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A B S T R A C T   

Over the past several decades, hydrologic models have advanced from independent models of the surface and 
subsurface to integrated models that can capture the terrestrial hydrologic cycle within one framework. In recent 
years, these coupled frameworks have seen the inclusion of biogeochemical processes, ecohydrology, sedimen-
tation and erosion, cold region hydrology, anthropogenic activities, and atmospheric processes. This expansion is 
the result of increased computational, data, and modeling capabilities and capacities, as well as improved un-
derstanding of the processes that drive these integrated systems. Here, we review these recent advances to 
integrate new processes and systems into existing terrestrial hydrologic models and highlight the significant 
challenges and opportunities that remain. We identify that with so many models currently available and in 
development, selecting the most appropriate model is difficult, and we suggest a path for new or novice modelers 
to find the most appropriate code based on their needs. In addition, data required to parameterize and calibrate 
these models can often constrain their applicability and usefulness. However, advances in environmental sensors 
and measurement technology, in addition to data assimilation of non-traditional data (e.g. remote sensing, 
qualitative data) are providing new ways of addressing this issue. As we expand hydrologic models to integrate 
more processes and systems, our computational demands also increase. Recent and emerging advances in 
computational platforms, including cloud and quantum computing, in addition to the use of machine learning to 
capture some processes, will continue to support the use of increasingly larger and more complex, process-based 
models. Finally, we highlight that it is critical to develop state-of-the-science models that are accessible to all 
model users, not just those applied for research and development. We encourage continued development of 
diverse modeling platforms, considering the user needs, data availability, and computational resources.   

1. Introduction 

Water is an integral part of all systems and processes in our natural 
and anthropogenic environments. Water sustains life and supports our 
quality of life, and maintaining both requires the ability to quantify, 
simulate, and predict water resources and the impact of water man-
agement strategies into the future. Early efforts to simulate and predict 
the distribution and quality of water resources were compartmentalized 
into components of the hydrologic cycle (e.g., surface water, ground-
water, snow, and evapotranspiration), and/or processes (e.g., 
geochemical reactions, precipitation-dissolution, overland flow, 

vegetation water use and response to water availability). With increased 
understanding of terrestrial hydrologic processes and computational 
capacity, recent efforts have integrated many of these components and 
processes in a single computational modeling framework to improve 
representation of the hydrologic cycle. One such advance is the inte-
gration of surface and subsurface hydrologic flow and transport pro-
cesses which improved representation of the terrestrial water cycle. 
These physically-based integrated models can take many different 
forms, but generally couple a representation of Richards’ equation for 
variably-saturated subsurface flow with a version of the St. Venant’s 
equation for surface flow (Aquanty Inc., 2018; Brunner & Simmons, 

* Corresponding author. 
E-mail address: andrea.brookfield@uwaterloo.ca (A.E. Brookfield).  

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2023.129515    

mailto:andrea.brookfield@uwaterloo.ca
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2023.129515
https://doi.org/10.1016/j.jhydrol.2023.129515
https://doi.org/10.1016/j.jhydrol.2023.129515
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2023.129515&domain=pdf


Journal of Hydrology 620 (2023) 129515

2

2012; Kollet et al., 2017; Kollet & Maxwell, 2008; Maxwell et al., 2014). 
These equations are then coupled, or integrated, using one of several 
different techniques. In general, the term ‘fully-integrated’ is used to 
differentiate those models that allow for simultaneous solution of the 
surface and subsurface equations, whereas the terms ‘integrated’ or 
‘coupled’ is used to indicate models that iterate between solutions of the 
surface and subsurface (Furman, 2008). The connection between the 
surface and subsurface can also take many forms, including a first-order 
exchange flux term that is similar to the Darcy flux, and the common or 
equilibrium-based approach where the surface and subsurface nodes 
that connect the two regimes are identical (Aquanty Inc., 2018; Liggett 
et al., 2012). Due to the integration of discrete surface and subsurface 
flow equations, these models also require ‘spin up’ simulations to pro-
vide initial conditions that can be appropriately solved during further 
calibration or simulation runs (Ajami et al., 2014). Several reviews and 
model intercomparison studies of these integrated hydrologic models 
have been completed in recent years (e.g., Fan et al., 2019; Maxwell 
et al., 2014), and the use of these models has evolved to applications that 
include informing policy and management decisions, and guiding 
remediation and preventative efforts (e.g., Brookfield & Gnau, 2016; 
Brookfield & Layzell, 2019; Thatch et al., 2020). Here, we build upon 
these reviews and comparisons, reviewing recent expansion from the 
integrated hydrologic models representing the surface/subsurface hy-
drologic system to include biogeochemistry, erosion and sediment 
transport, ecohydrology, anthropogenic activities, cold region hydrolo-
gy, and atmospheric processes that influence the global hydrologic cycle 
(Fig. 1). Specifically, we focus this review on the expansion of integrated 
hydrologic models that include:  

1) Biogeochemistry - moving beyond basic solute transport to include 
representation of reactive processes such as complexation, precipi-
tation and dissolution, redox processes, microbial processes and 
isotopic fractionation.  

2) Sediment and Erosion - inclusion of some or all of the sediment 
budget within study regions, such as fluvial erosion, streambank 
stability, and depositional processes.  

3) Ecohydrology - representation of vegetation dynamics, including 
growth and mortality, and disturbances including wildfire, and 
invasive species that influence water and energy fluxes.  

4) Anthropogenic activities - inclusion of human activities that directly 
impact the hydrologic system such as reservoir and dam operation, 
groundwater extraction, surface water diversion and irrigation.  

5) Cold region hydrology - representation of processes and systems 
related to snow and ice, including accumulation, vapor loss, melt, 
and permafrost.  

6) Atmospheric processes - expanding representation of the hydrologic 
cycle beyond the terrestrial system, including interactions between 
surface and subsurface hydrologic conditions to local and regional 
weather patterns and climate. 

Due to the prolific development of modeling approaches and appli-
cations, it is not possible to comprehensively include all specific 
modeling frameworks and advances in these areas. The goal is to present 
examples of emerging concepts and techniques in order to provide a 
broad and robust overview of the expansion of integrated hydrologic 
models and an assessment of ongoing challenges and future directions 
for further development. We expand on the ongoing challenge of model 
selection, which was recently highlighted by Melsen (2022), to discuss 
selecting a model based on a particular objective and data availability. 
The scope of this work includes a review of the recent expansion of 
existing integrated hydrologic models to include domains beyond sur-
face water and groundwater systems, as well as innovations in appli-
cation of these tools for water resources management. It is equally 
important to develop methods of identifying what simplifications can be 
made for any particular application to increase the efficiency and use-
ability as it is to develop complex models capable of simulating more 
processes and systems. While this work focuses on recent advances made 
with process-based numerical models, we highlight ongoing and 
emerging research using machine learning approaches in conjunction 
with process-based models leading to the development of hybrid models. 

2. Recent Expansion of Integrated Hydrologic Models 

As previously discussed, significant advances in integrated hydro-
logic models that simulate the terrestrial water system have been made 
in recent years, including expansion beyond water and solute movement 
across the surface and subsurface. Here, we identify and review this 
expansion of integrated hydrologic models into other domains (Fig. 1). 

2.1. Chemistry/Biochemistry/Geochemistry 

A myriad of biogeochemical processes control the production, fate, 
and transport of solutes and carbon from watersheds. Tracking how land 
cover, climate, and disturbance impacts solute production and mobility 
has important implications for water security and critical zone function. 
The critical zone stretches from the top of the canopy down to the depths 

Fig. 1. The scope of this review is to expand beyond existing literature on models representing terrestrial hydrology to include biogeochemistry, erosion and 
sediment transport, ecohydrology, anthropogenic activities, cold region hydrology, and atmospheric processes that influence the global hydrologic cycle. 
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of circulating groundwater (Anderson et al., 2007; Brantley et al., 2007; 
Condon et al., 2020; Council, 2000), and is intricately intertwined with 
the terrestrial hydrologic cycle (Singha & Navarre-Sitchler, 2022; Sul-
livan et al., In Revision). Reactive transport models (RTMs) are nu-
merical representations of biogeochemical reaction processes such as 
respiration or carbonate weathering that allow us to understand how 
external drivers (e.g., meteoric precipitation) interact with the internal 
structure of the critical zone (Duffy et al., 2014; Li, 2019; Li et al., 2017a; 
Li et al., 2017b; Li et al., 2021; Sullivan et al., 2020). Given the 
numerous processes that may be represented, the dimensionality 
required to capture these interactions (e.g., 1D-3D), and the timescales 
of interest, a diversity of RTMs have emerged over the recent decades 
with varying degrees of integration with hydrologic models. 

At the most basic level is the one way coupling between either 
complex physically-based, spatially-explicit hydrologic models (e.g., 
Flux-PIHM; Bao et al., 2017) or simpler lumped-parameter models 
(HBV; Bergström, 1995; Bergström & Lindström, 2015) to geochemical 
box models (e.g., WITCH–Weathering at the Catchment Scale; Goddéris 
et al., 2006). Here, the hydrologic model passes soil moisture and water 
fluxes to the RTM to simulate biogeochemical reactions and thus, pro-
cesses such as mineral dissolution/precipitation and solute generation 
and transport (e.g., Sullivan et al., 2019). One advantage of this 
approach is it simplifies the computational demand for tuning the RTM 
and allows the end user to focus on the degree of reaction complexity 
that they will choose to include. If the goal of the numerical simulations 
is to understand how changes in the solid phase, let say the dissolution of 
minerals, impact the generation of porosity and augments the perme-
ability, then fully integrated models are needed. CrunchTope (or 
CrunchFlow; Steefel, 2009) is a widely used RT code that solves for 
saturated flow (i.e., Darcy flux) while allowing reactions to influence the 
solid phase. CrunchTope is capable of representing a detailed distribu-
tion of soil and rock properties in the subsurface, and has been used to 
simulate the long-term evolution of the subsurface under “averaged” 
hydroclimatic conditions (Wen et al., 2021; Xiao et al., 2021). Moving 
out of solely saturated conditions, there are codes such as Min3P and 
PFlowtran that can solve for variably saturated conditions in the 3-D 
tetrahedral mesh (Lichtner et al., 2015; Mayer et al., 2002; Su et al., 
2021) and even include processes such as dynamic root architecture. 
Thus, our ability to represent critical zone processes and numerically 
explore how it responds to the shifts in the hydrologic cycle is 
strengthening. 

One limitation in RTMs, is their integration into spatially-explicit 
watershed-scale hydrologic models. While some models do exist, the 
lack of spatially explicit information on soil, mineralogy, and biotic 
processes limits the degree to which these models can be applied. One 
such watershed-scale model is BioRT-Flux-PIHM, which can simulate 
interactions between land surface, watershed hydrology, and reactive 
transport at a variety of temporal scales (Bao et al., 2017). These 
watershed-scale models integrate watershed characteristics such as 
topography, vegetation, and temporal hydroclimatic variations and 
have some representation of subsurface structure to allow for pre-
dictions of precipitation/dissolution reactions in addition to carbon 
dynamics (Li, 2019; Xu et al., 2022; Zhi et al., 2019, 2022). But unlike 
the capabilities in CrunchTope that can update the solid phase distri-
bution, and thus porosity and permeability, these spatially explicit 
models must first be paused and new parameters assigned to understand 
how changes in the subsurface could alter hydrologic and therefore, 
biogeochemical fluxes. To this end, some integrated hydrologic models 
have begun to include reactive transport (Moulton et al., 2015; Usman 
Munir & Frei, 2021; Z. Xu et al., 2022). While these developments have 
limited reaction pathways and/or the limited hydrologic conditions (e. 
g., saturated vs variably saturated), they are one manner by which RTMs 
are growing to be more fully integrated in large watershed and even 
regional scale models. 

Recent advances in RTMs allow for the heterogeneous and dynamic 
nature of the critical zone to be better represented in numerical 

experiments. For example, geologic heterogeneity can lead to complex 
and variable fluid flow dynamics and thus, solute transport, creating 
challenges in our ability to predict geochemical processes (e.g., Navarre- 
Sitchler & Jung, 2017; Wen & Li, 2017). Efforts are underway to un-
derstand the discrepancies between laboratory and field based dissolu-
tion rates that arise from differences in physical heterogeneity, by 
providing correction factors to linear transition state theory (Hyman 
et al., 2022), elucidating the propagation of reaction fronts through 
fracture networks (Andrews & Navarre-Sitchler, 2021), and developing 
rate laws that account for the overall degree of spatial heterogeneity in 
the domain (Wen & Li, 2017, 2018). Advances in our understanding of 
isotope chemistry are now emerging as reaction capabilities within 
RTMs, particularly CrunchTope. Here the isotopic composition of both 
fluid and solid phase shed light on the dominant controls of reactions (e. 
g., spatial variability in microbial growth, order of rate laws, and 
dominance of kinetic vs equilibrium fractionation; Druhan et al., 2012; 
Druhan et al., 2013; Druhan et al., 2014). Modeled isotopic signatures 
are improving our understanding of the interaction between critical 
zone structure and function, for example: 1) multiple fractionation 
pathways and flexible transit time distributions are necessary to capture 
intra-site variability in silica stream water concentrations (Fernandez 
et al., 2022), 2) a fairly rapid supply of fresh bedrock is required to 
reproduce the parabolic shape between dissolved lithium and weath-
ering intensity observed in global data (Winnick et al., 2022), and 3) 
unraveling the critical zone’s past (e.g., changes in climate and vege-
tation) recorded in speleothems is possible through the modeling of 
stable- and radio-carbon isotope data (Druhan et al., 2021). By including 
root exudation processes into CrunchTope (REWTCrunch; Roque-Malo 
et al., 2022), it is now also possible to vertically resolve root-soil- 
microbe-water interaction and their influence on solute fluxes at a 
daily time scale. 

Overall the development of RTMs allows us to explore both the im-
pacts of the Anthropocene on critical zone function (Kumar et al., 2018; 
Sullivan et al., 2022) and to elucidate how long term changes in Earth’s 
atmosphere has controlled weathering rates (Goddéris et al., 2010; 
Maher et al., 2009; Moore et al., 2012). We can now explore how 
changes in land cover influence stream water chemistry (Wen et al., 
2021), how variations and hydrologic connectivity influence the export 
of dissolved organic carbon to streams (Wen et al., 2020), and the impact 
of changing climate on solute export across environments of varying 
subsurface heterogeneity (Wen et al., 2022). 

2.2. Sediment and erosion 

Accurate representation of streamflow generation processes and near 
surface hydrologic dynamics impact the overall sediment budget of a 
catchment and are important for understanding sediment transport 
processes (Heppner et al., 2006; Huang & Niemann, 2008). Many 
empirical and physically-based models have been developed to simulate 
erosion and sediment transport processes with various levels of 
complexity and data requirement (Merritt et al., 2003). While applica-
tion of empirical models such as the Universal Soil Loss Equation is 
preferred due to a smaller number of parameters, these models assume 
that watershed properties are stationary (Zi et al., 2019). Physically- 
based models implement various formulations to represent detach-
ment, transport and deposition processes, and use different model 
structures for representing hydrologic processes. With the exception of 
few models such as GEOtopSed (Zi et al., 2016), tRIBS-OFM (Kim et al., 
2012) and InHM (Heppner et al., 2006), many erosion and sediment 
transport models simplify representation of subsurface hydrologic pro-
cesses due to differences in temporal and spatial scales of the phenom-
ena and computational demand of solving surface water-groundwater 
equations simultaneously (Francipane et al., 2012). 

Existing coupled surface water-groundwater-sediment transport 
models either simplify surface water-groundwater coupling by using the 
first order exchange coefficient approach (e.g., Integrated Hydrology 
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Model; InHM, Heppner et al., 2006), reducing subsurface heterogeneity 
by using soil classes and geological layers parallel to bedrock (e.g., 
GEOtopSed; Zi et al., 2016), or simplifying vadose zone and ground-
water processes by using a gravity-dominated formulation and the 
Boussinesq’s equation under the Dupuit–Forchheimer assumptions, 
respectively (e.g., tRIBS-OFM; Kim et al., 2012 and tRIBS-Erosion; 
Francipane et al., 2012). Physically-based integrated hydrologic 
models such as ParFlow.CLM (Kollet & Maxwell, 2008; Maxwell & 
Miller, 2005) that simulate the terrestrial hydrologic cycle as a contin-
uous system by solving the 3D Richards’ equation over the entire sub-
surface and has a fully integrated overland flow simulator and a land 
surface model (CLM 3.0, Dai et al., 2003) to solve water and energy 
budgets at the land surface are valuable tools for integrating erosion and 
sediment transport processes. The integrated hydrologic model, 
HydroGeoSphere (HGS; Aquanty Inc., 2018; Brunner & Simmons, 2012; 
Hwang et al., 2014), which also simulates the terrestrial hydrologic 
cycle as a continuous system has been coupled to surface water opera-
tions model, OASIS (HydroLogics, 2009), and was developed to solve for 
fluvial erosion using the excess shear-stress approach (Brookfield & 
Layzell, 2019) and is linked to a streambank stability module (Wei, 
2022). Despite these advances, inclusion or integration of sedimentation 
and/or erosion processes into integrated hydrologic models remains 
limited and computationally challenging as changes in land surface 
elevation due to erosion or deposition processes can lead to numerical 
instability for continuous simulations. 

2.3. Ecohydrology 

Transpiration accounts for roughly 70 % of precipitated water, 
although this proportion varies dramatically with space and time 
(Jasechko et al., 2013). Given the importance of transpiration, most 
hydrologic models consider the direct impact of vegetation on evapo-
transpiration. In simple, conceptual hydrologic models, vegetation may 
be implicitly represented as a parameter but in some integrated hydro-
logic models vegetation is explicitly represented via a combination of 
parameters and submodels (Fatichi et al., 2016a) that can include 
transpiration partitioning (Maxwell & Condon, 2016). These submodels 
generally account for vegetation’s direct control on transpiration and 
indirect influences on evaporation, soil moisture, and snow accumula-
tion and melt via canopy interception and shading but vary substantially 
in terms of the inclusion of other coupled ecological processes (see re-
views in Brewer et al., 2018; Fatichi et al., 2016a). 

Climate change is expected to alter not only vegetation function 
(water use) but to accelerate changes to vegetation composition and 
structure (size, density, rooting depths, heights, etc.) (Hauser et al., 
2021; McDowell et al., 2022) as well as disturbances (e.g., fire, disease; 
Seidl et al., 2017). Disturbance driven changes in species are also ex-
pected to intensify with climate change (e.g., Serra-Diaz et al., 2018). 
These changes to vegetation structure and function will have substantial 
hydrologic impacts (e.g., Mankin et al., 2019) and thus there is a 
growing need to represent vegetation growth/mortality, community 
change and response to disturbances including fire in many integrated 
hydrologic model applications. 

Models of ecohydrology vary along several dimensions (Fatichi et al., 
2016a). The realism of the relationship between vegetation structure 
and radiative forcing varies from simple submodels, such as Beer’s Law 
with a leaf area index, to complex submodels where tree-spacing and 
gaps, height, overstory/understory and/or sunlit and shade leaves are 
accounted for in estimates of the radiative forcing of plant transpiration 
(Bonan et al., 2021). Plant hydraulics or how plants mediate the flux of 
water from soil to atmosphere similarly vary from simple models of 
stomatal conductance to models that track vertical and horizontal root 
distributions, stem conductance and more complex stomatal physiology 
(e.g., Javaux et al., 2008, 2013; Lin et al., 2019; Trugman et al., 2019). 
Ecohydrology models also vary in how they account for changes in 
vegetation structure and composition through time, including changes 

that are coupled with hydrologic conditions e.g., declines in leaf area 
with drought (e.g., Garcia et al., 2016). Ecohydrology models that 
couple hydrologic models with carbon and nutrient cycling to grow 
vegetation have been available for decades and used within the land 
surface submodels in General Circulation Models (GCMs) or Earth Sys-
tem Models. These coupled carbon-hydrology models represent incre-
mental changes to parameters that are relevant to hydrology (such as 
height, root depth and leaf area) with variation in the availability of 
light, water and nutrients (Arora, 2002). More recently coupled models 
that represent disturbances such as fire and disease are available (Seidl 
et al., 2017). These models can account for how climate drivers 
including drought alter the probability and severity of disturbances such 
as fire and disease that have dramatic consequences for vegetation (e.g., 
Hanan et al., 2021) and ultimately hydrology (e.g., Ren et al., 2021). 
Similarly several recent terrestrial biosphere models account for shifts in 
species distributions with climate (Fisher et al., 2022), although the 
representation of hydrologic processes in these models remains limited. 
Considering not only species differences but also between species in-
teractions can have important hydrologic consequences (Pretzsch et al., 
2015) but this level of plant ecosystem complexity is rarely included in 
hydrologic models. 

For hydrologic models that resolve channel flow, ecohydrology in-
cludes the impact of riparian vegetation on hydrodynamics (e.g., effects 
of vegetation on fluid flow) and morphodynamics (including vegetation 
impacts on change in channel structure itself) (Camporeale et al., 2013; 
Marjoribanks et al., 2014). The representation of vegetation change in 
hydrodynamic models is generally less well developed relative to 
coupled ecohydrology models used in the terrestrial environments. 
Approaches for accounting for in-stream vegetation impacts range from 
simple roughness parameters to models that represent changes in ri-
parian vegetation communities as a function of hydrologic conditions 
(Camporeale et al., 2013). Similarly, modeling within channel biogeo-
chemistry, including hyporheic flow and exchanges, has advanced in 
recent years but these models of within stream and river ecological 
processes are rarely included in models that account for both upland and 
within river flows (Jan et al., 2021). 

Finally, the impact of human intervention on vegetation can be 
significant. Both simple and complex ecohydrology models typically 
represent human intervention as an external forcing (e.g., prescribed 
land cover change, irrigation, fuel treatments, etc) (Wagner et al., 2019; 
Yalew et al., 2018). 

2.4. Anthropogenic activities 

Humans modify the terrestrial hydrologic cycle in numerous ways, 
including construction and operation of dams and reservoirs, surface 
water diversions, groundwater extraction, irrigation, and land use 
change including urbanization. Within the last millennium, 75 % of 
Earth’s land surface has been modified by human activities (Luyssaert 
et al., 2014). These modifications can substantially alter infiltration 
capacity via impermeable surfaces and changes in evapotranspiration by 
altering the type, density and distribution of vegetation. Some processes 
related to these modifications have been included in hydrologic models 
for decades, including groundwater pumping and land use change, yet 
challenges remain. For groundwater pumping, the inclusion of 
numerous discrete groundwater wells and variable pumping rates, 
common in agricultural regions, remains numerically challenging. The 
representation of land use change is challenged by the variety of ways it 
can impact the hydrologic system, including changes to evapotranspi-
ration due to changes in vegetation (see ecohydrology), and local scale 
routing of water in urban environments due to the construction of 
impermeable surfaces and water collection and distribution systems (e. 
g. storm water management). 

Integrated hydrologic models that simulate the terrestrial water 
cycle (e.g. ParFLOW; Kollet & Maxwell, 2006), HGS (Aquanty Inc., 
2018), GSFLOW (Markstrom et al., 2008) were originally developed to 
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simulate natural hydrologic systems, with limited abilities to incorpo-
rate anthropogenic activities. Almost all watersheds have anthropogenic 
activities and impacts, therefore including these processes is critical for 
proper representation of the hydrologic conditions. In addition, these 
models are increasingly being used for integrated water management 
planning, which also requires inclusion of the anthropogenic water uses 
and management infrastructure for proper assessment. In response, in-
tegrated hydrologic models have advanced to better include the in-
teractions between humans and the terrestrial water system. However, 
one of the biggest challenges in integrated hydrologic model application 
is limited data availability of human water use (e.g., groundwater 
pumping, canal deliveries). 

More recently, a number of packages have been integrated into hy-
drologic models to capture anthropogenic activities. Building upon 
existing frameworks that capture groundwater and surface water 
pumping, modules were developed to capture irrigation application, 
including variability in evapotranspiration and infiltration (often 
termed irrigation return flow) due to irrigation strategy (e.g. flood 
irrigation, center pivot, subsurface drip) and water rights structure (e.g., 
Kitlasten et al., 2021). These modules include specific agricultural 
packages for GSFLOW (Niswonger, 2020), and processes integrated 
directly into the integrated hydrologic modeling codes such as ParFlow 
and HydroGeoSphere (Aquanty Inc., 2018; Condon & Maxwell, 2013). 
Hydrologic modeling in urban settings is particularly challenging due to 
the high resolution and spatial complexity of urban land cover (Salva-
dore et al., 2015). Flow networks in urban environments are also com-
plex, and hydrologic models applied to urban areas (e.g SWMM; Niazi 
et al., 2017) include submodels that integrate storm sewer networks, 
green infrastructure and stormwater control measures (SCMs), and 
differentiate between connected and disconnected impervious areas (e. 
g., Bell et al., 2019). High resolution data is increasingly available for 
urban areas and assimilation of this data is expected to improve hy-
drologic modeling (Hutchins et al., 2017). The high spatial resolution 
required to account for these changes to flow networks can be a barrier 
for regional scale IHMs application (Golden & Hoghooghi, 2018). 
However fine scale hydrologic model applications can be used to derive 
parameters based on land use classification (e.g., high density urban, 
suburban) to support larger scale application (e.g., Shields & Tague, 
2015). 

Many codes are modified to include methods of integrating reser-
voirs, canals, pipe networks and other water storage and distribution 
systems into the hydrologic models. While natural processes and phys-
ical conditions can constrain operation of these engineered structures, 
the distribution of water is dictated by human decisions, regulations, 
and policies. Integrating these non-physics based operations into an 
integrated hydrologic modeling framework often requires coupling to 
other existing models that use rule-based optimization strategies (e.g., 
Brookfield et al., 2017; Morway et al., 2016) or incorporating often 
inflexible boundary conditions based on historic operations. A signifi-
cant drawback of the latter approach is that operations cannot be easily 
adapted for future scenarios as opposed to the former which has oper-
ational structures built into the coupled model. 

2.5. Cold-region Processes 

Snow-dominated headwaters provide water resources to 1/6th the 
world’s population (Barnett et al., 2005) and support ecologic and 
social-economic services (Immerzeel et al., 2021). Cold regions are 
considered especially vulnerable to climate change (Milly & Dunne, 
2020; Portner et al., 2019), with low-land dependence on these snow 
water resources expected to increase in the near future (Viviroli et al., 
2020). The amount and timing of snow and glacial melt are critical to 
hydrologic processes related to transpiration (Knowles et al., 2018; 
Parida & Buermann, 2014), recharge (Carroll et al., 2019; Godsey et al., 
2014; Meixner et al., 2016) and streamflow generation (Hammond et al., 
2018; D. Li et al., 2017a; Millan et al., 2022). Likewise snow and ice loss 

and permafrost degradation have important implications on biogeo-
chemical reactions, trace gas release and riverine export of organic 
matter, inorganic nutrients and major ions (Broadbent et al., 2021; Frey 
& McClelland, 2009; Jafarov et al., 2018; Milner et al., 2017; Miner 
et al., 2021; Pongracz et al., 2021). Snow and ice cover also play an 
important role in weather and climate through surface albedo, subli-
mation, sensible heat exchange with the lower atmosphere and insu-
lation of soil by snow (Clark & Serreze, 2000; Lo & Clark, 2002; L. Xu & 
Dirmeyer, 2011). The interactions of snow and ice across atmospheric, 
hydrologic, ecologic and biogeochemical subcomponents is further 
complicated by the scale-dependence of snow processes (Bales et al., 
2006; Broxton et al., 2015; Clark et al., 2011; Deems et al., 2006; Mott 
et al., 2018; Tennant et al., 2017). As a result, representation of snow 
and ice dynamics in integrated hydrologic models remains a major 
challenge. 

As a consequence, classic representations of snow processes in hy-
drologic models have relied on relatively simple temperature-index 
approaches that correlate snowmelt to air temperature (e.g., Martinec, 
1975). These empirical relationships are most often associated with 
glacial applications, snowmelt in open sites and operational forecasting 
(Kumar et al., 2014) with recent models incorporating wind speed, 
vapor pressure and radiation into the approach (Li & Williams, 2008). 
More accurate representation of cold-region hydrology must describe 
the distributed water- and energy-balance between the atmosphere and 
land surface (Clark et al., 2015; Shrestha et al., 2015). Modeling ap-
proaches that account for water and energy distributions across space 
tend to also account for their vertical distribution in the snowpack. Some 
integrated hydrologic models use only two snowpack layers to account 
for radiant, convective and conductive exchanges (e.g. GSFLOW) while 
others are more finely resolved (e.g. Parflow-CLM). These modeling 
approaches are largely based on the parameterization of individual 
processes related to albedo, snow compaction, turbulent and radiant 
energy transfer (Chen et al., 2014; Kumar et al., 2013; Magnusson et al., 
2015). Representation of wind redistribution (e.g., Liston & Elder, 2006) 
remains a significant challenge (Zhou et al., 2021) and is rarely included 
directly in integrated hydrologic models due to computational expense 
and lack of process understanding. However, the redistribution of snow 
is potentially important in capturing the amount and timing of snowmelt 
with significant ramifications on the water budget. As a consequence, 
several hydrological studies have corrected precipitation inputs to ac-
count for preferential distribution using airborne lidar mapping of 
snowpack (Carroll et al., 2019; Lahmers et al., 2022), satellite-derived 
data assimilation strategies (Bennett et al., 2019) or accounting for 
topographic effects on gravitational and wind transport of snow (Freu-
diger et al., 2017). 

Representation of permafrost processes in earth system models have 
advanced in recent years but there remains significant uncertainty and 
variation in how model representations account for freeze/thaw pro-
cesses and how released melt water moves through the subsurface to 
rivers (Andresen et al., 2020). More detailed representations of perma-
frost hydrology are available and these approaches provide more ac-
curate estimates of permafrost change on river flow and chemistry (e.g 
Cold Regions Hydrological Modelling Platform (CRHM; Pomeroy et al., 
2007), Advance Terrestrial Simulator (ATS, Painter et al., 2016). How-
ever, strategies are needed to integrate learning from these data inten-
sive permafrost models into integrated hydrologic models (Krogh & 
Pomeroy, 2021). 

2.6. Atmospheric processes 

Atmospheric processes control the weather (short-term conditions) 
and climate (long-term conditions) and are critical drivers of the hy-
drologic cycle, governing the hydrologic and energy fluxes between the 
air and land surface. Most hydrologic models include weather-related 
parameters, such as precipitation and potential evapotranspiration. In 
early hydrologic models, the weather conditions were included as a 
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boundary condition with prescribed precipitation and potential evapo-
transpiration. These models advanced to include algorithms and models 
that calculated actual evapotranspiration based on both weather and 
hydrologic conditions and subsequently to actual weather and climate 
models that provided one-way and two-way feedback to the hydrologic 
model (Davison et al., 2015, 2018; Maxwell et al., 2007; Maxwell & 
Condon, 2016; Sorooshian et al., 2008; Zhang et al., 2009). The treat-
ment of atmospheric conditions varied between surface water and 
groundwater models, where the direct link to weather was included 
earlier in the surface water models (e.g., Benoit et al., 2000; Walko et al., 
2000) compared to groundwater models (e.g., York et al., 2002). 
Groundwater models traditionally prescribed recharge fluxes that are 
often indirectly attributable to mean weather conditions (e.g., Maxey & 
Eakin, 1949). This is likely due to the direct connection between the land 
and atmosphere compared to a more in-direct connection to the 
subsurface. 

In the frameworks that integrate atmospheric and hydrologic 
models, computational difficulties arise from the complexity of the 
processes included and the mismatch between the spatio-temporal res-
olution and scales between the two model types (Davison et al., 2018; 
Fatichi et al., 2016b; Maxwell et al., 2011). The domain required to 
simulate weather/climate is significantly larger than that required for 
terrestrial hydrology, and associated cell sizes also have significant 
mismatch. This is driven by the relatively fast rates of atmospheric 
processes, in comparison to slower rates of the surface water domain, 
and even slower rates of the groundwater domain. Approaches to 
address these issues include coupling existing models of each system, 
such as in the Terrestrial Systems Modeling Platform (TerrSysMP; 
Shrestha et al., 2014). This approach uses an external coupler to couple 
three independent models (an atmospheric model (Consortium for 
Small-Scale Modeling; COSMO), a land surface model (the NCAR Com-
munity Land Model, version 3.5; CLM3.5), and ParFlow with different 
spatial and temporal resolutions in an integrated framework. Results 
show explicit representation of groundwater processes in TerrSysMP 
reproduce observed heat waves statistics compared to regional climate 
models (Furusho-Percot et al., 2022). 

3. Challenges and Future Directions 

While the continued development of integrated hydrologic models, 
including those that have expanded to include the domains described 
above, provide new capabilities and opportunities for application, it also 
continues to face, and develop new, challenges for their use. These 
challenges include those related to process-based representation, such as 
the ability to upscale parameters and constitutive equations and repre-
sent spatial heterogeneities, however, detailing these challenges for all 
the processes reviewed here is beyond the scope of this paper, and can be 
independent review papers in each discipline. Here, we aim to discuss 
and reiterate some of the challenges related to the expansion of inte-
grated hydrologic models into these other domains and bringing 
together models and methods from across traditional discipline bound-
aries and to propose potential solutions. 

3.1. Model selection 

With the number of available modeling frameworks expanding, the 
first challenge often faced by model users is selection of modeling 
frameworks. Despite the expectation that the ‘best model for the job’ 
should be selected, recent research indicates that technical consider-
ations often do not determine what model is used, instead more ‘social’ 
aspects, including familiarity with the model, and interactions with 
others who have used the model previously are considered (Melsen, 
2022). A challenge remains to balance these ‘social’ aspects of model 
selection with a less-biased assessment of what model would best meet 
the objectives of the project. In the supplemental document to this paper 
we suggest a model selection pathway that we feel balances these 

aspects which can provide more novice model users with guidance on 
model selection (see supplemental information). Several of the aspects 
and challenges discussed in reference to model selection, such as data 
availability and computational resources, are further discussed in this 
section. 

3.2. Data 

Sources of uncertainty in integrated hydrologic models include un-
certainty in model inputs, structure, parameters, and observations used 
to constrain model parameter sets (Liu & Gupta, 2007; Moges et al., 
2021). While there are variety of techniques to address model uncer-
tainty, including approaches for calibration, sensitivity analysis and 
uncertainty quantification, widespread adoption of these approaches 
within the integrated hydrologic models remains challenging due to 
computational demand of methods such as the Bayesian inference 
(Herrera et al., 2022; Kavetski et al., 2006; McMillan et al., 2018). 
Community standards, training in the application of these core tech-
niques and the development of easy to use, well documented tools, are 
still needed, particularly within the integrated hydrologic model context 
where a ‘one size fits all’ approach to model parameterization and 
calibration is rarely appropriate for all sub-models (McMillan et al., 
2018; Moges et al., 2021). Further existing uncertainty analysis tech-
niques do not typically explicitly address structural uncertainty (Blöschl 
et al., 2019). 

The exponential increase in, and accessibility of, earth system sci-
ence datasets, including remote sensing data, distributed networked 
sensors and new innovations in geophysics, are both an opportunity and 
a challenge for integrated hydrologic models. On one hand, integrated 
hydrologic models benefit from new data for assimilation, parameteri-
zation and calibration (e.g., Hutchins et al., 2017); as integrated hy-
drologic models account for multiple processes, and have the ability to 
incorporate multiple data sets. The diversity of data sets, within 
differing spatial–temporal scales, and a wide range of accuracy, presents 
a challenge, however, for assimilation. Community cyberinfrastructure 
and training for ensuring appropriate techniques are used for disparate 
datasets will be needed (Fer et al., 2021). Recent studies showed that 
variability in the magnitude and resolution of commonly used gridded 
precipitation and air temperature products for forcing integrated hy-
drologic models results in large uncertainty in simulated water budget in 
a mountainous catchment (Schreiner-McGraw & Ajami, 2020, 2022). 
Therefore, development of data fusion strategies are needed to create 
accurate climate products particularly in regions with large topographic 
gradients. 

3.3. Computational needs 

The computational needs of integrated hydrologic models can vary 
significantly with model size, resolution, and complexity. The chal-
lenges related to computing in hydrologic modeling are not new and 
research is constantly striving to simultaneously increase the complexity 
of the models and develop methods to reduce the computational demand 
(Gan et al., 2018; Ghorbanidehno et al., 2020; Zhang et al., 2009). This 
challenge remains for integrated hydrologic models, particularly as we 
continue to develop more complex and more integrated models. To 
address this challenge an additional hurdle emerges, the ability to 
modify existing models to use new computational platforms, such as the 
recent transition to cloud computing and prior to that, the transition to 
parallel computing. This transition often requires changes to the model 
and solver structure, which requires some expertise in computer science. 
Many groups developing the leading-edge advances in integrated hy-
drologic models include researchers with diverse expertise required to 
make these transitions, and it is critical to maintain this diversity as new 
computing capabilities and platforms emerge. 

Another method of addressing computational challenges is integra-
tion with other methods, such as machine learning methods. We can 
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identify 5 potential synergies in the application of machine learning 
(ML) and integrated hydrologic models: 1) integrated hydrologic models 
can help to identify the underlying mechanisms that give rise to patterns 
revealed by machine learning in observational data sets. 2) Patterns 
identified by ML can be used to parameterize, calibrate and evaluate 
integrated hydrologic models (e.g., Kim et al., 2019; Tsai et al., 2021). 
Using patterns or behaviour for calibration rather than calibrating with 
observations directly can improve hydrologic model reliability (Schaefli 
et al., 2011). 3) ML can reveal patterns within integrated hydrologic 
model outputs. Many integrated hydrologic models can estimate 1000 s 
of variables at multiple time scales. ML can be used to simplify this 
output (e.g., Burke et al., 2021). 4) ML can be used to construct emu-
lators of computationally intensive integrated hydrologic models, which 
can substantially expand sensitivity analysis (e.g., Fer et al., 2018). 5) 
Physical theory from integrated hydrologic models can be incorporated 
into ML methods (Jiang et al., 2020; Zhao et al., 2019), sometimes 
referred to as physics informed ML or Hybrid modeling. There are many 
emerging approaches for augmenting physically-based models with ML 
or using theory to guide the ML models (Bergen et al., 2019). 

3.4. Applicability, Accessibility, and ease of use 

Applicability, accessibility and ease of use are intricately linked. 
Complex models that require extensive expertise and have intensive 
data and computational requirements are able to be used in research 
applications, but are not often accessible beyond those in the research 
realm. Their results may be accessible, but the interpretation of their 
results may still require extensive hydrologic knowledge. Recent work 
has pushed towards more accessible applications of the complex inte-
grated hydrologic models, including frameworks that allow for limited 
manipulation by users for engagement and decision-making (e.g., Ewing 
et al., 2022; Jadidoleslam et al., 2020), and teaching tools that simplify 
the hydrologic system (e.g., Gallagher et al., 2021; Gannon & McGuire, 
2022). Examples of these applications are limited and a challenge re-
mains in incorporating advanced tools and ‘state of knowledge’ into 
frameworks that are applicable and useful across the spectrum of po-
tential users. We need to work towards accessibility of state-of-the- 
science to all users, identifying the technical background and knowl-
edge of the intended users and the computational and data resources 
required. It is important to note that any one modeling framework does 
not have to meet the needs of all users, nor do variations of every 
modeling framework need to be made, but clear intention about the 
purpose of framework development is needed. Broadly, the spectrum of 
models that need to be available include:  

• Research-focused models that are more complex and difficult to use, 
have high computational and data requirements but will move the 
fundamental science and understanding forwards. This includes 
developing models, in addition to methods of incorporating different 
information and data types (e.g., remotely sensed, qualitative) and 
using a variety of computational resources (e.g., cloud, parallel 
processing, and quantum computing).  

• Application-based models that are used by the broader hydrologic 
community to address ongoing societal issues. These are often 
commercial or open source models that still require expertise, but are 
not as complex and intensive as research-focused models to develop 
and run. These models lag behind the research focused models but 
aim to keep users (e.g., consulting, government, etc.) as up to date on 
proven approaches as possible.  

• Teaching-focused models that are simple to use and modify, and 
computationally inexpensive with results that are easy to interpret. 
These models focus on tools that can inform students/shareholders/ 
general public - anyone with an interest but limited expertise. These 
models that are critical to effective communication and stakeholder 
involvement in the modeling process have shown to increase iden-
tification of interventions and model outcomes (Maskrey et al., 

2016). These models are also valuable for training and adoption of 
advances in hydrologic models (e.g., Gallagher et al., 2021). 

We have not listed specific models in the categories defined above 
because often the same modeling framework can be applied in multiple 
categories, depending on how they are implemented. For example, while 
ParFlow is a research-focused model (e.g., Kollet and Maxwell, 2008; 
Condon and Maxwell, 2013), it has also been used in teaching-focused 
applications including the Sandbox model (Gallagher et al., 2021). In 
addition, different variations of the same base model (e.g., MODFLOW; 
Harbaugh, 2005), which is used extensively in application- and 
teaching-focused purposes, are also used for predominantly research (e. 
g., GSFLOW; Niswonger, 2020). While some modeling frameworks are 
mostly used in one focus area, such as RT-Flux-PIHM (Bao et al., 2017; 
Zhi et al., 2022) and HydroGeoSphere (Aquanty, 2018), they are 
beginning to see use in other applications as these advances become 
more established. 

4. Conclusions 

Numerical models in hydrology have advanced significantly in 
recent decades, from simplistic models of one process and component of 
the hydrologic cycle, to advanced models integrating across several 
processes and components. There are a wide variety of models and 
model combinations under development that provide the diversity of 
frameworks needed to cover the wide range of environments and ap-
plications to which they are applied. Consistent with this, continued 
model development should seek to not converge upon one modeling 
approach or framework, but remain diverse to meet the needs across the 
spectrum of users, sites, and objectives. The challenges currently faced 
in model development, some of which were discussed here, also present 
opportunities to continue diverse model development through the pur-
suit of different paths to overcome the challenges. We encourage taking 
this diverse approach to model advancement across three main com-
ponents of development: model, data, and platform (Fig. 3). 

To advance our understanding of the processes and systems included 
in each model it is important to investigate them using many different 
modeling approaches. This includes the processes included in the 
modeling framework (Model development in Fig. 3), and the approach 
of the model itself, whether that is deterministic, statistical, etc. Much 
like the integration of different processes within one model framework, 
we also believe that the recent advances integrating different ap-
proaches (e.g.,Tsai et al., 2021) are an ideal path forwards towards not 
only improving our understanding of the inherently complex systems we 
seek to represent, but also improving the efficiency of the models 
themselves. 

As we increase the processes and approaches used in integrated hy-
drologic models, the data required to parameterize and calibrate them 
also changes. In addition, recent advances in sensor technology provide 
an opportunity to use non-traditional data and data types in our model 
design and development. This requires continued advancements in our 
data assimilation methods to integrate these new data types into 
modeling frameworks. Research has demonstrated that the careful 
integration of different data, in-situ and remotely sensed products, into 
our modeling development provides significant improvements in model 
skill (Stisen et al., 2011; Tang et al., 2019), and we believe that there is 
significant potential to improve them further. 

Computational resources and platforms used for integrated hydro-
logic models continue to advance and evolve. The accessibility of these 
resources, from cloud to high performance and quantum computing, 
provides opportunities across the spectrum of model users. For example, 
for educational and training purposes, web-based models can be used to 
allow users to modify model scenarios and experiment with the model 
and results, yet are readily accessible and can be easy to use. Conversely, 
while high-performance computing systems are not readily available 
and accessible to most users, the large-scale, complex models developed 
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for research purposes are often best developed using these platforms for 
efficiency. Developing a diversity of modeling frameworks that operate 
across the spectrum of computational resources will help advance hy-
drologic sciences for all users. 

We feel inclusion and diversity is the future of integrated hydrologic 
modeling – not only in developing new modeling frameworks, but also 
in the developers and users of these models. There is room for a multi-
tude of modeling frameworks, including those not currently in use in 
hydrologic science, and by diversifying the model, data and computa-
tional platforms we are allowing for the greatest opportunities for 
advancement in hydrologic modeling. 
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