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SUMMARY

A fundamental goal in plant microbiome research is to determine the relative impacts of host and environ-
mental effects on root microbiota composition, particularly how host genotype impacts bacterial community
composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host
genetic diversity and grow plants outside of their native ranges, making the associations between host and
microbes difficult to interpret. Here, we characterized the root microbiota of a large diversity panel of switch-
grass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data,
composed of 1,961 samples, suggest that field location is the primary determinant of microbiome composi-
tion; however, substantial heritable variation is widespread across bacterial taxa, especially those in the
Sphingomonadaceae family. Despite diverse compositions, relatively few highly prevalent taxa make up
the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local geno-
types preferentially recruit/filter for local microbes, supporting the idea of affinity between local plants and
their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 micro-
bial strains and found an enrichment of genes involved in immune responses, signaling pathways, and sec-
ondary metabolism. We found loci associated with over half of the core microbiota (i.e., microbes in >80% of
samples), regardless of field location. Finally, we show a genetic relationship between a basal plant immunity
pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manip-
ulating beneficial microbial associations via host genetics.

INTRODUCTION

Root-associated microbes are known to boost host plant pro-
ductivity and fitness through increasing nutrient accessibility,!
manipulating plant growth and development pathways,2 and
antagonizing pathogen colonization.3 Recent insight into the
composition, ecology, and functional importance of the plant
microbiome has greatly increased interest in the potential to
harness root microbiota to sustainably increase crop resilience
and yield. Microbial inoculants have historically been discussed
to achieve this goal, but more recent calls for using plant
breeding to enrich beneficial bacteria from the existing soil mi-
crobiota have begun to emerge. A roadblock hampering this
effort is a lack of understanding about which microbes can
respond to breeding practices, whether breeding can instill
consistent effects on microbial assemblages across differing en-
vironments, and which genes and pathways from the host can be
adjusted to modify microbiomes.

Plant root bacterial microbiomes are derived from soil-borne
communities, for which membership is largely driven by environ-
mental factors such as soil type, geography and climate,4,5 land
use history,6 and seasonal variation.7-9 The host plant exerts
additional influence over its microbiota, resulting in filtered
subsets of soil microbiota often composed of consistently en-
riched microbial taxa on and inside root tissue (summarized by
the two-step selection model10). Given that microbiota can
impact plant health,6,11 especially under varying environmental
conditions,12 15 it follows that the filtering process may be under
selection and lead to microbe-mediated local adaptation.16

Heritable variation is required for a trait to respond to selec-
tion. Indeed, several studies suggest that rhizosphere and root
microbiota vary by host genotype.17 22 These studies indicate
the possibility of enriching for beneficial microbial associations
through breeding. A challenge, however, is that most of these
studies include only a few host genotypes and/or grow host
plants outside of their native ranges, making the role of host
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genetics in root-microbe interactions difficult to interpret.
Furthermore, given our relatively recent understanding that
features of the microbiome are heritable,23-25 genomic loci un-
derlying root-associated microbiome composition are still
largely uncharacterized. There are notable exceptions, however,
Deng et al. used the Sorghum Association Panel to uncover loci
impacting rhizosphere community composition.26 Bergelson
et al. performed GWAS on Arabidopsis root (and leaf) micro-
biome community metrics, including richness and principal co-
ordinates based upon community dissimilarity.27 Uncovering
the effects of host genetics on microbiomes across multiple
native environments remains incomplete, but these studies pro-
vide exciting avenues to leverage host genetics to enrich for
beneficial properties of the microbiome.

Switchgrass (Panicum virgatum) is a wild C4 perennial prairie
grass native to North America and has been promoted as a po-
tential biofuel crop due to its biomass yield potential when
grown in marginal soil. Its biological features and environmental
and economic impact have made switchgrass a popular model
to investigate root-associated microbiota assembly.2829 Su-
therland et al. used a panel of switchgrass genotypes grown
in a single location in the northeast United States to uncover
the role of host genotype on rhizosphere bacterial assem-
blages.30 This study used GWAS to uncover putative loci
affecting the abundance of several bacterial families in the
rhizosphere and found gene ontology (GO) enrichments for
diverse sets of functions. Still, relatively little is known about
how host genetics drive tightly adhering or endophytic root-
associated bacterial communities.

In this study we addressed the following questions. (1) What
bacteria are prominent members of the switchgrass-root-asso-
ciated microbiome when plants are grown across their natural
range? (2) How does the effect of host genotype compare with
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Figure 1. Field site is the primary determi-
nant of switchgrass root microbiota
composition

(A) Principal coordinate analysis based on Bray-
Curtis dissimilarities. Inset: map of field loca-
tions, colors match those in the figure legend.

(B) Relative abundance of phyla and Proteo-
bacterial classes in every sample at each site.

(C) Effect sizes for site, host subpopulation, and
subpopulation x site for ASVs in dataset, broken
down by phylum/class.

(D) Number of ASVs with significant contrasts from
the models displayed (C).

(E) Prevalence/abundance curves for each field
site. Each point represents a single ASV and the
black dashed line is the 80% prevalence threshold
used to call core taxa.

(F) Venn diagram displaying overlaps of core
microbiota from each site.

(G) Fraction of reads belonging to the core
microbiota (colored boxes) and the study-wide
core microbiota (92 overlapping microbes from F,
gray boxes).

See also Figures S1 and S2 and Data S1.
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that of the environment when determining the composition of
root-associated bacterial microbiota? (3) Which microbial line-
ages show heritable variation in roots and is heritability consis-
tent across field sites? (4) Which host genomic loci impact the
abundance of root-associated bacteria? (5) Does microbial
abundance show patterns of association with variation in host
immune response? Answering these questions will bring us
closer to harnessing and manipulating beneficial microbial asso-
ciations via host genetics.

RESULTS

Field site is a primary determinant of switchgrass root
microbiota composition

We used a diversity panel of fully resequenced switchgrass
(Panicum virgatum, see STAR Methods) natural accessions
that were clonally replicated and grown in field sites at Austin,
TX, Columbia, MO; and Kellogg Biological Research Station,
Ml (from here on referred to as ATX, CMO, and KMI, respectively;
Figure 1A, map inset) to uncover the role of environmental varia-
tion and host genetics in shaping root microbiota composition.
The field sites are geographically and climatically distinct,31,32
with soils that differ in physical and chemical properties (Data
S1A). These plants had been established for 2 years and show
signatures of local adaptation including differential survivorship
and biomass accumulation across gardens as well as genetic
loci associated with environmental variables.33,34 We first inves-
tigated the effect of field site on root bacterial microbiota.
Principal coordinate analysis (RCA) of root and soil microbiomes
revealed three site-specific clusters (Figures 1A and S1) and the
significance of this observation was confirmed by perMANOVA
(R2 = 0.51, p < 0.001). Although the communities showed large
differences between field sites at the amplicon sequence variant
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(ASV) level, we found that phylum level relative abundances were
largely consistent between sites (Figure 1B). Actinobacteria and
Proteobacteria (namely alpha and gamma Proteobacteria) were
the dominant phyla associated with switchgrass roots at every
site, which is consistent with most other terrestrial plant micro-
biota studies.17-19,21

A recent population genomic study of switchgrass found that
tetraploid switchgrass can be broadly classified into three ge-
netic subpopulations: Gulf, Midwest, and Atlantic.33 The ranges
forthese subpopulations are largely distinct, with Gulf occupying
habitats in the southern US, Atlantic occupying the Atlantic
coast, and Midwest spread across northern latitudes. We
compared the effect of field site, host subpopulation, and their
interaction using linear models run on bacteria present in
>50% of the samples study-wide. The effect of field site was
much larger than the secondary effects of host subpopulation
and subpopulation x site interactions (Figure 1C). We then
compared the variance explained by site between bacterial
phyla/classes to better understand how experimental factors
impact broader taxonomic groupings. Effect sizes were largely
consistent between phyla and Proteobacteria classes, except
for Chloroflexi and Actinobacteria, which showed larger effect
sizes than Deltaproteobacteria (p < 0.05, Tukey’s post hoc
test; Figure 1D). The large influence of field site on ASV relative
abundance was also visible in the number of ASVs, which ex-
hibited significant differences in relative abundance across field
sites (Figure 1D).

We next evaluated the relationship between ASV prevalence
(i.e., the proportion of samples for which a given ASV is de-
tected) and mean relative abundance at each site (Figure 1E).
Our study used an atypically high depth of sequencing
(>250,000 reads per library on average; Figure S1C), which
gave us greater confidence in assessing presence/absence of
microbes in samples. We found that ASVs with greater relative
abundances were also present in a higher proportion of root mi-
crobiomes. We next defined site-specific core microbiota; to be
consistent with other studies, we used a threshold of 80% prev-
alence.17 ATX had the most ASVs passing this prevalence
threshold (Figures 1F and S1D); we expected this, because
we sequenced ATX samples at greater sequencing depths
than the other two sites (Figure S2; see STAR Methods). Still,
we found that each site hosted overlapping core microbiota:
for all three sites, an overlap of 92 core microbes was found
(from here on referred to as the study-wide core). CMO and
KMI shared the most ASVs. The site-specific core microbiota
typically comprised ~60%-70% of the total microbial popula-
tion (Figure 1G, colored boxplots; Figure S3B) within each
respective site, while the study-wide core microbiota made up
~25% of the total population (Figure 1G, gray boxplots; Fig-
ure S3B). We compared the relative abundance of the study-
wide core microbiota in roots versus soil. In each site, over
half of the ASVs showed significant enrichment in the roots
compared with soil, while a smaller set of ASVs were enriched
in soil (Figure S2A). The root-enriched ASVs largely overlapped
between sites, with 46 ASVs showing significant root-enrich-
ment at every site (Figure S2B). Thus, though field site acts as
the primary determinant of switchgrass-root-associated micro-
biota composition, large proportions of switchgrass root bacte-
rial microbiome are shared between locations.
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Evidence of affinity between host genotypes and local
microbiota

Our analyses revealed that host subpopulation and subpopula-
tion by location interactions are determinants of microbiota
composition (Figures 1C and 1D). Because the three switchgrass
subpopulations are largely constrained to distinct geographic re-
gions (Figure 2A), we hypothesized that plants grown in gardens
within their subpopulation’s native range would show affinity for
the microbes that persist and are abundant within these ranges.
If this were true, then we would expect, at each site, that more
ASVs would show preferential colonization of individuals in the
subpopulation grown in its native range than in the other two
subpopulations. To test this, we used linear models to analyze
the abundance of ASVs within each site and contrasted the
abundances between the different subpopulations. We defined
a specific association as occurring if the relative abundance of
an ASV was significantly greater in one subpopulation compared
with the other two. Gulf plants in their native ATX site had the
most specific associations, while Midwest plants enriched the
most ASVs in native CMO and KM| sites (Figure 2B; Data S1B),
supporting the notion that subpopulations enrich more microbes
in their native habitats. Furthermore, we found the ASVs with
subpopulation-specific associations tended to have significantly
greater prevalence (Figure 2C), but only for subpopulations
growing within their native range. We compared the relative
abundance of subpopulation-enriched ASVs with their relative
abundance in the soil. In general, we found that microbes
showing enrichment in genetic subpopulations had greater
abundance in roots (Figure S2C). There were notable exceptions
to this trend: Gulf-specific microbes in ATX tended to show
greater relative abundance in soil than roots (46 soil-enriched
vs. 21). In the KMI site, 7 Midwest-enriched microbes were en-
riched in soil vs. 16 in roots. These comparisons suggest that
there is preferential sorting of local microbiota onto locally adapt-
ed plant genotypes, especially for highly prevalent microbes.

Switchgrass root microbiota show widespread heritable
variation and genotype by environment interactions

We next used a kinship matrix denoting finer genetic relation-
ships among individuals of the diversity panel to model how
host genetic variation contributes to variation in microbe abun-
dance. We used a suite of linear mixed effects models to partition
additive genetic variance in microbial abundance (V*) using the
host population genetic relationship matrix and tested how VA
differs across the three environments (VGxE) with a compound
symmetry model. Because microbiomes can be defined and
analyzed at various taxonomic levels by aggregating counts at
nodes of the bacterial phylogenetic tree, we tested the effect
of host genotype on the relative abundance of taxa at various
taxonomic levels. Across each taxonomic level, both vexe and
VA significantly explained variation in microbial abundance (Fig-
ure 3A; Data S1C). For microbial features within the top 10th
percentile for VA and VGxE, we found generally increasing esti-
mates for VA and decreasing estimates for VGXE from phylum
to ASV (Figure 3B). We next asked whethertaxonomic groupings
of microbes at the ASV level were more likely to be under the in-
fluence of host genetics. Significant, non-zero VA and VGxE were
widespread across the microbial phylogeny, however, specific
orders were overrepresented in the data (Figure 3C). Each tested
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Figure 2. Plants show evidence of affinity to local bacterial strains

(A) Map depicting locations where individuals within the population were
collected. Colors represent their subpopulation memberships. Field sites are
depicted with their three-letter abbreviations. ATX, Austin, TX; CMC,
Columbia, MO; KMI, KBS, MI.

(B) Proportion of ASVs showing specific enrichments in one subpopulation
compared with the other two by site.

(C) Histograms of prevalence showing specific enrichments by subpopulation
and site, p values represent the significance of the mean prevalence being
greater than that of the background distribution. This was calculated by
randomly drawing the number of enriched ASVs from the background distri-
bution and asking how often we saw a mean prevalence greater than that of
the focal set. See also Figure S2 and Data S1B.

ASV within the orders Sphingomonadales, subgroup 6 (Acido-
bacteria), Gammaproteobacteria Incertae Sedis displayed sig-
nificant non-zero VA or VGxE. In general, across microbial taxa,
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VGxE was greater than VA (Figure 3D). The prominence of GxE
suggested that the magnitude of VA differed between locations.
To better understand the contribution of VA within each site, we
fit an unstructured model to ASVs that allowed for site-specific
VA and as many unique covariances as site combinations. We
applied these models to ASVs with prevalence >80% in at least
two field sites (Figure 3E), finding similar trends to the compound
symmetry model (Figure S3A). When analyzing the study-wide
core microbiota, we found 95 instances of significant site-spe-
cific VA spread across 64 unique ASVs (Data S1C). CMO had
the most ASVs displaying significant VA (n = 38) while KMI had
the least (n = 24). We also tested whether there was a genetic as-
sociation between the abundance of an ASV across multiple
sites by focusing on the genetic covariance of root-associated
microbial traits across sites. Genetic covariances were mainly
positive (Figure S3B), and site comparison had a significant ef-
fect on covariance strength (p = 0.005, ANOVA). CMO/KMI co-
variances were significantly greater than those from ATX/KMI
(adjusted p = 0.006, Tukey’s post hoc test), but not ATX/CMO
(p > 0.05, Tukey’'s post hoc test). We tested for ASVs that
showed significant genetic covariance between sites and found
78 total significant estimates spread across 59 unique ASVs.
Like the aggregate genetic covariance distributions, we found
the most cases of significant genetic covariance between
CMO/KMI, while CMO/ATX and KMO/ATX had equal instances
of significant estimates (Figure 3C). Together, these results indi-
cate that the host genetics play a significant role in modulating an
extensive phylogenetic diversity of root-associated microbiota.

GWAS reveals microbiota assembly is a complex trait
with extensive pleiotropy
We next asked whether host genomic regions responsible for
heritable variation in associated bacteria could be localized
using a GWAS framework. We first performed GWAS on commu-
nity composition using the first three principal coordinates for
each site (Figure S4). Significant associations between SNPs
and community composition were detected for each site. To bet-
ter understand how host allelic variation influences individual mi-
crobes, we extended our analysis to perform GWAS on each
ASV x site combination, resulting in 1,019 independent ana-
lyses. We found 1,153 SNPs associated with 459 ASV x site
combinations. Most ASVs with significant SNP associations
were from the ATX site (253 ASVs), while CMO and KMI had
similar numbers of ASVs with associated SNPs (101 and 105
ASVs, respectively). Taxa with associated SNPs were diverse,
but no bacterial orders were overrepresented (Figures 4A-4C).
Most ASVs with associated SNPs were specific to field sites;
however, of the 179 ASVs that were tested in multiple sites,
50 showed associations across multiple field sites, with 9
showing associations across all three sites (Figure S5D). In line
with our heritability analysis, bacteria within Sphingomonada-
ceae featured prominently among ASVs, with GWAS hits across
multiple sites: 7 of the 10 ASVs within this family showed hits
across 2 or more sites, and 2 Sphingobium ASVs had at least
one significantly associated SNP at all three sites (Figure S5D).
We next asked whether any host genomic loci affected multi-
ple microbial taxa (i.e., had statistically pleiotropic effects on
microbiota, from here on referred to as pleiotropic loci) by
compiling the 0.5% tail of 25 kb genomic bins into a quantitative
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Figure 3. Switchgrass root microbiota show widespread heritability, which is influenced by field site differences
(A) Variance components for aggregated abundances of different taxonomic levels and for ASVs. VA is the additive genetic variance while VGxE is the variance

attributable to genotype by environment interactions.

(B) The relationship between genetic variance components and microbial taxonomic rank.

(C) The number of ASVs showing either significant GXE, VA, or no association to host genotype.

(D) Comparison of the magnitude of VA vs. GXE is presented as the log fold change in the ratio of VA to GXE for measured units within each taxonomic level.
(E) VA estimates for the study-wide core microbiota. The size of the circles indicates the magnitude of estimated VA and dark perimeters of the circles indicate a

significant association (FDR < 0.1).
See also Figure S3 and Data S1C.

trait locus (QTL) x ASV matrix for each site (Figure 4; see STAR
Methods). We first investigated the most commonly observed 25
kb genomic bins for each site by selecting the top 5 loci associ-
ated with the most ASVs within each site (ATX = 38-45 ASVs;

CMO = 18-23 ASVs; KM| = 19-25 ASVs, Data S1D). Two
pleiotropic loci overlapped with loci detected from our initial
GWAS on community metrics (Figure S4; CMO:ChrO1N and
ATX:Chr02K), indicating that while some pleiotropic loci account
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Figure 4. Pleiotropic loci influencing root microbiota
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(A) Number of ASVs detected in the 0.5% tails of the ASV x site GWAS p value distributions. The top 5 most frequently observed genomic bins for each site are

highlighted in site-specific colors.

(B) Candidate genes underlying the pleiotropic loci and their expression pattern in switchgrass roots and shoots. V1-V3 represent phenological stages of the

plant, and red boxes around expression values represent genes differentially expressed between roots and shoots (FDR < 0.05).

(C) Taxonomic breakdown of ASVs affected by putatively pleiotropic loci.

(D) Comparison of QTL similarity (1 — Jaccard dissimilarity) and ASV sequence similarity.

See also Figures S4-S6 and Data S1.

for larger trends in community composition, most identify
variation not seen along the first three axes of community
composition.

To better characterize the candidate genes underlying these
loci, we next compiled expression patterns for genes within
these intervals (Figure 4B). Most loci contained genes displaying
higher expression patterns in switchgrass roots than shoots,
implicating promising candidate genes affecting multiple micro-
biota members. These included several proteins involved in cal-
cium signaling, immunity, and secondary cell-wall biosynthesis.
The microbes associated with pleiotropic loci were taxonomi-
cally diverse, with multiple bacterial phyla affected by each lo-
cus. In general, the additive effects of the QTL were largely
consistent in sign across the different ASVs. This observation
was also reflected in the taxa being affected by the loci: several
loci show patterns where the relative abundances of Actinobac-
teria, Chloroflexi, or Alphaproteobacteria ASVs had consistent
effect signs (Figure 4C). This observation led us to the hypothesis
that there may be an association between the QTL landscape
and phylogenetic relationship for pairs of microbes. We found
a positive and significant association between the sequence
similarity of ASVs and their associated QTL (Figure 4D). This as-
sociation differed weakly but significantly between sites, with
ATX showing a weaker correlation than CMO or KMI (p = 0.06
and 0.0015, respectively). Each site had a closely related ASV
pair, which stood out in terms of shared QTLs. These included
two Sphingobium ASVs in ATX, Bacillus in CMO, and Acidibacter
in KMI. Together, these results indicate that host genomic

6 Current Biology 33, 1-13, May 22, 2023

variation can have pleiotropic effects on microbiota and that
the abundances of related microbes are more likely to be
affected by the same host loci.

The discovered pleiotropic loci included several promising
candidate genes, but to have a more robust understanding of
the functional categories influencing switchgrass-root-associ-
ated microbiota, we performed GO enrichments for annotated
genes underlying the ASV x QTL matrix (Figure S6). We found
that 789 of the ASV x site combinations displayed at least one
significant GO enrichment. The most commonly observed GO
term enrichments showed overlapping as well as contrasting
patterns between sites (Figure S6). For example, the terms
“response to biotic stimulus,” “response to auxin,” “negative
regulation of growth,” and “sucrose biosynthesis” were
observed in multiple ASVs across every site, while “defense
response,” “prophenate biosynthetic process,” and “carbohy-
drate binding” showed more site-specific patterns. These
results indicate that variation in host molecular pathways can
influence the abundance of microbiota members and that
some pathways are putatively dependent on environmental
conditions.

To better understand the contribution of loci independent of
field site, we subsetted our scans to ASVs in the study-wide
core microbiota, joining p values generated during GWAS for a
single ASV across each field site using Fisher's method, a prac-
tice commonly used in meta-analyses to identify statistical tests
with repeatable signals across multiple trials. A total of 239 SNPs
passed a p value threshold of 5 x 1CT8, revealing that 44 out of
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Figure 5. GWAS reveals loci associated with study-wide core switchgrass root microbiota
(A) Manhattan plot showing the association between SNPs and abundances of study-wide core ASVs. p values are derived from combining p values using

Fisher's method. Peaks are colored by the phylum/class of the ASV.

(B) The most strongly enriched gene ontology (GO) terms within the core ASV GWAS tails.

See also Data S1.

92 study-wide core ASVs had a significant association
(Figures 5A and S5D; Data S1E). More than half of the ASVs
with significant associations (23/44) showed significant GWAS
hits across multiple sites (Figures 5A and S5D). Some ASVs
with combined p values passing this genome-wide threshold
did not display any significant associations in the ASV x site
GWAS analyses. For example, ASV6, a highly abundant Bradyr-
hozobium strain, displayed two significant peaks when p values
were combined that were not present during the initial site by
ASV GWAS (Figure S5D). We calculated the amount of variance
explained by significant loci using a multi-QTL model. Our results
indicate that SNPs explained 1,2%-24% of the observed pheno-
typic variance, with a mean of 5.5% (Data S1F). These results
indicate that leveraging multi-site GWAS by combining p values
can identify loci impacting the study-wide core microbiota and
that the variance explained through SNPs on phenotypic varia-
tion is in line with the results reported in an earlier study in
Arabidopsis.35

We explored the functional enrichments of combined p value
GWAS scans from the study-wide core microbiota (Figure 5B).
We identified 76 distinct GO terms enriched across 48 ASVs,
some of which have a priori implications in microbiome

assembly. For example, malate transport and cell-wall biogen-
esis were among the most frequently enriched terms. Malate is
a prominent root exudate involved in shaping rhizospheric mi-
crobiome composition,36 and cell walls form physical barriers
as well as energy sources for microbes.37 This analysis revealed
that although observations of loci associated with the abun-
dance of various microbes is environmentally dependent,
some loci can be implicated across multiple environments and
the processes by which the host plant modulates core micro-
biota are diverse.

Pattern-triggered immunity responses genetically
co-vary with root-associated microbiome composition
Plants surveil their biotic environment through perception of mi-
crobial associated molecular patterns (MAMPs), eliciting the
activation of the pattern-triggered immunity (PTI) pathway. We
hypothesized that loci responsible for the observed variation in
PTI may overlap with host genetic variation controlling microbial
abundance. To test this hypothesis, we measure reactive oxygen
species (ROS) burst in response to the elicitor flg22 in the switch-
grass diversity panel. FIg22 elicited a range of ROS burst profiles
in the population, while mock treated samples did not display the
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typical response curve of treated plants (Figure 6A). We con-
verted the time series into principal components to better under-
stand the different modes of variation displayed across treated
samples. The tails of the PC axes were informative of the type
of variation observed in the population (Figure 6B): PC1 best ex-
plained the magnitude of response; PC2 separated plants with
acute vs. gradual responses; and PCS showed a timing differ-
ence of peak ROS burst. All three axes showed significant nar-
row-sense heritability (b2), ranging from 0.48 to 0.38 (Figure 6C).
These results indicate that switchgrass genotypes significantly
vary in their response to the PTI elicitor flg22.

We next calculated the genetic covariances for the PTI PC
axes against the relative abundance of ATX-specific core mi-
crobes. We found significant genetic covariances across each
PTI axis: in total 126/739 ASVs showed significant genetic co-
variances with PTl axes (Bonferroni p < 0.05, Figure 6D). PTI
PC1 had the most associations and PC2 had the least. PTI
PCs 2 and 3 predominantly had negative covariances with
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Figure 6. ASV abundances co-vary with
pattern-triggered immune responses

(A) Response curves for the switchgrass population
planted at the ATX site for treatment with 1 nM Fig22.
(B) Response curves for mock inoculated plants.

(C) Narrow-sense herilability estimates for the three
PC axes of PTI response variation. Bars represent
standard error estimates.

(D) The 5% and 95% percent tails of the first three PC
axes of PT| response variation.

GOO (E) Microbial Manhattan plot displaying the p values
CLCLCL for the covariances between ASV relative abundance

and the PC axes of PTI variation. Colored circles
PCS represent ASVs passing a Bonferroni threshold of

0.05.

ASVs, while PC1 had a similar amount of
positive and negative covariances (Fig-
ure 6D). These results indicate that bacte-
rial microbiota show positive and negative
genetic correlations with PTI responsive-
ness and that associations between these
traits are not phylogenetically limited.
Phylum / Class
*Acidobacteria
sActinobacteria
Bacteroidetes
Chloroflexi
a-proteobacteria
= 5-proteobacteria
= Y-proteobacteria

Verrucomicrobia

DISCUSSION

Here, we have used natural switchgrass
accessions growing in common gardens
spanning its native range to evaluate
the contribution of environment and host
genotype on root-associated bacterial

Other assemblages. A similar study using a

) . separate switchgrass population at a sin-
D"e‘_’F'°" gle site also found a significant effect of
- Positive host genotype on rhizosphere microbiome
o Negative g yp P

assembly.30 While our studies analyzed
the microbiomes of different root compart-
ments, there was notable overlap in re-
sults. For example, both studies identified
microbes within Sphingomonadaceae as
heritable members of the switchgrass mi-
crobiome. A key finding of our study was that relative abun-
dances of bacteria were strongly influenced by the interaction
of host genetic variation and field site (Figures 2 and 3). Further,
we found that there were affinities between genotypes growing
in their home environments and the local microbiota (Figure 2B).
Interestingly, microbes with specific enrichments to local geno-
types consistently had higher prevalence than expected (Fig-
ure 2C). A potential explanation is that genotypes grown in their
subpopulation’s range, as opposed to genotypes grown outside
of their subpopulation’s range, are more in sync with their native
climates, photoperiods, and soil properties. This, in turn, may
reduce host stress38 and culminate in the acquisition of consis-
tent microbiota. Alternatively, these results could be explained
by a co-evolutionary framework, where the host and microbes
impose reciprocal selection that leads to evolutionary change
in both the host and the microbiome.24 However, given the
stochastic dispersal of soil microbes,39 a more likely explanation
is one-sided evolution, where the local microbe population
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imposes selection and evolution on the host population, rather
than the host imposing selection on the microbial popula-
tions.24,40 The elevated prevalence of enriched microbes may
equate to more chances for interaction and acts to exert stronger
selection on hosts (Figure 2C). Another display of GxE was that
ASVs rarely showed heritable variation across every site. While
GxE for microbial community composition is often complex in
these types of studies, the fundamental “disease triangle”
framework from the plant pathology field#t is useful when
considering host-microbe associations, regardless of pathogen-
esis. This theory dictates that, for disease to occur, a susceptible
host genotype, virulent pathogen, and favorable environmental
condition must co-exist. Each of the three points of the triangle
can be explored further to explain GxE in root microbiota assem-
blages. We discuss these three points in the context of our study
below.

First, environmental variation occurs in biotic and abiotic com-
ponents, which are not mutually exclusive. Our results indicate
that the environment greatly influences the composition of root
microbiota (Figure 1A). The three field sites differ in their man-
agement and soil chemical and physical properties (DataSIA),
factors likely contributing to soil microbiome variation.6 The
CMO and KMI sites are converted prairie and forest, respec-
tively, and cultivate crops either agriculturally or experimentally.
The ATX field site is located on a campus with no known history
of agricultural cultivation. Furthermore, climate patterns differ
between the sites, CMO and KM| having more similar patterns.32
Differing conditions may promote growth of certain taxa, which
may ultimately influence the abundance of other microbes.

The microbial component of the disease triangle states that a
virulent form of the pathogen must be present to infect a host and
initiate disease. Implicit to this point is that genetic variation ex-
ists for microbes in addition to hosts. We could not examine ge-
netic variation of individual ASVs in our study because detection
and abundance of taxa was based on a single gene, which is
insufficient to explore bacterial strain level variation. ASVs in a
site are under selective pressure by the local environment.42
Therefore, an ASV detected at one site can have distinct poly-
morphisms with adaptive consequences compared with the
same ASV at a different field site. Even within sites, ASVs can
be composed of multiple microbial lineages,43 some of which
convey distinct phenotypes to the host.44 Genetic polymor-
phisms within an ASV group may preclude the microbe from fall-
ing under the genetic influence of the host, explaining why we
detect significant heritability for the same ASV in some sites
but not others. Nevertheless, we identified ASVs where
combined p values generated from site-specific GWAS helped
to uncover loci consistently associated with their abundance.
This was the case for half of the study-wide core microbiome,
suggesting that the modulation of ASVs through shared mecha-
nisms across field sites is relatively common, yet may not have
effects passing a threshold in single ASV x site GWAS. A poten-
tial method to study GxE with host-associated microbiomes is
through the construction of synthetic communities, which offers
an ecologically relevant, yet controlled system for plants and mi-
crobes to interact while experiencing an experimental environ-
ment change.45

Finally, the third point of the disease triangle stipulates that a
host plant must be susceptible to infection for pathogenesis to
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occur. In our case, this equates to host accessions being
compatible for colonization by the local ASV. Susceptibility or
compatibility is likely dependent upon both biotic and abiotic
environmental conditions. That is, habitat variation and microbial
community variation between sites may activate or repress the
expression of the allelic variants responsible for regulation of mi-
crobial colonization. For example, increased temperature atten-
uates effector-triggered immunity in Arabidopsis, increasing
susceptibility to Pseudomonas syringae.46 Xin et al. demonstrate
that elevated humidity can greatly influence the pathogenesis of
Pseudomonas syringae, but in a host-genotype-dependent
manner.13 In addition, given that the microbiomes vary substan-
tially between sites, the biotic component of the environment
may contribute to expression differences between allelic vari-
ants, thus leading to differential enrichment of metabolic, immu-
nity, and developmental pathways.2547 One fascinating possibil-
ity is that microbes that subvert plant immunity may ultimately
serve as keystone taxa46 50 by dampening the immune
response, allowing other microbiota to side-step the host im-
mune system. Given that the biotic environment largely varies
between sites, contrasting keystone taxa may exert alternative
effects on different genotypes.

Genetic architecture of host-microbiome interactions in
roots

We identified regions of the host genome associated with the
abundance of study-wide core taxa. In addition, our results
indicate that associated SNPs passing a genome-wide
threshold are rarely shared across multiple ASVs, yet the tails
of GWAS p value distributions contain commonly associated
loci. This suggests that loci with the largest effects on any
ASVs abundance are specific to that microbe, while loci with
smaller effects are shared between ASVs. Together, these re-
sults indicate that microbiome assembly is a complex trait,
given that the microbiome constitutes a consortium of interde-
pendent bacteria, that many significant loci with small effect
sizes were identified associated with these microbes’ abun-
dances (Figure 5A; Data S1F), and that many GO term enrich-
ments were uncovered associated with these loci (Figures SB
and S6). The latter of these two observations were also re-
ported by Sutherland et al.30 These results suggest that many
genes and processes contribute relatively small effects to influ-
ence the relative abundance for various ASVs.

A difficulty in presenting these data is their complexity and the
plethora of uncovered candidate genes putatively involved in mi-
crobiota assembly. We therefore focused on loci impacting the
most members of the microbiome (i.e., pleiotropic loci; Figure 4).
Several compelling candidate genes were identified among the
commonly associated loci, which showed enriched expression
in roots. Among these were a cellulose synthase subunit,
whose ortholog in Arabidopsis is involved in secondary cell-
wall synthesis and has been reported to influence resistance to
soil-borne bacterial pathogens in a defense-hormone-indepen-
dent manner.51 We also identified two root-expressed candidate
nucleotide-binding leucine rich repeat proteins (NLRs) showing
associations to multiple ASVs. NLRs are important sensors
involved in effector-triggered immunity and have been impli-
cated in affecting both the sorghum and barley rhizosphere mi-
crobiota.26,52 Given the diversity of NLR genes within plant
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species (switchgrass has >1,500 annotated NLR genes) and the
presence/absence variation between individuals within spe-
cies,53 an open question is how the repertoire of NLR genes
shapes root-associated microbiota.

An association between PTI and root microbiota
composition
Several of our analyses implicated physical and immune de-
fenses as modulators of microbiome composition. In our study,
we investigated the role of plant genotype in explaining PTI vari-
ation using the elicitor flg22. Although flg22 is one of many
known elicitors, it serves as a good proxy for PTI given that
pattern recognition receptors share similar co-receptors, which
funnel into similar pathways,54 and downstream transcriptional
responses show strong overlaps.55 Much like a recent study in
Arabidopsis that used seedling root growth inhibition as a proxy
for PTI sensitivity, our results revealed strong heritable variation
in PTI response within our population.56 Further, our analysis re-
vealed a link between the abundance of the ATX core microbiota
and modes of PTI variation within our switchgrass diversity
panel. Particularly strong associations, both negative and posi-
tive, were observed between the first axis of PTI variation (ROS
burst magnitude) and a phylogenetically broad set of root-asso-
ciated microbes (Figure 6D). PTI canonically inhibits the entry of
perceived pathogens,57 but our results suggest that it may also
gate or limit the proliferation of commensal bacteria and their in-
teractors, at least for ASVs with negative genetic covariances.
This result is in line with previous studies showing that the atten-
uation of PTI can lead to altered microbiota composition and
even dysbiosis.58 Similarly, Arabidopsis plants with altered
defense hormone production host atypical root microbiota, indi-
cating that immune signaling is an important modulator of micro-
biota assembly.59 On the other hand, we found ASVs with strong
positive genetic covariance with PTI. These ASVs may (1) stimu-
late PTI sensitivity, such as in the case of induced systemic
resistance; (2) escape the effects of PTI; or (3) benefit from the
exclusion of PTl-sensitive microbes. Deciphering the role and
mechanisms of the host immune system in regulating microbiota
assembly processes and how the assembly of microbiota in turn
modulates the host immune system is an active area of investi-
gation, with implications for the design of plant probiotics.60
Leveraging the microbiota via manipulation of host genetics to
favor desirable outcomes on plant fitness oryield is a goal that is
currently unrealized. By characterizing which microbes are
responsive to plant genotype and the potential loci involved in
host-microbiome interactions, the insights from this study may
be of use for configuring associations between plants and mi-
crobes in the field.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plants

The Panicum virgatum natural variation panel used in this study was originally described in Lovell et al.33 Details on field plot locations,
geographic origin of accessions, subpopulation and ecotype classification, and genetic relatedness including SNR calls can be found
in Lovell et al. Briefly, the diversity population was established by collecting seeds and rhizomes from natural as well as common
garden resources and transported to Austin, TX where the accessions were clonally propagated. Switchgrass is an outcrossing
perennial plant, hence individuals in the planting populations are clonally propagated ramets and it is not possible to raise identical
plants from seed. The genomes for individuals within the population were resequenced and aligned to the reference genome AP13 to
identify SNPs. Initial growth of plants and seedlings occurred in a mixture of Promix peat-based potting soil and calcined clay
(Turface). Rhizome propagules were transplanted into 5-gallon pots containing finely ground pine-bark mulch and nutrients were
supplied through slew-release fertilizer (14-14-14, Osmocote). Final propagation of the accessions occurred in 2018 where ramets
were grown in 1-gallon pots containing pine-bark mulch. In May to June 2018 the ramets were transplanted into the common gar-
dens. Briefly, the fields were covered with weed cloth and the layout was arrayed in a honey-comb design with minimum interplant
distance of 1.56 m. Holes were cut into the weed cloth and the soil was excavated using a spade shovel. The plants were placed into
the holes, surrounded by soil, and hand watered. The lowland cultivar ‘Blackwell was planted around the edge of the field sites to
account for border effects. We used an augmented unreplicated design for each common garden utilizing the AP13 genotype (the
genome reference) as a highly replicated check. This is a common experimental design for multi-location field trials and in the early
stages of many breeding programs70,71 and focuses on planting single representative genotypes of a diversity panel at many loca-
tions. It's an especially effective design in the case of GWAS and studies of genotype-by-environment interaction, where the focus
centers on contrasting alternative alleles as the unit of analysis rather the specific comparisons of individual genotypes. We sampled
729 samples root samples from ATX, 514 root samples from CMO, and 581 root samples from KMI. Included in the analyses were
also 48 bulk soil samples from each location.

METHOD DETAILS

Root sample collection and processing

Samples were collected in the summer of 2019. Samples from ATX were collected in June, 2019 while CMO and KMI samples were
collected in early August of 2019. The gap in sample collection timing between the sites was intentionally set to account for phono-
logical differences in AP13, the reference genome accession, between locations. The size of our plantings as well as various char-
acteristics of switchgrass plants presented several challenges during sampling. Given that microbiomes can be dynamic, and can
potentially respond to weather events, sampling of the fields had to occur within one day. Our plantings are large, and a team of sam-
plers was employed to quickly collect root samples. A1-inch diameter punch core was used for sample collection. Briefly, the corer
was placed at the edge of the crown and rotated to be tangential to the crown. This allowed us to avoid the original potting soil directly
underneath the crown where the original transplantation occurred and minimized the chance of capturing legacy microbiota from the
pre-transplanted roots. The corers were pushed 10-15 cm below the surface at a 45-degree angle. The soil-bound roots were ex-
tracted from the instrument using a scoopula and placed into a plastic baggie. Between samples, the corer was cleaned of remaining
soil using a paper towel, but no effort was made to sterilize the instrument between samples as ethanol cannot remove DNA and
bleaching / washing the instruments was not feasible for conducting the sampling in a reasonable timeframe. Roots were encased
by surrounding soil in the core; therefore the risk of cross contamination was negligible. After a row was completed, the sampler re-
turned to a workstation and the baggies were organized and placed into a cooler with ice packs or wet ice. Bulk soil samples were
collected on the same day by collecting soil cores between plants in the field. The samples were placed into plastic baggies and
stored on wet ice.

The samples were processed the next day. Living roots from the baggies were picked using ethanol and flame sterilized forceps.
Two orthree 1-inch pieces of roots were placed into a 2 mL tube with 1 mL sterile PBS. Typical root samples contained both transport
roots with attached absorptive roots. The roots were vortexed in PBS for 10 seconds then sterilely transferred to a new, clean tube
with 1 mL PBS. The roots were again vortexed to remove soil adhering to the surface and the resulting dirty PBS was discarded. This
process was repeated until the PBS solution was clear and no soil remained in the tube. The roots in the tubes were then frozen and
stored at -80 degrees until DNA extraction took place.

DNA extraction

DNA was extracted from samples using a procedure similar to Bollman-Giolai et al.72 Briefly, root samples are ground to a fine pow-
der with two sterile steel beads in a 2 mLtube using a GenoGrinder for 30s at 1750 rpm. For soil samples, the soils in the baggies were
homogenized by squeezing and shaking the bags, then 0.25 g of soil was placed into a tube using a flame sterilized spatula. After
grinding roots (soils were not ground), 0.25 g of garnet particles (Lysing Matrix A, BioSpec) were decanted into the tube and
540 uL of Buffer | (181 mM NaP04, 121 mM Guanidinium Thiocyanate) was pipetted into each tube. The samples were briefly
vortexed, and 60 uL of buffer Il (150 mM NaCl, 4% SDS, 500 mM Tris pH 8) was added. The samples were then placed into the
Genogrinder for 2 min at 1500 RPM to grind / lyse. The tubes were centrifuged at 10,000 g for 1 min to palette debris. The supernatant
(500 uL) was transferred to a deepwell (1 mL) 96-well plate and 250 uL of Buffer lll (133 mM Ammonium Acetate) was added to the
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samples and vortexed to precipitate SDS and proteins. The plates were placed in 4 degrees for 5 min, then centrifuged at 4000 g. The
supernatant (500 uL) was transferred to a new plate and 120 uL of Buffer IV (120 mM Aluminum Ammonium Sulfate Dodecahydrate)
was added to precipitate fulvic and humic acids, typical PCR inhibitors from plant and soil samples. The samples were put at4 degree
for 5 min, then centrifuged for 2 min at 4000 g. After this step, the supernatant can be frozen/stored or directly used for the next SPRI
bead purification step. Forthe SPRI cleanup, 300 uLof the supernatant is mixed with 240 uL of SPRI beads in adeepwell 96-well plate
and incubated for 5 min. The plates were then placed on a magnet, allowed to clear, and the supernatant was discarded. The beads
were then washed twice with 80% ethanol and allowed to dry for 5 min. DNA was then eluted using 50 uL of water and transferred to a
96 well plate for storage at -20.

Library preparation and sequencing

We amplified the V4 region of 16S rRNA gene to survey microbial membership and relative abundance in the samples. We used a
two-step strategy, where V4 regions were first amplified using modified primers published by Parada et al.73 The primers were modi-
fied to add nextera sequencing primer annealing sites to the amplicons. The resulting PCRs were checked for amplification on a gel
and cleaned using SPRI beads. The second round of PCR added barcodes and flow cell annealing adapters to the amplicons. Our
barcoding strategy adds 12 bp Golay barcodes to both ends of the amplicon. The libraries were purified again using SPRI beads and
quantified using Qubit high sensitivity assays. The amplicons were normalized for concentration by pooling samples at different vol-
umes depending on their concentrations. The resulting pools were then concentrated using SPRI beads and run on a 2% agarose gel.
The appropriate band was cut from the gel and purified (Nucleospin) and sent for sequencing.

Sequencing occurred at multiple centers. Our first two library pools contained the ATX samples and were sent to both the
HudsonAlpha Genomic Sequencing Facility and to the Joint Genome Institute (JGI). Therefore, these samples were sequenced twice
and the reads attributable to corresponding samples were pooled. This explains why ATX samples had such deep sequencing. The
library pools for CMO and KMI were sequenced at JGI. All sequencing was performed using lllumina NovaSeq configured with theSP
flowcell which is capable of 250 x 250 bp paired end read lengths.

Sequence processing and ASV calling

Resulting reads were demultiplexed, if needed, using the demultiplex Python software (https://demultiplex.readthedocs.io/en/latest/
index.html). Reads were trimmed to remove adapter sequences using cutadapt.6! ASVs were called using the dada2 R software
package.62 The forward reads were trimmed to 240 bp while the reverse reads were trimmed to 230 bp. A maximum of 1 expected
error was allowed for both the forward and reverse reads during the filtering process of the DADA2 pipeline. ASVs identified as chi-
meras were discarded from the ASV table along with ASVs less than 248 bp and greater than 256 bp. A taxonomy was assigned to
each ASV sequence using DADAZ2’s assignTaxonomyO function using the Silva version 138.1 reference database.74 ASVs with tax-
onomies assigned to mitochondria or chloroplast were discarded as host contamination and therefore removed from the analysis.
Samples with less than 10,000 reads were removed from the analysis. The count data was converted to relative abundance on a
per-mille scale by dividing the raw count by the library total count and multiplying by 1000.

Beta diversity measurements

Bray-Curtis dissimilarities were calculated using the vegdist function from the Vegan R package66 on log2 transformed ASV relative
abundances. Log? transformation brings the count data closer to a normal distribution which better suites the ordination algorithms.
Principal coordinate analysis was done using the capscale function from the Vegan package. Permanova was conducted using the
adonis function.

Modeling site and subpopulation effects on ASVs

We used a linear modeling framework to model the effect of field site, genetic subpopulation, and subpopulation by site effects on
microbes. To be included in the analysis, an ASV must have been present in >= 50% of the total samples included in the study. For
every ASV a linear model was run with the following structure

ImfASV.abundancej ~ log 10(depth) + Site + Subpopulation + Site : Subpopulation)

Where ASV_abundancei is the vector of rank-based inverse normal transformation for the ith ASV. This transformation was performed
using the function RankNormQ from the R package RNOmni.63 Sequencing depth was accounted for by including the log10(depth)
term in the model. Site represents the vector of field locations and Subpopulation represents the switchgrass genetic population
ofthe host. Site:Subpopulation is the term capturing interaction effects between these two factors. Rank-based inverse normal trans-
formations were performed to coax ASV relative abundances into a normal distribution to better fit the underlying assumptions of the
model. Variance partitioning of the terms was performed by running the function AnovaQ from the Car package on individual models
and percent variance was calculated by dividing a factor’s sum of squares by the total sum of squares. Contrasts across model vari-
ables were calculated using the emmeans package.64

Core microbiome considerations
There are various methods which exist for calling a core microbiome,76 77 but the scope and scale at which to define a core micro-
biome is currently unknown, especially across location, populations, and temporal scales. In this study, we use a prevalence
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threshold of 80% to define microbes belonging to the core microbiomes at each location. The overlap of these core microbiota be-
tween sites were then termed the study-wide core microbiome. Our reasoning for using the 80% prevalence threshold was two-fold.
One is that other studies have used this cutoff, and therefore there is a precedent in this area of research. Secondly, the analyses we
perform are sensitive to data distributions and statistical power. Removing samples where the focal ASV was not detected may
imbalance data in such a way to make GxE impossible to accurately calculate, if the prevalences are different between the sites.
We have included an analysis to show how the size of various core microbiomes change in relation to adjusting the prevalence
threshold (Figures S1A and S1B). The list of study-wide and site-specific core microbiota members can be found at https://
github.com/bulksoil/VirgatumMicrobiome GWAS.

Which taxonomic level is appropriate for calculating heritability of bacteria

We find that heritable variation of microbiota members can be observed across every taxonomic level. Several studies have calcu-
lated heritability of rhizosphere or root associated bacteria.17-19,78 Typically, the analysis is conducted atthe OTU or ASV level (i.e. the
taxonomic level with the highest resolution for metabarcoding). In the case of Sutherland et al., the authors found significant heritable
variation for aggregated counts of bacterial families in the switchgrass rhizosphere, but found little evidence for the effect of host
population structure at the ASV level.30 This begs the question: which taxonomic level is appropriate for calculating heritability of
host-associated bacteria? Our results indicate that, while individual ASVs displayed the greatest association to host genetic varia-
tion, relatively high VA can be observed even at the bacterial order and family level. This observation lends some support to the idea
that plants do not select for particular microbes (i.e. specific ASVs), but rather for microbes with particular functional attributes.10,25 In
some cases, it may be that functional attributes impacting colonization of the host diverge across closely related microbes,79 there-
fore the ASV level may be most appropriate. In other cases, a functional attribute selected for by the host may be conserved across
wider evolutionary distances (i.e. a core genomic feature) allowing for detection of h2 at higher taxonomic levels.80,81 Given the
differing conclusions that our study has with Sutherland et al., the unit at which to calculate heritability may depend on the plant
compartment sampled, e.g. the proximity of association with the host may be an important determinant for these considerations.
Uncovering the appropriate unit for calculating heritable signal in host associated microbial communities will be an important chal-
lenge for future studies.

Genetic variance component analyses

Additive genetic variance and GxE variance was first calculated using the compound symmetry model in the R package Sommer.65
The compound symmetry structure model assumes constant total variance within each site as well as constant covariance between
sites. This is the simplest model structure and was selected as the first step in our analysis because the model returns components for
additive genetic variance and genotype by environment variance. To be included in the analysis, a feature must have been detected
in >= 80% of the samples. The full model was run with the following structure.

FulLmodel < — mmerfrst ~ Site + log 10(depth),random = ~ vsfPLANTJD, Gu = K)
+ vs(Site : PLANTJD, Gu = EK), rcov = ~ units, data = x2,tolparinv = 1e — 01, verbose = T)

rst is the vector of rank-based inverse normal transformed ASV relative abundance (or aggregated relative abundance if classifi-
cation is above ASV). Rank-based inverse normal transformations were applied to the counts within each site for each ASV and
resulted in a constant overall variance, fulfilling this assumption of the compound symmetry structure. In this model Site and
sequencing depth were fit as fixed effects. PLANTJD is the plant accession name and K is the kinship matrix with pairwise relation-
ships between individuals in the population based upon SNP data. Site is the field location and ‘vs(Site:PLANTJ D, Gu=EK) captures
the variance of GxE in the model, where EKis a list of site-specific kinship matrices. Reduced models were constructed to test the
contribution of VGXE and VA to the models. They were encoded as follows

reduced_1 < - mmerfrst ~ Site + log 10(depth),random = ~ vsfPLANTJD,Gu = K), rcov =

~ units, data = x2,tolparinv = 1e — 01, verbose = T)

Notably, this model lacks the GxE term ‘vs(Site:PLANTJD, Gu=EK)’. This model was compared to the full model using a likelihood
ratio test to examine whether GxE influenced the abundance of the tested ASV. To test for the effect of host genotype, we compared
reduced;jl to the below model.

reduced_2 < - mmerfrst ~ Site + log 10(depth), rcov = ~ units, data = x2,tolparinv = 1e — 01, verbose = T)

This model lacks the effect of genotype altogether, thus comparing reduced_2 to reducedjl using a likelihood ratio test examining
whether host genotype contributes to the observed variance of the tested ASV. To make a call on whether GxE or VA influenced mi-
crobial abundances, we first asked if GXE showed an adjusted P-value < 0.1. If so, our analysis stopped and we flagged the tested
ASV as showing significant GxE. If not, then we tested whether VA had an effect with an adjusted P-value < 0.1. If so, we made a call
that the ASV is affected by host additive genetic variance. If not, we inferred that the ASV was not affected by host genotype.

We next used the unstructured model in the Sommer package to ask about additive genetic variance within each site. The unstruc-
tured model allows for unequal additive genetic variances within sites as well as unequal covariances between sites. This allowed us
to ask about the influence of host genotype within sites and whether the influence of host genotype is consistent across multiple sites.
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Multiple testing was accounted for through correction by the Benjamini-Hochberg approach, and a significant contribution of either
parameter was determined at FDR < 0.1.

Microbial genome-wide associations

To perform GWAS on bacterial community composition, we first performed independent PCoA for each field site. The firstthree PCs
from the ordination of each field site were used as dependent variables in the GWAS scans (see below). We performed GWAS for
microbes found in >80% of the samples within each site. For this analysis, where we were performing quantitative models, we
removed samples where the focal ASV was not detected and the relative abundance were transformed as previously mentioned us-
ing the rank-based inverse normal transformation. Genome wide association analysis were completed using the SwitchgrassGWAS
R package (https://github.com/Alice-MacQueen/switchgrassGWAS).33 This package is a wrapper around bigsnpr67 package which,
for each SNP, fits a simple linear model testing for an additive effect and controls for population structure by incorporating a series of
PCs as fixed effects. SwitchgrassGWAS dynamically chooses the number of genetic PCs to include as covariates in the model to
control for population structure and reduce genomic inflation. The SNP matrix used in the analysis was dense, composed of over
25 million SNPs with a minor allele frequency > 5% generated from the Panicum virgatum V5 genome. GWAS results were examined
using a genome-wide significance threshold of 5x10 3 to identify SNPs associated with the abundance of various microbes, a com-
mon cutoff used in microbiome GWAS studies where many phenotypes are analyzed together.82-84 The gene content near SNPs
passing a threshold of 5x10 8 was generated using BEDTools window69 on the P. virgatum v5.1 genome annotation with a window
size of 50 kb.

For the study-wide core microbiota, i.e. microbes detected in >= 80% of the samples in each field site, the P-valuesforthe GWAS
scans of each microbe were combined using Fisher's Method from the R package ‘metap’68. Phenotypic variance attributable to
SNPs was calculated using a multi-QTL model on ASVs whose GWAS scans had SNPs passing the significance threshold. Leading
SNPs were identified for each significant peak, i.e. the SNP with the lowest P-value within a 25kb window containing SNPs passing
the genome-wide significance threshold (P < 5x10 8). The variance explained by the allelic variation at each of these loci was calcu-
lated using ANOVA using the following parameters with the base R aovQ function.

aovfrst ~ SNPX + SNP... + SNPX : Site + SNP... : Site + PC1 + PC2 + PCS + PC4 + PCS + PCS)

In this strategy we controlled for population structure using the first six principal components of the kinship matrix (i.e PC1 through
PCS). We fit terms for both SNPs and an interaction term between SNP and the different field sites. We report the total variance as a
summation of the variance attributable to SNPs and SNPs by location interactions.

Detection of pleiotropic loci affecting multiple microbes

To identify regions of the host genome putatively influencing the abundance of multiple microbes we divided the genome into 25 kb
bins, consistent with average linkage equilibrium decays suggested in other switchgrass studies.85 For each microbe, this resulted in
43,402 bins. We next calculated the minimum P-value of the SNPs within each bin for each microbe and retained the top 0.5% of bins
with the lowest P-values (217 bins which we refer to as QTL bins). The resulting QTL bins were then compiled into a presence /
absence matrix and we present 5 bins from each site showing association to the most ASVs for further analysis. We tested the likeli-
hood of observing the number of overlapping loci in our data by using a permutation framework. In our QTL x ASV matrix, the ASVs
were the rows and QTL were the columns. We randomized the QTLs for each ASV in the matrix and counted the maximum number of
overlaps, stratifying by field location. This was performed 1000 times to develop a null distribution. All of ourtop 5 pleiotropic loci had
p < 0.001. We chose to only analyze the top 5 loci for each site for presentability but include the other loci passing this significance
threshold in the supplemental tables.

Gene ontology enrichments

We identified the gene content of the QTL matrix composed above using bedtools window,69 then extracted the Gene Ontology cat-
egories for each gene within each 25 Kb genomic bin. Enrichment was calculated against the background genome GO counts using a
hypergeometric test and P-values were corrected for multiple tests using the Benjamini-Hochberg procedure.

Gene expression analysis

The expression values for gene underlying putative pleiotropic loci were extracted from the Panicum virgatum gene expression atlas
which can be found on Phytozome 13. The FPKM values for P. virgatum gene expression across tissues and environments were gath-
ered from the JGI Gene Atlas Project.86 Differential expression between root and shoot tissue was performed using the following
linear model on FPKM values.

Imflog 2(expression) ~ Tissue)

The resulting P-values for the term ‘Tissue’ were corrected using the Benjamini-Hochberg procedure and significance was called
at adjusted P-value < 0.05.
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Pattern-triggered immunity assays

We used a protocol of Samira et al.87 to study plant immune responses to flg22 using leaf tissue collected from the ATX field site
plants in the spring of 2020. Leaf disks (3 mm) were punched from the leaves on location in the field and immediately placed in
2 mL of sterile DI water in a 48 well plate and covered with aluminum foil. The plates were gently shaken for 2 hours, then the disks
were transferred to white, opaque 96 well plates in 50 uL of sterile DI water, wrapped in aluminum foil, and left overnight. The next day,
the disks were treated with 50 uL of Flg22 elicitor cocktail (10ug/mL horseradish peroxidase, 34 ug/mL L-012, and 1 uM FIg22). The
plates were read over a time series on a SpectraMax M3 plate reader. Negative control plates with a randomly selected group of
genotypes were mock treated (10ug/mL horseradish peroxidase, 34 ug/mL L-012, water). Each genotype was read in triplicate.
To analyze the data, we log transformed the relative luminescence units of the time series and reduced the dimensionality using
RCA with the princompO command from base R.

Genetic covariances of PTl axes and bacterial abundances
We estimated genetic covariances between the firstthree PTI PCA axes and ATX root microbe relative abundances using the R pack-
age Sommer. We used the following mixed effects model.

covar.mod < — mmer(cbind(ASV_abund, PTLPC) ~ 1,random = ~ vsfPLANTJD, Gu = K),data = data,tolparinv = 1e — 1)

The terms for ASV_abund and PTI_PC changed depending on the focal ASV and focal PTI PC axis. Covariance estimates and stan-
dard errors for the estimates were gathered using the following command.

covar < - vpredict(covar_mod, covar ~ V2 / sqrt(V1 *V3))

P-values for observing the covariance estimate or larger (in magnitude) were calculated as p = 2*pnorm(estimate / standard_error,
lower.tail=FALSE)

QUANTIFICATION AND STATISTICAL ANALYSIS

The R programming environment (version 4.2.1) was used for data analysis and visualization. All statistical tests were performed in R.
Between group contrasts in linear models were conducted with the packages emmeans (Searle et al.64). ASV relative abundance
were transformed using rank-based inverse normal transformations with the function RankNorm from the R package RNOmni
(1.0.1 McCaw et al.63). Meta-analysis of multiple GWAS was performed using the sumlog function from the metap package
(1.8, Dewey68). Genetic variance components were estimated using the mmer function from the sommer package (4.2.0.1
Covarrubias-Pazaran65). Principal coordinates analysis was performed using the function capscale from the Vegan packages
(2.6.4 Oksanen et al.66). Principal components analysis was performed using the prcomp function from the stats package. Permu-
tational MANOVA was performed using the adonis2 function from the Vegan package (2.6.4 Oksanen et al.66). GWAS was performed
using the SwitchgrassGWAS R package which uses tools from the bigsnpr package (1.11.6 Prive et al.67) from Where mentioned,
false discovery rate was controlled for with multiple testing correction by the Benjamini and Hochberg method using the p.adjust
function from the stats package (Benjamini and Hochberg8s).
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