ Ao)oren}
U{o?/o"? > (1+e,)/(1 —¢,) oro?/o*? < (1 —€,)/(1 +€,)}

with p < s and €, = M+/slogp,/n for some large constant M.
Proof.  We apply Lemma A.4 to prove this theorem. Define C,, = 4,,\ B,,, where
B,, = {at least p entries of |3/0| are larger than a,},

p<p—s,p=<nel, and its specific choice will be given below. The proof consists of three parts.
Firstly, we show the existence of a testing function ¢,, such that

Eg+ o2y (¢n) < exp(— csne?) and y sg);;c E(g,o2)(1 — ¢n) < exp(—chnes) (A.2)

for some positive constants cs and cf.
Secondly, we show that for some ¢4 > 0,

m(By) < e %4men. (A.3)

Thirdly, we show that

hTanP {f*(Dn) > exp(—csne;, )} > 1 — exp{—cinel} (A.4)

for some positive 0 < ¢5 < min(cj, ¢q). Therefore, the proof can be concluded by Lemma A 4.

Part I. We consider the testing function ¢,, = max{¢/,, ¢, }, where
¢n = max Uy (I - Hey/(n—[€])o" — 1] > e},

(€26 €| <p+s}
= max 1 XTX 1)( ,6 o* €n
(€€ |€[<p+s} (X Xe)™ Xey = Be)ll = }

and Hy = X¢ (Xg—Xg)_ng— is the hat matrix corresponding to &.
For any ¢ that satisfies £ D &* and |¢] < p+ s, we have

Eg o) {ly" (I = He)y/(n — [¢))o™? — 1

=Pr([xi_jg — (n = [ED] = (n — [€])en)

for some small constant ¢z, where X,Q; denotes a chi-square distribution with degree of freedom p, and the

last inequality follows from the Bernstein inequality (see Lemmas A.1 and A.2) and the facts that e < 1
and s+ p < n.

| > En}
< exp(—égne?) (A.5)
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Following the similar arguments to those in the proof of [3, Lemma 1], we have that for any £ satisfying
€26 and €] <p+s < ned,

Ege o) {[[(X{ Xe) ' Xy — B > 07en | B%,07%)
= E(ﬁ*’0*2)1{||(X§X5)_1X§Ts|| R PT(X|25| > noe?)
< exp(—é3ne?) (A.6)

for some ¢3 > 0. Note that the last inequality holds due to the Bernstein inequality and the large value
of M.
Combining (A.5) and (A.6), we obtain that

Egro2ybn < Egeooy Y. (Hly (I = H)y/(n - [€)o** — 1] > €.}
{£2¢*,|¢|<p+s}

+ HII(X{ X)Xy — Bl = end)

<17 )omw-caned) + expl-chned )], (A7)

We set p = |min{és, é3}ne2 /(2logp,)]|. (Since plogp, = ne2, p always exists.) Hence, we have
log(p + 5) + (P + 5) log pn < (2min{és, és}ne,) /3,

which leads to E(gs ,+2)¢, < exp(—czne2) for some fixed c3.
Now we study sup(g 2)cc, E(g.02)(1 — ¢n). Let Cy, C ¢, U C,, where

Co=1{0%0"2> (1 +e)/(1 =€) or 0%)0"% < (1 —e€,)/(1+€n)}

N {at most p entries of |3/o| are larger than a,},

Co = {lIB =Bl > B+ Vo) €, 0% /0™ < (1+€,)/(1 = €n)

and at most p entries of |3/c| are larger than a,,}.
Then we have

sup Egooy(l—¢n) = sup  Eg,2ymin{l — ¢, 1—¢,}

(B,0%)eCyp (B,0%)eCyp
< max{ sup  Eg o2 (1—¢)), sup FEgo2)(l— q@n)}
(B,02)eC,, (B,02)eC,,
Let §~ = g(ﬁ) = {k : |Br/o| > an} UE&" and éc = {1,...,pn}\g. Hence, for any (3,0?%) € C, U C'n,
EB) < P+s<pand || Xg Bzl < /ipl|Be|| < vny/Ayoen given a large value of M. It holds that
sup  Eg(1—¢y,)
(B,02)eC,
= su Eg, min Wiy (I - H n—|ho*2 -1 <e,
LI Fiagn i T Hoy/n )0 1] < )
< sup  Egoy{ly (I - Hay/(n— €)™ — 1] < e}
(B,0c2)eC,
e Su)pc Pr{|o*(XzBs /o +€) (I — He)( Xz Bz /o +¢€)/[(n— €))o™?] — 1] < en}
,02)eC!,
< y S;l)pc Pr{o®(Xs.0z/0 +€) (I — H)(XeBe /o +€)/[(n— |£))0**] € [1 — €n, 1 + €]}
,02)eC!,
< y Sll)pc Pr{(XzBs/0+€) (I — He)(Xe.Be. /o +€)/(n—[€]) ¢ [1 — en, 1 + €]}
,02)eC],
< s Pr{ k)~ (n— )] > (n— EDen)
(B,02)eC!,

< exp(—éyne)
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for some ¢ > 0. Note that (XeBee/o+ e)T(I— Hg)(X B /o +€) follows a noncentral \2 distribution
Xn—| g‘(k) with the noncentral parameter

k= BLXL (I — He) X Be. 0" < (Vny/Noen/4)”

Since the noncentral x? distribution is a sub-exponential, the last inequality follows from the Bernstein
inequality as well. Also, we have

sup B E(B,U2)(1 — én)
(B,02)eC,,

= sup FEpge2) min H{|[(X; Xg)*ngyf,BgH <o%en}
(B,02)eC, [€]<p+s

< sup E(,@,Uz)l{H(XgX) 1XTy ﬁ | <o%en}
(B,0?)ECn

— swp Pr{|(X] X' X[y - Bl < o"e | B.o?)
(:3 Uz)ecn

= sup Pr{||(XTX) IXETGE—&—EE—F(XgXE)_ngch,ng Bill < o*en}
(B,0)€Cn

< sup Pr{|(X{ Xg) 7' X[ oell = 18 - Bl — (X! Xo) ' X{ Xz Bz — o"en}
(B,0%)€Cn ' ' '

= s Pe{(XT X)X el > (19 -~ 81 - oen — (XT X)) X] X))

< sup Pr{||(XgX§~)_1Xge|| > e, } < exp(—éne?),
(B,02)eC,y

where the above inequalities hold asymptotically because

18 = Bl = 118 = B7(l = pa(v/ Xo€no /pn), 0% /o = /(1 =€) /(1 + €n)

and

(X7 X X] X g [ <\ (K] X)) X B |
< V1/nAov/nAjeno < €.

Hence, (A.2) is proved.
Part II. Define N = |{i : |B;/0| = ay}|, and thus N ~ Binomial(p,,, v, ), where

Up = / gx(x)dx
|a:|>an

and gy (z) is the prior density function of 8;/o. Thus 7(B,,) = Pr(Binomial(p,,v,) > p). By Lemma A.3,
we have

. U - eXp{ —DPn [Um( )/pn]}
( \/2pn na )/pn]) \/ﬂ\/%n 'Um )/pn]

an[Um (P — 1)/pn] =(p-1) IOg[(ﬁ - 1)/(pnvn)] +(pn—p+1) IOg[(pn —p+1)/(pn — pnvn)]'

Therefore, to prove (A.3), it is sufficient to show that

an[vm( )/pn] = O(nei)

Since 1/(pnvn) = O(pY), plogp = ne2 (if M is sufficiently large), (p — 1) log[(p — 1)/(pnvn)] < neZ and

(pn -p+ 1) 10%[(]% -p+ 1)/(pn —ann)] ~p _ﬁ2/pn < ’I’LE%.
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Hence, we have
puH[vn, (5= 1)/pa] = O(ney).

Part ITI. Now we prove (A.4). Because

)" exp{—|ly — XB|?/20 ) )
m(Dy)/ (D) = [ L T2 n 6,07 o,

it is sufficient to show that
2
Pr(r({lly — XBII*/20% + nlog(c/o*) < |ly — XB*||*/20™* + csnel 2}) = e /?)
> 1 —exp{—cine?}

for some sufficiently small positive cs.
Note that

P*(Q={|le|> <n(1+¢é) and |l X |loo < ésnen}) =1 — exp{—cine’}

n

for some ¢, by the properties of the chi-square distribution and the normal distribution. On the event
of Q, it is easy to see that {|ly — X3||?/202 + nlog(c/o*) < |y — X B*||?/20*2 + c5ne2 /2} is a super-set
of {o € [0*,0* +me2] and [|(B* — B)/c|1 < 2m2€,} for some small constants 71 and 7.
In addition, we have
—logm({o € [0*,0* +me] and ||(B8* — B) /|1 < 2m26,})
= —logn({0 < 0® — ™2 < el }) — logn({I(8" — B)/all < 2men}). (A8)

Given the fact that the inverse gamma density is always bounded away from zero around ¢*2, hence
the first term in (A.8) satisfies

—logn({0 < 0% — 0™ <me2}) < —log(me?) — log ( min 77(02))
o€l 0% +nie}]

< constant + log(1/€2) < d1ne2,

where §; can be an arbitrary constant if we choose M to be sufficiently large.
For the second term in (A.8),

{IB" = B)/olli < 2n2en} D {[B;/0| < n2€n/pn for all j ¢ £}
N{Bj/o € [B; /o —m2en/s,B] /o + m2€,/s] for all j € £}

and

m({18;/o] < m2€n/py for all j & £°})
>7({|B;/o] <apforal j¢&}) > (1 —pgl‘“)l’” -1, (A.9)

given a large value of M. For those 37 # 0 and

w8,/ € 8}/ % maea/s] for all j € €D > [2me_ind | gn(@)/s] (A.10)

E,E)

the inequality holds because |37 /o| + ne, /s < E which is implied by 0® < 0** 4+ 7€z, and |5} /o*| < yE.
By (A.9), (A.10) and the condition (A.1), (A.4) holds. O

Theorem A.6. If all the conditions of Theorem A.5 except the condition A1(3) hold, then the posterior
prediction for the observed data is consistent, i.e.,

PH{r]|XB — XB*| = cov/no*e, | D] <1 —exp(—cine2)} < exp(—cone?)

for some cq, ¢1 and cs.
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Proof.  Define

A, = {at least p entries of |3/0]| are larger than a,}
U{IXB — XB*|| = cov/no*e,} U{c?/o*? > (14 €,)/(1 —€,) or 0?/o*? < (1 —€,) /(1 + €n)},
B,, = {at least p entries of |3/0| are larger than a,}

and
Cn == An\Bvu

where p < p— s and p < ne2.
We still follow the three-step proof as in Theorem A.5. Since the proof is quite similar, the details are
omitted here. The only difference is that we now consider a slightly different testing function as
= max H{ly" (I - H, n—1&e*2 =1 > e€,},
Gh= omas Uy (= Hy/n = [€)o™ = 1] > e}

n = max | Xe( X X)Xy — XeBE)| = coo™vnen/3}.
(€26~ Je|<ip+s) {1 Xe(Xe Xe) ™' Xy — XeBE)|| = coo™Vnen /3}

Note that in the proof of Theorem A.5, we need to bound the singular value of (XgTXE)’lXET via the
condition A;(3). However, in the proof of Theorem A.6, only the matrix X, (Xg—Xg)*ng gets involved,
and its eigenvalues are always bounded by 1. Thus the condition A;(3) is redundant. O

Theorem A.7. Assume the conditions of Theorem A.5 hold, and let & = {j : |B;/0| > an} denote a
posterior subset model. If the following conditions also hold:

lim sup \/ﬁanan*/ \/ logpn < kv
min |57 > My\/logp,/n for some large My,

Jjegr
w>1+c¢/2+ k202 + 2V Uk,
l, = max sup 9A(@1) and slogl, < logpn,

jegr xl,wzeﬂ;/o’*icoen g)\(xQ)
|z1],|z2|Zan

for some constants ¢’ > 1, ¢ and sufficiently large cy, then
Pr(=¢" X, y)>1-0(1)} >1—o(1).
Proof.  For any B¢ which is a subvector of 3 corresponding to £, we define
SSE(ﬁg) = %ﬁn ||Y — Xgﬁg — chﬁgcnz
co
= (Y = XeBe) (I — Xeo (XL Xee) XY — XeBe).
EM¢ 3 geg e 943
By the consistency result in Theorem A.5, let A/, be the set

{18 = B*|| < cren} N{|o? — 02| < caen} N {at most c3y/ne2 /log p, entries of 3/c are larger than a,, }

and €2,, be the event
{n(Al | D,)) > 1 —exp{—cqne2}}.

Then we have
2
P*(Q,) >1—e "

for some ¢; to c5. All the following analysis is conditioned on the event €,,, and we can ignore the set
(A7)€ in all the following posterior probability calculation.
Let
By = {181/ — B1/0 oo < c16, 181/ lloc > an, 0% — 02 < caea},
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where || - ||min is the smallest absolute value of the entries of a vector. We define
(B |c*) = inf 7w(Bi,0%)/m(c?), 7w(Bi|o2) = sup 7(B1,0%)/n(c?).
(B1,02)€EL (Br,02)€EL

First, we study the posterior probability (£ = £* | X, y) up to the normalizing constant. For simplicity
of notation, we use the subscript “1” to denote the true model £*, and the subscript “2” to denote the
rest (£*)¢. Then
1 { ly = X181 — Xo8 7

— exp

}W(ﬂa)f(llﬁz/olloo < . |B1/0 ] min > an)dodB

omn 202
. 1 |y — X161 X2ﬁ2|2} 2\ 7 2
>7 Ollee < an, inf —ex - w(B1,0%)do“dB,. (A.11
(IBsfoll <o) [ mt e = (Bu.0%)do%d;. (A1)

The integral in the above inequality satisfies

/ inf lexp{ o ||y B Xlﬁl - X262”2 }W(,@l,O’Q)dO'Qdﬂl
E

L I1B2/0llec<an O 202

; 1 Iy—Xlﬂl—X2g2|2}
2 e 02 / inf — ex { — T 02 dazd
Bulo) By 1B2/0)|c<an O P 902 (0%)dodBy

1 SSE B TX[X .y
:W(ﬁl|02)/El|ﬁ2/§?i<anmexp{_ P R R

i U I S 2052

}W(O’Q)d,gl do?

SS s
~7(B | 02) /E Hﬁz/}rrl\li<an % exp{ — 2]1(2'62)}7r(02)(27r) /2 |02(X;—X1)*1|)d02
T(ag + (n—s)/2)

~ 2/ (X7 X))~ ver inf :
B LI X TIVET oy o teves) (SSE(B) 2 + bt (=72

(A.12)

where 31 = (X{ X1)"'X] (y — X282). The first approximation holds because most probability mass of
the normal density is in the region of {||3; —,@1 |I<C \/s/in}, which is a subset of F in probability, if ¢; is
large. Similarly, the second approximation holds since the distribution IG(ag+ (n —s)/2,SSE(32)/2+ bo)
puts most of its probability mass inside the region {|o? — 0*?| < ca€,}.

Next, we study the posterior probability (& = ¢ | X,y) for any ¢ D &* up to the normalizing
constant. Similarly, we use the subscript “1” to denote the true model £*, the subscript “2” to denote
(&'\¢*), and the subscript “3” to denote the rest (¢')¢. It holds that

/ 1 { ly — X181 — X282 — X352
—nexp —
g

202
S (1B2/0|min > an, [183/0|lce < an)
/ 1 { ly — X181 — X282 — X385
X sup — exp] —

183 /0l e <an,Bz J By T 202
< 7(|1B2/0|lmin > an, 1B3/0]|oc < an)
T AT T A
x sup / 1exp{ _ SSE((B2,85)") + (81 — B1)T X[ X1 (81— B)
E,

n 2
183/l 0o <an,B2 g 20

}F(ﬂﬂ)f(llﬂz/allmin > an, 183/ ]oe < a)do?dB

}ﬂ-(ﬂh 0>d02dﬁ1

}7‘(‘(,31 ,0)do*dB,

<(182/0lmin > an, [1B3/0lloc < an)m(Br [ 0?)4/1(X] X1)~2|(2m)*/

P(ao + (n— )/2)
X su , A.13
™ e, (SSE(Ba) /2 + Byt )72 (8.13)

where 81 = (X[ X1) 7' X[ (y — Xaf32 — X333).
Therefore, combining the above results, we obtain that for any £ D £*,
T€=¢[X,y) < (81 | 0?) [p—(1+u)/(1 _p—(1+u))}|§/\£*\
(=& X,y) ~a(By]0*)"" "
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o supm(g*)c Hoogan(a*-‘rcxn)(SSE(l@(ﬁ*)C)/2 + bo)a0+(n—s)/2

- . (A.14)
lang(g/)C Hoogan(g*_i_qen)(SSE(,@(E/)C)/Q + bo)a0+(”*5)/2
It is easy to see that with probability larger than 1 — 4p,, - pn Cé,
[X " Ae||loo < \/2¢4nlogp,
for any idempotent matrix A and ¢ > 1, and thus,
SSE(Be)e) = (y = XeyeBer)s) (I = Pxe. )y — X(e)e Bieee)
<0 (I — Px,.)e+ || X(g)eBienye | — 207 (I — Px,.) X(e+ye Ber)e
< 0" %" (I — Px,.)e + | X(e-)eBienye |* + 207 \/2¢4n10g pal|Bie-)e |1, (A1

SSE(B(EI)C) = (O'*E — X(El)cﬁ(&-/)c) (I — PXE,)(O'*E — X(E/)(’I@(g/)(,)
> U*2€T(I — PX ,)E — 2(U*€)T(I — PXs/ )X(&/)cﬂ(é/)c

> o’ (I - Px, )& — 20" \/2cgnlog pu|Bierye |-

Let pp, = c3 \/m . By the properties of the quantiles of the chi-square distribution (see, e.g., [33])
and Lemma A.2, with probability larger than 1 — p;;“¢ for any constant cg,
T T *2 I\ ¢*
e (I - Px.)e—e (I-Px,)e<o{e|¢\&"|logpa},
(A.16)
e (I - Px..)e € o**(n — s)[1 — cg, 1 + cg]

hold for all ¢ with 1 < [¢'\&*| < pp, when n is sufficiently large, any ¢; > ¢g + 2 and cg > 0.
Combining (A.15), (A.16) and the fact that \/na,p,o* < kv/logp, for large n, we have

SupHg(E*)c‘|w<an(a*+c26n)(SSE(IB@*)C)/Q + bo)ao+(n78)/2
inf“ﬁ(g/)cHooéan(a*-kczfn)(SSE(/@(ﬁ’)C)/2 + bo)ao+(n—5)/2

< exp{eo|€'\E* | log pn }s (A.17)

where cg is any constant satisfying
co > c7/2(1 — cg) + (K2 /20°% + 21/2¢4k) /(1 — cg).
Furthermore, it is easy to see that
m(B1 | 02)/m(B1 | 0*) <1,
Combining it with (A.14) and (A.17), we obtain

2 < B p, T (1= p PN exp{eo €1\ log pa}- (A.18)
By the condition
L+u>24c/2+k%/20% + 2/ 2¢ik,

we can choose proper values of ¢z, cg and ¢g such that 1 +u —cg = > 1 and

71'(6 — é'/ | X,y) < lsp_u/‘gl\f*l
TE=&X,y) "

Therefore, since v’ > 1, we have

for any ¢’ D €.

"X
Z m€=¢1X,y)

e X g Sl e 1= Gpr Y, (A.19)

&2, 1<|E\&* [<Pn

Finally, we study the posterior probability m(§ = ¢ | X,y) for any & such that |'\¢*| < p,, and &'
does not include £*, up to the normalizing constant. Similarly, we use the subscript “4” to denote the
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model (£*N¢’), the subscript “5” to denote (£*\¢’), the subscript “2” to denote (£'\¢*), and the subscript
“3” to denote the rest (&' U &*)¢. Define

By = {l1Bs/0 = Bi/0" | < c16n,Ba/0lloc > an, |0 = 0™%| < e260}

and

—  inf .
T IE[_I{ElmEn]gx(x)

Then
T(€=¢1X,y)
TE=¢Ue X,y
S gezcne, 2 exp{—122LLY (8, 0)I([[(B2, B4) /0 llmin > @ [[(B5. B5) /0 loc < an)do*dB
<

X
S oacener, 2 eD{= EZPEY (8, 0) I([[(8s, B, B5) /0 |lmin > an. 185 /0|00 < an)do?d
(1+u)\€ \¢'|
{52,[337Hﬁ4HmmZan,\a270*2\<chn} /9 |5 \f l\/XT—)(g,
X
IAX| 8, /o] <a, XD~ LT } (A.20)
X2 .
maXl‘BS/Ul‘txlitl2a7z eXp{i ly QO-ZBH }
It is not difficult to see that in probability, uniformly for all ¢, Bs, B3, [|B4]|lmin = an and |02 —0*?| < a6,
we have
max_[ly— XB|°—  max_[ly— X3
[18B5/0]| oo <an 185/l min=an
. 8 /mI?X< ly — XBI? - |ly — X585 — X282 — X383 — XuBu|* = M'|€"\¢ | log p,,
5/0||coX0n

for some M’ if M; (which appeared in the beta-min condition) is sufficiently large, and the condition
A1(3) holds.
Given sufficiently large M’, uniformly for all &, (A.20) reduces to

T€=¢[X,y) —M"|e*\¢'|
fe=gue [ Xy "

for some M" > 1. This further implies that

(€ does not includes £*, |E\&*| < pn | X, y)
m(§ D& [\ <P | X, )

<@4p, M) = 1= o(1). (A:21)

Combining (A.19) and (A.21), we conclude that with probability 1 — o(1), n(§ = & | X,y)
>1—o(1). O

Theorem A.8 (BvM theorem).  Under the conditions of Theorem A.7, an < (1/pn)+/1/(nslogp,)
and lim, - slogl, =0, we have

—0
TV

(B, 0% | X,y) — ¢(ﬁ§*;[§£* Xg*Xg H (B | o%)ig(o?, (n — 5)/2,6%(n — s)/2)
J¢er

in probability, where ¢ denotes the density function of a multivariate normal distribution, ig denotes
the density function of an inverse gamma distribution, and B¢« and 6% are the MLEs of B¢+ and o,
respectively, given data (y, Xe+).
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Proof. Let 8 = (B¢-,02)7, 0" = B(e+)e and let m(@) denote the normal-inverse gamma distribution
O(Be+; BE*,az(Xg;Xg*)_l)ig(aa (n—s)/2,6%(n —s)/2), and

m(0) = Cal—n exp{ - y_;(;;ﬁg*z}ﬂ(ﬁ),
o T 701
7T2( ) jle_%[* W(ﬁ; | 0.*2)
_XB|P - |y — XeeBe-|?
7T3(0,0/) exp{ . ly Bl 2{|J|-:'2J ¢+ Be [ } H W(ﬂj | 0_2)7
JEE

where C normalizes 71. Thus, we have the posterior 7(3, 02| X, y) o< mma7s3.
It is trivial to see that 7 is exactly a normal-inverse gamma distribution, i.e.,

0? ~IG((n — 8)/2 + ag, 5% (n — 5)/2 + by),
and the conditional distribution of B¢« follows
Be-lo® ~ N(Be-,0* (XL X)),

where 6 = (Bf ,62). Furthermore, as long as n — s — oo, it is not difficult to show that

ING((n — s)/2,62(n —5)/2) = 1G((n —s)/2 + ao,&2(n —5)/2+b)|lrv — 0

with dominating probability, i.e., ||71(0) — m(0)||Tv = 0p(1).
Let Q1 = {[|Be- — Bi.|| < o€, and |0° — 0*?| < caen}. By the conditions of the theorem, if 8 € Q,
then |my — 1| < |I5 — 1| — 0. Therefore,
/ |7T1(0)7T2(0)—7T0(0)|d0< / |7T17T2—7T1|d9+/ |7T1(0)—7T0(9)|d9
Q1 951

1

< max|ma(®) =1/ + | 7 (6) = mo(6)146 = oy (1)

Let e(B¢+) =y — X+ Be+ and
Q= {(6,0') € 1, [|B;/0]| < an, Vi ¢ £

For any (6,0')" € Qo,

le(Be-)ll € llo™ell o™ \/1€*[Vnex]

and

2| < || XgeeBere ||* + 26(BE) T Xeve Bene

< nappy + 2(e + Xe- (B — Ber)) " Xewe Be-e
<

naZp? + O(y/nlogppanp,) + O(V/ne,v/nanp,)

(B — lle(B?) — XeweBe-

in probability. Since na,p, < 1/e,, we have

BN = lle(B7) — XeweBexI?| = 0p(1).

Therefore,
/ [m(o,e') — I =3 | 02)}10'
£ jger
. / exp{ _ly - xBJ? s l,'y — Xe-fe- } — 1| I =3, | e*)d0’
2 jger
< Jexplop(1)/(20*% — caen)] — ll/ I1 =(8; | 0)d6" = 0,(1).
s jger
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Combining the above inequalities, we have

/ mimoms(0,0) — mo(0) [[ = (8, | 0*)|do'd6
2 jger
</ m1m2(0)|m3(8,6) — [ (55 | o) d0’d0+/ im1m>(8) — m0(0)| [ (8, | *)d6'do
Q2 jeex {1 J¢Er
< OP(]‘)/ 7T17T2(0)d0 +/ |7T17T2(0) — ’/To(0)|d0 = Op(].).
Ql Q1
By Theorems A.5 and A.7, with high probability,
/ 7(0,60" | D,) — 0.
Q3
Also it is not difficult to verify that
/ 70(0) T 7(5; | 02)d6/d6 = 0,(1).
23 jger
Therefore, we conclude that
/ (0,0 | D) — 7 (0) H m(B; | 0)|d6'dO = 0,(1).
Jger
This completes the proof. O

Proof of Theorem 3.1. Tt is sufficient to show that g(8;/An)/\, satisfies the condition (A.1). Assume
that cx™" < g(x) < éx~" for sufficiently large 2. Then

/Oo g(‘r/)‘n)//\ndf = /OO g(m)daz <c 1 {an/)\n}_(r—l)'

n n/>\n T_l

Given )\, < anp;(uﬂ)/(r*l) for some u > 0,

1
r—1

1 /
z {an//\n}—(r—l) < Cipﬁl_u =< 5p;l—u ,

where 0 < v/ < u. Hence,

e / g/ M)A < 1),

—Qan

i.e., the first inequality of (A.1) holds. It holds that

—log ( inf g(m/)\n)/)\n) = —log (

inf An
. e 9@/ A)

< —log(c(En/An) ™" /An) = —loge+ (r+ 1) log(1/X\,) + rlog(E,).

Given that log(E,,) < logp, and —log A, = O(log p,,), the second inequality of (A.1) holds. O

Proof of Theorem 3.4.  We first verify the condition (A.1). Let gx(x) = mod(x;0,03) + m1¢p(z;0,0%).
Then

1_ /j" gx(z)dz = 2[mo(1 — ®(a,/0o0)) +mi(1 — ®(a,/o1))]

V2 ,
<mq +2mo(1 — ®(a,/og)) < my + ———=—exp —ai 202 <1p}l+”
1 o( (an/00)) v T Jon {—a/205} <1/
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for some 0 < u' < u. By the conditions, we also have

— M < _ .

=C+ (1 +u)logp, + E2/(207) + log oy < log p,.

Next, we study the flatness of [,,. When E > = > a,,

( ml)alexp{Qx/an}: ( ml)exp{x210g00+z2+log01
myog exp{—x2/20%} my 207 203
(1 —my) a? E?
ALY _dn g n
< o, exp 202 og oo + 202

+log01} — 0.

Note that the above convergence result holds since E2/o? + logo; = logp, and oq = O(a,/logp,).

Hence,
gx(x) 1+ 1—mq oy exp{_x2/20§} 1
m1¢(z;0,07) my  opexp{—x?/20%}
Therefore, we have
l, = max sup 9r(@1)

jegr z1,22€87 /0" £coen gA(xQ)
|z1],|z2|>an

= max sup (z1/01)/P(x2/01)
j€eé z1,22€87 /0" Lcoen
|z1],|z2|>an

< max sup exp{(z} — 23)/207}
JEE* zl,zzeﬁ;/a*:l:c’en

= %%Xexp{Z(B; +den)len)o?},
e

which implies slogl, < O(sE,e,)/02. The proof can be concluded by applying Theorems A.5, A.7

and A.8.

O



