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SUMMARY

A fundamental goal in plant microbiome research is to determine the relative impacts of host and environ­
mental effects on root microbiota composition, particularly how host genotype impacts bacterial community 
composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host 
genetic diversity and grow plants outside of their native ranges, making the associations between host and 
microbes difficult to interpret. Here, we characterized the root microbiota of a large diversity panel of switch- 
grass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, 
composed of 1,961 samples, suggest that field location is the primary determinant of microbiome composi­
tion; however, substantial heritable variation is widespread across bacterial taxa, especially those in the 
Sphingomonadaceae family. Despite diverse compositions, relatively few highly prevalent taxa make up 
the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local geno­
types preferentially recruit/filter for local microbes, supporting the idea of affinity between local plants and 
their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 micro­
bial strains and found an enrichment of genes involved in immune responses, signaling pathways, and sec­
ondary metabolism. We found loci associated with over half of the core microbiota (i.e., microbes in >80% of 
samples), regardless of field location. Finally, we show a genetic relationship between a basal plant immunity 
pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manip­
ulating beneficial microbial associations via host genetics.

INTRODUCTION

Root-associated microbes are known to boost host plant pro­
ductivity and fitness through increasing nutrient accessibility,1 
manipulating plant growth and development pathways,2 and 
antagonizing pathogen colonization.3 Recent insight into the 
composition, ecology, and functional importance of the plant 
microbiome has greatly increased interest in the potential to 
harness root microbiota to sustainably increase crop resilience 
and yield. Microbial inoculants have historically been discussed 
to achieve this goal, but more recent calls for using plant 
breeding to enrich beneficial bacteria from the existing soil mi­
crobiota have begun to emerge. A roadblock hampering this 
effort is a lack of understanding about which microbes can 
respond to breeding practices, whether breeding can instill 
consistent effects on microbial assemblages across differing en­
vironments, and which genes and pathways from the host can be 
adjusted to modify microbiomes.

Plant root bacterial microbiomes are derived from soil-borne 
communities, for which membership is largely driven by environ­
mental factors such as soil type, geography and climate,4,5 land 
use history,6 and seasonal variation.7-9 The host plant exerts 
additional influence over its microbiota, resulting in filtered 
subsets of soil microbiota often composed of consistently en­
riched microbial taxa on and inside root tissue (summarized by 
the two-step selection model10). Given that microbiota can 
impact plant health,6,11 especially under varying environmental 
conditions,12 15 it follows that the filtering process may be under 
selection and lead to microbe-mediated local adaptation.16

Heritable variation is required for a trait to respond to selec­
tion. Indeed, several studies suggest that rhizosphere and root 
microbiota vary by host genotype.17 22 These studies indicate 
the possibility of enriching for beneficial microbial associations 
through breeding. A challenge, however, is that most of these 
studies include only a few host genotypes and/or grow host 
plants outside of their native ranges, making the role of host
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Figure 1. Field site is the primary determi­
nant of switchgrass root microbiota 
composition
(A) Principal coordinate analysis based on Bray- 
Curtis dissimilarities. Inset: map of field loca­
tions, colors match those in the figure legend.
(B) Relative abundance of phyla and Proteo- 
bacterial classes in every sample at each site.
(C) Effect sizes for site, host subpopulation, and 
subpopulation x site for ASVs in dataset, broken 
down by phylum/class.
(D) Number of ASVs with significant contrasts from 
the models displayed (C).
(E) Prevalence/abundance curves for each field 
site. Each point represents a single ASV and the 
black dashed line is the 80% prevalence threshold 
used to call core taxa.
(F) Venn diagram displaying overlaps of core 
microbiota from each site.
(G) Fraction of reads belonging to the core 
microbiota (colored boxes) and the study-wide 
core microbiota (92 overlapping microbes from F, 
gray boxes).
See also Figures S1 and S2 and Data S1.

genetics in root-microbe interactions difficult to interpret. 
Furthermore, given our relatively recent understanding that 
features of the microbiome are heritable,23-25 genomic loci un­
derlying root-associated microbiome composition are still 
largely uncharacterized. There are notable exceptions, however, 
Deng et al. used the Sorghum Association Panel to uncover loci 
impacting rhizosphere community composition.26 Bergelson 
et al. performed GWAS on Arabidopsis root (and leaf) micro­
biome community metrics, including richness and principal co­
ordinates based upon community dissimilarity.27 Uncovering 
the effects of host genetics on microbiomes across multiple 
native environments remains incomplete, but these studies pro­
vide exciting avenues to leverage host genetics to enrich for 
beneficial properties of the microbiome.

Switchgrass (Panicum virgatum) is a wild C4 perennial prairie 
grass native to North America and has been promoted as a po­
tential biofuel crop due to its biomass yield potential when 
grown in marginal soil. Its biological features and environmental 
and economic impact have made switchgrass a popular model 
to investigate root-associated microbiota assembly.28,29 Su­
therland et al. used a panel of switchgrass genotypes grown 
in a single location in the northeast United States to uncover 
the role of host genotype on rhizosphere bacterial assem­
blages.30 This study used GWAS to uncover putative loci 
affecting the abundance of several bacterial families in the 
rhizosphere and found gene ontology (GO) enrichments for 
diverse sets of functions. Still, relatively little is known about 
how host genetics drive tightly adhering or endophytic root- 
associated bacterial communities.

In this study we addressed the following questions. (1) What 
bacteria are prominent members of the switchgrass-root-asso- 
ciated microbiome when plants are grown across their natural 
range? (2) How does the effect of host genotype compare with

that of the environment when determining the composition of 
root-associated bacterial microbiota? (3) Which microbial line­
ages show heritable variation in roots and is heritability consis­
tent across field sites? (4) Which host genomic loci impact the 
abundance of root-associated bacteria? (5) Does microbial 
abundance show patterns of association with variation in host 
immune response? Answering these questions will bring us 
closer to harnessing and manipulating beneficial microbial asso­
ciations via host genetics.

RESULTS

Field site is a primary determinant of switchgrass root 
microbiota composition
We used a diversity panel of fully resequenced switchgrass 
(Panicum virgatum, see STAR Methods) natural accessions 
that were clonally replicated and grown in field sites at Austin, 
TX, Columbia, MO; and Kellogg Biological Research Station, 
Ml (from here on referred to as ATX, CMO, and KMI, respectively; 
Figure 1A, map inset) to uncover the role of environmental varia­
tion and host genetics in shaping root microbiota composition. 
The field sites are geographically and climatically distinct,31,32 
with soils that differ in physical and chemical properties (Data 
S1A). These plants had been established for 2 years and show 
signatures of local adaptation including differential survivorship 
and biomass accumulation across gardens as well as genetic 
loci associated with environmental variables.33,34 We first inves­
tigated the effect of field site on root bacterial microbiota. 
Principal coordinate analysis (RCA) of root and soil microbiomes 
revealed three site-specific clusters (Figures 1A and S1) and the 
significance of this observation was confirmed by perMANOVA 
(R2 = 0.51, p < 0.001). Although the communities showed large 
differences between field sites at the amplicon sequence variant
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(ASV) level, we found that phylum level relative abundances were 
largely consistent between sites (Figure 1B). Actinobacteria and 
Proteobacteria (namely alpha and gamma Proteobacteria) were 
the dominant phyla associated with switchgrass roots at every 
site, which is consistent with most other terrestrial plant micro­
biota studies.17-19,21

A recent population genomic study of switchgrass found that 
tetraploid switchgrass can be broadly classified into three ge­
netic subpopulations: Gulf, Midwest, and Atlantic.33 The ranges 
for these subpopulations are largely distinct, with Gulf occupying 
habitats in the southern US, Atlantic occupying the Atlantic 
coast, and Midwest spread across northern latitudes. We 
compared the effect of field site, host subpopulation, and their 
interaction using linear models run on bacteria present in 
> 50% of the samples study-wide. The effect of field site was 
much larger than the secondary effects of host subpopulation 
and subpopulation x site interactions (Figure 1C). We then 
compared the variance explained by site between bacterial 
phyla/classes to better understand how experimental factors 
impact broader taxonomic groupings. Effect sizes were largely 
consistent between phyla and Proteobacteria classes, except 
for Chloroflexi and Actinobacteria, which showed larger effect 
sizes than Deltaproteobacteria (p < 0.05, Tukey’s post hoc 
test; Figure 1D). The large influence of field site on ASV relative 
abundance was also visible in the number of ASVs, which ex­
hibited significant differences in relative abundance across field 
sites (Figure 1D).

We next evaluated the relationship between ASV prevalence 
(i.e., the proportion of samples for which a given ASV is de­
tected) and mean relative abundance at each site (Figure 1E). 
Our study used an atypically high depth of sequencing 
(>250,000 reads per library on average; Figure S1C), which 
gave us greater confidence in assessing presence/absence of 
microbes in samples. We found that ASVs with greater relative 
abundances were also present in a higher proportion of root mi­
crobiomes. We next defined site-specific core microbiota; to be 
consistent with other studies, we used a threshold of 80% prev­
alence.17 ATX had the most ASVs passing this prevalence 
threshold (Figures 1F and S1D); we expected this, because 
we sequenced ATX samples at greater sequencing depths 
than the other two sites (Figure S2; see STAR Methods). Still, 
we found that each site hosted overlapping core microbiota: 
for all three sites, an overlap of 92 core microbes was found 
(from here on referred to as the study-wide core). CMO and 
KM I shared the most ASVs. The site-specific core microbiota 
typically comprised ~60%-70% of the total microbial popula­
tion (Figure 1G, colored boxplots; Figure S3B) within each 
respective site, while the study-wide core microbiota made up 
~25% of the total population (Figure 1G, gray boxplots; Fig­
ure S3B). We compared the relative abundance of the study­
wide core microbiota in roots versus soil. In each site, over 
half of the ASVs showed significant enrichment in the roots 
compared with soil, while a smaller set of ASVs were enriched 
in soil (Figure S2A). The root-enriched ASVs largely overlapped 
between sites, with 46 ASVs showing significant root-enrich­
ment at every site (Figure S2B). Thus, though field site acts as 
the primary determinant of switchgrass-root-associated micro­
biota composition, large proportions of switchgrass root bacte­
rial microbiome are shared between locations.

C* CelPress
OPEN ACCESS

Evidence of affinity between host genotypes and local 
microbiota
Our analyses revealed that host subpopulation and subpopula­
tion by location interactions are determinants of microbiota 
composition (Figures 1C and 1D). Because the three switchgrass 
subpopulations are largely constrained to distinct geographic re­
gions (Figure 2A), we hypothesized that plants grown in gardens 
within their subpopulation’s native range would show affinity for 
the microbes that persist and are abundant within these ranges. 
If this were true, then we would expect, at each site, that more 
ASVs would show preferential colonization of individuals in the 
subpopulation grown in its native range than in the other two 
subpopulations. To test this, we used linear models to analyze 
the abundance of ASVs within each site and contrasted the 
abundances between the different subpopulations. We defined 
a specific association as occurring if the relative abundance of 
an ASV was significantly greater in one subpopulation compared 
with the other two. Gulf plants in their native ATX site had the 
most specific associations, while Midwest plants enriched the 
most ASVs in native CMO and KM I sites (Figure 2B; Data S1B), 
supporting the notion that subpopulations enrich more microbes 
in their native habitats. Furthermore, we found the ASVs with 
subpopulation-specific associations tended to have significantly 
greater prevalence (Figure 2C), but only for subpopulations 
growing within their native range. We compared the relative 
abundance of subpopulation-enriched ASVs with their relative 
abundance in the soil. In general, we found that microbes 
showing enrichment in genetic subpopulations had greater 
abundance in roots (Figure S2C). There were notable exceptions 
to this trend: Gulf-specific microbes in ATX tended to show 
greater relative abundance in soil than roots (46 soil-enriched 
vs. 21). In the KM I site, 7 Midwest-enriched microbes were en­
riched in soil vs. 16 in roots. These comparisons suggest that 
there is preferential sorting of local microbiota onto locally adapt­
ed plant genotypes, especially for highly prevalent microbes.

Switchgrass root microbiota show widespread heritable 
variation and genotype by environment interactions
We next used a kinship matrix denoting finer genetic relation­
ships among individuals of the diversity panel to model how 
host genetic variation contributes to variation in microbe abun­
dance. We used a suite of linear mixed effects models to partition 
additive genetic variance in microbial abundance (V*) using the 
host population genetic relationship matrix and tested how VA 
differs across the three environments (VGxE) with a compound 
symmetry model. Because microbiomes can be defined and 
analyzed at various taxonomic levels by aggregating counts at 
nodes of the bacterial phylogenetic tree, we tested the effect 
of host genotype on the relative abundance of taxa at various 
taxonomic levels. Across each taxonomic level, both VGxe and 
VA significantly explained variation in microbial abundance (Fig­
ure 3A; Data S1C). For microbial features within the top 10th 
percentile for VA and VGxE, we found generally increasing esti­
mates for VA and decreasing estimates for VGxE from phylum 
to ASV (Figure 3B). We next asked whether taxonomic groupings 
of microbes at the ASV level were more likely to be under the in­
fluence of host genetics. Significant, non-zero VA and VGxE were 
widespread across the microbial phylogeny, however, specific 
orders were overrepresented in the data (Figure 3C). Each tested
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Figure 2. Plants show evidence of affinity to local bacterial strains
(A) Map depicting locations where individuals within the population were 
collected. Colors represent their subpopulation memberships. Field sites are 
depicted with their three-letter abbreviations. ATX, Austin, TX; CMC, 
Columbia, MO; KMI, KBS, Ml.
(B) Proportion of ASVs showing specific enrichments in one subpopulation 
compared with the other two by site.
(C) Histograms of prevalence showing specific enrichments by subpopulation 
and site, p values represent the significance of the mean prevalence being 
greater than that of the background distribution. This was calculated by 
randomly drawing the number of enriched ASVs from the background distri­
bution and asking how often we saw a mean prevalence greater than that of 
the focal set. See also Figure S2 and Data S1B.

ASV within the orders Sphingomonadales, subgroup 6 (Acido- 
bacteria), Gammaproteobacteria Incertae Sedis displayed sig­
nificant non-zero VA or VGxE. In general, across microbial taxa,

VGxE was greater than VA (Figure 3D). The prominence of GxE 
suggested that the magnitude of VA differed between locations. 
To better understand the contribution of VA within each site, we 
fit an unstructured model to ASVs that allowed for site-specific 
VA and as many unique covariances as site combinations. We 
applied these models to ASVs with prevalence >80% in at least 
two field sites (Figure 3E), finding similar trends to the compound 
symmetry model (Figure S3A). When analyzing the study-wide 
core microbiota, we found 95 instances of significant site-spe­
cific VA spread across 64 unique ASVs (Data S1C). CMO had 
the most ASVs displaying significant VA (n = 38) while KMI had 
the least (n = 24). We also tested whether there was a genetic as­
sociation between the abundance of an ASV across multiple 
sites by focusing on the genetic covariance of root-associated 
microbial traits across sites. Genetic covariances were mainly 
positive (Figure S3B), and site comparison had a significant ef­
fect on covariance strength (p = 0.005, ANOVA). C MO/KM I co- 
variances were significantly greater than those from ATX/KM I 
(adjusted p = 0.006, Tukey’s post hoc test), but not ATX/CMO 
(p > 0.05, Tukey’s post hoc test). We tested for ASVs that 
showed significant genetic covariance between sites and found 
78 total significant estimates spread across 59 unique ASVs. 
Like the aggregate genetic covariance distributions, we found 
the most cases of significant genetic covariance between 
C MO/KM I, while CMO/ATX and KMO/ATX had equal instances 
of significant estimates (Figure 3C). Together, these results indi­
cate that the host genetics play a significant role in modulating an 
extensive phylogenetic diversity of root-associated microbiota.

GWAS reveals microbiota assembly is a complex trait 
with extensive pleiotropy
We next asked whether host genomic regions responsible for 
heritable variation in associated bacteria could be localized 
using a GWAS framework. We first performed GWAS on commu­
nity composition using the first three principal coordinates for 
each site (Figure S4). Significant associations between SNPs 
and community composition were detected for each site. To bet­
ter understand how host allelic variation influences individual mi­
crobes, we extended our analysis to perform GWAS on each 
ASV x site combination, resulting in 1,019 independent ana­
lyses. We found 1,153 SNPs associated with 459 ASV x site 
combinations. Most ASVs with significant SNP associations 
were from the ATX site (253 ASVs), while CMO and KMI had 
similar numbers of ASVs with associated SNPs (101 and 105 
ASVs, respectively). Taxa with associated SNPs were diverse, 
but no bacterial orders were overrepresented (Figures 4A-4C). 
Most ASVs with associated SNPs were specific to field sites; 
however, of the 179 ASVs that were tested in multiple sites, 
50 showed associations across multiple field sites, with 9 
showing associations across all three sites (Figure S5D). In line 
with our heritability analysis, bacteria within Sphingomonada- 
ceae featured prominently among ASVs, with GWAS hits across 
multiple sites: 7 of the 10 ASVs within this family showed hits 
across 2 or more sites, and 2 Sphingobium ASVs had at least 
one significantly associated SNP at all three sites (Figure S5D).

We next asked whether any host genomic loci affected multi­
ple microbial taxa (i.e., had statistically pleiotropic effects on 
microbiota, from here on referred to as pleiotropic loci) by 
compiling the 0.5% tail of 25 kb genomic bins into a quantitative
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Figure 3. Switchgrass root microbiota show widespread heritability, which is influenced by field site differences
(A) Variance components for aggregated abundances of different taxonomic levels and for ASVs. VA is the additive genetic variance while VGxE is the variance 
attributable to genotype by environment interactions.
(B) The relationship between genetic variance components and microbial taxonomic rank.
(C) The number of ASVs showing either significant GxE, VA, or no association to host genotype.
(D) Comparison of the magnitude of VA vs. GxE is presented as the log fold change in the ratio of VA to GxE for measured units within each taxonomic level.
(E) VA estimates for the study-wide core microbiota. The size of the circles indicates the magnitude of estimated VA and dark perimeters of the circles indicate a 
significant association (FDR < 0.1).
See also Figure S3 and Data S1C.

trait locus (QTL) x ASV matrix for each site (Figure 4; see STAR 
Methods). We first investigated the most commonly observed 25 
kb genomic bins for each site by selecting the top 5 loci associ­
ated with the most ASVs within each site (ATX = 38-45 ASVs;

CMO = 18-23 ASVs; KM I = 19-25 ASVs, Data S1D). Two 
pleiotropic loci overlapped with loci detected from our initial 
GWAS on community metrics (Figure S4; CMO:Chr01N and 
ATX:Chr02K), indicating that while some pleiotropic loci account
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Figure 4. Pleiotropic loci influencing root microbiota
(A) Number of ASVs detected in the 0.5% tails of the ASV x site GWAS p value distributions. The top 5 most frequently observed genomic bins for each site are 
highlighted in site-specific colors.
(B) Candidate genes underlying the pleiotropic loci and their expression pattern in switchgrass roots and shoots. V1-V3 represent phenological stages of the 
plant, and red boxes around expression values represent genes differentially expressed between roots and shoots (FDR < 0.05).
(C) Taxonomic breakdown of ASVs affected by putatively pleiotropic loci.
(D) Comparison of QTL similarity (1 - Jaccard dissimilarity) and ASV sequence similarity.
See also Figures S4-S6 and Data S1.

for larger trends in community composition, most identify 
variation not seen along the first three axes of community 
composition.

To better characterize the candidate genes underlying these 
loci, we next compiled expression patterns for genes within 
these intervals (Figure 4B). Most loci contained genes displaying 
higher expression patterns in switchgrass roots than shoots, 
implicating promising candidate genes affecting multiple micro­
biota members. These included several proteins involved in cal­
cium signaling, immunity, and secondary cell-wall biosynthesis. 
The microbes associated with pleiotropic loci were taxonomi- 
cally diverse, with multiple bacterial phyla affected by each lo­
cus. In general, the additive effects of the QTL were largely 
consistent in sign across the different ASVs. This observation 
was also reflected in the taxa being affected by the loci: several 
loci show patterns where the relative abundances of Acti nobac­
teria, Chloroflexi, or Alphaproteobacteria ASVs had consistent 
effect signs (Figure 4C). This observation led us to the hypothesis 
that there may be an association between the QTL landscape 
and phylogenetic relationship for pairs of microbes. We found 
a positive and significant association between the sequence 
similarity of ASVs and their associated QTL (Figure 4D). This as­
sociation differed weakly but significantly between sites, with 
ATX showing a weaker correlation than CMO or KM I (p = 0.06 
and 0.0015, respectively). Each site had a closely related ASV 
pair, which stood out in terms of shared QTLs. These included 
two Sphingobium ASVs in ATX, Bacillus in CMO, and Acidibacter 
in KMI. Together, these results indicate that host genomic

variation can have pleiotropic effects on microbiota and that 
the abundances of related microbes are more likely to be 
affected by the same host loci.

The discovered pleiotropic loci included several promising 
candidate genes, but to have a more robust understanding of 
the functional categories influencing switchgrass-root-associ- 
ated microbiota, we performed GO enrichments for annotated 
genes underlying the ASV x QTL matrix (Figure S6). We found 
that 789 of the ASV x site combinations displayed at least one 
significant GO enrichment. The most commonly observed GO 
term enrichments showed overlapping as well as contrasting 
patterns between sites (Figure S6). For example, the terms 
“response to biotic stimulus,” “response to auxin,” “negative 
regulation of growth,” and “sucrose biosynthesis” were 
observed in multiple ASVs across every site, while “defense 
response,” “prophenate biosynthetic process,” and “carbohy­
drate binding” showed more site-specific patterns. These 
results indicate that variation in host molecular pathways can 
influence the abundance of microbiota members and that 
some pathways are putatively dependent on environmental 
conditions.

To better understand the contribution of loci independent of 
field site, we subsetted our scans to ASVs in the study-wide 
core microbiota, joining p values generated during GWAS for a 
single ASV across each field site using Fisher’s method, a prac­
tice commonly used in meta-analyses to identify statistical tests 
with repeatable signals across multiple trials. A total of 239 SNPs 
passed a p value threshold of 5 x 1CT8, revealing that 44 out of

6 Current Biology 33, 1-13, May 22, 2023



Please cite this article in press as: Edwards et al., Genetic determinants of switchgrass-root-associated microbiota in field sites spanning its natural 
range, Current Biology (2023), https://doi.Org/10.1016/j.cub.2023.03.078

Current Biology
Article

CelPress
OPEN ACCESS

10

a) 8

1
CL

1K 1N 2K 2N 3K 3N 4K 4N 5K 5N 6K 6N 7K 7N 8K 8N 9K 9N
B Nutrient reservoir activity (00:0045735) 

Nutrient reservoir activity (GO:0045735) 
Protein kinase binding (00:0019901) 

Isomerase activity (00:0016853) 
Carbon-nitrogen ligase activity (00:0016884) 

Mitochondrial pyruvate transmembrane transport (GO:0006850) 
Carbonate dehydratase activity (GO:0004089) 

Malate transport (00:0015743) 
Metal ion transport (00:0030001) 

Hydrolase activity, acting on ester bonds (00:0016788) 
Galactoside 2-alpha-L-fucosyltransferase activity (00:0008107) 

Cell wall biogenesis (00:0042546) 
Molybdenum ion binding (00:0030151) 

Cysteine-type endopeptidase inhibitor activity (GO:0004869) 
Leukotriene biosynthetic process (00:0019370) 

Carbohydrate binding (00:0030246) 
Ubiquitin-protein transferase activity (GO:0004842) 

Response to pheromone (00:0019236) 
Poly(A)+ mRNA export from nucleus (00:0016973)

ASV1014 Chitinophagaceae 
ASV191 Rubrivivax 
ASV222 Sphingobium
ASV128
ASV69 Unassigned 
ASV53 Acidibacter 
ASV66 Phytohabitans 
ASV198
ASV13 Unassigned 
ASV323 Burkholderiaceae 
ASV53 Acidibacter 
ASV53 Acidibacter 
ASV191 Rubrivivax 
ASV353
ASV753 Arenimonas 
ASV286 Chitinophagaceae
ASV185 
ASV1 Mitsuaria 
ASV135 Steroidobacter

0 2 4
-Iog10(p)

Phylum / Class
•Acidobacteria
•Actinobacteria
• Bacteroidetes 

Chloroflexi
• a-proteobacteria
• 5-proteobacteria 
•Y-proteobacteria

Verrucomicrobia 
e Other

6

Figure 5. GWAS reveals loci associated with study-wide core switchgrass root microbiota
(A) Manhattan plot showing the association between SNPs and abundances of study-wide core ASVs. p values are derived from combining p values using 
Fisher’s method. Peaks are colored by the phylum/class of the ASV.
(B) The most strongly enriched gene ontology (GO) terms within the core ASV GWAS tails.
See also Data S1.

92 study-wide core ASVs had a significant association 
(Figures 5A and S5D; Data S1E). More than half of the ASVs 
with significant associations (23/44) showed significant GWAS 
hits across multiple sites (Figures 5A and S5D). Some ASVs 
with combined p values passing this genome-wide threshold 
did not display any significant associations in the ASV x site 
GWAS analyses. For example, ASV6, a highly abundant Bradyr- 
hozobium strain, displayed two significant peaks when p values 
were combined that were not present during the initial site by 
ASV GWAS (Figure S5D). We calculated the amount of variance 
explained by significant loci using a multi-QTL model. Our results 
indicate that SNPs explained 1,2%-24% of the observed pheno­
typic variance, with a mean of 5.5% (Data S1F). These results 
indicate that leveraging multi-site GWAS by combining p values 
can identify loci impacting the study-wide core microbiota and 
that the variance explained through SNPs on phenotypic varia­
tion is in line with the results reported in an earlier study in 
Arabidopsis.35

We explored the functional enrichments of combined p value 
GWAS scans from the study-wide core microbiota (Figure 5B). 
We identified 76 distinct GO terms enriched across 48 ASVs, 
some of which have a priori implications in microbiome

assembly. For example, malate transport and cell-wall biogen­
esis were among the most frequently enriched terms. Malate is 
a prominent root exudate involved in shaping rhizospheric mi­
crobiome composition,36 and cell walls form physical barriers 
as well as energy sources for microbes.37 This analysis revealed 
that although observations of loci associated with the abun­
dance of various microbes is environmentally dependent, 
some loci can be implicated across multiple environments and 
the processes by which the host plant modulates core micro­
biota are diverse.

Pattern-triggered immunity responses genetically 
co-vary with root-associated microbiome composition
Plants surveil their biotic environment through perception of mi­
crobial associated molecular patterns (MAMPs), eliciting the 
activation of the pattern-triggered immunity (PTI) pathway. We 
hypothesized that loci responsible for the observed variation in 
PTI may overlap with host genetic variation controlling microbial 
abundance. To test this hypothesis, we measure reactive oxygen 
species (ROS) burst in response to the elicitor flg22 in the switch- 
grass diversity panel. Flg22 elicited a range of ROS burst profiles 
in the population, while mock treated samples did not display the
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Figure 6. ASV abundances co-vary with 
pattern-triggered immune responses
(A) Response curves for the switchgrass population 
planted at the ATX site for treatment with 1 nM Flg22.
(B) Response curves for mock inoculated plants.
(C) Narrow-sense herilability estimates for the three 
PC axes of PTI response variation. Bars represent 
standard error estimates.
(D) The 5% and 95% percent tails of the first three PC 
axes of PTI response variation.
(E) Microbial Manhattan plot displaying the p values 
for the covariances between ASV relative abundance 
and the PC axes of PTI variation. Colored circles 
represent ASVs passing a Bonferroni threshold of 
0.05.

ASVs, while PC1 had a similar amount of 
positive and negative covariances (Fig­
ure 6D). These results indicate that bacte­
rial microbiota show positive and negative 
genetic correlations with PTI responsive­
ness and that associations between these 
traits are not phylogenetically limited.
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typical response curve of treated plants (Figure 6A). We con­
verted the time series into principal components to better under­
stand the different modes of variation displayed across treated 
samples. The tails of the PC axes were informative of the type 
of variation observed in the population (Figure 6B): PC1 best ex­
plained the magnitude of response; PC2 separated plants with 
acute vs. gradual responses; and PCS showed a timing differ­
ence of peak ROS burst. All three axes showed significant nar­
row-sense heritability (b2), ranging from 0.48 to 0.38 (Figure 6C). 
These results indicate that switchgrass genotypes significantly 
vary in their response to the PTI elicitor flg22.

We next calculated the genetic covariances for the PTI PC 
axes against the relative abundance of ATX-specific core mi­
crobes. We found significant genetic covariances across each 
PTI axis: in total 126/739 ASVs showed significant genetic co- 
variances with PTI axes (Bonferroni p < 0.05, Figure 6D). PTI 
PC1 had the most associations and PC2 had the least. PTI 
PCs 2 and 3 predominantly had negative covariances with

Here, we have used natural switchgrass 
accessions growing in common gardens 
spanning its native range to evaluate 
the contribution of environment and host 
genotype on root-associated bacterial 
assemblages. A similar study using a 
separate switchgrass population at a sin­
gle site also found a significant effect of 
host genotype on rhizosphere microbiome 
assembly.30 While our studies analyzed 
the microbiomes of different root compart­
ments, there was notable overlap in re­
sults. For example, both studies identified 
microbes within Sphingomonadaceae as 
heritable members of the switchgrass mi­

crobiome. A key finding of our study was that relative abun­
dances of bacteria were strongly influenced by the interaction 
of host genetic variation and field site (Figures 2 and 3). Further, 
we found that there were affinities between genotypes growing 
in their home environments and the local microbiota (Figure 2B). 
Interestingly, microbes with specific enrichments to local geno­
types consistently had higher prevalence than expected (Fig­
ure 2C). A potential explanation is that genotypes grown in their 
subpopulation’s range, as opposed to genotypes grown outside 
of their subpopulation’s range, are more in sync with their native 
climates, photoperiods, and soil properties. This, in turn, may 
reduce host stress38 and culminate in the acquisition of consis­
tent microbiota. Alternatively, these results could be explained 
by a co-evolutionary framework, where the host and microbes 
impose reciprocal selection that leads to evolutionary change 
in both the host and the microbiome.24 However, given the 
stochastic dispersal of soil microbes,39 a more likely explanation 
is one-sided evolution, where the local microbe population
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imposes selection and evolution on the host population, rather 
than the host imposing selection on the microbial popula­
tions.24,40 The elevated prevalence of enriched microbes may 
equate to more chances for interaction and acts to exert stronger 
selection on hosts (Figure 2C). Another display of GxE was that 
ASVs rarely showed heritable variation across every site. While 
GxE for microbial community composition is often complex in 
these types of studies, the fundamental “disease triangle” 
framework from the plant pathology field41 is useful when 
considering host-microbe associations, regardless of pathogen­
esis. This theory dictates that, for disease to occur, a susceptible 
host genotype, virulent pathogen, and favorable environmental 
condition must co-exist. Each of the three points of the triangle 
can be explored further to explain GxE in root microbiota assem­
blages. We discuss these three points in the context of our study 
below.

First, environmental variation occurs in biotic and abiotic com­
ponents, which are not mutually exclusive. Our results indicate 
that the environment greatly influences the composition of root 
microbiota (Figure 1A). The three field sites differ in their man­
agement and soil chemical and physical properties (DataSIA), 
factors likely contributing to soil microbiome variation.6 The 
CMO and KM I sites are converted prairie and forest, respec­
tively, and cultivate crops either agriculturally or experimentally. 
The ATX field site is located on a campus with no known history 
of agricultural cultivation. Furthermore, climate patterns differ 
between the sites, CMO and KM I having more similar patterns.32 
Differing conditions may promote growth of certain taxa, which 
may ultimately influence the abundance of other microbes.

The microbial component of the disease triangle states that a 
virulent form of the pathogen must be present to infect a host and 
initiate disease. Implicit to this point is that genetic variation ex­
ists for microbes in addition to hosts. We could not examine ge­
netic variation of individual ASVs in our study because detection 
and abundance of taxa was based on a single gene, which is 
insufficient to explore bacterial strain level variation. ASVs in a 
site are under selective pressure by the local environment.42 
Therefore, an ASV detected at one site can have distinct poly­
morphisms with adaptive consequences compared with the 
same ASV at a different field site. Even within sites, ASVs can 
be composed of multiple microbial lineages,43 some of which 
convey distinct phenotypes to the host.44 Genetic polymor­
phisms within an ASV group may preclude the microbe from fall­
ing under the genetic influence of the host, explaining why we 
detect significant heritability for the same ASV in some sites 
but not others. Nevertheless, we identified ASVs where 
combined p values generated from site-specific GWAS helped 
to uncover loci consistently associated with their abundance. 
This was the case for half of the study-wide core microbiome, 
suggesting that the modulation of ASVs through shared mecha­
nisms across field sites is relatively common, yet may not have 
effects passing a threshold in single ASV x site GWAS. A poten­
tial method to study GxE with host-associated microbiomes is 
through the construction of synthetic communities, which offers 
an ecologically relevant, yet controlled system for plants and mi­
crobes to interact while experiencing an experimental environ­
ment change.45

Finally, the third point of the disease triangle stipulates that a 
host plant must be susceptible to infection for pathogenesis to

C* CelPress
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occur. In our case, this equates to host accessions being 
compatible for colonization by the local ASV. Susceptibility or 
compatibility is likely dependent upon both biotic and abiotic 
environmental conditions. That is, habitat variation and microbial 
community variation between sites may activate or repress the 
expression of the allelic variants responsible for regulation of mi­
crobial colonization. For example, increased temperature atten­
uates effector-triggered immunity in Arabidopsis, increasing 
susceptibility to Pseudomonas syringae.46 Xin et al. demonstrate 
that elevated humidity can greatly influence the pathogenesis of 
Pseudomonas syringae, but in a host-genotype-dependent 
manner.13 In addition, given that the microbiomes vary substan­
tially between sites, the biotic component of the environment 
may contribute to expression differences between allelic vari­
ants, thus leading to differential enrichment of metabolic, immu­
nity, and developmental pathways.25,47 One fascinating possibil­
ity is that microbes that subvert plant immunity may ultimately 
serve as keystone taxa46 50 by dampening the immune 
response, allowing other microbiota to side-step the host im­
mune system. Given that the biotic environment largely varies 
between sites, contrasting keystone taxa may exert alternative 
effects on different genotypes.

Genetic architecture of host-microbiome interactions in 
roots
We identified regions of the host genome associated with the 
abundance of study-wide core taxa. In addition, our results 
indicate that associated SNPs passing a genome-wide 
threshold are rarely shared across multiple ASVs, yet the tails 
of GWAS p value distributions contain commonly associated 
loci. This suggests that loci with the largest effects on any 
ASVs abundance are specific to that microbe, while loci with 
smaller effects are shared between ASVs. Together, these re­
sults indicate that microbiome assembly is a complex trait, 
given that the microbiome constitutes a consortium of interde­
pendent bacteria, that many significant loci with small effect 
sizes were identified associated with these microbes’ abun­
dances (Figure 5A; Data S1F), and that many GO term enrich­
ments were uncovered associated with these loci (Figures SB 
and S6). The latter of these two observations were also re­
ported by Sutherland et al.30 These results suggest that many 
genes and processes contribute relatively small effects to influ­
ence the relative abundance for various ASVs.

A difficulty in presenting these data is their complexity and the 
plethora of uncovered candidate genes putatively involved in mi­
crobiota assembly. We therefore focused on loci impacting the 
most members of the microbiome (i.e., pleiotropic loci; Figure 4). 
Several compelling candidate genes were identified among the 
commonly associated loci, which showed enriched expression 
in roots. Among these were a cellulose synthase subunit, 
whose ortholog in Arabidopsis is involved in secondary cell- 
wall synthesis and has been reported to influence resistance to 
soil-borne bacterial pathogens in a defense-hormone-indepen- 
dent manner.51 We also identified two root-expressed candidate 
nucleotide-binding leucine rich repeat proteins (NLRs) showing 
associations to multiple ASVs. NLRs are important sensors 
involved in effector-triggered immunity and have been impli­
cated in affecting both the sorghum and barley rhizosphere mi­
crobiota.26,52 Given the diversity of NLR genes within plant
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species (switchgrass has >1,500 annotated NLR genes) and the 
presence/absence variation between individuals within spe­
cies,53 an open question is how the repertoire of NLR genes 
shapes root-associated microbiota.

An association between PTI and root microbiota 
composition
Several of our analyses implicated physical and immune de­
fenses as modulators of microbiome composition. In our study, 
we investigated the role of plant genotype in explaining PTI vari­
ation using the elicitor flg22. Although flg22 is one of many 
known elicitors, it serves as a good proxy for PTI given that 
pattern recognition receptors share similar co-receptors, which 
funnel into similar pathways,54 and downstream transcriptional 
responses show strong overlaps.55 Much like a recent study in 
Arabidopsis that used seedling root growth inhibition as a proxy 
for PTI sensitivity, our results revealed strong heritable variation 
in PTI response within our population.56 Further, our analysis re­
vealed a link between the abundance of the ATX core microbiota 
and modes of PTI variation within our switchgrass diversity 
panel. Particularly strong associations, both negative and posi­
tive, were observed between the first axis of PTI variation (ROS 
burst magnitude) and a phylogenetically broad set of root-asso­
ciated microbes (Figure 6D). PTI canonically inhibits the entry of 
perceived pathogens,57 but our results suggest that it may also 
gate or limit the proliferation of commensal bacteria and their in­
teractors, at least for ASVs with negative genetic covariances. 
This result is in line with previous studies showing that the atten­
uation of PTI can lead to altered microbiota composition and 
even dysbiosis.58 Similarly, Arabidopsis plants with altered 
defense hormone production host atypical root microbiota, indi­
cating that immune signaling is an important modulator of micro­
biota assembly.59 On the other hand, we found ASVs with strong 
positive genetic covariance with PTI. These ASVs may (1) stimu­
late PTI sensitivity, such as in the case of induced systemic 
resistance; (2) escape the effects of PTI; or (3) benefit from the 
exclusion of PTI-sensitive microbes. Deciphering the role and 
mechanisms of the host immune system in regulating microbiota 
assembly processes and how the assembly of microbiota in turn 
modulates the host immune system is an active area of investi­
gation, with implications for the design of plant probiotics.60

Leveraging the microbiota via manipulation of host genetics to 
favor desirable outcomes on plant fitness or yield is a goal that is 
currently unrealized. By characterizing which microbes are 
responsive to plant genotype and the potential loci involved in 
host-microbiome interactions, the insights from this study may 
be of use for configuring associations between plants and mi­
crobes in the field.
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Raw sequencing reads for root associated 
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This paper Bioproject: PRJNA919067

Code used to analyze data This paper GitHub: https://github.com/bulksoil/VirgatumMicrobiomeGWAS
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Experimental models: Organisms/strains
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Materials availability
This study did not generate new unique reagents.

Data and code availability

• Raw sequencing data have been deposited at NCBI SRA and are publicly available as of the date of publication. Accession 
numbers are listed in the key resources table, under Bioproject PRJNA822373 and PRJNA919067

• All original code has been deposited at Github and is publicly available as of the date of publication. A link to the repository is 
listed in the key resources table, https://github.com/bulksoilA/irgatumMicrobiomeGWAS.

• Any additional information required to analyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Plants
The Panicum virgatum natural variation panel used in this study was originally described in Lovell et al.33 Details on field plot locations, 
geographic origin of accessions, subpopulation and ecotype classification, and genetic relatedness including SNR calls can be found 
in Lovell et al. Briefly, the diversity population was established by collecting seeds and rhizomes from natural as well as common 
garden resources and transported to Austin, TX where the accessions were clonally propagated. Switchgrass is an outcrossing 
perennial plant, hence individuals in the planting populations are clonally propagated ramets and it is not possible to raise identical 
plants from seed. The genomes for individuals within the population were resequenced and aligned to the reference genome AP13 to 
identify SNPs. Initial growth of plants and seedlings occurred in a mixture of Promix peat-based potting soil and calcined clay 
(Turface). Rhizome propagules were transplanted into 5-gallon pots containing finely ground pine-bark mulch and nutrients were 
supplied through slew-release fertilizer (14-14-14, Osmocote). Final propagation of the accessions occurred in 2018 where ramets 
were grown in 1-gallon pots containing pine-bark mulch. In May to June 2018 the ramets were transplanted into the common gar­
dens. Briefly, the fields were covered with weed cloth and the layout was arrayed in a honey-comb design with minimum interplant 
distance of 1.56 m. Holes were cut into the weed cloth and the soil was excavated using a spade shovel. The plants were placed into 
the holes, surrounded by soil, and hand watered. The lowland cultivar ‘Blackwell’ was planted around the edge of the field sites to 
account for border effects. We used an augmented unreplicated design for each common garden utilizing the AP13 genotype (the 
genome reference) as a highly replicated check. This is a common experimental design for multi-location field trials and in the early 
stages of many breeding programs70,71 and focuses on planting single representative genotypes of a diversity panel at many loca­
tions. It’s an especially effective design in the case of GWAS and studies of genotype-by-environment interaction, where the focus 
centers on contrasting alternative alleles as the unit of analysis rather the specific comparisons of individual genotypes. We sampled 
729 samples root samples from ATX, 514 root samples from CMO, and 581 root samples from KMI. Included in the analyses were 
also 48 bulk soil samples from each location.

METHOD DETAILS

Root sample collection and processing
Samples were collected in the summer of 2019. Samples from ATX were collected in June, 2019 while CMO and KMI samples were 
collected in early August of 2019. The gap in sample collection timing between the sites was intentionally set to account for phono­
logical differences in AP13, the reference genome accession, between locations. The size of our plantings as well as various char­
acteristics of switchgrass plants presented several challenges during sampling. Given that microbiomes can be dynamic, and can 
potentially respond to weather events, sampling of the fields had to occur within one day. Our plantings are large, and a team of sam­
plers was employed to quickly collect root samples. A1 -inch diameter punch core was used for sample collection. Briefly, the corer 
was placed at the edge of the crown and rotated to be tangential to the crown. This allowed us to avoid the original potting soil directly 
underneath the crown where the original transplantation occurred and minimized the chance of capturing legacy microbiota from the 
pre-transplanted roots. The corers were pushed 10-15 cm below the surface at a 45-degree angle. The soil-bound roots were ex­
tracted from the instrument using a scoopula and placed into a plastic baggie. Between samples, the corer was cleaned of remaining 
soil using a paper towel, but no effort was made to sterilize the instrument between samples as ethanol cannot remove DNA and 
bleaching / washing the instruments was not feasible for conducting the sampling in a reasonable timeframe. Roots were encased 
by surrounding soil in the core; therefore the risk of cross contamination was negligible. After a row was completed, the sampler re­
turned to a workstation and the baggies were organized and placed into a cooler with ice packs or wet ice. Bulk soil samples were 
collected on the same day by collecting soil cores between plants in the field. The samples were placed into plastic baggies and 
stored on wet ice.

The samples were processed the next day. Living roots from the baggies were picked using ethanol and flame sterilized forceps. 
Two or three 1-inch pieces of roots were placed into a 2 mL tube with 1 mL sterile PBS. Typical root samples contained both transport 
roots with attached absorptive roots. The roots were vortexed in PBS for 10 seconds then sterilely transferred to a new, clean tube 
with 1 mL PBS. The roots were again vortexed to remove soil adhering to the surface and the resulting dirty PBS was discarded. This 
process was repeated until the PBS solution was clear and no soil remained in the tube. The roots in the tubes were then frozen and 
stored at -80 degrees until DNA extraction took place.

DNA extraction
DNA was extracted from samples using a procedure similar to Bollman-Giolai et al.72 Briefly, root samples are ground to a fine pow­
der with two sterile steel beads in a 2 mLtube using a GenoGrinder for 30s at 1750 rpm. For soil samples, the soils in the baggies were 
homogenized by squeezing and shaking the bags, then 0.25 g of soil was placed into a tube using a flame sterilized spatula. After 
grinding roots (soils were not ground), 0.25 g of garnet particles (Lysing Matrix A, BioSpec) were decanted into the tube and 
540 uL of Buffer I (181 mM NaP04, 121 mM Guanidinium Thiocyanate) was pipetted into each tube. The samples were briefly 
vortexed, and 60 uL of buffer II (150 mM NaCI, 4% SDS, 500 mM Tris pH 8) was added. The samples were then placed into the 
Genogrinder for 2 min at 1500 RPM to grind / lyse. The tubes were centrifuged at 10,000 g for 1 min to palette debris. The supernatant 
(500 uL) was transferred to a deepwell (1 mL) 96-well plate and 250 uL of Buffer III (133 mM Ammonium Acetate) was added to the
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samples and vortexed to precipitate SDS and proteins. The plates were placed in 4 degrees for 5 min, then centrifuged at 4000 g. The 
supernatant (500 uL) was transferred to a new plate and 120 uL of Buffer IV (120 mM Aluminum Ammonium Sulfate Dodecahydrate) 
was added to precipitate fulvic and humic acids, typical PCR inhibitors from plant and soil samples. The samples were put at 4 degree 
for 5 min, then centrifuged for 2 min at 4000 g. After this step, the supernatant can be frozen/stored or directly used for the next SPRI 
bead purification step. For the SPRI cleanup, 300 uLof the supernatant is mixed with 240 uL of SPRI beads in adeepwell 96-well plate 
and incubated for 5 min. The plates were then placed on a magnet, allowed to clear, and the supernatant was discarded. The beads 
were then washed twice with 80% ethanol and allowed to dry for 5 min. DNA was then eluted using 50 uL of water and transferred to a 
96 well plate for storage at -20.

Library preparation and sequencing
We amplified the V4 region of 16S rRNA gene to survey microbial membership and relative abundance in the samples. We used a 
two-step strategy, where V4 regions were first amplified using modified primers published by Parada et al.73 The primers were modi­
fied to add nextera sequencing primer annealing sites to the amplicons. The resulting PCRs were checked for amplification on a gel 
and cleaned using SPRI beads. The second round of PCR added barcodes and flow cell annealing adapters to the amplicons. Our 
barcoding strategy adds 12 bp Golay barcodes to both ends of the amplicon. The libraries were purified again using SPRI beads and 
quantified using Qubit high sensitivity assays. The amplicons were normalized for concentration by pooling samples at different vol­
umes depending on their concentrations. The resulting pools were then concentrated using SPRI beads and run on a 2% agarose gel. 
The appropriate band was cut from the gel and purified (Nucleospin) and sent for sequencing.

Sequencing occurred at multiple centers. Our first two library pools contained the ATX samples and were sent to both the 
HudsonAlpha Genomic Sequencing Facility and to the Joint Genome Institute (JGI). Therefore, these samples were sequenced twice 
and the reads attributable to corresponding samples were pooled. This explains why ATX samples had such deep sequencing. The 
library pools for CMO and KMI were sequenced at JGI. All sequencing was performed using lllumina NovaSeq configured with theSP 
flowcell which is capable of 250 x 250 bp paired end read lengths.

Sequence processing and ASV calling
Resulting reads were demultiplexed, if needed, using the demultiplex Python software (https://demultiplex.readthedocs.io/en/latest/ 
index.html). Reads were trimmed to remove adapter sequences using cutadapt.61 ASVs were called using the dada2 R software 
package.62 The forward reads were trimmed to 240 bp while the reverse reads were trimmed to 230 bp. A maximum of 1 expected 
error was allowed for both the forward and reverse reads during the filtering process of the DADA2 pipeline. ASVs identified as chi­
meras were discarded from the ASV table along with ASVs less than 248 bp and greater than 256 bp. A taxonomy was assigned to 
each ASV sequence using DADA2’s assignTaxonomyO function using the Silva version 138.1 reference database.74 ASVs with tax­
onomies assigned to mitochondria or chloroplast were discarded as host contamination and therefore removed from the analysis. 
Samples with less than 10,000 reads were removed from the analysis. The count data was converted to relative abundance on a 
per-mille scale by dividing the raw count by the library total count and multiplying by 1000.

Beta diversity measurements
Bray-Curtis dissimilarities were calculated using the vegdist function from the Vegan R package66 on log2 transformed ASV relative 
abundances. Log2 transformation brings the count data closer to a normal distribution which better suites the ordination algorithms. 
Principal coordinate analysis was done using the capscale function from the Vegan package. Permanova was conducted using the 
adonis function.

Modeling site and subpopulation effects on ASVs
We used a linear modeling framework to model the effect of field site, genetic subpopulation, and subpopulation by site effects on 
microbes. To be included in the analysis, an ASV must have been present in >= 50% of the total samples included in the study. For 
every ASV a linear model was run with the following structure

ImfASV.abundancej ~ log 10(depth) + Site + Subpopulation + Site : Subpopulation)

Where ASV_abundancei is the vector of rank-based inverse normal transformation for the ith ASV. This transformation was performed 
using the function RankNormQ from the R package RNOmni.63 Sequencing depth was accounted for by including the log10(depth) 
term in the model. Site represents the vector of field locations and Subpopulation represents the switchgrass genetic population 
of the host. Site:Subpopulation is the term capturing interaction effects between these two factors. Rank-based inverse normal trans­
formations were performed to coax ASV relative abundances into a normal distribution to better fit the underlying assumptions of the 
model. Variance partitioning of the terms was performed by running the function AnovaQ from the Car package on individual models 
and percent variance was calculated by dividing a factor’s sum of squares by the total sum of squares. Contrasts across model vari­
ables were calculated using the emmeans package.64

Core microbiome considerations
There are various methods which exist for calling a core microbiome,76 77 but the scope and scale at which to define a core micro­
biome is currently unknown, especially across location, populations, and temporal scales. In this study, we use a prevalence
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threshold of 80% to define microbes belonging to the core microbiomes at each location. The overlap of these core microbiota be­
tween sites were then termed the study-wide core microbiome. Our reasoning for using the 80% prevalence threshold was two-fold. 
One is that other studies have used this cutoff, and therefore there is a precedent in this area of research. Secondly, the analyses we 
perform are sensitive to data distributions and statistical power. Removing samples where the focal ASV was not detected may 
imbalance data in such a way to make GxE impossible to accurately calculate, if the prevalences are different between the sites. 
We have included an analysis to show how the size of various core microbiomes change in relation to adjusting the prevalence 
threshold (Figures S1A and S1B). The list of study-wide and site-specific core microbiota members can be found at https:// 
github.com/bulksoil/VirgatumMicrobiomeGWAS.

Which taxonomic level is appropriate for calculating heritability of bacteria
We find that heritable variation of microbiota members can be observed across every taxonomic level. Several studies have calcu­
lated heritability of rhizosphere or root associated bacteria.17-19,78 Typically, the analysis is conducted at the OTU or ASV level (i.e. the 
taxonomic level with the highest resolution for metabarcoding). In the case of Sutherland et al., the authors found significant heritable 
variation for aggregated counts of bacterial families in the switchgrass rhizosphere, but found little evidence for the effect of host 
population structure at the ASV level.30 This begs the question: which taxonomic level is appropriate for calculating heritability of 
host-associated bacteria? Our results indicate that, while individual ASVs displayed the greatest association to host genetic varia­
tion, relatively high VA can be observed even at the bacterial order and family level. This observation lends some support to the idea 
that plants do not select for particular microbes (i.e. specific ASVs), but rather for microbes with particular functional attributes.10,25 In 
some cases, it may be that functional attributes impacting colonization of the host diverge across closely related microbes,79 there­
fore the ASV level may be most appropriate. In other cases, a functional attribute selected for by the host may be conserved across 
wider evolutionary distances (i.e. a core genomic feature) allowing for detection of h2 at higher taxonomic levels.80,81 Given the 
differing conclusions that our study has with Sutherland et al., the unit at which to calculate heritability may depend on the plant 
compartment sampled, e.g. the proximity of association with the host may be an important determinant for these considerations. 
Uncovering the appropriate unit for calculating heritable signal in host associated microbial communities will be an important chal­
lenge for future studies.

Genetic variance component analyses
Additive genetic variance and GxE variance was first calculated using the compound symmetry model in the R package Sommer.65 
The compound symmetry structure model assumes constant total variance within each site as well as constant covariance between 
sites. This is the simplest model structure and was selected as the first step in our analysis because the model returns components for 
additive genetic variance and genotype by environment variance. To be included in the analysis, a feature must have been detected 
in >= 80% of the samples. The full model was run with the following structure.

FulLmodel < - mmerfrst ~ Site + log 10(depth),random = ~ vsfPLANTJD, Gu = K)
+ vs(Site : PLANTJD, Gu = EK), rcov = ~ units, data = x2,tolparinv = 1e - 01, verbose = T)

rst is the vector of rank-based inverse normal transformed ASV relative abundance (or aggregated relative abundance if classifi­
cation is above ASV). Rank-based inverse normal transformations were applied to the counts within each site for each ASV and 
resulted in a constant overall variance, fulfilling this assumption of the compound symmetry structure. In this model Site and 
sequencing depth were fit as fixed effects. PLANTJD is the plant accession name and K is the kinship matrix with pairwise relation­
ships between individuals in the population based upon SNP data. Site is the field location and ‘vs(Site:PLANTJ D, Gu=EK)’ captures 
the variance of GxE in the model, where EK is a list of site-specific kinship matrices. Reduced models were constructed to test the 
contribution of VGxE and VA to the models. They were encoded as follows

reduced_1 < - mmerfrst ~ Site + log 10(depth),random = ~ vsfPLANTJD,Gu = K), rcov =

~ units, data = x2,tolparinv = 1e - 01, verbose = T)

Notably, this model lacks the GxE term ‘vs(Site:PLANTJD, Gu=EK)’. This model was compared to the full model using a likelihood 
ratio test to examine whether GxE influenced the abundance of the tested ASV. To test for the effect of host genotype, we compared 
reducedjl to the below model.

reduced_2 < - mmerfrst ~ Site + log 10(depth), rcov = ~ units, data = x2,tolparinv = 1e - 01, verbose = T)

This model lacks the effect of genotype altogether, thus comparing reduced_2 to reducedjl using a likelihood ratio test examining 
whether host genotype contributes to the observed variance of the tested ASV. To make a call on whether GxE or VA influenced mi­
crobial abundances, we first asked if GxE showed an adjusted P-value < 0.1. If so, our analysis stopped and we flagged the tested 
ASV as showing significant GxE. If not, then we tested whether VA had an effect with an adjusted P-value < 0.1. If so, we made a call 
that the ASV is affected by host additive genetic variance. If not, we inferred that the ASV was not affected by host genotype.

We next used the unstructured model in the Sommer package to ask about additive genetic variance within each site. The unstruc­
tured model allows for unequal additive genetic variances within sites as well as unequal covariances between sites. This allowed us 
to ask about the influence of host genotype within sites and whether the influence of host genotype is consistent across multiple sites.
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Multiple testing was accounted for through correction by the Benjamini-Hochberg approach, and a significant contribution of either 
parameter was determined at FDR < 0.1.

Microbial genome-wide associations
To perform GWAS on bacterial community composition, we first performed independent PCoA for each field site. The first three PCs 
from the ordination of each field site were used as dependent variables in the GWAS scans (see below). We performed GWAS for 
microbes found in >80% of the samples within each site. For this analysis, where we were performing quantitative models, we 
removed samples where the focal ASV was not detected and the relative abundance were transformed as previously mentioned us­
ing the rank-based inverse normal transformation. Genome wide association analysis were completed using the SwitchgrassGWAS 
R package (https://github.com/Alice-MacQueen/switchgrassGWAS).33 This package is a wrapper around bigsnpr67 package which, 
for each SNP, fits a simple linear model testing for an additive effect and controls for population structure by incorporating a series of 
PCs as fixed effects. SwitchgrassGWAS dynamically chooses the number of genetic PCs to include as covariates in the model to 
control for population structure and reduce genomic inflation. The SNP matrix used in the analysis was dense, composed of over 
25 million SNPs with a minor allele frequency > 5% generated from the Panicum virgatum V5 genome. GWAS results were examined 
using a genome-wide significance threshold of 5x10 3 to identify SNPs associated with the abundance of various microbes, a com­
mon cutoff used in microbiome GWAS studies where many phenotypes are analyzed together.82-84 The gene content near SNPs 
passing a threshold of 5x10 8 was generated using BEDTools window69 on the P. virgatum v5.1 genome annotation with a window 
size of 50 kb.

For the study-wide core microbiota, i.e. microbes detected in >= 80% of the samples in each field site, the P-valuesforthe GWAS 
scans of each microbe were combined using Fisher’s Method from the R package ‘metap’68. Phenotypic variance attributable to 
SNPs was calculated using a multi-QTL model on ASVs whose GWAS scans had SNPs passing the significance threshold. Leading 
SNPs were identified for each significant peak, i.e. the SNP with the lowest P-value within a 25kb window containing SNPs passing 
the genome-wide significance threshold (P < 5x10 8). The variance explained by the allelic variation at each of these loci was calcu­
lated using ANOVA using the following parameters with the base R aovQ function.

aovfrst ~ SNPX + SNP... + SNPX : Site + SNP... : Site + PC1 + PC2 + PCS + PC4 + PCS + PCS)

In this strategy we controlled for population structure using the first six principal components of the kinship matrix (i.e PC1 through 
PCS). We fit terms for both SNPs and an interaction term between SNP and the different field sites. We report the total variance as a 
summation of the variance attributable to SNPs and SNPs by location interactions.

Detection of pleiotropic loci affecting multiple microbes
To identify regions of the host genome putatively influencing the abundance of multiple microbes we divided the genome into 25 kb 
bins, consistent with average linkage equilibrium decays suggested in other switchgrass studies.85 For each microbe, this resulted in 
43,402 bins. We next calculated the minimum P-value of the SNPs within each bin for each microbe and retained the top 0.5% of bins 
with the lowest P-values (217 bins which we refer to as QTL bins). The resulting QTL bins were then compiled into a presence / 
absence matrix and we present 5 bins from each site showing association to the most ASVs for further analysis. We tested the likeli­
hood of observing the number of overlapping loci in our data by using a permutation framework. In our QTL x ASV matrix, the ASVs 
were the rows and QTL were the columns. We randomized the QTLs for each ASV in the matrix and counted the maximum number of 
overlaps, stratifying by field location. This was performed 1000 times to develop a null distribution. All of our top 5 pleiotropic loci had 
p < 0.001. We chose to only analyze the top 5 loci for each site for presentability but include the other loci passing this significance 
threshold in the supplemental tables.

Gene ontology enrichments
We identified the gene content of the QTL matrix composed above using bedtools window,69 then extracted the Gene Ontology cat­
egories for each gene within each 25 Kb genomic bin. Enrichment was calculated against the background genome GO counts using a 
hypergeometric test and P-values were corrected for multiple tests using the Benjamini-Hochberg procedure.

Gene expression analysis
The expression values for gene underlying putative pleiotropic loci were extracted from the Panicum virgatum gene expression atlas 
which can be found on Phytozome 13. The FPKM values for P. virgatum gene expression across tissues and environments were gath­
ered from the JGI Gene Atlas Project.86 Differential expression between root and shoot tissue was performed using the following 
linear model on FPKM values.

Imflog 2(expression) ~ Tissue)

The resulting P-values for the term ‘Tissue’ were corrected using the Benjamini-Hochberg procedure and significance was called 
at adjusted P-value < 0.05.
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Pattern-triggered immunity assays
We used a protocol of Samira et al.87 to study plant immune responses to flg22 using leaf tissue collected from the ATX field site 
plants in the spring of 2020. Leaf disks (3 mm) were punched from the leaves on location in the field and immediately placed in 
2 mL of sterile Dl water in a 48 well plate and covered with aluminum foil. The plates were gently shaken for 2 hours, then the disks 
were transferred to white, opaque 96 well plates in 50 uL of sterile Dl water, wrapped in aluminum foil, and left overnight. The next day, 
the disks were treated with 50 uL of Flg22 elicitor cocktail (10ug/mL horseradish peroxidase, 34 ug/mL L-012, and 1 uM Flg22). The 
plates were read over a time series on a SpectraMax M3 plate reader. Negative control plates with a randomly selected group of 
genotypes were mock treated (10ug/mL horseradish peroxidase, 34 ug/mL L-012, water). Each genotype was read in triplicate. 
To analyze the data, we log transformed the relative luminescence units of the time series and reduced the dimensionality using 
RCA with the princompO command from base R.

Genetic covariances of PTI axes and bacterial abundances
We estimated genetic covariances between the first three PTI PCA axes and ATX root microbe relative abundances using the R pack­
age Sommer. We used the following mixed effects model.

covar.mod < - mmer(cbind(ASV_abund, PTLPC) ~ 1, random = ~ vsfPLANTJD, Gu = K),data = data,tolparinv = 1e - 1)

The terms for ASV_abund and PTI_PC changed depending on the focal ASV and focal PTI PC axis. Covariance estimates and stan­
dard errors for the estimates were gathered using the following command.

covar < - vpredict(covar_mod, covar ~ V2 / sqrt(V1 *V3))

P-values for observing the covariance estimate or larger (in magnitude) were calculated as p = 2*pnorm(estimate / standard_error, 
lower.tail=FALSE)

QUANTIFICATION AND STATISTICAL ANALYSIS

The R programming environment (version 4.2.1) was used for data analysis and visualization. All statistical tests were performed in R. 
Between group contrasts in linear models were conducted with the packages emmeans (Searle et al.64). ASV relative abundance 
were transformed using rank-based inverse normal transformations with the function RankNorm from the R package RNOmni 
(1.0.1 McCaw et al.63). Meta-analysis of multiple GWAS was performed using the sumlog function from the metap package 
(1.8, Dewey68). Genetic variance components were estimated using the mmer function from the sommer package (4.2.0.1 
Covarrubias-Pazaran65). Principal coordinates analysis was performed using the function capscale from the Vegan packages 
(2.6.4 Oksanen et al.66). Principal components analysis was performed using the prcomp function from the stats package. Permu- 
tational MANOVA was performed using the adonis2 function from the Vegan package (2.6.4 Oksanen et al.66). GWAS was performed 
using the SwitchgrassGWAS R package which uses tools from the bigsnpr package (1.11.6 Prive et al.67) from Where mentioned, 
false discovery rate was controlled for with multiple testing correction by the Benjamini and Hochberg method using the p.adjust 
function from the stats package (Benjamini and Hochberg88).

Current Biology 33, 1-13.e1-e6, May 22, 2023 e6


