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Abstract—Low-Earth orbit (LEO) satellite (SAT) networks
exhibit ultra-wide coverage under time-varying SAT network
topology. Such wide coverage makes the LEO SAT network sup-
port the massive IoT, however, such massive access put existing
multiple access protocols ill-suited. To overcome this issue, in
this paper, we propose a novel contention-based random access
solution for massive IoT in LEO SAT networks. Not only showing
the performance of our proposed approach (see, Table II), but we
also discuss the issue of scalability of deep reinforcement learning
(DRL) by showing the convergence behavior (see, Table III and
Iv).

Index Terms—LEQO satellite network, massive IoT, random
access, reinforcement learning, 6G.

I. INTRODUCTION

Low-Earth Orbit (LEO) satellite (SAT) constellation has
emerged as a dominant paradigm for sixth generation (6G)
communications. Several industry projects, including SpaceX,
OneWeb, and Amazon, spur on this trend by launching thou-
sands of LEO SATs and their realistic blueprints [1], [2]. In
particular, more than thousands of deployed SATs by Starlink
[3] have currently supported more than 30 countries in North
America, Europe, and Oceania continents [4], [5]. Such a new
type of wireless connectivity, a mega-constellation of LEO
SATs, has a great potential in provisioning fast and reliable
connectivity to ground users anywhere in the globe, including
ocean, rural areas, and disaster sites.

Thanks to the ultra-wide coverage and periodical orbital
move of the LEO SAT network, LEO SAT-based NTN can
support numerous scattered internet of things (IoT) on Earth,
albeit such massive access by scattered innumerable ground
nodes disallows sophisticated central coordination among SAT
BSs and users in real-time under limited communication
and computing resources. Furthermore, as opposed to fixed
terrestrial BSs, LEO SAT is a mobile base station, requiring
location-specific resource management. Accordingly, existing
model-based and standardized access protocols, e.g., slotted
ALOHA and random access channel (RACH), cannot flexibly
optimize their operations without incurring severe protocol
fragmentation, not to mention a significant effort in protocol
standardization for a myriad of possible scenarios. To over-
come the fundamental challenges in the massive IoT-NTN
scenario [6], in this article, we propose a novel contention-
based access (RA) protocol.

II. SYSTEM MODEL
A. Geometry of LEO SAT

We consider sets Z of LEO SATs and a set K of IoT nodes
deployed on the ground inside an area A. The position of
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Figure 1: An illustration of massive IoT access in LEO satellite networks.

IoT node k € K is expressed as a 3-dimensional real vector
on Cartesian coordinates denoted by g = (¢f,q},q;) € R?,
and similarly, the position and velocity of SAT ¢ € 7 at time
t > 0 is denoted by q;(t) = (¢F(t),q/(t),q7(t)) € R® and
v (t) = (vF(t),v!(t),v7(t)) € R3, respectively, for all i € Z.
Suppose the number of IoT nodes is given as || = K, and
assume all SATs are moving in uniform circular motion with
the same orbital period 7', while the arc length between any
two neighboring SATs on the same orbital plane is equal to
each other. Also, consider that time is discretized in slots of
length 7 and let g;[0] be the initial position of the SAT i € 7
at time ¢ = 0. Then, by following the discrete-time state-space
model [7], [8], the position of SAT ¢ at time { = m7 can be
expressed as

qi(m7) ~ q;(0) +7 Y vi(m'7). (0
m’/=1

B. Access Scenario

Consider an networks scenario of NB-IoT NTN (IoT-NTN),
where massive IoT nodes attempt to access to LEO SAT
networks for radio resource grant. For the sake of convenience,
we consider that IoT always have intentions to access at every
opportunity they have; and we suppose that each UT has
information of the periodic position of SATs on each orbital
plane and attempts to access only to the closest SAT on each
orbital plane.

At each access opportunity, each IoT nodes chooses whether
to access or backoff. Such set of actions is simply denoted by
{0, 1}. The RA action of IoT node k € K at access opportunity
n is denoted by

wi[n] € {0,1}. 2)



Note that wg[n] = 0 means that the ToT node j does not
access at the n-th opportunity and waits for the next one,
that is backoff. Besides, those who attempt to access choose
a preamble uniform-randomly over the predefined signature
sequence index set si[n] = {1,2,...,R}. Note that each
preamble is associated with R resources that the SATs can
grant during the data transmission duration; contention may
occur when multiple terminals select the same PRACH.

Once the ToT node decides the access action, wy[n], the
node randomly selects the preamble signatures and then trans-
mits the PRACH preamble sequence, as in 5G NR and 4G
LTE/LTE-A [9], [10]. Recall that when a node transmit a
PRACH Preamble, it transmits with a specific pattern and this
specific pattern is called a signature. In each LTE cell, total
64 preamble signatures are available and UE select randomly
one of these signatures [11].

C. Figure of Merit

To evaluate the performance of the proposed scheme, the
successful access rate S is our main figure of merit.

The collision information, ci[n], represents if a collision
occurs in access action of IoT j for time slot n, which is
given by

coln] = 1, wiln] # ay [n], sg[n] # s [n], Yk € K/,
R 0, otherwise.

3

The collision rate is defined as

C:Zch[n]. )

n=1kek
We define the access indicator of IoT j € K’s random access
at random access opportunity n € {1,..., N} as
1 —ciln|), wgn| #0,
el = (1 —ckln]), wkn] # )
0, wg[n] =0,

. Let S be the number of successful accesses of all ToTs out
of N access attempts, which is given as

| N
SZ@ZZ%[“L (6)

n=1kex

III. REINFORCEMENT LEARNING FOR MASSIVE 10T
ACCESS IN LEO SATELLITE NETWORKS

The IoT nodes on the ground attempts to access an SAT
by the contention-based RA and then transmits a data frame
only when it successfully accesses to intended LEO SAT.
Here, we aims to minimize the collision under the constraints
related to the practical conditions of LEO SAT networks.
Recently, a new model-free protocol has been investigated,
using model-free DRL algorithms, which can be an alternative
solution for such a time-varying network topology [12], [13].
To optimize the access protocol for massive access scenario
in IoT-NTN, we used a centralized type DRL method. We
discuss a Markov decision process (MDP) model, that reflects
our network scenario, in the following.

Table I: Simulation parameters.

Parameter Value

Velocity (Speed) of SAT Vi,l = [0, 7590,0]T (7590 [m/s])
Radius of an orbit rg = 6921 [km]

Orbital period T = 5728 [s]

Number of SATs per orbital lane I = 22

Inter-SAT distance 1977 [km]

Number of IoT nodes K =10 — 1000

Number of preamble signatures R =064

A. MDP Modeling

DRL framework for [oT-NTN is based on the environment
where IoT nodes attempts to access to LEO SAT constellation.
At each time n, a K set of IoT node, observes a state s[n]
from the state space S, and accordingly takes an action a[n]
from the action space A. Following the action, the state of
the environment transitions to a new state s[n + 1] and the
centralized agent receives a reward r[n].

In the aforementioned MDP model, we consider the follow-
ing state information:

s[n] = {n, qiln], ) _ cxln], aln—1]}, ()

ke

where g;, [n] € R*3 i € T denotes the position of SAT i,
¢;[n] corresponds an RA collision for this time slot. Note that
the previous action a[n — 1] and current time slot n are used
as a fingerprint to stabilize experience replay in the DRL.

The action space A in our environment is related to RA.
Among SATs i, the agent UT j chooses one SAT to access by
using the access action a[n] in (2). The set of access action,
A, is defined as follows

a[n] = {wlvaa e 7w‘]q}7 (8)

Our reward function is supposed to reinforce IoT nodes to
carry out optimal access actions that minimize collision event
while maximizing the access rate. It is worth noting that, the
collision event occurs in stochastic, not in deterministic due
to random preamble selection. This incurs too significant and
frequent reward variation, hindering the training convergence.

Following the standard RL settings, we consider an envi-
ronment in which RL agents interact for a given number of
discrete time steps. At each time step n, the agent receives
a state s[n| and selects an action a[n] from some set of
possible actions A according to its policy 7y, where 7y is
a mapping from states s[n| to actions a[n]. In return, the
agent receives the next state s[n + 1] and receives a scalar
reward r[n]. The process continues until the agent reaches
a terminal state, after which the process restarts. The return
R[n] =332 o v"r[n+k] is the total accumulated return from
time step n with discount factor v € (0, 1]. Following the
principle of PPO [14], we train our agent which is omitted
due to limit of the space. We note that the state of each IoT
nodes is all locally observable information, while the reward
function is centralized information that can be trained with
centralized training and decentralized execution (CTDE).

IV. NUMERICAL EVALUATIONS

This section validates the proposed RA methods for ToT-
NTN with respect to collision rate. For PPO, we identi-



Table II: Collision and success rate of our proposed PPO compared with baseline under X' = 10 and K = 100

ToT nodes.
Scheme Collision Rate C' Scheme Collision Rate C'
Heuristic (K = 10)  0.0341 (1.00x) -+H———  Heuristic (K = 100) 0.2781 (1.00x) —+H——
PPO (K = 10) 0.0079 (4.31x) H—— PPO (K = 100) 0.1379 (2.01x) ~—H

Table III: Normalized reward and average collision rate over training episodes under K = 10 and K = 100 IoT nodes.

Reward (# of IoT Nodes, K = 10) Collision (K = 10)

Reward (K = 100) Collision (K = 100)
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Table IV: Impact of the number of IoT nodes, K, on normalized reward
and the number episodes until convergence.

# of IoT Nodes  Norm. Reward # of Ep. for Convergence

K =10 —0.008 NN ~1.5x10* 1
K =100 —0.138 I ~ 5.5 x 10* Il
K = 1000 —4.873 1 Diverge ~  [muwssssssas
e
-5 —2.5 0 104 105 ¢

cally consider a 4-layer fully-connected multi-layer perceptron
(MLP) NN architecture. Each MLP has 2 hidden layers, each
of which has the 256 x 256 dimension with the rectified linear
unit (ReLU) activation functions. NNs are trained using tanh
with the learning rate 0.00005, batch size 4000, 10 iterations
per episode, training episodes 10* ~ 10°, and 4000 iterations
per update. The simulations are implemented using Pytorch
Version 1.12. Main parameters on simulation settings are
summarized in Table I.

Throughout this section, we consider one baseline and our
proposed eRACH with as listed below.

1) Heuristic is a policy of random selection. Each IoT
nodes uniform-randomly chooses access action, wg[n],
at each access opportunity.

2) PPO is our proposed scheme with using PPO frame-
work, wherein each IoT nodes determine its access
action by following the policy of PPO which is trained
in a fully centralized manner.

The following conditions are assumed in the comparison: if
collisions occur at a time slot for an SAT, all attempted UTs
fail to access at the time slot to the SAT.

Comparison Study. Table. I compare our proposed PPO
with a baseline, in terms of collision rate and access rate.
The results validate that PPO achieves lower collision with
higher access rate than the baselines. In particular, compared
to heuristic, PPO successfully access with 4.31x and 2.01x
less collision event, for K = 10 and K = 100, respectively.
As opposed to the heuristic method, PPO optimizes access
policy, flexibly determining backoff action (i.e. wi[n] = 0)
for yielding higher access and lower collision in a given
network scenario. Such flexibility is advantageous to access

(or collision)-sensitive services such as massive machine type
communications (mMTC).

Impact of the number of IoT nodes. Table III plot the
normalized reward and the collision rate, while showing the
training convergence behavior of PPO NN. Here, the solid
curves denote cumulative reward for the agent. One can notice
that more IoT nodes requires a more training episode for
convergence of the DRL agent, as it incur a bigger action space
and state space. It is worth noting that large action space is one
of the main issue in the DRL approach, which is elaborated
in the following.

Table IV show the impact of number of IoT nodes with
respect to training convergence. In particular, around five times
of training episodes is required for K = 100 compared to K =
10, while K = 1000 case is not converged within a given time.
As the number of nodes increases, the size of action and state
in DRL training increase depends on its training environment;
and such increase causes additional training time, sometimes
resulting the undesirable training behavior. For the large-scale
systems, it is thus necessary to accelerate and stabilize the
training convergence. In this regard, scalable DRL approach
could be an interesting topic for our future research.

V. CONCLUSION

In this article, we proposed a novel RA for massive IoT
in LEO SAT networks. To cope with the challenges incurred
by its wide coverage and time-varying network topology,
we proposed a model-free RA protocol based on the DRL
approach. By simulations, we validated that our proposed PPO
approach flexibly determines the access (or backoff) action
over its given network scenario. Extending the current col-
lision objectives, and considering other performance metrics
(e.g., fairness-aware) could be an interesting topic for future
research. It is also worth investigating highly scalable DRL
frameworks to address complicated scenarios.
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