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Fig. 2: Simulated 70S ribosome projection images: (a) clean images;

(b) images altered by CTFs; (c) images contaminated by additive

white Gaussian noise at SNR = 0.01.

and reconstruct the images from the denoised expansion co-

efficients. Unlike traditional 2D class averaging methods, this

approach does not require clustering and rotation of the orig-

inal Cartesian grid images. We demonstrate the performance

of our framework by comparing it with the state-of-the-art

algorithms on both simulated and experimental datasets.

2. METHODS

2.1. Image formation model and geometry

In cryo-EM experiments, each particle is embedded in a thin

layer at an unknown orientation characterized by a 3 × 3
orthogonal matrix R = [R1, R2, R3] ∈ SO(3). Assuming

particles are well centered, the projection image I of a sin-

gle particle can be expressed as a line integral I(x, y) =∫
∞

−∞
φ(xR1 + yR2 + zR3)dz, where (x, y) is the pixel lo-

cation and φ is the 3D volume of the particle. In particular,

the matrix R can be divided into two parts: (1) the last col-

umn R3 represents the viewing (projection) direction v = R3

of the particle; (2) the first two columns namely R1 and R2

form a basis of the tangent plane whose normal vector is v.

As a result, projection images with similar viewing directions

are almost identical up to some in-plane rotations.

The projection images are corrupted by two phenomena:

contrast transfer functions (CTFs) [2] and noise. The CTF

modulates the phase amplitudes and flips the signs of the

phases in the Fourier domain, which leads to a systematic

alteration of the image data (see Figs. 2(a) and 2(b)). Then

noise is assumed to be added on the image modulated by CTF

with zero mean (see Fig. 2(c)). In the Fourier domain, each

noisy image Ii is related to the underlying clean image Īi via

F(Ii) = Ci · F(Īi) + εi, for i = 1, . . . , n, (1)

where F denotes the Fourier transform and ǫi represents the

additive noise. The CTF Ci is assumed to be given for each

particle image.

To denoise the images, 2D class averaging [2] is a crucial

step that first identifies images with similar viewing directions

and registers those images by in-plane rotations (and shifts if

images are not well centered), then it denoises by aligning and

averaging neighboring images. To identify images of similar

views, for a pair of images Ii and Ij , it is natural to define the

rotational invariant distance (RID) dRID(i, j) as

dRID(i, j) = min
α∈[0,2π)

‖Ii −RαIj‖ , (2)

where Rα is an operator that rotates image Ij by an angle α,

and the associated optimal alignment is denoted by αij . In

the noiseless case, since small dRID indicates close viewing

directions (assuming no symmetry), class averaging can be

easily done by clustering based on dRID. While in the case

of extremely low SNR, noise dominates and could align well

instead of the underlying signals, then images with distant

views could also have a small dRID. As a result, directly using

dRID would lead a poor class averaging result.

In [13], we introduced a fast steerable principal com-

ponent analysis (sPCA) and a Wiener filtering approach to

denoise sPCA expansion coefficients of the images. The

denoised coefficients can be used to construct rotational in-

variant features according to [7]. We identify the initial

κ-nearest neighbors for each image using a randomized algo-

rithm for fast nearest neighbor search [14] on image features.

The computational complexity for the initial nearest neigh-

bor search scales as O(nd log n) instead of O(n2d) for brute

force search, where d is the dimension of the invariant feature.

2.2. Improving nearest neighbor identification and rota-

tional alignment

To improve the accuracy of nearest neighbor identification

from the noisy image data, we use the similarity measure

based on multi-frequency vector diffusion maps (MFVDM) [1].

The first step is to build a graph G = (V,E) based on the

initial κ-nearest neighbor list and pairwise alignment angles.

Each node in the graph represents an image and two nodes

i and j are connected if the (i, j) pair is in the κ-nearest

neighbor list. Each edge contains the optimal alignment αij .

We notice that for clean images of the same viewing di-

rections, Ii, Ij and Il, the pairwise alignment angles αij , αjk

and αkl must satisfy

k(αij+αjk+αkl) = 0 mod 2π, for k = 1, 2, . . . ,K. (3)

This consistency in Eq. (3) can be extended to cycles of

four or more images. The cycle consistency allows us

to detect images with similar viewing directions in the

presence of wrongly identified nearest neighbors. To sys-

tematically incorporate the alignment information and im-

pose the consistency of alignments, given the initial graph

G=(V,E), we construct a set of n × n weight matrices Wk

for k = 1, 2, . . . ,K such that

Wk(i, j) =

{
eıkαij (i, j) ∈ E,

0 (i, j) /∈ E,
(4)

where αij = −αji. In [15], we detail the spectral prop-

erties of the matrices Wk. We define the diagonal de-

gree matrix D as D(i, i) = deg(i) =
∑

j:(i,j)∈E 1. Then

the matrix Sk = D−1Wk can be viewed as an averag-

ing operator of the vector fields, because for v ∈ C
n,

(Skv)(i) =
1

deg(i)

∑
j:(i,j)∈E e

ıkαijv(j) and it averages the

vectors at nodes j connected to i after being rotated by αij .
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S2t
k (i, j) is a weighted sum of the transformations along all

length-2t paths connecting i and j. A large value of |S2t
k (i, j)|

means the transformations along all the paths are consistent,

which indicates that Ii and Ij are true neighbors with high

probability. This affinity can be efficiently approximated us-

ing the top eigenvalues λ
(k)
1 ≥ λ

(k)
2 ≥ · · · ≥ λ

(k)
mk and eigen-

vectors {u
(k)
ℓ }mk

ℓ=1 of a similar matrix S̃k =D1/2SkD
−1/2 =

D−1/2WkD
−1/2. Please refer to [1] for more details. The re-

fined nearest neighbor list is determined by
∑K

k=1 |S
2t
k (i, j)|.

For nodes i and j of the same viewing directions, the

eigenvectors satisfy u
(k)
ℓ (i) = eıkαiju

(k)
ℓ (j). Therefore, we

can estimate the in-plane rotational alignment angles from the

top eigenvalues and eigenvectors of S̃k,

α̂ij = argmax
α∈[0,2π)

kmax
∑

k=1

(

mk
∑

ℓ=1

(

λ
(k)
ℓ

)2t

u
(k)
ℓ (i)u

(k)
ℓ (j)

)

e
−ıkα

. (5)

Based on the new nearest neighbor list and alignment angles,

we can build a set of new matrices Ŵk, D̂, and Ŝk following

the procedure of constructing Wk, D, and Sk. The averaging

operator Ŝk is used for image denoising.

2.3. Denoising and CTF correction

We assume that each image Ii takes discrete samples on a

Cartesian grid from an underlying continuous function with

bandlimit s and essentially concentrated within a radius of

R. Then the image in the Fourier domain can be well ap-

proximated by the truncated expansion on Fourier-Bessel ba-

sis ψk,q
s (ξ, θ) [13] supported on the disk of radius s,

Ps,RF(Ii)(ξ, θ) =

kmax∑

k=−kmax

pk∑

q=1

aik,qψ
k,q
s (ξ, θ), (6)

where Ps,R is the orthogonal projection from the space of L2

functions supported on a disk of radius s to the space of func-

tions spanned by a finite number of Fourier-Bessel functions.

The truncation kmax and {pk}
kmax

k=1 are determined through a

sampling criterion detailed in [16, 13]. When Ii is rotated

clockwise by α, the Fourier-Bessel expansion coefficient aik,q
is simply transformed to aik,qe

ıkα, and 2D class averaging can

instead be performed on aik,q .

Let A(k) be the n × pk matrix of the coefficients with

angular frequency k for all the n images, such that the ith row

corresponds to {aik,q}
pk

q=1 for the ith image. Then applying

Ŝk to A(k) for all k achieves denoising by phase aligning and

averaging the coefficients among the nearest neighbors.

However, simply averaging nearest neighbors could result

in over-smoothing, since each image is not exactly identical

to its aligned neighbors and the estimation error of alignment

exists. To resolve this issue, we use 2Ŝk− Ŝ
2
k instead of Ŝk as

the denoising operator, which is related to forward and back-

ward diffusion on the graph that first smooths and then sharp-

ens the signal defined on the graph [17, 18]. As a result, this

operator reduces the blurring caused by simply using Ŝk. It is

equivalent to applying a spectral filter h(·) to the eigenvalues

of Ŝk such that h(λ) = 2λ− λ2. In addition, since eigenvec-

tors with smaller eigenvalues are more oscillatory and more

easily perturbed by noise, it is necessary to set h(λ) = 0
for λ < δ, which is equivalent to keeping the top mk ≪ n
eigenvalues and eigenvectors of Ŝk. Then the matrices of the

denoised coefficients at frequency k is given as

Â(k) = h(Ŝk)A
(k) = D̂−1/2h(D̂−1/2ŴkD̂

−1/2

︸ ︷︷ ︸
=UkΛkU∗

k

)D̂1/2A(k)

= D̂−1/2Ukh(Λk)U
∗

k D̂
1/2A(k), (7)

where Λk is a diagonal matrix that contains the eigenvalues

of Ŝk. The Fourier coefficients of the denoised image without

CTF correction can be recovered from Â(k) as

F
(
Ĩi

)
(ξ1, ξ2) =

kmax∑

k=−kmax

pk∑

q=1

âik,qψ
k,q
s (ξ1, ξ2), (8)

where (ξ1, ξ2) are located on the Cartesian grid points.

CTF correction: It remains to correct the effect of CTFs.

From Eq. (1), each Ci is a mask on the Fourier domain, and

we can also compute its Fourier-Bessel expansion coefficients

cik,q similar to Eq. (6). Then the effect of CTF on Ĩi can be

estimated by applying the same operator as in Eq. (7) and

replace aik,q by cik,q , which yields the Fourier coefficients

C̃i(ξ1, ξ2) of the effective CTF according to Eq. (8). Based

on these, we perform the following CTF correction to esti-

mate the underlying clean projection image:

Îi(x, y) = F−1

(
F(Ĩi)(ξ1, ξ2)

C̃i(ξ1, ξ2)

)
(x, y). (9)

The main advantage of our approach compared to other

existing class averaging methods (e.g., [9, 8]) is that it does

not require clustering and rotation of the Cartesian grid im-

ages. Also, the denoised coefficients in Eq. (7) for different k
can be computed in parallel.

3. EXPERIMENTAL RESULTS

We apply our method on both simulated and experimental

datasets. We compare with several existing approaches: (1)

ASPIRE 2D class averaging [7], (2) Covariance Wiener Filter

(CWF) [19], (3) RELION [8], (4) Steerable Graph Laplacian

(SGL) [20]. All experiments were performed on a Linux sys-

tem with a 60 cores Intel Xeon CPUs (12 cores were used),

running at 2.3GHz with 512GB RAM in total.

Simulated dataset: We generate n = 104 projection images

from the centered volume of 70S ribosome, where viewing

directions are uniformly distributed over SO(3). The effects

of CTF and additive white Gaussian noise are added with

SNR = 0.05 and 0.01, which are typical in real problems.

In Fig. 3, we display samples of denoised images by different
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